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ABSTRACT
Kinematic analysis of under-constrained Cable-Driven Par-

allel Robots has been a topic of interest because of the inherent
coupling between the loop-closure and static equilibrium equa-
tions. The paper proposes an unsupervised neural network al-
gorithm to perform real-time forward geometrico-static analy-
sis of such robots in a suspended configuration under the ac-
tion of gravity. The formulation determines a non-linear func-
tion approximation to model the problem and proves to be ef-
ficient in solving for consecutive and close waypoints in a path.
The methodology is applied on a six-degree-of-freedom (6-DOF)
spatial under-constrained suspended cable-driven parallel robot.
Specific comparison results to show the effectiveness of the pro-
posed method in tracking a given path and degree of constraint
satisfaction are presented against the results obtained from non-
linear least-square optimization.

1 INTRODUCTION
Cable-Driven Parallel Robots (CDPRs) are a particular class

of parallel robots whose moving-platform (MP) is connected to
the robot fixed base frame by a number of cables. Hereafter, the
connection points between the cables and the base frame will be
referred to as exit points. Such a design brings advantages of low
inertia, high payload to weight ratio, and a significantly large
workspace as compared to their serial and parallel counterparts.

∗Address all correspondence to this author.

Numerous applications of such robots have been demonstrated,
for instance, large scale 3D printing [1], rescue robots [2], large
scale telescopes [3], in rehabilitation mechanisms [4] and trans-
fer robots for the elderly [5].

The kinematic analysis for CDPRs proves to be more com-
plex as compared to the classical parallel robots with rigid links.
This is generally driven by the fact that cables can only apply
unilateral forces, i.e., only pull the MP and not push it, mak-
ing it fairly difficult to account for static equilibrium. Many
researchers have extensively contributed to the kinematic anal-
ysis of such robots. The cable lengths tend to be the most fea-
sible proprioceptive measurement for such robots as compared
to other physical quantities like cable tensions or orientations.
There has been considerable work in including angular sen-
sors [6], camera-based pose estimations [7–10] and tension sen-
sors [11–14]. However, such incorporations come at their own
cost of assembly and accuracy. If only cable lengths, i.e., pul-
ley motor position measurements, are considered, the kinematic
analysis is significantly influenced by the cable model used. Ca-
bles can be considered mass-less and non-elastic, mass-less but
elastic, or with non-negligible mass and elastic [15]. For sim-
plicity and introduction of a novel algorithm to solve the Direct
Geometrico-Static Problem (DGSP) of CDPRs, this paper con-
siders mass-less, non-elastic cables and suspended CDPRs.

Apart from the nature of cables and the robot configuration,
the number of cables modulating the intended degrees of freedom
(DoFs) plays a vital role in influencing the system’s kinematic
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analysis. Fully-constrained configurations consist of the same
number of cables as the degrees of freedom, the external wrench
being the final virtual cable to guarantee tautness of all the ca-
bles [16]. However, with the reduction in the number of cables,
the system becomes under constrained. Under-constrained CD-
PRs typically have n-DoFs controlled by m(< n) cables. Thus,
allowing only m DoFs to be controlled. The kinematic analysis
of such robots is inherently coupled with static analysis and can-
not be solved without solving the combined kinetostatic prob-
lem [17]. For such systems, even when the cable lengths are
fixed, the MP still moves and adjusts according to the external
wrench. Accordingly, the geometrico-static [18] problem be-
comes more complex and may have several solutions.

The forward kinematics analysis for under constrained sus-
pended CDPRs has been approached as finding all the possible
solutions to the geometrico-static equations or incorporating var-
ious iterative strategies to solve in real-time. Interval analysis
[19, 20] is one possible approach to solve for the complete anal-
ysis taking into account that some cables may be slack and have
been explored for underconstrained systems. Various works have
led to optimization problems for real-time analysis based on min-
imizing the potential energy [21], finding the lowest equilibrium
pose [22] or minimizing cable tensions [23]. Iterative (usually,
Levenberg-Marquadt) algorithms have found themselves useful
in locally minimizing pose errors [24], using Hessian matrix to
construct convex problem [21] and Jacobian matrix to solve the
linearized approximation of the FK problem [25] at hand.

The optimization problem discussed for the real-time anal-
ysis can be seen to be a highly non-linear system and can be
easily correlated to neural network architecture. Artificial Neu-
ral Network (ANN) has been used extensively in recent research
to solve the inverse analysis of serial robots and forward analysis
of parallel robots. Supervised methods are employed by collect-
ing ground truth data and training to find a function approxima-
tion. Such practices have been extensively applied to serial [26],
and cable [27] robots As most controllers directly work on joint
space applying direct control over motor winches to modulate
cable lengths, path planning in joint space [28] is a better option.
In such a situation, processing Cartesian poses for accurate track-
ing of a planned path can take advantage of a real-time forward
kinematics module.

In this paper, an unsupervised neural network algorithm
based on real-time forward kinematics of under-constrained sus-
pended CDPRs is presented for a spatial (6 DoFs, 4 cables) con-
figuration. The algorithm is made suitable for trajectory track-
ing by using the unsupervised neural network weight adapta-
tion framework and assuming that the difference between two
consecutive waypoints does not require significant weight up-
dates. Thus, the convergence turns out to be slower for the ini-
tial point and faster for the waypoints as compared to the popular
non-linear least-square (lsqnonlin by R©MATLAB) optimization
framework. Finally, a pre-planned path is tracked and overall

performance for the proposed algorithm and lsqnonlin is com-
pared based on the minimization efficiency of the surrogate ob-
jective and magnitude of static equilibrium constraint satisfac-
tion.

The model of the manipulator and the associated nomencla-
ture are discussed in Section 2 followed by the description of the
various components of the geometrico-static problem in Section
3. The unsupervised neural network formulation is demonstrated
in Section 4. Section 5 gives the simulation results obtained us-
ing the proposed approach.

2 PARAMETRIZATION
Let us consider an n-DOF CDPR with m cables. Its ith

closed-loop is represented in Fig. 1. The frame Fb of origin O
is attached to the base. The frame Fp of origin P is attached to
the Moving-Platform (MP). ai denotes the Cartesian coordinates
vector of exit point Ai expressed in Fb. bi denotes the Carte-
sian coordinates vector of anchor point Bi expressed in Fp. The
MP pose is defined by the vector p pointing from O to P and the
rotation matrix bRp ∈ SO(3) from Fb to Fp.

FIGURE 1: ith CLOSED-LOOP OF THE CDPR

The ith loop closure equation is expressed as:

bai + lb
i ui− bRp

pbi−b p = 03 (1)

ui is the unit vector along the ith cable pointing from Ai
to Bi and 03 is a three dimensional zero vector. The subscript b

(p, resp.) means that the corresponding vector is expressed in
frame Fb (Fp, resp.).

The upper and lower bounds on cable tensions are denoted
as t and t, respectively (t = 86 N, t = 1 N). The pre-planned
path used for the verification purposes are chosen to be within
the wrench feasible workspace of the robot (based on CRAFT
[29–31]). The MP mass is named mE .

2 Copyright c© 2021 by ASME

user
Rectangle 



3 GEOMETRICO-STATIC MODELING
3.1 Inverse Kinematics

The inverse kinematics (IK) formulation for CDPRs is the
mapping from the Cartesian space to the cable space. For a
given pose and orientation of the n-DOF CDPR, IK computes
the lengths of the m cables. The main variables and parameters
of the kinematics is already described in Fig. 1.

The MP pose, s = [bp,bϕ], is given by the position vector
of the center of mass of the moving platform bp and its ori-
entation with respect to the base frame bϕ = [φ ,θ ,ψ]. Thus,
bRp = Rz(ψ)Ry(θ)Rx(φ) and from Eq. (1),

lb
i ui =

b p+ bRp
pbi−b ai (2)

li =
∥∥∥bp+ bRp

pbi−b ai

∥∥∥
2

(3)

where lll = [l1, l2, . . . , lm] is the cable length vector and ‖.‖2 de-
noting the two-norm of a vector.. The cable elongations due to
elasticity are neglected. This IK mapping from s to lll is referred
to the mapping function defined as,

ξ : s ∈ Rn 7→ lll ∈ Rm

3.2 Forward Kinematics
The forward kinematics (FK) of the cable-driven manip-

ulators consists of obtaining the platform pose, s based on a
given joint configuration as a set of cable lengths lll. For the
under-actuated case in the paper, the kinematic model is under-
determined. The FK problem is set up as a minimization problem
where the relative error between the given cable lengths, l̂ll, and
the lengths obtained from the IK of the current pose, lll = ξ (s) is
a minimum. The error required to be minimized is given by:

e(s) =
∥∥∥l̂ll−ξ (s)

∥∥∥
2

(4)

Thus, for a given l̂ll, the FK formulation is a function mapping
defined by

ζ : l̂ll ∈ Rm 7→ s ∈ Rn

such that

ζ (l̂ll) = argmin
s

∥∥∥l̂ll−ξ (s)
∥∥∥

2

3.3 Static Equilibrium
Let an external force fp and moment τττ p be applied on the

moving platform. For the moving platform to remain in equilib-
rium, there must exist a m-dimensional vector of cable tensions,

t = [t1, t2, . . . , tm], satisfying the Newton-Euler equation given by,

−Wt+we = 0n (5)

where W is the normalized Wrench matrix of the mechanism at
this particular MP pose, given by

W =

[ bu1 . . . bum

(1/r)bRp
pb1×b u1 . . . (1/r)bRp

pbm×b um

]
(6)

and we = [fT
p (1/r)τττT

p ]
T as dimensionless homogenized matrices

with the help of a characteristic length r which is defined as:
r2 = 1/m ∑

m
i=1

∥∥F bi
∥∥2

2 (refer [32]).

4 NEURAL NETWORK FORMULATION
The components of robot kinetostatics play a vital role in

defining the solution of the forward kinematics and the feasibil-
ity of the solution as a measure of satisfaction of the static equi-
librium. Unlike serial robots, solving the forward kinematics is
relatively difficult than solving the inverse kinematics for such
parallel robots. The proposed neural network (NN) formulation
is guided by an unsupervised iterative strategy to solve the sur-
rogate objective of finding a suitable MP pose for given cable
lengths.

The complete NN framework is built to take the cable
lengths from the trajectory in joint space along with the external
wrench vector being applied on the MP. Thus the input vector
is given by x = [l̂ll

T we
T ]T . Finally, the framework solves for

the MP pose and required cable tensions to maintain the MP
static equilibrium. Accordingly, the output vector is given by
y = [sT tT ]T . The overall proposed strategy can be visualized as
an alternative to solve

NN : x ∈ Rm+n 7→ y ∈ Rm+n

s.t. for l̂ll,we ∈ x and s, t ∈ y

NN(x) = y = argmin
s

∥∥∥l̂ll−ξ (s)
∥∥∥

2

−W(s) t+we = 0n

where W(s) denotes that the wrench matrix W is a function
of the MP pose s. The above quadratic optimization problem
was formulated as a surrogate objective (L ) based on penalty
formation from the constraints such that

L (y = [sT , tT ]T ) =
∥∥∥l̂ll−ξ (s)

∥∥∥2

2
+µ ‖−W(s) t+we‖2

2 (7)
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However, it can be observed that the summation holds two
different measurement units, namely, square meters and Newton,
respectively. In order to homogenize the surrogate objective, the
characteristic length (meter) and the weight (Newton) of the MP
were used respectively. Hence, the homogenized objective is ex-
pressed as:

L̂ (y) =
1
r2

∥∥∥l̂ll−ξ (s)
∥∥∥2

2
+µ

(
‖−W(s) t+we‖2

mE g

)2

(8)

where g = 9.81m/s2 is the acceleration due to gravity. Such a
penalty function formulation can be solved using Gradient De-
scent, Newton or Quasi-Newton method and Trust Region meth-
ods.

4.1 Network Architecture
The formulated input-output problem is solved by means

of an unsupervised neural network scheme where the error is
calculated using the inverse kinematic lengths of the predicted
MP pose vector. The gradients are calculated based on the
Stochastic Gradient Descent (SGD) algorithm and the weights
are updated based on those gradients.

FIGURE 2: CONSIDERED NEURAL NETWORK ARCHI-
TECTURE WITH ACTIVATION FUNCTION

Consider a Neural Network (NN) consisting of two hidden
layers with weights W of shape h×(m+n), V of shape (m+n)×
h and biases B of shape h×1 respectively, where h is the number
of hidden nodes in the hidden layers. The activation functions
used for the hidden layers is the sigmoid function, σ(x), defined
by:

σ(x) =
1

1+ e−x (9)

The back-propagation error is defined using L̂ from Eq. (8).
From SGD formulation, the weights and biases are optimized
with reference to calculated change in weights δW of shape h×
(m+ n), δV of shape (m+ n)× h and biases δB of shape h× 1
given by:

δW ( j, i) =
∂L̂

∂W ( j, i)
∀ i = [1 (m+n)], j = [1 h] (10)

δV (k, j) =
∂L̂

∂V (k, j)
∀ j = [1 h], k = [1 (m+n)] (11)

δB( j,1) =
∂L̂

∂B( j,1)
∀ j = [1 h] (12)

The updated weights and biases (Wnew,Vnew and Bnew)
are obtained by using the above δ� values obtained
for the corresponding current weights and biases
(Wcurrent ,Vcurrent and Bcurrent ). The update equations are
given by:

Wnew =Wcurrent −αδW (13)
Vnew =Vcurrent −αδV (14)
Bnew = Bcurrent −αδB (15)

where α is defined as the learning rate, typically in the range
of 10−4.

4.2 Calculation of Derivatives and Weight Updates
The final problem gets reduced to calculation of the gradi-

ents, i.e, the changes in weights. To solve this problem, some
pre-calculations are done to represent the predicted output vector
ynn from the input x, such that,

ynn
(m+n)×1 =V(m+n)×hσ(Wh×(m+n)x(m+n)×1 +Bh×1) (16)

Each uth individual term in the output vector is a function of the
components of the input vector:

ynn
u =

h

∑
j=1

(
V (u, j)σ

(
m+n

∑
i=1

W ( j, i)x(i)+B( j,1)

))
(17)

As a result, the gradients defined in Eqs. (10) to (12) take the
form:
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∂L̂

∂W ( j, i)
=

m+n

∑
u=1

∂L̂

∂ynn
u

∂ynn
u

∂W ( j, i)
(18)

∂L̂

∂V (k, j)
=

m+n

∑
u=1

∂L̂

∂ynn
u

∂ynn
u

∂V (k, j)
(19)

∂L̂

∂B( j,1)
=

m+n

∑
u=1

∂L̂

∂ynn
u

∂ynn
u

∂B( j,1)
(20)

The individual segments can be calculated based on deriva-
tive of the error with respect to the outputs and the derivatives
of outputs with respect to the weights. Finally, Algorithm 1 de-
scribes the Unsupervised Forward Kinematics Neural Network
(UFKNN).

Algorithm 1: Unsupervised Forward Kinematics Neural
Network (UFKNN)

Result: MP pose and cable tension vector
Determine input vector [l1, . . . , lm,we1, . . . ,wen];
Wi j← Hidden Layer Weights;
B j← Hidden Layer Biases;
Vjk← Output Layer Weights;
Wi j, B j, B jk← Random Initializing;
σ()← Sigmoid Activation function;
α ← learning rate;
while iteration ≤ max iterations do

inp← (A)[l1, . . . , lm,we1, . . . ,wen] ;
out[q1, . . . ,qn, t1, . . . , tm]←Vjk(σ(Wi j ∗ inp+B j));
Loss(L̂ )← f unction(out) from (8);
if L̂ ≤ L̂threshold then

Stop;
else

δwi j,δb j,δv jk,← ∂L̂ /Wi j,∂L̂ /B j,∂L̂ /Vjk;
Wi j←Wi j−αδwi j;
B j← B j−αδb j;
Vjk←Vjk−αδv jk;

end
end

5 SIMULATION RESULTS
Algorithm 1 is implemented on a 6-DOF spatial robot with

four cables. The primary motivation of the methodology is to
develop some form of re-usability by making a module to learn
the FK for a particular manipulator about which the module has

no clue beforehand. Thus, the results are analyzed by mak-
ing the manipulator traverse a planned joint space trajectory and
are compared against the results obtained with lsqnonlin, a non-
linear optimizer using the Levenberg-Marquardt algorithm. It is
expected that the weights estimated for one instance does not
vary much when the MP moves to the next waypoint. Hence,
the time taken to calculate the forward kinematics for each in-
stance possibly takes less time than the previous one. This con-
clusively makes trajectory tracking faster by only using propri-
oceptive sensors. The results are present thereafter considering
the rigid cable model.

The spatial 6-DOF suspended underconstrained configura-
tion as shown in Fig. 3a is considered. The setup with a size
of 4.24 m x 3.67 m x 2.76 m (l x b x h) has a 5.6 Kg moving
platform of size 0.28 m x 0.28 m x 0.20 m. As the problem do-
main increases and becomes more complex, the general intuition
that the number of non-linear parameters will increase leads us
to choose a higher number of hidden nodes. However, the ap-
propriate learning rate was obtained iteratively by observing the
quality of the results. Table 1 gives the parameters that are used
in this illustrative example.

TABLE 1: PARAMETERS FOR SPATIAL CDPR-UFKNN AL-
GORITHM AND LSQNONLIN COMPARISON

Parameter Value Parameter Value

mE 5.6 Kg h 64

r 0.396 m α 10−5

µ 0.4 L̂threshold 0.0015

t1 18 N t3 25 N

t2 15 N t4 16 N

itrlsq
max 2×105 tollsq 10−100

The reference path for this case is chosen to be a vertical
spiral in the center of the fixed frame, as in Fig. 3a, and the cor-
responding path in joint space is shown in Fig. 3b. Such a path
considers the extreme points at varying heights. Now, to track the
accuracy of the algorithm in finding an appropriate solution, we
prepare ground-truth outputs using the Cartesian data and fixed
tension vector equal to t = [t1, t2, t3, t4], respective values can be
seen in Table 1. The wrench to be applied on the MP at every
pose instance is calculated by considering the fixed tension vec-
tor and the wrench matrix corresponding to that MP pose.

The comparison setup for both the algorithms was based on
an iterative rule based on the fact that the right initial solution
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(a) MODEL AND CARTESIAN PATH (b) PATH IN CABLE SPACE

FIGURE 3: CDPR CONFIGURATION AND CARTESIAN REFERENCE PATH

should speed up the convergence of the algorithms. The ground
truth output belonging to the first pose instance was fed into the
algorithms. During this initial setup process, while lsqnonlin
takes only 10 secs to converge, the neural network formulation
requires about 1 min to tune the initial network weights. All the
calculations were performed using c©MATLAB with CPU com-
putations on an INTEL R©i7-7500U CPU@2.70GHz.

After both the algorithms perfectly fit into the starting pose,
the previous outputs from the algorithms were used as initial
guesses (for lsqnonlin) or weights (for neural network) for each
of the next pose instances. The performance and accuracy are
measured on a variety of factors as described below. Here, per-
formance is referred to the overall time and minimization objec-
tives which are the primary optimization objectives. Accuracy,
on the other hand, refers to the relative deviation of the cable
length, cable tensions and Cartesian poses from the desired val-
ues.

5.1 Performance

The overall performance for both the algorithms was com-
pared based on the computation time for each of the 50 pose
instances and the extent of minimization of the surrogate objec-
tive. The results are shown in Fig. 4. Figure 4a clearly justifies
the learning of the neural network. It should be noted that the pre-
iterations for the initial pose for 1 min can be considered as the
time taken by the algorithm to learn the model-specific kineto-
statics. The time taken by the counterpart is relatively higher,
which quantitatively corresponds to twice on average. Though
lsqnonlin gets the privilege of having a very close initial guess
(as the waypoints are very close to each other), it has to perform
a black-box optimization every time due to its model-free ap-
proach. The UFKNN algorithm does not store the guesses but a
non-linear approximation of the kineto-static model itself. This
model-based behavior plays a vital role in this advantage.

The minimization of the loss function was clipped at the

(a) TIME COMPARISON (b) MINIMUM SURROGATE OBJECTIVE VALUE

FIGURE 4: COMPARISON OF OPTIMIZATION OBJECTIVES
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(a) CABLE 1 LENGTH ERROR (b) CABLE 2 LENGTH ERROR (c) CABLE 3 LENGTH ERROR (d) CABLE 4 LENGTH ERROR

FIGURE 5: COMPARISON OF CABLE LENGTH ERRORS FOR SPATIAL CDPR

(a) CABLE 1 TENSION ERROR (b) CABLE 2 TENSION ERROR (c) CABLE 3 TENSION ERROR (d) CABLE 4 TENSION ERROR

FIGURE 6: COMPARISON OF TENSION ERRORS FOR SPATIAL CDPR

L̂threshold value for the UFKNN algorithm, and hence the val-
ues less than that cannot be shown (even if they might be pos-
sible). This threshold value was chosen such that the algorithm
marginally reaches the optimization performance of lsqnonlin in
lesser time. Figure 4b shows the negligible difference between
the minimized objective values for both the algorithms.

5.2 Accuracy
As the problem at hand is a coupling of the kinematics and

statics of the under-constrained CDPR model, the pose can be
changed to satisfy wrench feasibility and decrease the wrench
satisfaction error. Thus, it is essential to judge the formulation’s
accuracy by comparing it with the ground truth reference poses.
The metrics for comparison are the cable lengths, cable tensions,
and the predicted Cartesian poses. Figures 5, 6 and 7 cumula-
tively show the accuracy comparison of both the algorithms.

5.2.1 Cable Lengths The desired cable lengths cor-
responding to the prescribed path in cable space are a part of
the inputs that are given to the algorithms. After predicting the
MP pose by the UFKNN algorithm, the obtained cable lengths
are calculated through inverse kinematics. The final error is the
difference between the calculated and the desired cable lengths.
The comparison of these cable errors is given in Fig. 5 for all ca-

bles. The maximum deviation in cable length is equal to 5 mm,
which is negligible with respect to four-meter frame length. It is
apparent that UFKNN reaches the same accuracy as lsqnonlin in
terms of cable lengths, but in lesser time.

5.2.2 Cable Tensions The cable tension values were
fixed for all MP pose instances, whereas the external wrench,
which is also an input to the algorithm, is varied such that the
wrench feasibility condition holds. While this is not possible
for realization in practical experiments, such conditions can be
used to validate the algorithm, which is the main goal of the pa-
per. The outputs of the algorithm correspond to the MP pose
and cable tensions. The obtained tensions are compared with the
fixed desired tensions, and the error plot is shown in Fig. 6. The
maximum absolute error in cable tensions is 0.25 N for lsqnon-
lin and 0.20 N for the UFKNN algorithm. The corresponding
mean errors are 0.17 N and 0.10 N respectively. The error plot
follows a common pattern which might be because of the fixed
tension values for all MP pose instances. All these cable ten-
sions usually result in a very high degree of wrench satisfaction
i.e. ‖−W(s) t+we‖2

mE gr ≈ 10−3.

5.2.3 Predicted MP Poses To complete the compari-
son analysis, the relative deviation of the predicted MP pose from
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(a) AT 10TH MP POSE (b) AT 20TH MP POSE

FIGURE 7: COMPARISON OF PREDICTED MP POSES AT TWO INSTANTS

the reference poses is shown in Fig. 7 for two MP poses. The
figure is intentionally focused on the MP and zoomed to an ex-
tent such that the MP pose deviations tend to be visible. The
predicted poses are considerably accurate; however, if observed
closely, the relative deviation caused by the UFKNN algorithm
is less than that of lsqnonlin. The Cartesian errors for the pre-
dicted MP pose by UFKNN for Fig. 7a and Fig. 7b are 4.2 mm
and 4.4 mm, respectively, whereas errors for the same MP pose
instants as obtained by lsqnonlin are 5.3 mm and 4.9 mm, re-
spectively. The mean Cartesian error for the MP poses of the
complete path is 5.7 mm for UFKNN algorithm and 6.7 mm for
lsqnonlin. The deviations are mostly due to angular displace-
ments, which are desired to be at 0 degrees, but such high preci-
sion cannot be expected from numerical computations.

6 CONCLUSION
This paper presented an unsupervised neural network weight

adaptation framework according to the kineto-statics of under-
constrained Cable-Diven Parallel Robots (CDPRs) and solves
the FK problem for a suspended configuration. The approach is
validated with simulated results in a 6-DOF spatial CDPR setup
and compared with a non-linear least-square optimization-based
lsqnonlin algorithm. The comparison demonstrates the advan-
tages of the model-based UFKNN algorithm to approximate the
robot’s kineto-statics compared with model-free black-box op-
timization techniques currently in practice. The proposed algo-
rithm can be implemented for near real-time FK. This is par-
ticularly beneficial to track paths in cable space or the actua-
tion space. The method is computation time-efficient and works
at the same accuracy as other related optimization techniques.
Future work includes implementing the proposed algorithm on
hardware and conduct simulated experiments to fully leverage
its capabilities. Finally, the algorithm will be extended to elastic

and sagging-based cable models to determine the solutions to the
forward kinematics of more complex and realistic CDPRs.
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