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In this work, a fast explicit method, easy to implement numerically, is proposed in order to compute the

effective behavior and the distribution of stresses in a general N-phase laminate made of parallel, planar

and perfectly bonded interfaces. The solutions are exact for a homogeneous far-field loading and work

for an arbitrary number of phases, a general linear anisotropic elasticity, as well as different uniform

thermal and plastic strains in the phases. A simple direct analytical formula is also derived to compute the

stress in a given phase once the effective behavior of the laminate is known. Moreover, the correctness

of the proposed method is checked by comparisons with finite element simulation results on a same

boundary value problem, showing excellent agreements. An application of the method is performed for a

near-𝛽 titanium alloy with elongated grains, by comparing the level of internal stresses for different

elastic loadings within a N-phase laminate made of 100 000 orientations and a 2-phase laminate of equal

volume fraction with maximal elastic contrast. Interestingly, the maximum von Mises stress of the 2-phase

laminate is always the lowest, which is explained by a volume fraction effect. Finally, comparisons with

elastic self-consistent models considering oblate spheroidal grains of different aspect ratios are performed.

Keywords: laminate, anisotropic elasticity, incompatibility stresses, effective behavior, composite structure

1 Introduction

At a material surface of discontinuity like a grain boundary or an interface between two dissimilar

materials, incompatibility stresses may arise due to heterogeneous thermo-elastic properties

and/or difference of plastic strains. These internal stresses can be computed numerically thanks to

finite element methods (Roters et al. 2010) or spectral approaches (A. Lebensohn 2001). Analytical

formulations also exist in the case of two-phase laminates (Stupkiewicz and Petryk 2002; Milton

2002; Franciosi and Berbenni 2007; Glüge and Kalisch 2014) which can also be viewed as infinite

bi-crystals or bi-materials subjected to a homogeneous far-field loading (Gemperlová and Paidar

1985; Gemperlová et al. 1989; Richeton and Berbenni 2013; Richeton et al. 2015; Richeton 2017).

Such analytical models provide instantaneous responses which are first-order estimations around

interfaces subjected to more complex boundary conditions (Peralta et al. 1993; Tiba et al. 2015).

Hence, it can be very useful to test, on a huge number of configurations, the influence of different

parameters like material single crystal elastic constants, crystallographic misorientation, crystal

volume fraction, interface inclination, amount of plastic deformation or loading type (Gemperlová

et al. 1989; Richeton and Berbenni 2013; Richeton et al. 2015). In the same way, explicit analytical

models for N-phase laminates are very useful to investigate the influence of the previously

mentioned parameters in problems involving several parallel interfaces, like in thin films (e.g.,

Welzel et al. 2003; Abadias et al. 2018), in electronics packaging (e.g., Wong and Lim 2008), in

nanolaminated materials (e.g., Mukhopadhyay et al. 2017; Wang et al. 2017) or in materials with

welding joints which are classically modelled as a base metal, a heat affected zone and a weld

metal (e.g., Du et al. 2020). Actually, laminated materials are widely used in the industry because

of the relative ease to control their properties from the choice of the materials combination,
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volume fraction and orientation (Glüge and Kalisch 2014). For the design of laminates, fast

estimates of their properties is thus required.

The objective of the present paper is to derive an explicit method, which can be easily

implemented in a numerical code, in order to compute the effective behavior and the distribution

of stresses in a general N-phase laminate made of parallel, planar and perfectly bonded interfaces

and which is assumed to be subjected to a far-field homogeneous loading and/or homogeneous

temperature variation, in addition to the possibility of having different uniform plastic strains in

each phase. The method should be exact for a small number of phase (𝑁 = 2, 3, 4, ...) as well

as for an infinitely large number of phases. Such an objective may appear relatively standard

considering previous works on laminates in the literature (e.g., Milton 2002; Franciosi and

Berbenni 2007; El Omri et al. 2000; Glüge and Kalisch 2014; Glüge 2016). However, it is generally

hard to find compact explicit formulas for direct use in engineering applications. Besides, at the

difference of previous approaches where explicit formulas were restricted to a finite number of

phases (Milton 2002; Franciosi and Berbenni 2007) or to isotropic elasticity (El Omri et al. 2000;

Milton 2002; Glüge 2016) or to purely elastic behavior (Milton 2002; Glüge and Kalisch 2014), this

contribution provides explicit compact formulas for an arbitrary number of phases, a completely

general anisotropic elasticity as well as different thermal and plastic strains in the phases. In

particular, a simple direct analytical formula is derived in order to compute the stress in a given

phase once the effective behavior of the laminate has been determined. Furthermore, the code to

compute the effective behavior and the stress distribution in an arbitrary N-phase laminate is

made freely available (see Supplementary Material at the end of the document).

The paper is organized as follows. Section 2 reminds the expressions of incompatibility

stresses in a two-phase laminate from which the effective compliance, effective plastic strain

and effective thermal expansion tensors can be deduced. Then, Section 3 presents an explicit

method to find the effective behavior and the stress distribution for a general N-phase laminate

based on the solutions of the two-phase laminate. Section 4 is dedicated to the validation of the

proposed method by comparisons with finite element simulation results on a same boundary

value problem. In Section 5, an application of the method is performed for a near-𝛽 titanium alloy

with elongated grains, by comparing the level of internal stresses for different elastic loadings

within a N-phase laminate made of 100 000 orientations and a 2-phase laminate with maximal

elastic contrast. Then, in Section 6, comparisons with elastic self-consistent models considering

oblate spheroidal grains of different aspect ratios are performed. In particular, the numerical

performance of the laminate model compared to the self-consistent models is discussed. Finally,

concluding remarks are given in Section 7.

In the following, the Einstein summation convention over repeated indices and the contracted

Voigt notation (Voigt 1966) (11 → 1, 22 → 2, 33 → 3, 23 → 4, 31 → 5, 12 → 6) are used, i.e.

indices range from 1 to 6. For consistency, an engineering convention is considered for strain

components, i.e., 𝜀4 = 2𝜀23, 𝜀5 = 2𝜀31, 𝜀6 = 2𝜀12, while the components of the elastic compliance

tensor 𝑠𝑖 𝑗 include the multiplying factors of 2 and 4 (Voigt 1966). Besides, the notation ⟨⟩ denotes

a volume average and superscripts 1, 2 or𝑚 denote fields in materials 1, 2 or𝑚, respectively.

2 Two-phase laminate

2.1 Averaging rules, constitutive behavior and continuity conditions

In this section, an infinite 2-phase laminate composed of two alternating materials or crystals

perfectly bonded along planar interfaces is considered. This rank-1 laminate is supposed to

have been deformed under the action of a homogeneous temperature variation Δ𝑇 , as well as a

macroscopic homogeneous and remotely applied stress Σ𝑖 satisfying the averaging rule

Σ𝑖 = ⟨𝜎𝑖⟩, (1)

where 𝜎𝑖 is the local Cauchy stress. Linear thermo-elasticity is assumed, as well as the possibility

of having different uniform plastic strains 𝜀
𝑝
𝑖 in each phase. Under these assumptions and through

consideration of strains compatibility and balance of linear momentum without body force in a

static small strain setting, it can be shown that 𝜎𝑖 and the local strains 𝜀𝑖 are uniform in each
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material (Gemperlová et al. 1989; El Omri et al. 2000; Milton 2002; Richeton and Berbenni 2013),

so that

Σ𝑖 = 𝑓
1𝜎1𝑖 + 𝑓

2𝜎2𝑖 , (2)

and

𝐸𝑖 = ⟨𝜀𝑖⟩ = 𝑓
1𝜀1𝑖 + 𝑓

2𝜀2𝑖 , (3)

where 𝑓 1 and 𝑓 2 = 1 − 𝑓 1 are the material volume fractions. 𝐸𝑖 is defined as the macroscopic

strain. The strains in each material are expressed as

𝜀𝑚𝑖 = 𝑠𝑚𝑖 𝑗 𝜎
ℓ
𝑗 + 𝜀

𝑝𝑚

𝑖 + 𝛼𝑇
𝑚

𝑖 Δ𝑇, (4)

where𝑚 = 1, 2 while 𝑠𝑖 𝑗 and 𝛼
𝑇
𝑖 are the components of the elastic compliance tensor and of the

symmetrical thermal expansion tensor, respectively. Both 𝑠𝑖 𝑗 and 𝛼
𝑇
𝑖 are supposed isotherm and

uniform in each material. Besides, considering that the interface normals are parallel to the

direction 𝒆2 of a Cartesian frame (𝒆1, 𝒆2, 𝒆3), Equations (2) and (3) along with tractions continuity

and strains compatibility impose the following continuity conditions (El Omri et al. 2000; Richeton

and Berbenni 2013; Glüge and Kalisch 2014)





𝜎12 = 𝜎22 = Σ2,

𝜎14 = 𝜎24 = Σ4,

𝜎16 = 𝜎26 = Σ6,

and





𝜀11 = 𝜀
2
1 = 𝐸1,

𝜀13 = 𝜀
2
3 = 𝐸3,

𝜀15 = 𝜀
2
5 = 𝐸5.

(5)

2.2 Stress partitioning

It was previously shown that the stresses in both materials can be written as (Richeton and

Berbenni 2013; Richeton et al. 2015; Tiba et al. 2015; Richeton 2017)

𝜎1𝑖 = Σ𝑖 + 𝑓
2𝐺𝑖𝑘 [(𝑠

2
𝑘 𝑗 − 𝑠

1
𝑘 𝑗 )Σ 𝑗 + 𝜀

𝑝2

𝑘
− 𝜀

𝑝1

𝑘
+ (𝛼𝑇 2𝑘 − 𝛼𝑇 1𝑘 )Δ𝑇 ],

𝜎2𝑖 = Σ𝑖 − 𝑓
1𝐺𝑖𝑘 [(𝑠

2
𝑘 𝑗 − 𝑠

1
𝑘 𝑗 )Σ 𝑗 + 𝜀

𝑝2

𝑘
− 𝜀

𝑝1

𝑘
+ (𝛼𝑇 2𝑘 − 𝛼𝑇 1𝑘 )Δ𝑇 ],

(6)

where the non-zero components of the symmetric tensor 𝐺𝑖 𝑗 are given by

𝐺11 = (𝑠235 − 𝑠33𝑠55)/𝐷 ,

𝐺33 = (𝑠215 − 𝑠11𝑠55)/𝐷 ,

𝐺55 = (𝑠213 − 𝑠11𝑠33)/𝐷 ,

𝐺13 = (𝑠13𝑠55 − 𝑠15𝑠35)/𝐷 ,

𝐺15 = (𝑠15𝑠33 − 𝑠13𝑠35)/𝐷 ,

𝐺35 = (𝑠11𝑠35 − 𝑠13𝑠15)/𝐷 ,

(7)

with 𝐷 = 𝑠11𝑠
2
35 + 𝑠33𝑠

2
15 + 𝑠55𝑠

2
13 − 𝑠11𝑠33𝑠55 − 2𝑠13𝑠15𝑠35 and 𝑠𝑖 𝑗 = 𝑓

2𝑠1𝑖 𝑗 + 𝑓
1𝑠2𝑖 𝑗 .

It is noteworthy that these expressions can also be viewed as the solutions in an infinite

bi-material (Gemperlová et al. 1989; Richeton and Berbenni 2013; Richeton et al. 2015) and that the

effect grain boundary sliding could be considered as well (Richeton 2017). The differences 𝜎1𝑖 − Σ𝑖

and 𝜎2𝑖 − Σ𝑖 are called incompatibility stresses in materials 1 and 2, respectively. Besides, it must

be noted that the tensor 𝐺𝑖 𝑗 is a function of 𝑠1𝑖 𝑗 , 𝑠
2
𝑖 𝑗 and 𝑓

1 (or 𝑓 2) only so that we will use the

notation 𝐺𝑖 𝑗 (𝑠1, 𝑠2, 𝑓 1) in Section 3 where multiple tensors 𝐺𝑖 𝑗 are considered.

2.3 Effective behavior

By definition of the effective behavior, the macroscopic strain satisfies the following relation

𝐸𝑖 = 𝑆𝑖 𝑗Σ 𝑗 + 𝐸
𝑝
𝑖 +𝐴

𝑇
𝑖 Δ𝑇, (8)

where 𝑆𝑖 𝑗 is the effective compliance tensor, 𝐸
𝑝
𝑖 the effective plastic strain tensor and 𝐴𝑇𝑖 the

effective thermal expansion tensor. From Equations (3), (4) and (6), we have also

𝐸𝑖=⟨𝑠𝑖 𝑗𝜎 𝑗⟩+⟨𝜀
𝑝
𝑖 ⟩+⟨𝛼

𝑇
𝑖 ⟩Δ𝑇

=⟨𝑠𝑖 𝑗⟩Σ 𝑗− 𝑓
1𝑓 2(𝑠2𝑖 𝑗−𝑠

1
𝑖 𝑗)𝐺 𝑗𝑘 ((𝑠

2
𝑘ℓ−𝑠

1
𝑘ℓ)Σℓ+𝜀

𝑝2

𝑘
−𝜀

𝑝1

𝑘
+(𝛼𝑇 2𝑘 −𝛼𝑇 1𝑘 )Δ𝑇 )+⟨𝜀

𝑝
𝑖 ⟩+⟨𝛼

𝑇
𝑖 ⟩Δ𝑇 . (9)
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Then, by identification with Equation (8), the three effective tensors can be expressed as

𝑆𝑖 𝑗 = ⟨𝑠𝑖 𝑗 ⟩ − 𝑓
1 𝑓 2(𝑠2𝑖𝑘 − 𝑠

1
𝑖𝑘 )𝐺𝑘ℓ (𝑠

2
ℓ 𝑗 − 𝑠

1
ℓ 𝑗 ) (10)

𝐸
𝑝
𝑖 = ⟨𝜀

𝑝
𝑖 ⟩ − 𝑓

1 𝑓 2(𝑠2𝑖𝑘 − 𝑠
1
𝑖𝑘 )𝐺𝑘ℓ (𝜀

𝑝2
ℓ − 𝜀

𝑝1
ℓ ) (11)

𝐴𝑇𝑖 = ⟨𝛼𝑇𝑖 ⟩ − 𝑓
1 𝑓 2(𝑠2𝑖𝑘 − 𝑠

1
𝑖𝑘 )𝐺𝑘ℓ (𝛼

𝑇 2
ℓ − 𝛼𝑇 1ℓ ) . (12)

3 N-phase laminate

In the following, an infinite N-phase laminate composed of 𝑁 alternating materials perfectly

bonded along parallel planar interfaces is considered. All the other assumptions made for the

2-phase laminate in Section 2, including Equation (1) and Equation (4), are maintained so that

stresses and strains are uniform within each phase (Glüge and Kalisch 2014).

3.1 Effective behavior

The solutions of the 2-phase laminate are first used to find the effective behavior of the N-phase

laminate and then the stresses in each phase. The general methodology is described in Figure 1. It

prop1,1

prop1,2

prop1,3

prop1,4

. . .

prop1,𝑁−3

prop1,𝑁−2

prop1,𝑁−1

prop1,𝑁

ℓ = 1, 𝐾1
= 𝑁 ℓ = 2, 𝐾2

= 𝑁 /2 or (𝑁 + 1)/2 ℓ = 𝑛 − 1, 𝐾𝑛−1 = 2 ℓ = 𝑛,𝐾𝑛 = 1

prop2,1

prop2,2

prop2,𝐾
2−1

prop2,𝐾
2

prop𝑛−1,1

prop𝑛−1,1

prop𝑛,1

Figure 1 Description of the multiple steps procedure for determining the effective properties of a N-phase laminate
and the stresses in each phase: ℓ denotes the step number and 𝐾 ℓ the number of phases at step ℓ . In every
phase, the properties are denoted propℓ,𝑚 = (𝑓 ℓ,𝑚, 𝑠ℓ,𝑚, 𝜀𝑝

ℓ,𝑚

, 𝛼𝑇
ℓ,𝑚

).

consists in a multiple steps procedure, where at each step ℓ , the phases are grouped two by

two and replaced by a new phase having the effective properties of a 2-phase laminate made of

the corresponding two phases. The procedure is followed until only one phase is remaining,

corresponding to

ℓ = 𝑛 = ⌈log2 𝑁 + 1⌉ . (13)

The number of phases or materials of the laminate at a step ℓ is denoted 𝐾 ℓ . Hence, we

have 𝐾 ℓ = 𝑁 , 𝐾𝑛 = 1 and

𝐾 ℓ+1 =

{
𝐾 ℓ/2 if 𝐾 ℓ even

(𝐾 ℓ + 1)/2 otherwise.
(14)

At step ℓ + 1, the properties of a new phase𝑚, i.e. the volume fractions 𝑓 ℓ+1,𝑚 , elastic compliances

𝑠ℓ+1,𝑚𝑖 𝑗 , plastic strains 𝜀
𝑝ℓ+1,𝑚

𝑖 and thermal expansions 𝛼𝑇
ℓ+1,𝑚

𝑖 , are computed based on Equations (10)
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to (12):

𝑓 ℓ+1,𝑚=𝑓 ℓ,2𝑚−1+𝑓 ℓ,2𝑚

𝑠ℓ+1,𝑚𝑖 𝑗 =𝑓 ∗𝑠ℓ,2𝑚−1
𝑖 𝑗 +(1−𝑓 ∗)𝑠ℓ,2𝑚𝑖 𝑗 −𝑓 ∗(1−𝑓 ∗) (𝑠ℓ,2𝑚

𝑖𝑘
−𝑠ℓ,2𝑚−1
𝑖𝑘

)𝐺𝑘ℓ (𝑠2𝑚−1,𝑠2𝑚,𝑓 ∗) (𝑠ℓ,2𝑚ℓ 𝑗 −𝑠ℓ,2𝑚−1
ℓ 𝑗 )

𝜀
𝑝ℓ+1,𝑚

𝑖 =𝑓 ∗𝜀
𝑝ℓ,2𝑚−1

𝑖 +(1−𝑓 ∗)𝜀
𝑝ℓ,2𝑚

𝑖 −𝑓 ∗(1−𝑓 ∗) (𝑠ℓ,2𝑚
𝑖𝑘

−𝑠ℓ,2𝑚−1
𝑖𝑘

)𝐺𝑘ℓ (𝑠2𝑚−1,𝑠2𝑚,𝑓 ∗) (𝜀
𝑝ℓ,2𝑚

ℓ −𝜀
𝑝ℓ,2𝑚−1

ℓ )

𝛼𝑇
ℓ+1,𝑚

𝑖 =𝑓 ∗𝛼𝑇
ℓ,2𝑚−1

𝑖 +(1−𝑓 ∗)𝛼𝑇
ℓ,2𝑚

𝑖 −𝑓 ∗(1−𝑓 ∗) (𝑠ℓ,2𝑚
𝑖𝑘

−𝑠ℓ,2𝑚−1
𝑖𝑘

)𝐺𝑘ℓ (𝑠2𝑚−1,𝑠2𝑚,𝑓 ∗) (𝛼𝑇
ℓ,2𝑚

ℓ −𝛼𝑇
ℓ,2𝑚−1

ℓ ),

(15)

with 𝑓 ∗ = 𝑓 ℓ,2𝑚−1/(𝑓 ℓ,2𝑚−1 + 𝑓 ℓ,2𝑚). By imposing the consistency condition

𝑓 ∗𝜎 ℓ,2𝑚−1
𝑖 + (1 − 𝑓 ∗)𝜎 ℓ,2𝑚𝑖 = 𝜎 ℓ+1,𝑚𝑖 (16)

between stresses at step ℓ and at step ℓ + 1, the stresses at step ℓ can be related to the stresses at

step ℓ + 1 by application of Equation (6):

𝜎 ℓ,2𝑚−1
𝑖 = 𝜎 ℓ+1,𝑚𝑖 + (1 − 𝑓 ∗)𝐺𝑖𝑘 (𝑠2𝑚−1, 𝑠2𝑚, 𝑓 ∗)𝛽

𝜎 ℓ,2𝑚−1
𝑖 = 𝜎 ℓ+1,𝑚𝑖 − 𝑓 ∗𝐺𝑖𝑘 (𝑠2𝑚−1, 𝑠2𝑚, 𝑓 ∗)𝛽

(17)

with 𝛽 = (𝑠ℓ,2𝑚
𝑘 𝑗

− 𝑠ℓ,2𝑚−1
𝑘 𝑗

)𝜎 ℓ+1,𝑚𝑗 + 𝜀
𝑝ℓ,2𝑚

𝑘
− 𝜀

𝑝ℓ,2𝑚−1

𝑘
+ (𝛼𝑇

ℓ,2𝑚

𝑘
− 𝛼𝑇

ℓ,2𝑚−1

𝑘
)Δ𝑇 . In case where 𝐾 ℓ is

odd, the last phase of step ℓ + 1 is simply set to be the same as the last phase of step ℓ , i.e.

𝑓 ℓ+1,𝐾
ℓ+1

= 𝑓 ℓ,𝐾
ℓ

, 𝑠ℓ+1,𝐾
ℓ+1

𝑖 𝑗 = 𝑠ℓ,𝐾
ℓ

𝑖 𝑗 , 𝜀
𝑝ℓ+1,𝐾

ℓ+1

𝑖 = 𝜀
𝑝ℓ,𝐾

ℓ

𝑖 , 𝛼𝑇
ℓ+1,𝐾ℓ+1

𝑖 = 𝛼𝑇
ℓ,𝐾ℓ

𝑖 , 𝜎 ℓ+1,𝐾
ℓ+1

𝑖 = 𝜎 ℓ,𝐾
ℓ

𝑖 . (18)

From the procedure just described, it is noticeable that averaging rules and continuity

conditions are automatically satisfied at each step, i.e.

∀ℓ,
∑

𝑚

𝑓 ℓ,𝑚 = 1, ⟨𝜎 ℓ𝑖 ⟩ = Σ𝑖 , ⟨𝜀ℓ𝑖 ⟩ = 𝐸𝑖 (19)

together with

∀ℓ,𝑚, 𝜎 ℓ,𝑚2 = Σ2, 𝜎 ℓ,𝑚4 = Σ4, 𝜎 ℓ,𝑚6 = Σ6, (20)

and

∀ℓ,𝑚, 𝜀ℓ,𝑚1 = 𝐸1, 𝜀ℓ,𝑚3 = 𝐸3, 𝜀ℓ,𝑚5 = 𝐸5. (21)

As a consequence, the remaining phase at step 𝑛 satisfies

𝐸𝑖 = 𝑠
𝑛,1
𝑖 𝑗 Σ 𝑗 + 𝜀

𝑝𝑛,1

𝑖 + 𝛼𝑇
𝑛,1

𝑖 Δ𝑇 (22)

which means, from Equation (8), that the effective tensors of the N-phase laminate are

𝑆𝑖 𝑗 = 𝑠
𝑛,1
𝑖 𝑗 , 𝐸

𝑝
𝑖 = 𝜀

𝑝𝑛,1

𝑖 , and 𝐴𝑇𝑖 = 𝛼𝑇
𝑛,1

𝑖 . (23)

In the above procedure which consists in grouping the phases in pair iteratively until one phase

with the effective properties remains, the initial relative positions of the different phases have

obviously no influence on the values obtained at the final step. This means that the effective

properties of the laminate are not sensitive to the stacking order of the phases as it was already

noted by Glüge and Kalisch (2014).

3.2 Stress partitioning

The stresses in each phase of the initial N-phase laminate can be determined from a top-down

algorithm, starting from 𝜎𝑛,1𝑖 = Σ𝑖 at step 𝑛 and then going down to step 1 by application of

Equation (17) step by step. However, a direct and much faster computation is possible by first

noticing that for a 2-phase laminate

Σ𝑖 + (1 − 𝑓 1)𝐺𝑖𝑘 (𝑠1, 𝑠2, 𝑓 1) [(𝑠
2
𝑘 𝑗 − 𝑠

1
𝑘 𝑗 )Σ 𝑗 + 𝜀

𝑝2

𝑘
− 𝜀

𝑝1

𝑘
+ (𝛼𝑇 2𝑘 − 𝛼𝑇 1𝑘 )Δ𝑇 ]

= Σ𝑖 +𝐺𝑖𝑘 (𝑠1, 𝑆, 0) [(𝑆𝑘 𝑗 − 𝑠
1
𝑘 𝑗 )Σ 𝑗 + 𝐸

𝑝

𝑘
− 𝜀

𝑝1

𝑘
+ (𝐴𝑇𝑘 − 𝛼𝑇 1𝑘 )Δ𝑇 ], (24)
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where 𝑆𝑖 𝑗 , 𝐸
𝑝
𝑖 , 𝐴

𝑇
𝑖 are, in this equation, the effective properties of the 2-phase laminate. Indeed,

let us consider a fictitious cut of phase 1 parallel to the planar interface, such that one of two

remaining parts, denoted hereafter 1∗, has a negligible volume fraction (𝑓 1
∗
→ 0). Stresses in

phase 1∗ are equal to those in the first phase due to uniformity of stresses within a phase (see

Section 2). This corresponds to the first member of Equation (24) (cf. Equation (6)). Then, as a

consequence of the preceding procedure, it is known that these stresses can also be computed

from a 2-phase laminate composed of phase 1∗ and another phase of volume fraction equals

to 1 which has thus necessarily the effective properties of the initial 2-phase laminate. This

corresponds to the second member of Equation (24). The principle is illustrated in Figure 2.

Figure 2 Description of the two configurations used
to establish Equation (24).

𝑓 1, 𝑠1, 𝜀𝑝
1
, 𝛼𝑇

1
, 𝜎1

𝑓 2, 𝑠2, 𝜀𝑝
2
, 𝛼𝑇

2
, 𝜎2

𝑓 → 0, 𝑠1, 𝜀𝑝
1
, 𝛼𝑇

1
, 𝜎1

𝑓 = 1, 𝑆, 𝐸𝑝 , 𝐴𝑇 , Σ

Such a thought experiment can of course also bemade for the N-phase laminate, i.e. performing

a fictitious cut in a given phase𝑚 such that one of the remaining part has a negligible volume

fraction and then considering a 2-phase laminate made of the phase𝑚∗ with negligible volume

fraction and another phase having the effective properties of the N-phase laminate. Accordingly,

once the effective properties (𝑆𝑖 𝑗 , 𝐸
𝑝
𝑖 , 𝐴

𝑇
𝑖 ) of the the N-phase laminate are known, the stresses in

each phase can be directly computed as

𝜎𝑚𝑖 = Σ𝑖 +𝐺𝑖𝑘 (𝑠𝑚, 𝑆, 0) [(𝑆𝑘 𝑗 − 𝑠
𝑚
𝑘 𝑗 )Σ 𝑗 + 𝐸

𝑝

𝑘
− 𝜀

𝑝𝑚

𝑘
+ (𝐴𝑇𝑘 − 𝛼𝑇

𝑚

𝑘 )Δ𝑇 ] . (25)

Equation (25) shows that the stresses in one phase can be expressed only with respect to the

effective properties of the laminate and the properties of the phase. Since the effective properties

of the laminate are independent of the relative positions of the phases (cf. Section 3.1), this means

that the stresses in the phases are also not sensitive to the stacking order of the phases. Besides,

the numerical implementation of the proposed method is very straightforward and is provided as

a Matlab code (see Supplementary materials). It contains two functions, one that computes the

tensor 𝐺𝑖 𝑗 (cf. Equation (7)) from two elastic compliance tensors and a volume fraction value and

one that computes the effective properties of a 2-phase laminate according to Equation (15). The

main code is just composed of a single iterative loop that calls the two aforementioned functions

in order to compute the properties of the new phases step by step as described in Figure 1. At

step 𝑛, the effective behavior of the N-phase laminate is known through Equation (23) and the

stresses in any phase can then be directly computed from Equation (25).

Finally, it may be worth to indicate also the simple expressions of the stresses in the particular

case of isotropic homogeneous thermo-elasticity. With 𝜇 the shear modulus and 𝜈 the Poisson’s

ratio, the plane components are indeed given by (Rey and Zaoui 1980; Richeton and Berbenni

2013)

𝜎𝑚1 = Σ1 +
2𝜇

1 − 𝜈
[⟨𝜀

𝑝
1 ⟩ − 𝜀

𝑝𝑚

1 + 𝜈 (⟨𝜀
𝑝
3 ⟩ − 𝜀

𝑝𝑚

3 )],

𝜎𝑚3 = Σ3 +
2𝜇

1 − 𝜈
[⟨𝜀

𝑝
3 ⟩ − 𝜀

𝑝𝑚

3 + 𝜈 (⟨𝜀
𝑝
1 ⟩ − 𝜀

𝑝𝑚

1 )],

𝜎𝑚5 = Σ5 + 𝜇 [⟨𝜀
𝑝
5 ⟩ − 𝜀

𝑝𝑚

5 ],

(26)

while the anti-plane components are given by Equation (20).

4 Validation by finite element simulations

Several Finite Element (FE) simulations were performed in order to check the correctness of

the methodology described in Section 3. The present Section 4 describes the particular case
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of an infinite 5-phase laminate with interface normals parallel to the direction 𝒆2 and volume

fractions 𝑓 1 = 0.25, 𝑓 2 = 0.1, 𝑓 3 = 0.3, 𝑓 4 = 0.2 and 𝑓 5 = 0.15. Cubic elastic constants of Cu at

room temperature were considered with 𝑐11 = 170GPa, 𝑐12 = 124GPa and 𝑐44 = 75GPa for the

five phases. Crystallographic orientations of the phases were randomly selected. For each phase,

a slip of magnitude 0.02 was assigned to the most stressed system within a pure elastic loading,

i.e. among the 12 FCC slip systems {111}⟨110⟩, the system with the highest absolute value of its

resolved shear stress |𝜏 | was selected and affected 𝛾 = ±0.02 so that 𝜏𝛾 > 0. No thermal strain

was considered.

The FE simulation was performed thanks to the use of the open source software suite

freefem++ (Hecht 2012). A structured mesh made of 270 000 triangular quadratic Lagrangian

elements was used for the meshing of a bar of length 100 (see Figure 3), which corresponds to 4

nodes along 𝒆1 and 𝒆3 and 5001 nodes along 𝒆2. Periodic boundary conditions were imposed

along the lateral sides. Arbitrary and fixed velocities were imposed on the bottom and upper

faces of the bar (𝑢1 = −0.05, 𝑢2 = 0, 𝑢3 = −0.1 on the bottom face, 𝑢1 = 0.05, 𝑢2 = 0.1, 𝑢3 = 0.1 on

the top face). Phase 1 was affected to the region 75 < 𝑥2 < 100, phase 2 to 65 < 𝑥2 < 75, phase 3

to 35 < 𝑥2 < 65, phase 4 to 15 < 𝑥2 < 35 and phase 5 to 0 < 𝑥2 < 15. A first simulation was

performed in pure elasticity in order to determine the most stressed systems and then a second

simulation was performed considering static plastic strains in each phase.

The distribution of stresses obtained by the FE simulation is shown in Figure 3. For comparison,

Figure 3 Distribution of 𝜎1 (left), 𝜎3 (middle) and 𝜎5 (right) in MPa obtained from FE simulation.

stresses were then computed from Equations (15), (23) and (25) considering the same elastic

constants, the same crystallographic orientations of the phases, the same plastic strains and

taking Σ𝑖 as the average stress vector given by the FE simulation. In Figure 4, it can be seen

that the matching between the stresses obtained numerically by a FE simulation and the ones

computed analytically from Equations (15), (23) and (25) is excellent. The tiny differences are due
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Figure 4 Comparisons of stresses: FE simulation (lines) and computed from Equations (15), (23) and (25) (circles).
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to the fact that the FE method is an approximate numerical method. In particular, it was checked

that the stress differences decrease with the number of nodes along 𝒆2. These results, along with

the several other FE simulations performed, prove the correctness of the analytical formulas

established in Section 3.

5 Application to polycrystals with elongated grains

As an illustration of potential applications, the N-phase laminate model can be used as a quick

way to estimate the level of internal stresses in metals and alloys having very elongated grains

due to rolling or forging processes. For instance, near-𝛽 titanium alloys like Ti-1023 used in

forged pieces of aircraft for landing gears or rotor systems can achieve high specific strength

thanks to the building-up of complex 𝛼/𝛽 microstructures. However, these Ti-1023 alloys still

contain very large domains of close 𝛽 orientations which corresponds to the prior-𝛽 grains

that were deformed during the forging steps above the 𝛽 transus (Lhadi et al. 2018; Lhadi et al.

2020). These prior-𝛽 grains are millimeter size and are highly elongated along a same direction

corresponding to the axial axis of the billet. Due to the significant elastic anisotropy of the

cubic 𝛽 phase (Purushottam raj purohit et al. 2021), strong mechanical contrasts exist between

these millimeter size regions which might be at the origin of the early crack initiation sometimes

observed in those materials (Lhadi et al. 2018; Lhadi et al. 2020). In order to get a very first

insight into such a mechanical issue, it can thus be interesting to simplify the microstructure

as an infinite laminate composed of different 𝛽 orientations. By doing so, the focus is only on

the mechanical interactions between prior-𝛽 grains and on a same kind of interfaces, i.e. the

predominant long ones which are parallel to the axial axis of the billet.

Hence, a laminate composed of 100 000 different 𝛽 orientations of equal volume fraction

was considered as an application of the methodology described in Section 3. The orientations

were generated from the open-source software package Neper (Quey et al. 2018) so that their

distribution was nearly uniform in presence of cubic symmetry. It is noteworthy that the effect of

a crystallographic texture could have considered as well without difficulty. Elastic constants of

Ti-1023, 𝑐11 = 92.6GPa, 𝑐12 = 82.5GPa and 𝑐44 = 43.5GPa, were taken from Purushottam raj

purohit et al. (2021) who provided an estimation based on a method coupling Bayesian inference

analysis, high energy X-ray diffraction and elastic self-consistent modeling. These constant values

correspond to a strong elastic anisotropy ratio of 𝐴 = 8.6. The laminate interfaces normal was set

parallel to the direction 𝒆2 of the Cartesian frame (𝒆1, 𝒆2, 𝒆3). A uniaxial macroscopic stress of

magnitude 300MPa was applied without consideration of any plastic or thermal strains. The

direction of the uniaxial stress was varied by rotation around 𝒆3. This rotation was described by

an angle 𝜃 , 𝜃 = 0° corresponding to an uniaxial stress along 𝒆1 and 𝜃 = 90° along 𝒆2. The stresses

in each grain were computed from Equations (15), (23) and (25) and then the maximum von Mises

stress among the 100 000 grains was recorded and plotted with respect to 𝜃 , see Figure 5. For

comparison, a 2-phase laminate made of grains of equal volume fraction was considered as well.

The cristallographic orientations of the 2 grains were set so that the directions [111] and [1̄10] in

one grain and [100] and [010] in the other grain were parallel to 𝒆1 and 𝒆2, respectively. ⟨111⟩

and ⟨100⟩ are actually the directions of maximum and minimum directional Young’s modulus,

respectively. Hence, the mechanical contrast should very strong for this 2-grain configuration.

In Figure 5, it is interesting to observe that the maximum von Mises stress of the 2-phase

laminate is always below the one with 100 000 orientations despite the strong elastic contrast

considered. However, it was shown in Section 3 that the stresses in a given phase of a N-phase

laminate can also be deduced from a 2-phase laminate where the given phase is in interaction

with the whole laminate (see Figure 2 and Equation (25)). Accordingly, the elastic contrast

between the phase where the maximum von Mises stress is located and the effective laminate

of 100 000 grains should normally not exceed the elastic contrast that exists between [111] ∥ 𝒆1
and [100] ∥ 𝒆1-oriented grains. The difference of maximum von Mises stress is actually rather

due to a volume fraction effect, incompatibility stresses in a phase of volume fraction 𝑓 scaling

indeed as 1 − 𝑓 , see Equation (6). Yet, the grain volume fraction is 𝑓 = 0.5 in the 2-phase laminate

whereas it is negligible (𝑓 = 10−5) in the laminate with 100 000 orientations. Similar results could
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Figure 5 Comparisons of the maximum von Mises stresses obtained between a laminate made of 100 000 uniform
orientations (dashed line) and a 2-phase laminate made of [111] ∥ 𝒆1 and [100] ∥ 𝒆1-oriented grains (solid
line). 𝜃 represents a rotation around 𝒆3 of the uniaxial stress direction. Cubic elastic constants of Ti-1023
were used (Purushottam raj purohit et al. 2021).

also be obtained by considering strong mechanical contrasts resulting from difference of plastic

or thermal strains. As a consequence, it can be inferred that considering a 2-phase laminate of

equal volume fraction with extremal mechanical contrast may lead to underestimate the maximal

level of internal stresses in polycrystals. Furthermore, the difference of positions of the local

extrema between the 2-phase laminate and the one with 100 000 orientations can also be noticed

in Figure 5.

6 Comparisons with elastic self-consistent models and discussion

It is noteworthy that the internal stress evaluation performed in Section 5 could also have

been made from an elastic self-consistent model (Hershey 1954; Kröner 1958; Hill 1965a) with

grains more realistic modeled as ellipsoidal inclusions. In a self-consistent model, the effective

compliance tensor can be computed as

𝑆𝑖 𝑗 = ⟨𝑠𝑖𝑘𝐵𝑘ℓ⟩⟨𝐵ℓ 𝑗 ⟩
−1, (27)

where the stress concentration tensor 𝐵𝑚𝑖 𝑗 for any phase𝑚 is given by

𝐵𝑚𝑖 𝑗 = (𝑠𝑚𝑖𝑘 + �̃�𝑖𝑘 )
−1(𝑆𝑘 𝑗 + �̃�𝑘 𝑗 ), (28)

and where �̃�𝑖 𝑗 is the constraint tensor defined by

�̃�𝑖 𝑗 = (𝛿𝑖𝑘 − 𝑆
𝐸
𝑖𝑘 )

−1𝑆𝐸𝑘ℓ𝑆ℓ 𝑗 . (29)

𝛿𝑖 𝑗 is the Kronecker delta and 𝑆
𝐸
𝑖 𝑗 is the interior Eshelby tensor (Eshelby 1957), here expressed as

a 6 × 6 matrix consistent with the used Voigt notation (Barnett and Cai 2018). The stress tensor in

a given phase is then directly deduced from the stress concentration tensor

𝜎𝑚𝑖 = 𝐵𝑚𝑖 𝑗 Σ 𝑗 . (30)

For ease of direct comparisons with the results of the laminate model, this set of equations

was also implemented in the Matlab software. The results of Figure 5 were then compared with

the maximum von Mises stresses obtained from elastic self-consistent models considering oblate

spheroidal grains (𝑎 = 𝑏 > 𝑐) of different aspect ratios (Figure 6), the small axis of the oblate

spheroids being parallel to the interfaces normal in the laminate model. A convergence towards

the laminate solution is observed by increasing the aspect ratio 𝑎/𝑐 of the oblate spheroids, both

for the case with 100 000 orientations and for the specific case with two orientations only. For

the case with 100 000 orientations, it is seen that, as long as elongated grains are considered,
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Figure 6 Comparisons of the maximum von Mises stress obtained with the laminate model and elastic self-consistent
models (SC) considering oblate spheroidal grains (𝑎 = 𝑏 > 𝑐) of different aspect ratios (𝑎/𝑐). Top: case of
the two orientations considered in Figure 5. Bottom: case of 100 000 uniform orientations. 𝜃 represents a
rotation around 𝒆3 of the uniaxial stress direction, see Section 5. Cubic elastic constants of Ti-1023 were
used (Purushottam raj purohit et al. 2021).

the laminate model provides fairly good qualitative trends for the variation of the maximal

von Mises stress with a rotation of the uniaxial macroscopic stress. However, the maximal von

Mises stresses are always overestimated compared to the values provided by self-consistent

models with more realistic grain aspect ratios. These over estimations represent about 20 % of the

uniaxial macroscopic stress for 𝑎/𝑐 = 10 and about 30 % for 𝑎/𝑐 = 5.

Besides, it must be underlined that Equation (27), from which is computed the effective

compliance tensor 𝑆𝑖 𝑗 in the self-consistent model, is an implicit equation since both the stress

concentration tensor and the Eshelby tensor depend on 𝑆𝑖 𝑗 , see Equations (28) and (29). In the

present work, this implicit equation was solved through a fixed-point iteration method (Walpole

1969). This might however cause convergence issues for strong mechanical contrasts. By

opposition, the laminate methodology of Section 3 is fully explicit and thus, is expected to be

more robust and faster. Moreover, the Eshelby tensor 𝑆𝐸𝑖 𝑗 in an anisotropic medium cannot be

expressed analytically and must be computed numerically. For this work, the Eshelby tensor was

computed thanks to the Matlab code provided by Cai 2018 where 𝑆𝐸𝑖 𝑗 is obtained from the Hill P

tensor (Hill 1965b) which is itself computed from numerical integrals that are performed using

the quadv function in Matlab. On the contrary, the expression of the tensor𝐺𝑖 𝑗 in Equation (7) is

fully analytical and hence very simple to code. Actually, it can be shown that the Eshelby stress

solutions can be directly obtained from the tensor 𝐺𝑖 𝑗 by appropriate integrations (Richeton and

Berbenni 2014).

In order to illustrate the numerical differences between the two types of model, the effect of

the number of phases on the computation of the effective stiffness tensor, as well as the effect

of the absolute tolerance value set in the quadv function in Matlab to evaluate the Eshelby

tensor was analyzed. First, Figure 7 shows the relative difference of the norm of the effective

stiffness tensor of 100 000 uniform orientations computed by the laminate model and an elastic

self-consistent model considering oblate spheroids with 𝑎 = 𝑏 = 100𝑐 as a function of the absolute

tolerance set in the quadv function. It is known that, the more the grains are elongated, the more
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Figure 7 Black ‘+’ (left axis): relative difference of the norm of the effective stiffness tensor of 100 000 uniform
orientations computed by the laminate model and an elastic self-consistent model considering oblate
spheroidal grains with 𝑎 = 𝑏 = 100𝑐 as a function of the absolute tolerance set in the quadv function in
Matlab to compute the Eshelby tensor. Red ‘×’ (right axis): corresponding ratios between the CPU time
needed by the elastic self-consistent to achieve the calculation over the one needed by the laminate model.
Simulations were repeated 10 times to provide average CPU time values. The Frobenius norm of a matrix
was considered. The cubic elastic constants of Ti-1023 were used (Purushottam raj purohit et al. 2021).

accuracy is needed on the numerical evaluation of the Eshelby tensor (Gavazzi and Lagoudas

1990). For the present extreme case with 𝑎 = 𝑏 = 100𝑐 , Figure 7 shows that an absolute tolerance

lower than 10−12 should be set in order to obtain a convergence towards an accurate result. At

the same time, Figure 7 exhibits also the average ratio between the CPU time needed by the

elastic self-consistent to achieve the calculation over the one needed by the laminate model. This

ratio is about 7 showing, as expected, that the laminate is much faster. Moreover, this ratio

increases exponentially for absolute tolerance smaller than 10−13. This means that, when using a

self-consistent model, a preliminary numerical study is needed to fix the value of the absolute

tolerance (or the number of Gauss points if another numerical method is used as in (Gavazzi and

Lagoudas 1990)) in order to both ensure a sufficient accuracy on the evaluation of the Eshelby

tensor and also to maintain a reasonable CPU time. Then, Figure 8 shows that this relative

difference of the norm of the effective stiffness tensor decreases with the number of phases

considered. However, it must be underlined that the relative difference is already pretty small (i.e.
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Figure 8 Relative difference of the norm of the effective stiffness tensor computed by the laminate model and an
elastic self-consistent model considering oblate spheroidal grains with 𝑎 = 𝑏 = 100𝑐 as a function of the
number of phases considered. Phases correspond to crystallographic orientations randomly picked within
a list of 100 000 uniform orientations. Simulations were repeated 1000 times to provide average values.
The Frobenius norm of a matrix was considered. The absolute tolerance in the quadv function in Matlab
was set to 10−12 to evaluate the Eshelby tensor in the self-consistent model. The cubic elastic constants of
Ti-1023 were used (Purushottam raj purohit et al. 2021)
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smaller than 4 × 10−5) when considering only two phases. This small difference agrees with the

convergence towards the laminate solution displayed in Figure 6 when the aspect ratio was

increased in the case considering two orientations only. This result can actually be understood

from Equation (24). This equation shows indeed that the stresses within a phase of a two-phase

laminate are the same as those in a phase of negligible volume fraction and same properties

belonging to a two-phase laminate where the other phase has the effective properties of the first

two-phase laminate. In the same way, the self-consistent model computes the stresses as a result

of the mechanical interactions between one grain and the infinite homogeneous equivalent

medium made of the two grains.

7 Conclusion

This work provides a fast explicit method to compute the effective behavior and the distribution

of stresses in a general N-phase laminate made of parallel, planar and perfectly bonded interfaces.

The formulas are based on the solutions of the two-phase laminate. They are very compact

which is convenient for numerical implementation and direct use in engineering applications. In

contrast with previous approaches, this contribution considers, at the same time, an arbitrary

number of phases, a completely general anisotropic elasticity as well as different thermal and

plastic strains in the phases. In addition, a simple direct analytical formula is derived in order

to compute the stress in a given phase once the effective behavior of the laminate has been

determined. The developed method proves that both the effective properties of the laminate and

the stresses in the phases are insensitive to the stacking order of the phases. The code to compute

the effective behavior and the stress distribution in an arbitrary N-phase laminate is made freely

available for download (link in the Supplementary materials section).

Besides, the correctness of the proposed method is checked by comparisons with finite

element simulation results on a same boundary value problem, showing excellent agreements. An

application of the method is also performed for a near-𝛽 titanium alloy with elongated grains, by

comparing, for different elastic loadings, the level of internal stresses within a N-phase laminate

made of 100 000 orientations and a 2-phase laminate with maximal elastic contrast. Interestingly,

the maximum von Mises stress of the 2-phase laminate is always the lowest despite the strong

elastic contrast considered, which is explained by a volume fraction effect. Similar results could

be obtained by considering strong mechanical contrasts resulting from difference of plastic or

thermal strains.

Finally, comparisons with elastic self-consistent models considering oblate spheroidal grains

of different aspect ratios are performed. A convergence towards the laminate solution is observed

by increasing the aspect ratio of the oblate spheroids. However, it is noteworthy that the laminate

model is based only on fully analytical and explicit equations, which is more robust from a

numerical point of view. It is also shown that the execution of the laminate model is much faster

that that of self-consistent models.

As a perspective, it may be worth underlying that the developed method might be extended

to obtain the effective strain energy potential of a N-phase viscoplastic laminate, i.e. grouping the

N phases in pairs and applying the the existing compact expressions for the effective strain

energy potential of a two-phase laminate (Debotton 2005; Idiart 2008) for each pair iteratively

until one phase with the effective strain energy potential is obtained. The strains in each phase

could then be deduced from a top-down algorithm.
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