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In this work, a fast explicit method, easy to implement numerically, is proposed in order to compute the effective

behavior and the distribution of stresses in a general N-phase laminate made of parallel, planar and perfectly bonded

interfaces. The solutions are exact for a homogenous far-field loading and work for an arbitrary number of phases, a

general linear anisotropic elasticity, as well as different uniform thermal and plastic strains in the phases. A simple

direct analytical formula is also derived to compute the stress in a given phase once the effective behavior of the

laminate is known. Moreover, the correctness of the proposed method is checked by comparisons with finite element

simulation results on a same boundary value problem, showing excellent agreements. An application of the method is

performed for a near-𝛽 titanium alloy with elongated grains, by comparing the level of internal stresses for different

elastic loadings within a N-phase laminate made of 100, 000 orientations and a 2-phase laminate of equal volume

fraction with maximal elastic contrast. Interestingly, the maximum von Mises stress of the 2-phase laminate is always

the lowest, which is explained by a volume fraction effect. Finally, comparisons with elastic self-consistent models

considering oblate spheroidal grains of different aspect ratios are performed.

Keywords laminate, anisotropic elasticity, incompatibility stresses, effective behavior, composite structure

1 Introduction

At a material surface of discontinuity like a grain boundary or an interface between two dissimilar

materials, incompatibility stresses may arise due to heterogeneous thermo-elastic properties and/or

difference of plastic strains. These internal stresses can be computed numerically thanks to finite element

methods (Roters et al. 2010) or spectral approaches (Lebensohn 2001). Analytical formulations also

exist in the case of two-phase laminates (Stupkiewicz et al. 2002; Milton 2004; Franciosi et al. 2007;

Glüge and Kalisch 2014) which can also be viewed as infinite bi-crystals or bi-materials subjected to a

homogeneous far-field loading (Gemperlova and Paidar 1985; Gemperlova, Paidar, and Kroupa 1989;

Richeton and Berbenni 2013; Richeton, Tiba, et al. 2015; Richeton 2017). Such analytical models provide

instantaneous responses which are first-order estimations around interfaces subjected to more complex

boundary conditions (Peralta et al. 1993; Tiba et al. 2015). Hence, it can be very useful to test, on a

huge number of configurations, the influence of different parameters like material single crystal elastic

constants, crystallographic misorientation, crystal volume fraction, interface inclination, amount of plastic

deformation or loading type (Gemperlova, Paidar, and Kroupa 1989; Richeton and Berbenni 2013; Richeton,

Tiba, et al. 2015). In the same way, explicit analytical models for N-phase laminates are very useful to

investigate the influence of the previously mentioned parameters in problems involving several parallel

interfaces, like in thin films (e.g., Welzel et al. 2003; Abadias et al. 2018), in electronics packaging (e.g.,

Wong et al. 2008), in nanolaminated materials (e.g., Mukhopadhyay et al. 2017; Wang et al. 2017) or in

materials with welding joints which are classically modeled as a base metal, a heat affected zone and a

weld metal (e.g., Du et al. 2020). Actually, laminated materials are widely used in the industry because of

the relative ease to control their properties from the choice of the materials combination, volume fraction

and orientation (Glüge and Kalisch 2014). For the design of laminates, fast estimates of their properties is

thus required.

The objective of the present paper is to derive an explicit method, which can be easily implemented in

a numerical code, in order to compute the effective behavior and the distribution of stresses in a general

N-phase laminate made of parallel, planar and perfectly bonded interfaces and which is assumed to be

subjected to a far-field homogeneous loading and/or homogeneous temperature variation, in addition to

the possibility of having different uniform plastic strains in each phase. The method should be exact for

a small number of phase (𝑁 = 2, 3, 4, ...) as well as for an infinitely large number of phases. Such an

objective may appear relatively standard considering previous works on laminates in the literature (e.g.,

Milton 2004; Franciosi et al. 2007; Omri et al. 2000; Glüge and Kalisch 2014; Glüge 2016). However, it is

generally hard to find compact explicit formulas for direct use in engineering applications. Besides, at the
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difference of previous approaches where explicit formulas were restricted to a finite number of phases

(Milton 2004; Franciosi et al. 2007) or to isotropic elasticity (Omri et al. 2000; Milton 2004; Glüge 2016)

or to purely elastic behavior (Milton 2004; Glüge and Kalisch 2014), this contribution provides explicit

compact formulas for an arbitrary number of phases, a completely general anisotropic elasticity as well as

different thermal and plastic strains in the phases. In particular, a simple direct analytical formula is

derived in order to compute the stress in a given phase once the effective behavior of the laminate has

been determined. Furthermore, the code to compute the effective behavior and the stress distribution in an

arbitrary N-phase laminate is made freely available for download at https://github.com/AniPlas/Laminate.
The paper is organized as follows. Section 2 reminds the expressions of incompatibility stresses in a

two-phase laminate from which the effective compliance, effective plastic strain and effective thermal

expansion tensors can be deduced. Then, Section 3 presents an explicit method to find the effective

behavior and the stress distribution for a general N-phase laminate based on the solutions of the two-phase

laminate. Section 4 is dedicated to the validation of the proposed method by comparisons with finite

element simulation results on a same boundary value problem. In Section 5, an application of the method

is performed for a near-𝛽 titanium alloy with elongated grains, by comparing the level of internal stresses

for different elastic loadings within a N-phase laminate made of 100, 000 orientations and a 2-phase

laminate with maximal elastic contrast. Then, in Section 6, comparisons with elastic self-consistent

models considering oblate spheroidal grains of different aspect ratios are performed. In particular, the

numerical performance of the laminate model compared to the self-consistent models is discussed. Finally,

concluding remarks are given in Section 7.

In the following, the Einstein summation convention over repeated indices and the contracted

Voigt notation (Voigt 1928) (11 → 1, 22 → 2, 33 → 3, 23 → 4, 31 → 5, 12 → 6) are used, i.e. indices

range from 1 to 6. For consistency, an engineering convention is considered for strain components,

i.e., 𝜀4 = 2𝜀23, 𝜀5 = 2𝜀31, 𝜀6 = 2𝜀12, while the components of the elastic compliance tensor 𝑠𝑖 𝑗 include

the multiplying factors of 2 and 4 (Voigt 1928). Besides, the notation ⟨⟩ denotes a volume average and

superscripts 1, 2 or𝑚 denote fields in materials 1, 2 or𝑚, respectively.

2 Two-phase laminate

2.1 Averaging rules, constitutive behavior and continuity conditions

In this section, an infinite 2-phase laminate composed of two alternating materials or crystals perfectly

bonded along planar interfaces is considered. This rank-1 laminate is supposed to have been deformed

under the action of a homogeneous temperature variation Δ𝑇 , as well as a macroscopic homogeneous and

remotely applied stress Σ𝑖 satisfying the averaging rule

Σ𝑖 = ⟨𝜎𝑖⟩, (1)

where 𝜎𝑖 is the local Cauchy stress. Linear thermo-elasticity is assumed, as well as the possibility

of having different uniform plastic strains 𝜀
𝑝

𝑖
in each phase. Under these assumptions and through

consideration of strains compatibility and balance of linear momentum without body force in a static small

strain setting, it can be shown that 𝜎𝑖 and the local strains 𝜀𝑖 are uniform in each material (Gemperlova,

Paidar, and Kroupa 1989; Omri et al. 2000; Milton 2004; Richeton and Berbenni 2013), so that

Σ𝑖 = 𝑓
1𝜎1

𝑖 + 𝑓 2𝜎2

𝑖 , (2)

𝐸𝑖 = ⟨𝜀𝑖⟩ = 𝑓 1𝜀1

𝑖 + 𝑓 2𝜀2

𝑖 , (3)

where 𝑓 1
and 𝑓 2 = 1 − 𝑓 1

are the material volume fractions. 𝐸𝑖 is defined as the macroscopic strain.

The strains in each material are expressed as

𝜀𝑚𝑖 = 𝑠𝑚𝑖 𝑗 𝜎
𝑙
𝑗 + 𝜀

𝑝𝑚

𝑖
+ 𝛼𝑇𝑚𝑖 Δ𝑇, (4)

where𝑚 = 1, 2 while 𝑠𝑖 𝑗 and 𝛼
𝑇
𝑖 are the components of the elastic compliance tensor and of the

symmetrical thermal expansion tensor, respectively. Both 𝑠𝑖 𝑗 and 𝛼
𝑇
𝑖 are supposed isotherm and uniform in

each material. Besides, considering that the interface normals are parallel to the direction 𝒆2 of a Cartesian
frame (𝒆1, 𝒆2, 𝒆3), Equations (2) and (3) along with tractions continuity and strains compatibility impose

the following continuity conditions (Omri et al. 2000; Richeton and Berbenni 2013; Glüge and Kalisch 2014)
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𝜎1

2
= 𝜎2

2
= Σ2,

𝜎1

4
= 𝜎2

4
= Σ4,

𝜎1

6
= 𝜎2

6
= Σ6,

(5)

𝜀1

1
= 𝜀2

1
= 𝐸1,

𝜀1

3
= 𝜀2

3
= 𝐸3,

𝜀1

5
= 𝜀2

5
= 𝐸5.

(6)

2.2 Stress partitioning

It was previously shown that the stresses in both materials can be written as (Richeton and Berbenni 2013;

Richeton, Tiba, et al. 2015; Tiba et al. 2015; Richeton 2017)

𝜎1

𝑖 = Σ𝑖 + 𝑓 2𝐺𝑖𝑘

[(
𝑠2

𝑘 𝑗
− 𝑠1

𝑘 𝑗

)
Σ 𝑗 + 𝜀𝑝2

𝑘
− 𝜀𝑝1

𝑘
+
(
𝛼𝑇 2

𝑘
− 𝛼𝑇 1

𝑘

)
Δ𝑇

]
,

𝜎2

𝑖 = Σ𝑖 − 𝑓 1𝐺𝑖𝑘

[(
𝑠2

𝑘 𝑗
− 𝑠1

𝑘 𝑗

)
Σ 𝑗 + 𝜀𝑝2

𝑘
− 𝜀𝑝1

𝑘
+
(
𝛼𝑇 2

𝑘
− 𝛼𝑇 1

𝑘

)
Δ𝑇

]
,

(7)

where the non-zero components of the symmetric tensor 𝐺𝑖 𝑗 are given by

𝐺11 =
(
𝑠2

35
− 𝑠33𝑠55

)
/𝐷 ,

𝐺33 =
(
𝑠2

15
− 𝑠11𝑠55

)
/𝐷 ,

𝐺55 =
(
𝑠2

13
− 𝑠11𝑠33

)
/𝐷 ,

𝐺13 = (𝑠13𝑠55 − 𝑠15𝑠35) /𝐷 ,

𝐺15 = (𝑠15𝑠33 − 𝑠13𝑠35) /𝐷 ,

𝐺35 = (𝑠11𝑠35 − 𝑠13𝑠15) /𝐷 ,

with 𝐷 = 𝑠11𝑠
2

35
+ 𝑠33𝑠

2

15
+ 𝑠55𝑠

2

13
− 𝑠11𝑠33𝑠55 − 2𝑠13𝑠15𝑠35 and 𝑠𝑖 𝑗 = 𝑓

2𝑠1

𝑖 𝑗 + 𝑓 1𝑠2

𝑖 𝑗 .

(8)

It is noteworthy that these expressions can also be viewed as the solutions in an infinite bi-material

(Gemperlova, Paidar, and Kroupa 1989; Richeton and Berbenni 2013; Richeton, Tiba, et al. 2015) and that

the effect grain boundary sliding could be considered as well (Richeton 2017). The differences 𝜎1

𝑖 − Σ𝑖 and
𝜎2

𝑖 − Σ𝑖 are called incompatibility stresses in materials 1 and 2, respectively. Besides, it must be noted that

the tensor 𝐺𝑖 𝑗 is a function of 𝑠1

𝑖 𝑗 , 𝑠
2

𝑖 𝑗 and 𝑓
1
(or 𝑓 2

) only so that we will use the notation 𝐺𝑖 𝑗

︷      ︸︸      ︷(
𝑠1, 𝑠2, 𝑓 1

)
in Section 3 where multiple tensors 𝐺𝑖 𝑗 are considered.

2.3 Effective behavior

By definition of the effective behavior, the macroscopic strain satisfies the following relation

𝐸𝑖 = 𝑆𝑖 𝑗Σ 𝑗 + 𝐸𝑝𝑖 +𝐴
𝑇
𝑖 Δ𝑇, (9)

where 𝑆𝑖 𝑗 is the effective compliance tensor, 𝐸
𝑝

𝑖
the effective plastic strain tensor and 𝐴𝑇𝑖 the effective

thermal expansion tensor. From Equations (3), (4) and (7), we have also

𝐸𝑖 = ⟨𝑠𝑖 𝑗𝜎 𝑗 ⟩ + ⟨𝜀𝑝
𝑖
⟩ + ⟨𝛼𝑇𝑖 ⟩Δ𝑇

= ⟨𝑠𝑖 𝑗 ⟩Σ 𝑗 − 𝑓 1 𝑓 2

(
𝑠2

𝑖 𝑗 − 𝑠1

𝑖 𝑗

)
𝐺 𝑗𝑘

( (
𝑠2

𝑘𝑙
− 𝑠1

𝑘𝑙

)
Σ𝑙 + 𝜀𝑝2

𝑘
− 𝜀𝑝1

𝑘
+
(
𝛼𝑇 2

𝑘
− 𝛼𝑇 1

𝑘

)
Δ𝑇

)
+ ⟨𝜀𝑝

𝑖
⟩ + ⟨𝛼𝑇𝑖 ⟩Δ𝑇 .

(10)

Then, by identification with Equation (9), the three effective tensors can be expressed as

𝑆𝑖 𝑗 = ⟨𝑠𝑖 𝑗 ⟩ − 𝑓 1 𝑓 2
(
𝑠2

𝑖𝑘
− 𝑠1

𝑖𝑘

)
𝐺𝑘𝑙

(
𝑠2

𝑙 𝑗
− 𝑠1

𝑙 𝑗

)
, (11)

𝐸
𝑝

𝑖
= ⟨𝜀𝑝

𝑖
⟩ − 𝑓 1 𝑓 2

(
𝑠2

𝑖𝑘
− 𝑠1

𝑖𝑘

)
𝐺𝑘𝑙

(
𝜀
𝑝2

𝑙
− 𝜀𝑝1

𝑙

)
, (12)

𝐴𝑇𝑖 = ⟨𝛼𝑇𝑖 ⟩ − 𝑓 1 𝑓 2
(
𝑠2

𝑖𝑘
− 𝑠1

𝑖𝑘

)
𝐺𝑘𝑙

(
𝛼𝑇 2

𝑙
− 𝛼𝑇 1

𝑙

)
. (13)
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3 N-phase laminate

In the following, an infinite N-phase laminate composed of 𝑁 alternating materials perfectly bonded along

parallel planar interfaces is considered. All the other assumptions made for the 2-phase laminate in

Section 2, including Equation (1) and Equation (4), are maintained so that stresses and strains are uniform

within each phase (Glüge and Kalisch 2014).

3.1 Effective behavior

Figure 1: Description of the multiple steps procedure for determining the effective properties of a N-phase laminate

and the stresses in each phase. 𝑙 denotes the step number and 𝐾𝑙 the number of phases at step 𝑙 .

The solutions of the 2-phase laminate are first used to find the effective behavior of the N-phase

laminate and then the stresses in each phase. The general methodology is described in Figure 1. It consists

in a multiple steps procedure, where at each step 𝑙 , the phases are grouped two by two and replaced by a

new phase having the effective properties of a 2-phase laminate made of the corresponding two phases.

The procedure is followed until only one phase is remaining, corresponding to 𝑙 = 𝑛 = ⌈ log𝑁

log 2

+ 1⌉. The

number of phases or materials of the laminate at a step 𝑙 is denoted 𝐾𝑙 . Hence, we have 𝐾1 = 𝑁 , 𝐾𝑛 = 1

and

𝐾𝑙+1 =


1

2

𝐾𝑙 if 𝐾𝑙 is even,

1

2

(
𝐾𝑙 + 1

)
if 𝐾𝑙 is odd.

(14)

At step 𝑙 + 1, the properties of a new phase𝑚, volume fractions 𝑓 𝑙+1,𝑚
, elastic compliances 𝑠

𝑙+1,𝑚
𝑖 𝑗

,

plastic strains 𝜀
𝑝𝑙+1,𝑚

𝑖
and thermal expansions 𝛼𝑇

𝑙+1,𝑚

𝑖 , are computed based on Equations (11) to (13)

𝑓 𝑙+1,𝑚 = 𝑓 𝑙,2𝑚−1 + 𝑓 𝑙,2𝑚,

𝑠
𝑙+1,𝑚
𝑖 𝑗

= 𝑓 ∗𝑠𝑙,2𝑚−1

𝑖 𝑗
+ (1 − 𝑓 ∗) 𝑠𝑙,2𝑚

𝑖 𝑗
− 𝑓 ∗ (1 − 𝑓 ∗)

(
𝑠
𝑙,2𝑚

𝑖𝑘
− 𝑠𝑙,2𝑚−1

𝑖𝑘

)
𝐺𝑘𝑙

︷             ︸︸             ︷(
𝑠2𝑚−1, 𝑠2𝑚, 𝑓 ∗

) (
𝑠
𝑙,2𝑚

𝑙 𝑗
− 𝑠𝑙,2𝑚−1

𝑙 𝑗

)
,

𝜀
𝑝𝑙+1,𝑚

𝑖
= 𝑓 ∗𝜀

𝑝𝑙,2𝑚−1

𝑖
+ (1 − 𝑓 ∗) 𝜀𝑝

𝑙,2𝑚

𝑖
− 𝑓 ∗ (1 − 𝑓 ∗)

(
𝑠
𝑙,2𝑚

𝑖𝑘
− 𝑠𝑙,2𝑚−1

𝑖𝑘

)
𝐺𝑘𝑙

︷             ︸︸             ︷(
𝑠2𝑚−1, 𝑠2𝑚, 𝑓 ∗

) (
𝜀
𝑝𝑙,2𝑚

𝑙
− 𝜀𝑝

𝑙,2𝑚−1

𝑙

)
,

𝛼𝑇
𝑙+1,𝑚

𝑖 = 𝑓 ∗𝛼𝑇
𝑙,2𝑚−1

𝑖 + (1 − 𝑓 ∗) 𝛼𝑇 𝑙,2𝑚𝑖 − 𝑓 ∗ (1 − 𝑓 ∗)
(
𝑠
𝑙,2𝑚

𝑖𝑘
− 𝑠𝑙,2𝑚−1

𝑖𝑘

)
𝐺𝑘𝑙

︷             ︸︸             ︷(
𝑠2𝑚−1, 𝑠2𝑚, 𝑓 ∗

) (
𝛼𝑇

𝑙,2𝑚

𝑙
− 𝛼𝑇 𝑙,2𝑚−1

𝑙

)
,

with 𝑓 ∗ =
𝑓 𝑙,2𝑚−1

𝑓 𝑙,2𝑚−1 + 𝑓 𝑙,2𝑚
.

(15)

Imposing the following consistency condition between stresses at step 𝑙 and at step 𝑙 + 1

𝑓 ∗𝜎𝑙,2𝑚−1

𝑖
+ (1 − 𝑓 ∗) 𝜎𝑙,2𝑚

𝑖
= 𝜎

𝑙+1,𝑚
𝑖

, (16)

4
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the stresses at step 𝑙 can then be related to the stresses at step 𝑙 + 1 by application of Equation (7)

𝜎
𝑙,2𝑚−1

𝑖
= 𝜎

𝑙+1,𝑚
𝑖

+ (1 − 𝑓 ∗)𝐺𝑖𝑘
︷             ︸︸             ︷(
𝑠2𝑚−1, 𝑠2𝑚, 𝑓 ∗

) [(
𝑠
𝑙,2𝑚

𝑘 𝑗
− 𝑠𝑙,2𝑚−1

𝑘 𝑗

)
𝜎
𝑙+1,𝑚
𝑗

+ 𝜀𝑝
𝑙,2𝑚

𝑘
− 𝜀𝑝

𝑙,2𝑚−1

𝑘
+
(
𝛼𝑇

𝑙,2𝑚

𝑘
− 𝛼𝑇 𝑙,2𝑚−1

𝑘

)
Δ𝑇

]
,

𝜎
𝑙,2𝑚−1

𝑖
= 𝜎

𝑙+1,𝑚
𝑖

− 𝑓 ∗𝐺𝑖𝑘
︷             ︸︸             ︷(
𝑠2𝑚−1, 𝑠2𝑚, 𝑓 ∗

) [(
𝑠
𝑙,2𝑚

𝑘 𝑗
− 𝑠𝑙,2𝑚−1

𝑘 𝑗

)
𝜎
𝑙+1,𝑚
𝑗

+ 𝜀𝑝
𝑙,2𝑚

𝑘
− 𝜀𝑝

𝑙,2𝑚−1

𝑘
+
(
𝛼𝑇

𝑙,2𝑚

𝑘
− 𝛼𝑇 𝑙,2𝑚−1

𝑘

)
Δ𝑇

]
.

(17)

In case where 𝐾𝑙 is odd, the last phase of step 𝑙 + 1 is simply set to be the same as the last phase of step

𝑙 , i.e. 𝑓 𝑙+1,𝐾𝑙+1

= 𝑓 𝑙,𝐾
𝑙

, 𝑠
𝑙+1,𝐾𝑙+1

𝑖 𝑗
= 𝑠

𝑙,𝐾𝑙

𝑖 𝑗
, 𝜀
𝑝𝑙+1,𝐾𝑙+1

𝑖
= 𝜀

𝑝𝑙,𝐾
𝑙

𝑖
, 𝛼𝑇

𝑙+1,𝐾𝑙+1

𝑖 = 𝛼𝑇
𝑙,𝐾𝑙

𝑖 and 𝜎
𝑙+1,𝐾𝑙+1

𝑖
= 𝜎

𝑙,𝐾𝑙

𝑖
.

From the procedure just described, it is noticeable that averaging rules and continuity conditions are

automatically satisfied at each step, i.e.

∀𝑙 ,
∑︁
𝑚

𝑓 𝑙,𝑚 = 1 (18)

∀𝑙 , ⟨𝜎𝑙𝑖 ⟩ = Σ𝑖 (19)

∀𝑙 , ⟨𝜀𝑙𝑖 ⟩ = 𝐸𝑖 (20)

∀𝑙 , ∀𝑚, 𝜎
𝑙,𝑚
2

= Σ2,

∀𝑙 , ∀𝑚, 𝜎
𝑙,𝑚
4

= Σ4,

∀𝑙 , ∀𝑚, 𝜎
𝑙,𝑚
6

= Σ6,

(21)

∀𝑙 , ∀𝑚, 𝜀
𝑙,𝑚
1

= 𝐸1,

∀𝑙 , ∀𝑚, 𝜀
𝑙,𝑚
3

= 𝐸3,

∀𝑙 , ∀𝑚, 𝜀
𝑙,𝑚
5

= 𝐸5.

(22)

As a consequence, the remaining phase at step 𝑛 satisfies the relation

𝐸𝑖 = 𝑠
𝑛,1
𝑖 𝑗

Σ 𝑗 + 𝜀𝑝
𝑛,1

𝑖
+ 𝛼𝑇𝑛,1𝑖 Δ𝑇, (23)

which means from Equation (9) that the effective tensors of the N-phase laminate are given by

𝑆𝑖 𝑗 = 𝑠
𝑛,1
𝑖 𝑗
,

𝐸
𝑝

𝑖
= 𝜀

𝑝𝑛,1

𝑖
,

𝐴𝑇𝑖 = 𝛼𝑇
𝑛,1

𝑖 .

(24)

In the above procedure which consists in grouping the phases in pair iteratively until one phase with

the effective properties remains, the initial relative positions of the different phases have obviously no

influence on the values obtained at the final step. This means that the effective properties of the laminate

are not sensitive to the stacking order of the phases as it was already noted by Glüge and Kalisch (2014).

3.2 Stress partitioning

The stresses in each phase of the initial N-phase laminate can be determined from a top-down algorithm,

starting from 𝜎
𝑛,1
𝑖

= Σ𝑖 at step 𝑛 and then going down to step 1 by application of Equation (17) step by step.

However, a direct and much faster computation is possible by first noticing that for a 2-phase laminate

Σ𝑖 +
(
1 − 𝑓 1

)
𝐺𝑖𝑘

︷      ︸︸      ︷(
𝑠1, 𝑠2, 𝑓 1

) [(
𝑠2

𝑘 𝑗
− 𝑠1

𝑘 𝑗

)
Σ 𝑗 + 𝜀𝑝2

𝑘
− 𝜀𝑝1

𝑘
+
(
𝛼𝑇 2

𝑘
− 𝛼𝑇 1

𝑘

)
Δ𝑇

]
= Σ𝑖 +𝐺𝑖𝑘

︷   ︸︸   ︷(
𝑠1, 𝑆, 0

) [(
𝑆𝑘 𝑗 − 𝑠1

𝑘 𝑗

)
Σ 𝑗 + 𝐸𝑝𝑘 − 𝜀

𝑝1

𝑘
+
(
𝐴𝑇
𝑘
− 𝛼𝑇 1

𝑘

)
Δ𝑇

]
,

(25)
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where 𝑆𝑖 𝑗 , 𝐸
𝑝

𝑖
, 𝐴𝑇𝑖 are, in this equation, the effective properties of the 2-phase laminate. Indeed, let us

consider a fictitious cut of phase 1 parallel to the planar interface, such that one of two remaining parts,

denoted hereafter 1
∗
, has a negligible volume fraction (𝑓 1

∗ → 0). Stresses in phase 1
∗
are equal to those in

the first phase due to uniformity of stresses within a phase (see Section 2). This corresponds to the first

member of Equation (25) (cf. Equation (7)). Then, as a consequence of the preceding procedure, it is known

that these stresses can also be computed from a 2-phase laminate composed of phase 1
∗
and another phase

of volume fraction equals to 1 which has thus necessarily the effective properties of the initial 2-phase

laminate. This corresponds to the second member of Equation (25). The principle is illustrated in Figure 2.

Figure 2: Description of the two configurations used to establish Equation (25).

Such a thought experiment can of course also be made for the N-phase laminate, i.e. performing a

fictitious cut in a given phase𝑚 such that one of the remaining part has a negligible volume fraction and

then considering a 2-phase laminate made of the phase𝑚∗
with negligible volume fraction and another

phase having the effective properties of the N-phase laminate. Accordingly, once the effective properties

(𝑆𝑖 𝑗 , 𝐸
𝑝

𝑖
, 𝐴𝑇𝑖 ) of the the N-phase laminate are known, the stresses in each phase can be directly computed as

𝜎𝑚𝑖 = Σ𝑖 +𝐺𝑖𝑘
︷    ︸︸    ︷
(𝑠𝑚, 𝑆, 0)

[(
𝑆𝑘 𝑗 − 𝑠𝑚𝑘 𝑗

)
Σ 𝑗 + 𝐸𝑝𝑘 − 𝜀

𝑝𝑚

𝑘
+
(
𝐴𝑇
𝑘
− 𝛼𝑇𝑚

𝑘

)
Δ𝑇

]
. (26)

Equation (26) shows that the stresses in one phase can be expressed only with respect to the

effective properties of the laminate and the properties of the phase. Since the effective properties of the

laminate are independent of the relative positions of the phases (cf. Section 3.1), this means that the

stresses in the phases are also not sensitive to the stacking order of the phases. Besides, the numerical

implementation of the proposed method is very straightforward and is provided as a Matlab code

at https://github.com/AniPlas/Laminate. It contains two functions, one that computes the tensor 𝐺𝑖 𝑗
(cf. Equation (8)) from two elastic compliance tensors and a volume fraction value and one that computes

the effective properties of a 2-phase laminate according to Equation (15). The main code is just composed of

a single iterative loop that calls the two aforementioned functions in order to compute the properties of the

new phases step by step as described in Figure 1. At step 𝑛, the effective behavior of the N-phase laminate is

known (cf. Equation (24)) and the stresses in any phase can then be directly computed from Equation (26).

Finally, it may be worth to indicate also the simple expressions of the stresses in the particular case of

isotropic homogenous thermo-elasticity. With 𝜇 the shear modulus and 𝜈 the Poisson’s ratio, the plane

components are indeed given by (Rey et al. 1980; Richeton and Berbenni 2013)

𝜎𝑚
1
= Σ1 +

2𝜇

1 − 𝜈

[
⟨𝜀𝑝

1
⟩ − 𝜀𝑝

𝑚

1
+ 𝜈

(
⟨𝜀𝑝

3
⟩ − 𝜀𝑝

𝑚

3

)]
,

𝜎𝑚
3
= Σ3 +

2𝜇

1 − 𝜈

[
⟨𝜀𝑝

3
⟩ − 𝜀𝑝

𝑚

3
+ 𝜈

(
⟨𝜀𝑝

1
⟩ − 𝜀𝑝

𝑚

1

)]
,

𝜎𝑚
5
= Σ5 + 𝜇

[
⟨𝜀𝑝

5
⟩ − 𝜀𝑝

𝑚

5

]
,

(27)

while the anti-plane components are given by Equation (21).

4 Validation by finite element simulations

Several Finite Element (FE) simulations were performed in order to check the correctness of the methodology

described in Section 3. The present Section 4 describes the particular case of an infinite 5-phase laminate

6
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with interface normals parallel to the direction 𝒆2 and volume fractions 𝑓 1 = 0.25, 𝑓 2 = 0.1, 𝑓 3 = 0.3,

𝑓 4 = 0.2 and 𝑓 5 = 0.15. Cubic elastic constants of Cu at room temperature were considered with

𝑐11 = 170 GPa, 𝑐12 = 124 GPa and 𝑐44 = 75 GPa for the 5 phases. Crystallographic orientations of the

phases were randomly selected. For each phase, a slip of magnitude 0.02 was assigned to the most stressed

system within a pure elastic loading, i.e. among the 12 FCC slip systems {111}⟨110⟩, the system with the

highest absolute value of its resolved shear stress | 𝜏 | was selected and affected 𝛾 = ±0.02 so that 𝜏𝛾 > 0.

No thermal strain was considered.

The FE simulation was performed thanks to the use of the open source software suite freefem++ (Hecht

2012). A structured mesh made of 270, 000 triangular quadratic Lagrangian elements was used for the

meshing of a bar of length 100 (see Figure 3), which corresponds to 4 nodes along 𝒆1 and 𝒆3 and 5001 nodes

along 𝒆2. Periodic boundary conditions were imposed along the lateral sides. Arbitrary and fixed velocities

were imposed on the bottom and upper faces of the bar (𝑢1 = −0.05, 𝑢2 = 0, 𝑢3 = −0.1 on the bottom face,

𝑢1 = 0.05, 𝑢2 = 0.1, 𝑢3 = 0.1 on the top face). Phase 1 was affected to the region 75 < 𝑥2 < 100, phase 2

to 65 < 𝑥2 < 75, phase 3 to 35 < 𝑥2 < 65, phase 4 to 15 < 𝑥2 < 35 and phase 5 to 0 < 𝑥2 < 15. A first

simulation was performed in pure elasticity in order to determine the most stressed systems and then a

second simulation was performed considering static plastic strains in each phase.

Figure 3: Distribution of 𝜎1, 𝜎3 and 𝜎5 in MPa obtained by the FE simulation (see text).

The distribution of stresses obtained by the FE simulation is shown in Figure 3. For comparison,

stresses were then computed from Equations (15), (24) and (26) considering the same elastic constants, the

same crystallographic orientations of the phases, the same plastic strains and taking Σ𝑖 as the average
stress vector given by the FE simulation. In Figure 4, it can be seen that the matching between the stresses

obtained numerically by a FE simulation and the ones computed analytically from Equations (15), (24)

and (26) is excellent. The tiny differences are due to the fact that the FE method is an approximate

numerical method. In particular, it was checked that the stress differences decrease with the number of

nodes along 𝒆2. These results, along with the several other FE simulations performed, prove the correctness

of the analytical formulas established in Section 3.

5 Application to polycrystals with elongated grains

As an illustration of potential applications, the N-phase laminate model can be used as a quick way to

estimate the level of internal stresses in metals and alloys having very elongated grains due to rolling or

forging processes. For instance, near-𝛽 titanium alloys like Ti-1023 used in forged pieces of aircraft for

landing gears or rotor systems can achieve high specific strength thanks to the building-up of complex 𝛼/𝛽

microstructures. However, these Ti-1023 alloys still contain very large domains of close 𝛽 orientations

which corresponds to the prior-𝛽 grains that were deformed during the forging steps above the 𝛽 transus

(Lhadi, Berbenni, et al. 2018; Lhadi, purohit, et al. 2020). These prior-𝛽 grains are millimeter size and

are highly elongated along a same direction corresponding to the axial axis of the billet. Due to the

significant elastic anisotropy of the cubic 𝛽 phase (Purushottam-raj-purohit et al. 2021), strong mechanical

contrasts exist between these millimeter size regions which might be at the origin of the early crack

initiation sometimes observed in those materials (Lhadi, Berbenni, et al. 2018; Lhadi, purohit, et al. 2020).

In order to get a very first insight into such a mechanical issue, it can thus be interesting to simplify the
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Figure 4: Comparisons of stresses obtained by the FE simulation (full lines) and the ones computed from Equations (15),

(24) and (26) (crosses).

microstructure as an infinite laminate composed of different 𝛽 orientations. By doing so, the focus is

only on the mechanical interactions between prior-𝛽 grains and on a same kind of interfaces, i.e. the

predominant long ones which are parallel to the axial axis of the billet.

Hence, a laminate composed of 100, 000 different 𝛽 orientations of equal volume fraction was considered

as an application of the methodology described in Section 3. The orientations were generated from the

open-source software package Neper (Quey et al. 2018) so that their distribution was nearly uniform in

presence of cubic symmetry. It is noteworthy that the effect of a crystallographic texture could have

considered as well without difficulty. Elastic constants of Ti-1023, 𝑐11 = 92.6 GPa, 𝑐12 = 82.5 GPa and

𝑐44 = 43.5 GPa, were taken from Purushottam-raj-purohit et al. (2021) who provided an estimation based

on a method coupling Bayesian inference analysis, high energy X-ray diffraction and elastic self-consistent

modeling. These constant values correspond to a strong elastic anisotropy ratio of 𝐴 = 8.6. The laminate

interfaces normal was set parallel to the direction 𝒆2 of the Cartesian frame (𝒆1, 𝒆2, 𝒆3). A uniaxial

macroscopic stress of magnitude 300 MPa was applied without consideration of any plastic or thermal

strains. The direction of the uniaxial stress was varied by rotation around 𝒆3. This rotation was described

by an angle 𝜃 , 𝜃 = 0
◦
corresponding to an uniaxial stress along 𝒆1 and 𝜃 = 90

◦
along 𝒆2. The stresses in

each grain were computed from Equations (15), (24) and (26) and then the maximum von Mises stress

among the 100, 000 grains was recorded and plotted with respect to 𝜃 , see Figure 5. For comparison, a

2-phase laminate made of grains of equal volume fraction was considered as well. The cristallographic

orientations of the 2 grains were set so that the directions [111] and [1̄10] in one grain and [100] and
[010] in the other grain were parallel to 𝒆1 and 𝒆2, respectively. ⟨111⟩ and ⟨100⟩ are actually the directions

of maximum and minimum directional Young’s modulus, respectively. Hence, the mechanical contrast

should very strong for this 2-grain configuration.

In Figure 5, it is interesting to observe that the maximum von Mises stress of the 2-phase laminate is

always below the one with 100, 000 orientations despite the strong elastic contrast considered. However, it

was shown in Section 3 that the stresses in a given phase of a N-phase laminate can also be deduced

from a 2-phase laminate where the given phase is in interaction with the whole laminate (see Figure 2

and Equation (26)). Accordingly, the elastic contrast between the phase where the maximum von Mises

stress is located and the effective laminate of 100, 000 grains should normally not exceed the elastic

contrast that exists between [111] ∥ 𝒆1 and [100] ∥ 𝒆1-oriented grains. The difference of maximum von

Mises stress is actually rather due to a volume fraction effect, incompatibility stresses in a phase of volume

fraction 𝑓 scaling indeed as 1 − 𝑓 , see Equation (7). Yet, the grain volume fraction is 𝑓 = 0.5 in the 2-phase

laminate whereas it is negligible (𝑓 = 10
−5
) in the laminate with 100, 000 orientations. Similar results could

also be obtained by considering strong mechanical contrasts resulting from difference of plastic or thermal

strains. As a consequence, it can be inferred that considering a 2-phase laminate of equal volume fraction

with extremal mechanical contrast may lead to underestimate the maximal level of internal stresses in

polycrystals. Furthermore, the difference of positions of the local extrema between the 2-phase laminate

and the one with 100, 000 orientations can also be noticed in Figure 5.

6 Comparisons with elastic self-consistent models and discussion

8
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Figure 5: Comparisons of the maximum von Mises stresses obtained between a laminate made of 100, 000 uniform

orientations (red circles) and a 2-phase laminate made of [111] ∥ 𝒆1 and [100] ∥ 𝒆1-oriented grains (black crosses). 𝜃

represents a rotation around 𝒆3 of the uniaxial stress direction (see details in text). The cubic elastic constants of

Ti-1023 were used (Purushottam-raj-purohit et al. 2021).

It is noteworthy that the internal stress evaluation performed in Section 5 could also have been made from

an elastic self-consistent model (Hershey 1954; Kröner 1958; Hill 1965a) with grains more realistic modeled

as ellipsoidal inclusions. In a self-consistent model, the effective compliance tensor can be computed as

𝑆𝑖 𝑗 = ⟨𝑠𝑖𝑘𝐵𝑘𝑙 ⟩⟨𝐵𝑙 𝑗 ⟩−1, (28)

where the stress concentration tensor 𝐵𝑚𝑖 𝑗 for any phase𝑚 is given by

𝐵𝑚𝑖 𝑗 =

(
𝑠𝑚
𝑖𝑘
+ ˜𝑀𝑖𝑘

)−1
(
𝑆𝑘 𝑗 + ˜𝑀𝑘 𝑗

)
, (29)

and where
˜𝑀𝑖 𝑗 is the constraint tensor defined by

˜𝑀𝑖 𝑗 =

(
𝛿𝑖𝑘 − 𝑆𝐸𝑖𝑘

)−1

𝑆𝐸
𝑘𝑙
𝑆𝑙 𝑗 . (30)

𝛿𝑖 𝑗 is the Kronecker delta and 𝑆
𝐸
𝑖 𝑗 is the interior Eshelby tensor (Eshelby 1957), here expressed as a

6 × 6 matrix consistent with the used Voigt Notation (see details in Barnett et al. 2018). The stress tensor in

a given phase is then directly deduced from the stress concentration tensor

𝜎𝑚𝑖 = 𝐵𝑚𝑖 𝑗 Σ 𝑗 . (31)

For ease of direct comparisons with the results of the laminate model, this set of equations was also

implemented in the Matlab software. The results of Figure 5 were then compared with the maximum von

Mises stresses obtained from elastic self-consistent models considering oblate spheroidal grains (𝑎 = 𝑏 > 𝑐)

of different aspect ratios (Figure 6), the small axis of the oblate spheroids being parallel to the interfaces

normal in the laminate model. A convergence towards the laminate solution is observed by increasing the

aspect ratio 𝑎/𝑐 of the oblate spheroids, both for the case with 100, 000 orientations and for the specific

case with two orientations only. For the case with 100, 000 orientations, it is seen that, as long as elongated

grains are considered, the laminate model provides fairly good qualitative trends for the variation of the

maximal von Mises stress with a rotation of the uniaxial macroscopic stress. However, the maximal von

Mises stresses are always overestimated compared to the values provided by self-consistent models with

more realistic grain aspect ratios. These overestimations represent about 20% of the uniaxial macroscopic

stress for 𝑎/𝑐 = 10 and about 30% MPa for 𝑎/𝑐 = 5.

Besides, it must be underlined that Equation (28), from which is computed the effective compliance

tensor 𝑆𝑖 𝑗 in the self-consistent model, is an implicit equation since both the stress concentration tensor

and the Eshelby tensor depend on 𝑆𝑖 𝑗 (see Equations (29) and (30)). For this work, this implicit equation

9
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Figure 6: Comparisons of the maximum von Mises stress obtained with the laminate model and elastic self-consistent

models (SC) considering oblate spheroidal grains (𝑎 = 𝑏 > 𝑐) of different aspect ratios (𝑎/𝑐). Top: case of the

two orientations considered in Figure 5. Bottom: case of 100, 000 uniform orientations. 𝜃 represents a rotation

around 𝒆3 of the uniaxial stress direction (see details in Section 5). The cubic elastic constants of Ti-1023 were

used (Purushottam-raj-purohit et al. 2021).

was solved by using a fixed-point iteration method (Walpole 1969). This might however cause convergence

issues for strong mechanical contrasts. By opposition, the laminate methodology of Section 3 is fully

explicit and thus, is expected to be more robust and faster. Moreover, the Eshelby tensor 𝑆𝐸𝑖 𝑗 in an

anisotropic medium cannot be expressed analytically and must be computed numerically. For this work,

the Eshelby tensor was computed thanks to the Matlab code provided by W. Cai 2018 where 𝑆𝐸𝑖 𝑗 is obtained

from the Hill P tensor (Hill 1965b) which is itself computed from numerical integrals that are performed

using the quadv function in Matlab. On the contrary, the expression of the tensor𝐺𝑖 𝑗 (Equation (8)) is fully

analytical and hence very simple to code. Actually, it can be shown that the Eshelby stress solutions can be

directly obtained from the tensor 𝐺𝑖 𝑗 by appropriate integrations (Richeton and Berbenni 2014).

In order to illustrate the numerical differences between the two types of model, the effect of the

number of phases on the computation of the effective stiffness tensor, as well as the effect of the absolute

tolerance value set in the quadv function in Matlab to evaluate the Eshelby tensor was analyzed. First,

Figure 7 shows the relative difference of the norm of the effective stiffness tensor of 100, 000 uniform

orientations computed by the laminate model and an elastic self-consistent model considering oblate

spheroids with 𝑎 = 𝑏 = 100𝑐 as a function of the absolute tolerance set in the quadv function. It is known

that, the more the grains are elongated, the more accuracy is needed on the numerical evaluation of the

Eshelby tensor (Gavazzi et al. 1990). For the present extreme case with 𝑎 = 𝑏 = 100𝑐 , Figure 7 shows

that an absolute tolerance lower than 1𝑒−12
should be set in order to obtain a convergence towards an

accurate result. At the same time, Figure 7 exhibits also the average ratio between the CPU time needed by

the elastic self-consistent to achieve the calculation over the one needed by the laminate model. This

ratio is about 7 showing, as expected, that the laminate is much faster. Moreover, this ratio increases

10
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exponentially for absolute tolerance smaller then 1𝑒−13
. This means that, when using a self-consistent

model, a preliminary numerical study is needed to fix the value of the absolute tolerance (or the number of

Gauss points if another numerical method is used as in (Gavazzi et al. 1990)) in order to both ensure a

sufficient accuracy on the evaluation of the Eshelby tensor and also to maintain a reasonable CPU time.

Then, Figure 8 shows that this relative difference of the norm of the effective stiffness tensor decreases

with the number of phases considered. However, it must be underlined that the relative difference is

already pretty small (i.e. < 4𝑒−5
) when considering only 2 phases. This small difference agrees with the

convergence towards the laminate solution displayed in Figure 6 when the aspect ratio was increased in

the case considering two orientations only. This result can actually be understood from Equation (25).

This equation shows indeed that the stresses within a phase of a two-phase laminate are the same as

those in a phase of negligible volume fraction and same properties belonging to a two-phase laminate

where the other phase has the effective properties of the first two-phase laminate. In the same way, the

self-consistent model computes the stresses as a result of the mechanical interactions between one grain

and the infinite homogeneous equivalent medium made of the two grains.

Figure 7: Blue ‘+’ (left axis): relative difference of the norm of the effective stiffness tensor of 100, 000 uniform

orientations computed by the laminate model and an elastic self-consistent model considering oblate spheroidal grains

with 𝑎 = 𝑏 = 100𝑐 as a function of the absolute tolerance set in the quadv function in Matlab to compute the Eshelby

tensor. Red ‘×’ (right axis): corresponding ratios between the CPU time needed by the elastic self-consistent to achieve

the calculation over the one needed by the laminate model. Simulations were repeated 10 times to provide average

CPU time values. The Frobenius norm of a matrix was considered. The cubic elastic constants of Ti-1023 were

used (Purushottam-raj-purohit et al. 2021).

7 Conclusion

This work provides a fast explicit method to compute the effective behavior and the distribution of

stresses in a general N-phase laminate made of parallel, planar and perfectly bonded interfaces. The

formulas are based on the solutions of the two-phase laminate. They are very compact which is convenient

for numerical implementation and direct use in engineering applications. In contrast with previous

approaches, this contribution considers, at the same time, an arbitrary number of phases, a completely

general anisotropic elasticity as well as different thermal and plastic strains in the phases. In addition,

a simple direct analytical formula is derived in order to compute the stress in a given phase once the

effective behavior of the laminate has been determined. The developed method proves that both the

effective properties of the laminate and the stresses in the phases are insensitive to the stacking order of

the phases. The code to compute the effective behavior and the stress distribution in an arbitrary N-phase

laminate is made freely available for download at https://github.com/AniPlas/Laminate.
Besides, the correctness of the proposed method is checked by comparisons with finite element

simulation results on a same boundary value problem, showing excellent agreements. An application of

the method is also performed for a near-𝛽 titanium alloy with elongated grains, by comparing, for different

elastic loadings, the level of internal stresses within a N-phase laminate made of 100, 000 orientations and a

2-phase laminate with maximal elastic contrast. Interestingly, the maximum von Mises stress of the

2-phase laminate is always the lowest despite the strong elastic contrast considered, which is explained by

a volume fraction effect. Similar results could be obtained by considering strong mechanical contrasts

resulting from difference of plastic or thermal strains.

Finally, comparisons with elastic self-consistent models considering oblate spheroidal grains of different
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Figure 8: Relative difference of the norm of the effective stiffness tensor computed by the laminate model and an

elastic self-consistent model considering oblate spheroidal grains with 𝑎 = 𝑏 = 100𝑐 as a function of the number of

phases considered. Phases correspond to crystallographic orientations randomly picked within a list of 100, 000

uniform orientations. Simulations were repeated 1000 times to provide average values. The Frobenius norm of a matrix

was considered. The absolute tolerance in the quadv function in Matlab was set to 1𝑒−12
to evaluate the Eshelby tensor

in the self-consistent model. The cubic elastic constants of Ti-1023 were used (Purushottam-raj-purohit et al. 2021)

aspect ratios are performed. A convergence towards the laminate solution is observed by increasing the

aspect ratio of the oblate spheroids. However, it is noteworthy that the laminate model is based only on

fully analytical and explicit equations, which is more robust from a numerical point of view. It is also

shown that the execution of the laminate model is much faster that that of self-consistent models.

As a perspective, it may be worth underlying that the developed method might be extended to obtain

the effective strain energy potential of a N-phase viscoplastic laminate, i.e. grouping the N phases in pairs

and applying the the existing compact expressions for the effective strain energy potential of a two-phase

laminate (deBotton 2005; Idiart 2008) for each pair iteratively until one phase with the effective strain

energy potential is obtained. The strains in each phase could then be deduced from a top-down algorithm.
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