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ABSTRACT
The essential characteristics of machining robots are their

stiffness and their accuracy. For machining tasks, serial robots
have many advantages such as large workspace to footprint
ratio, but they often lack the stiffness required for accurately
milling hard materials. One way to increase the stiffness of serial
manipulators is to make their joints using closed-loop or par-
allel mechanisms instead of using classical prismatic and revo-
lute joints. This increases the accuracy of a manipulator with-
out reducing its workspace. This paper introduces an innovative
two degrees of freedom closed-loop mechanism and shows how
it can be used to build serial robots featuring both high stiffness
and large workspace. The design of this mechanism is described
through its geometric and kinematic models. Then, the kinematic
performance of the mechanism is analyzed, and a serial arrange-
ment of several such mechanisms is proposed to obtain a poten-
tial design of a machining robot.

1 INTRODUCTION
Machining is one of the most critical tasks in the manu-

facturing industry to transform raw materials into a functional
part [1]. Nowadays, mechanical parts are most often machined
by Computer Numerical Control (CNC) machines, as such indus-
trial machines feature high stiffness and accuracy. Nevertheless,
these machines are generally expensive and do not provide a high
versatility [2]. Therefore, Industrial Serial Robots (ISR) started

to be investigated for machining tasks, as they can cover larger
workspaces, increasing the range of achievable operations [3].
Furthermore, ISRs are also generally cheaper than CNC ma-
chines. However, the main drawback of ISRs is their overall
lack of stiffness, which leads to an increase in manufacturing
errors [4, 5]. As a matter of fact, classical CNC machines are
almost fifty times stiffer than the commercialized ISRs [6].

Despite the overall lack of stiffness of ISRs, some machin-
ing tasks were successfully completed by such robots. We can for
instance cite polishing [7], grinding [8] and deburring [9]. How-
ever, some more challenging tasks, like milling, cause higher ef-
forts on the robot end-effector, leading to machining tool devia-
tion due to the robot compliance [10]. So, the higher the machin-
ing forces and moments exerted on the robot end-effector, the
larger the point-displacement of the machining tool of an ISR, if
the robot compliance is not considered while planning the trajec-
tory and checking the tool motion [3].

In [11, 12], the authors listed and analyzed the main sources
of errors in robotic machining, which can be caused by the ex-
ternal environment or by the mechanical structure. The lat-
ter can be grouped in two main classes: (i) geometrical errors:
link lengths, assembling errors, errors in the joint zero values,
backlash, (ii) non-geometrical errors: compliance induced er-
rors, measurement errors, environment, control errors, friction.
Starting from these sources of errors, two different techniques are
described in [11] to reduce the end-effector point-displacement.
The first one is offline and based on a predictive compensation of
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machining errors, while the second one is online and uses an ex-
ternal component, named High Dynamic Compensation Mecha-
nism (HDCM), to perform additional positional corrections.

Some other techniques exist to compensate for the manu-
facturing errors of ISRs. For instance, oversized robots are used
to increase the robot stiffness while reducing the efforts on the
joints and avoiding singularity regions that affect the positioning
accuracy [13]. It should be noted that this approach leads to big
and bulky robotic solutions compared to the size of the machin-
ing path to follow.

Another way of increasing the stiffness of an ISR is to
build it with a series of parallel or closed-loop architectures.
These architectures have the advantage of being stiffer than serial
ones [14]. Indeed, serial robots usually have a larger workspace
to footprint ratio than parallel architectures. On the contrary, par-
allel robots are stiffer and can hold higher payloads than their se-
rial counterparts. Hybrid manipulators, i.e., serial-parallel robot
manipulators, can be an excellent alternative to get both advan-
tages in a single robotic system: good machining accuracy and
large workspace to footprint ratio [15].

In [16], the authors assembled several novel two degrees-
of-freedom mechanisms to build hyper-redundant robots. The
investigated concept uses complex and compact designs to opti-
mize the classical joints, namely, revolute and prismatic joints,
used in serial and parallel robots. However, the proposed mecha-
nism was optimized for compactness, strength and range of mo-
tion, not for stiffness and precision.

The company Nimbl’Bot recently patented a two degrees-
of-freedom (DoF) mechanism that aims to be a stiff actuator of
serial machining robots. The filed patent is [17]. Contrary to
the mechanism presented in [16], the mechanism introduced by
Nimbl’Bot is optimized for stiffness and positioning accuracy.
A first prototype of robot made using the mechanism patented
by Nimbl’Bot is being studied, and will be further refered to as
“Nimbl’Bot robot”. Figure 1 depicts this robot, which turns out
to have a large workspace to footprint ratio while remaining stiff
and accurate. In fact, it is expected for this robot to have an accu-
racy of less than 0.1 mm in a cubic workspace of side 700 mm.

This paper describes and models the patented device [17]
and is organized as follows. Section 2 presents a potential use
of the mechanism, as well as its innovative design. Section 3
introduces a parameterization of the mechanism, which is used
for deriving its geometric model. Section 4 shows how to com-
pute the Jacobian matrix of this mechanism. Section 5 deals with
the workspace and kinematic performance analysis of the stud-
ied mechanism. Section 6 presents the workspace of a machining
robot actuated by ten of the presented mechanisms. Conclusions
and future works are presented in Section 7.

2 OVERVIEW OF THE MACHINING ROBOT AND DE-
SCRIPTION OF ITS ACTUATION MECHANISM
In order to facilitate the understanding of the mechanism un-

der study, this section introduces the potential design of a ma-
chining robot actuated by the two-dof mechanism under study.
After that, the design of the mechanism itself is presented and
explained.

Overview of the Machining Robot
The robot created by Nimbl’Bot has a particular design and

is composed of ten two-DoF mechanisms mounted in series. Fig-
ure 1 shows the three regions of the robot, i.e., the shoulder, com-
posed of three actuation mechanisms, the elbow, composed of
four actuation mechanisms, and the wrist, composed of three ac-
tuation mechanisms.

FIGURE 1. POSSIBLE DESIGN FOR A MACHINING ROBOT
ACTUATED BY TEN TWO-DOF MECHANISMS MOUNTED IN
SERIES. THE SHOULDER AND THE WRIST ARE MADE OF
THREE MECHANISMS EACH (ACCOUNTING FOR A TOTAL
COVERED SOLID ANGLE OF ±π/2 RADIANS EACH) AND THE
ELBOW IS MADE OF FOUR MECHANISMS (SOLID ANGLE OF
±2π/3 RADIANS).

Each actuator provides two degrees of freedom. As a result,
the robot in Fig. 1 has twenty-DoF. A robot is defined as redun-
dant when it has more DoF than the required number of DoF to
perform the desired task [18]. Namely, when the dimension of its
actuation vector q is greater than the dimension of the vector X
that describes the task [19]. Then, a manipulator is said to be
hyper-redundant when the size of q is much greater than X. Con-
sequently, the end-effector can reach the desired pose (position
and orientation) with an infinite number of robot postures. Here,
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the Nimbl’Bot robot is hyper-redundant since its twenty-DoF are
much more than enough to achieve a task requiring six-DoF, e.g.,
the placement of the machining tool with the proper position and
orientation.

The main goal of a such robot is to ensure high precision
during machining tasks, avoiding the use of an oversized design.
Due to the stiffness of the mechanism, the robot can follow the
desired path with sufficient accuracy. Furthermore, thanks to
its high kinematic redundancy degree, the robot is suitable for
working in cluttered environments. However, solving the inverse
kinematic model of a hyper-redundant robot is challenging [20].

Description of the Actuation Mechanism
The machining robot described in the previous section is ac-

tuated through the novel two-DoF mechanism, which is the main
focus of this paper. This actuation system is composed of two
linked kinematic chains, making it behave like a parallel mech-
anism. It provides two coupled rotational motions that can be
decoupled by proper control of the two embedded motors. In
the rest of this paper, the two-DoF mechanism studied will be
referred to as module.

Description of the External Kinematic Chain. The ex-
ternal kinematic chain has four different components, as shown
in Fig. 2.

FIGURE 2. EXTERNAL VIEW OF THE MODULE

The fixed base, in yellow, is named Platform 1 and it is con-
sidered centered on the origin. Above Platform 1 is a rotating
cylinder, in green, named Tube 1. Tube 1 is a hollow cylinder cut
by an oblique plane with a slope α . The first motor actuates the
component Tube 1. The motor is attached directly to the inner
side of Tube 1. In this way, Tube 1 can rotate around the ver-
tical axis that passes through the center of Platform 1. Tube 2

is placed over Tube 1 and they have the same shape. The sec-
ond motor actuates Tube 2 and is attached to the inner side of
Tube 2. Tube 2 can rotate around the axis perpendicular to and
centered in Platform 2. The external kinematic chain is closed
by Platform 2, the moving platform, which is the end-effector of
the module.
Tube 1 and Tube 2 are independently actuated. The external

kinematic chain is the actuated part of the module.

Description of the Internal Kinematic Chain. The in-
ternal kinematic chain has seven components, as shown in Fig. 3.
Two of those components also belong to the external kinematic
chain, i.e., Platform 1 and Platform 2. Thus, the external and
internal kinematic chains make a closed-loop chain.

FIGURE 3. INTERNAL VIEW OF THE MODULE

Platform 1 is linked to the component Ball Nuts in purple
through a prismatic joint, which prevents internal breaks while
the module is actuated. These could occur due to dimensional
inaccuracies in the mechanical parts. Following that, there is the
Ball Joint Axis in cyan, which forms a constant velocity joint
with Ball Nuts. In the end, Ball Joint Axis is linked to Platform 2
through another prismatic joint, again to avoid internal breaks.
One of the most interesting features regarding this innovative

module is the constant velocity joint [21], which works like a uni-
versal joint, but allows its two ends to rotate at the same velocity.
Therefore, fixing Platform 1, especially without applying torsion
on it, means forcing no torsion for the whole internal kinematic
chain. In this way, the module amounts to a zero-torsion mecha-
nism.
The last three components in the internal kinematic chain are

the three rolling lines, Rolling 1, Rolling 2 and Rolling 3. They
are composed of a series of balls and are necessary to decouple
the rotations of Tube 1, Tube 2 and the internal kinematic chain.
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Consequently, Tube 1 and Tube 2 can independently rotate, lead-
ing to an inclination of Platform 2 without a rotation of the latter
about its normal axis.

3 PARAMETERIZATION AND GEOMETRIC MODEL-
ING OF THE MODULE

In [22], two different models were used to describe the module.
One model, called Q-model, represents the external kinematic
chain of the module. The other one, called T&A(Tilt&Azimuth)-
model, represents the internal kinematic chain. In this section, it
is chosen to present a different parameterization that simplifies
the computation of the geometric model. The parameters de-
scribing the module are two angles, namely the tilt and azimuth
angles, that represent the relative orientation of the two platforms
of the module. This parameterization and the fact that the mech-
anism does not introduce torsion between the two platforms mo-
tivated the use of the Bonev rotation matrix [23] to describe the
relative orientation of the two platforms. This results in the ne-
cessity to compute only one matrix for expressing the relative
orientation instead of three matrices required by the models in-
troduced in [22]. To complete the geometric modeling of the
module, the tilt and azimuth angles are also expressed as func-
tions of the motors coordinates.

Parameterization of a module
Figure 4 shows the frames attached to each moving part and

the relations between each of them. Frames < 0> and < 1>
share the common axis~z (~z0 ‖ ~z1), and the rotation angle of <1>
around ~z1 is noted q1 ((~x0,~x1) angle). q1 is the first motor coor-
dinate. Then, the rotation angle of <2> around ~z2 is noted as q2
((~x3,~x2) angle). Therefore, q2 is the second motor coordinate.

FIGURE 4. EXTERNAL KINEMATIC CHAIN: FRAMES AND
ACTUATION ANGLES

Figure 5 shows the zero position of the module. In this position,
both q1 and q2 are equal to 0. The shortest side of Tube 1 is along
axis ~x0 (~y0 = 0) and the shortest side of Tube 2 is along axis −~x0
(~y0 = 0).

FIGURE 5. HOME POSE OF THE MODULE

Figures 6 and 7 depict the actuated angles q1 and q2. The vari-
able q1 is the rotation angle between Platform Plane 1 (O0,~x0,~z0),
in yellow, and Tube Plane 1 (O1,~x1,~z1), in green. Similarly,
the variable q2 is the rotation angle between Platform Plane 2
(O3,~x3~z3), in orange, and Tube Plane 2 (O2,~x2,~z2), in blue.
A peculiarity of the module is that both motors can rotate indef-

initely without hitting any mechanical stop.

FIGURE 6. ACTUATION VARIABLE q1
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FIGURE 7. ACTUATION VARIABLE q2

Zero-Torsion Mechanism
A zero-torsion mechanism is a mechanism where the end-

ing platform never rotates about its normal axis [24]. To ex-
press the zero-torsion rotation matrix, we can start from the
Tilt&Torsion angles notation, defined in [23], and set the torsion
to zero. The azimuth, tilt and torsion angles are shown in Fig. 8.

FIGURE 8. TILT AND TORSION ANGLE NOTATION [23]

The Tilt&Torsion convention involves only two rotation angles,
the tilt angle θ around axis a and the torsion angle σ around
axis ~z∗. Then, the azimuth angle φ is not a rotation angle any-
more. It becomes the angle that defines the orientation of the
vertical plane, which is perpendicular to axis a. The angles take
values as follows: θ ∈ [0,π), σ ∈ (−π,π] and φ ∈ (−π,π].

The value of σ is set to zero and the rotation matrix of a zero-
torsion mechanism is Eq. (1).

R(φ ,θ) =

 cos2 φ cosθ + sin2
φ cosφ sinφ(cosθ −1) cosφ sinθ

sinφ cosφ(cosθ −1) sin2
φ cosθ + cos2 φ sinφ sinθ

−sinθ cosφ −sinθ sinφ cosθ

 (1)

Geometric Model of the Module
Figure 9 shows the Tilt&Azimuth (T&A) based geometric

model of the module. A series of three revolute joints form the
model. The first revolute joint represents the azimuth angle φ of
the module. The second revolute joint is the tilt angle θ . The
third revolute joint has the negative value of the azimuth angle
−φ to respect the zero-torsion characteristic of the module. The
variable r represents the distance between Platform 1 and the
constant velocity joint and between the constant velocity joint
and Platform 2.

FIGURE 9. TILT AND AZIMUTH MODEL OF THE MODULE

The rotation matrix of the module 0R3(φ ,θ) is the one ex-
pressed in Eq. (1). The multiplication of three rotation matrices
generates 0R3(φ ,θ): around ~z1 of φ with respect to frame <0>,
around ~z2 of θ with respect to frame <1> and around ~z3 of −φ

with respect to frame <2>.
The translation vector of the module 0p3(φ ,θ ,r) is the vector
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pointing from point O0 to point O3:

0p3(φ ,θ ,r) =

 r sinθ cosφ

r sinθ sinφ

r+ r cosθ

 (2)

As a result, the complete homogeneous transformation matrix
of the module from frame <0> to frame <3> is expressed as:

0T3(φ ,θ ,r) =

 0R3(φ ,θ)
0p3(φ ,θ ,r)

0 0 0 1

 (3)

The azimuth φ and tilt θ rotation angles are expressed as func-
tions of the actuation variables q1 and q2, namely,


φ = q1+q2−π

2

θ = arctan

(
−

2tanα sin
(

q1−q2
2

)
1−tan2 α sin2

(
q1−q2

2

)
)

(4)

where α is the slope of the oblique planes in Tube 1 and Tube 2.
Similarly, the actuation variables q1 and q2 are expressed as

functions of the azimuth angle φ and tilt angle θ as follows:

q1 = φ + arccos
(
− cosα(cosθ−1)

sinα sinθ

)
q2 = φ − arccos

(
− cosα(cosθ−1)

sinα sinθ

)
+π

(5)

When the tilt θ is equal to 0, the value of the actuation variables
is q1 = q2 = φ +π/2. The azimuth angle φ gives the orientation
along which Platform 2 is tilted. Figure 10 shows the Azimuth
Plane.
Figure 11 shows the Tilt Plane, which is parallel to the top of

the orange platform and oriented along with the Azimuth Planes.
The angle between the (O,~x0,~y0) plane and the Tilt Plane is the
tilt angle θ .

4 KINEMATIC MODELING OF THE MODULE
This section presents the kinematic model of the module based

on the parameterization defined in Fig. 9.
The kinematic Jacobian matrix of the module is computed in

two steps. First of all, the Jacobian matrix 0J3 φθ (φ ,θ ,r) is
calculated. This matrix maps the tilt and azimuth angles time
derivatives

[
φ̇ , θ̇

]> to the module tip twist t=
[
ṗ>,ωωω>

]>, with ṗ
and ωωω the linear and angular velocity vectors of the end-effector,
respectively.

FIGURE 10. AZIMUTH PLANE

FIGURE 11. TILT AND AZIMUTH PLANES

t =0 J3 φθ (φ ,θ ,r)
[
φ̇ θ̇
]> (6)

0J3 φθ (φ ,θ ,r) is expressed as a function of the angle [φ ,θ ]> as
follow:

0J3 φθ (φ ,θ ,r) =


−r sinφ sinθ r cosφ cosθ

r cosφ sinθ r sinφ cosθ

0 −r sinθ

−cosφ sinθ −sinφ

−sinφ sinθ cosφ

1− cosθ 0

 (7)

Then, the Jacobian matrix Jq1q2 , which maps the motors veloc-
ities q̇ = [q̇1, q̇2]

> to the angles velocities [φ̇ , θ̇ ]>, is obtained
upon time differentiation of Eq. (4):

Jq1q2(q1,q2) =
1
2

[
1 1
−c c

]
(8)
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where:

c =
2tanα cos

( q1−q2
2

)
1+ tan2 α sin2 ( q1−q2

2

) (9)

The complete kinematic Jacobian matrix of the module as a
function of the motors coordinates q1 and q2 is obtained as fol-
lows:

t =0 J3 φθ Jq1q2 q̇ (10)

5 PERFORMANCE ANALYSIS OF THE MODULE
This section presents an analysis of the geometric and kinematic

performance of the module. First, the workspace of the module
is displayed. Then, the condition number of the Jacobian matrix,
expressed in Eq. (10), is computed to assess the dexterity of the
mechanism throughout its workspace.
In this section, the geometric parameters r and α are set to r =

0.32 m and α = 15◦, which are the values used for the first mod-
ule prototype.

Analysis of the Workspace of a Module
The workspace of the module is a portion of a sphere, Fig. 12.

It corresponds to all the positions reached by the center of the
upper platform for all the possible values of q1 and q2 in [0;2π].
On this portion of a sphere, each point is reachable by only one
orientation for the moving-platform, but in two possible aspects.

FIGURE 12. 3D VIEW OF THE WORKSPACE OF ONE MODULE

Figure 13 depicts the tilt θ and azimuth φ angles as a function of
the X and Y Cartesian coordinates of the end-effector. The value
of φ is in [−π,π) and θ is in [−π/6,π/6]. In fact, the maximum
possible value of |θ | is twice the slope of each Tube (2α = π/6).
The workspace of the module is symmetric around the Z axis.

FIGURE 13. 2D VIEW OF THE WORKSPACE OF ONE MODULE

Figure 14 depicts the two areas covered by each aspect of the
module, represented in its joint space. The joint space can be di-
vided in two aspects because the inverse kinematics of the mod-
ule has up to two solutions. In fact, switching the values of q1
and q2 lead to the same tilt and azimuth angles, which is rep-
resented by Fig. 14. This property can easily be verified using
Eq. (4).
There are two limit cases where the module does not have

strictly two possible aspects leading to a single position of its tip.
When the ending platform of the module is horizontal (θ = 0),
there is an infinite set of possible values for (q1,q2). In fact,
the only condition that leads to θ = 0 is q1 = q2. This case is
underlined in red in Figs. 12, 13 and 14.
The second limit case is when the tilt reaches its maximum

value (|θ | = π/6), which happens when |q1− q2| = π . In this
case, there exists a single solution for (q1,q2). This case is un-
derlined in magenta in Figs. 12, 13 and 14.
The difference between the aspect areas is that a couple (q1,q2)

in aspect area 1 corresponds to a positive θ coupled with an arbi-
trary value of φ . Another couple (q1,q2) in aspect area 2, bring-
ing the end-effector in the same posture, corresponds to the neg-
ative value of θ and a value of φ rotated by ±π .
Figures 15 and 16 show the same blue path traced in the

workspace, a circle with |θ | = π/9. However, the path is traced
in aspect area 1 for the first case and in aspect area 2 for the
second case.
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FIGURE 14. ASPECT AREAS OF A MODULE SHOWN IN THE
JOINT SPACE

FIGURE 15. THE BLUE PATH IN ASPECT 1, CORRESPONDING
TO A TILT OF 20◦, IS SHOWN BOTH IN THE WORKSPACE AND
IN THE JOINT SPACE

Dexterity
The condition number κ(J) of the kinematic Jacobian matrix of

a manipulator and its inverse k(J) are defined in [25] as:

{
κ(J) = ||J|| ||J−1||
k(J) = 1/κ(J)

(11)

The index k characterizes the dexterity of the manipulator and
is bounded between 0 and 1. The closer k to 1, the better the

FIGURE 16. THE BLUE PATH IN ASPECT 2, CORRESPONDING
TO A TILT OF 20◦, IS SHOWN BOTH IN THE WORKSPACE AND
IN THE JOINT SPACE

manipulator dexterity. The manipulator reaches an isotropic pos-
ture when k = 1. The closer k to 0, the worse the manipulator
dexterity and the closer it is to a singularity.
In what remains, the kinematic Jacobian matrix Jωxωy , which

maps [q̇1, q̇2]
> to [ωx,ωy]

>, is used to test the dexerity of the
module accordingly:

[
ωx ωy

]>
= Jωxωy q̇ (12)

with

Jωxωy =

[
−cosφ sinθ −sinφ

−sinφ sinθ cosφ

]
Jq1q2

Figures 17 and 18 show the isocontours of the dexterity index k
in the module’s workspace and joint space, respectively.
It is apparent that the Nimbl’Bot module has two singularity

regions:

{
θ = 0 i.e. q1 = q2

|θ |= π/6 i.e. |q1−q2|= π
(13)

On the contrary, the module reaches an isotropic posture when:

{
|θ |= arctan

(
±
√

2 tanα

2+tan2 α

)
|q1−q2|= π/2

(14)
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FIGURE 17. DEXTERITY OF THE MODULE SHOWN IN THE
CARTESIAN SPACE

FIGURE 18. DEXTERITY OF THE MODULE SHOWN IN THE
JOINT SPACE

6 WORKSPACE ANALYSIS OF THE NIMBL’BOT
ROBOT

This section introduces a potential design for a machining robot,
inspired by a human arm, to show a possible use case for the
presented module. This arm has three moving parts, or regions,
connected by two links, each part being made of an arrangement
of several modules. Each of the three regions in the robot has at
least six degrees of freedom, giving more flexibility to the robot.
The two links are necessary to increase the manipulator’s reach-
able area of the robot. In this analysis, the length of the two links
l is set to 1 meter (l = 1 m).

Figure 19 illustrates the boundaries of the robot workspace. The
bold black line represents the workpiece on which the robot has
to operate. The complete workspace of the robot is equal to the
section shown in Figure 19 rotated about the Z-axis.

FIGURE 19. BOUNDARY OF THE ROBOT WORKSPACE AND
WORKPIECE

7 CONCLUSIONS AND FUTURE WORK
This paper described a new two-DoF closed-loop mechanism

developed by the company Nimbl’Bot. This module aims to
increase the stiffness of serial robots without affecting their
workspace and kinematic capabilities. This paper proposed a ge-
ometric and kinematic analysis of the novel mechanism. First,
the forward and inverse geometric models of the module, the
latter amounting to a zero-torsion mechanism, were expressed
through the Tilt&Torsion convention setting the torsion to zero.
Then, the kinematic model of the module was derived and its
kinematic performance was analyzed based on the dexterity in-
dex. Finally, this paper proposed a design of a human-inspired
arm actuated by a serial arrangement of ten modules. The
workspace of this arm was plotted and evaluated against a typical
machining task. The obtained results are promising for the devel-
opment of an industrial robotic arm actuated by several modules.
Future work will address the kinematic control of the robotic

arm introduced in the paper to validate experimentally the con-
cept of the actuation module, with a specific focus on machining
to show the gain in terms of stiffness and machining accuracy.
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