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All Order Resummed Leading and Next-to-Leading Soft Modes of Dense QCD Pressure

Loïc Fernandez and Jean-Loïc Kneur
Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université Montpellier, 34095 Montpellier, France

(Received 22 September 2021; revised 9 June 2022; accepted 21 October 2022; published 17 November 2022)

The cold and dense QCD equation of state at high baryon chemical potential μB involves at order α2s an
all-loop summation of the soft mode mE ∼ α1=2s μB contributions. Recently, the complete soft contributions
at order α3s were calculated using the hard thermal loop formalism. By identifying massive renormalization
group properties of the hard thermal loop theory, we resum to all orders αps , p ≥ 3 the leading and next-to-
leading logarithmic soft contributions. We obtain compact analytical expressions that show visible
deviations from the state-of-the art results, and noticeably reduce residual scale dependence. Our results
should help to reduce uncertainties in extending the equation of state in the intermediate μB regime, relevant
in particular for the phenomenology of neutron stars.

DOI: 10.1103/PhysRevLett.129.212001

Introduction.—At sufficiently high temperature or den-
sity, the asymptotic freedom property of quantum chromo-
dynamics (QCD) naively provides a weak coupling
perturbation theory (PT) to address the quark-gluon plasma
physics. However, severe infrared (IR) divergences spoil a
naive PT approach, giving poorly convergent results at
successive orders, unless at extremely high temperatures
and/or densities (see, e.g., [1] for reviews). In contrast,
today’s powerful lattice simulations offer an alternative
numerical nonperturbative ab initio solution. So far lattice
simulations have been very successful in the description
of the QCD crossover transition at finite temperatures and
near vanishing baryonic densities, with results [2] also
relevant to confront the experimental data from heavy ion
collisions in this specific region of the phase diagram.
However, the notorious sign problem [3] prevents simu-
lations at high densities, equivalently high chemical poten-
tial μB, to explore the more complete QCD phase diagram
and in particular at μB values pertinent to the physics of
neutron stars [4]. Alternatively, more analytical approaches
to resum thermal and in-medium PT have been developed
and refined over the years (see, e.g., [1,5–9]), improving the
bad convergence generically observed even at moderate
coupling values. More recently, a renormalization group
(RG) resummation approach giving sizeably improved
renormalization scale uncertainties was developed [10,11].
In the following, we focus on cold and dense QCD,

T ¼ 0, μB ≠ 0, which implies a number of simplifications.
For strongly coupled matter at high baryonic density, the

dynamical screening of color charges manifests in a
screening mass defining a soft scale mE ∼ ffiffiffiffiffi

αs
p

μB ≪ μB,
where αs is the QCD coupling. This is linked to IR
divergences in the naive perturbative pressure, to be
appropriately resummed, resulting in nonanalytic ln αs
dependences in the perturbative expansion. This phenome-
non occurs first at order α2s, giving a contribution α2s ln αs
established for massless quarks long ago [12]. The pressure
was extended much later to massive quarks [13–15], but for
a very long time no higher order was available. These soft
terms are not the full contributions at αp≥2s orders, and
should be completed by hard contributions μ4αps calculable
from standard PT, known exactly to date up to order α2s
[12,16]. Yet, the soft terms constitute a well-defined subset,
relevant for the convergence of the weak coupling expan-
sion. The combined hard and soft contributions exhibit
sizeable residual dependence in the (arbitrary) renormali-
zation scale (although less severe than for thermal QCD),
leading to systematic uncertainties. It is therefore crucial to
push further the weak coupling expansion, as one expects
that higher perturbative orders may reduce uncertainties in
the equation of state (EOS), in particular in a regime
presumably relevant to the physics of neutron stars [4].
Given the abundant new data on compact stellar objects
from astrophysics, and the rapidly developing interplay
between gravitational wave physics, QCD, and nuclear
calculations, it is timely to try to further tighten the existing
gap in the moderate μB regime between the reliable
perturbative QCD at high μB and reliable EOS in the
low μB nuclear regime. Recently, the complete soft terms at
the next order, α3s lnpðmEÞ, 0 ≤ p ≤ 2, were obtained in
[17–19] from involved calculations using the hard thermal
loop (HTL) formalism to unprecedented m4

Eαs order.
Our main purpose in this Letter is to calculate and resum

the soft leading logarithms (LLs) and next-to-leading
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logarithms (NLLs) to all αps orders, p ≥ 3. As particular
case it provides an independent simpler derivation of the
first LL term α3s ln2 αs, consistent with [19].
Cold quark matter state-of-the-art pressure.—For Nf

massless quarks with μq ¼ μ≡ μB=3 the presently known
quark matter weak expansion pressure reads

Pcqm ¼ Pf

�
1 −

2

π
αs −

Nf

π2
α2s ln αs − 0.874355α2s

−2dA
ð11Nc − 2NfÞ

3ð4πÞ2 ln

�
Mh

μ

�
α2s

�
þ Psoft

α3s
; ð1Þ

with dA ¼ N2
c − 1 (Nc ¼ 3), and other terms specified

and commented on below. The leading order (LO) mass-
less quark loop gives the free gas pressure Pf ¼
NcNfμ

4=ð12π2Þ, and next-to-leading-order (NLO) gluon
exchange gives the OðαsÞ term. At α2s order the three-loop
graphs in standard perturbation give [12,16] the hard
contributions ∼α2sμ4=Pf in Eq. (1), also involving an
arbitrary renormalization scale Mh. The nonanalytic
α2s ln αs term arises from resumming [12] the set of all
order soft contributions, the “ring” graphs (on left in
Fig. 1). A well-known important feature is that the all-
loop summation gets rid of initially IR divergences, a
mechanism related to the dynamical gluon screening mass.
At T ¼ 0, μ ≠ 0, mE is obtained from the sole quark-loop
contribution to the self-energy:

m2
E ¼ 2

αs
π

X
f

μ2f ¼ 2
αs
π
Nfμ

2: ð2Þ

Accordingly, in a rough picture, the all-loop soft mode
summation can be essentially obtained from a one-loop
calculation, within an alternative framework with a massive
gluon (the graph on the right in Fig. 1), giving a con-
tribution P ∼m4

E lnmE ∼ μ4α2s ln αs. This picture is rigor-
ously embedded in the HTL formalism [7,20] that
essentially provides a gauge invariant effective field theory
(EFT) consistently including all HTL contributions with
dressed momentum-dependent self-energies and vertices,
and involving the screening gluon mass. The α3s last
contribution in Eq. (1) was calculated [17,19] from HTL
graphs with only gluons, NLO corrections to the right
graph in Fig. 1. The m4

Eαsln
2ðmEÞ ∼ α3s ln2αs was first

obtained in [17], and recently the remnant soft terms were
completed, obtaining [18,19]

Psoft
α3s

¼ NcdAαsm4
E

ð8πÞ2
�
p−2

4ϵ2
þ
p−1 − 2p−2 ln

mE
Ms

2ϵ

þ2p−2ln2
mE

Ms
− 2p−1 ln

mE

Ms
þ p0

�
; ð3Þ

p−2 ¼
11

6π
; p−1 ≃ 1.50731ð19Þ; p0 ≃ 2.2125ð9Þ:

ð4Þ

All the μ dependence arises solely from the screening
electrostatic mass, mE from Eq. (2). Notice in Eqs. (1) and
(3), besides Mh, the different scale Ms introduced in [18]
(ourMs scale corresponds to Λh in [18]), for the soft sector.
As explained in [18,19], the presently unknown α3s hard
(and mixed soft-hard) contributions are expected to cancel
the remnant UV divergences and soft lnpðmE=MsÞ in
Eq. (3), to let only lnp αs and lnpðMh=μÞ terms (p ¼ 1,
2). In the absence of such explicit cancellations, since the
soft terms can be treated as a separatemE-dependent sector,
to avoid large logarithms it appears sensible to choose [18]
Mh ∼OðμÞ and Ms ∼OðmEÞ.
HTL one-loop pressure.—Our starting expression is the

one-loop HTL pressure, calculable from the graph in Fig. 1.
In the present cold quark matter context it is evaluated at
T ¼ 0, with (yet unspecified) mass mg, obtaining

PHTL
LO ¼ dAm4

g

ð8πÞ2
�
1

2ϵ
þ C11 − Lþ ϵðL2 þ C21Lþ C22Þ

�

≡m4
g

�
−
a1;0
2ϵ

þ a1;0Lþ a1;1 þOðϵÞ
�
; ð5Þ

where L ¼ lnðmg=MÞ and M is an arbitrary MS scale. In
Eq. (5) we also introduced a convenient notation for later
purpose. The coefficient C11 ∼ 1.17201 was first obtained
in [21]. As explained below, however, to work out complete
NLL expressions we also need the OðϵÞ terms, not
previously available to our knowledge, that we have
evaluated. We obtain C21 ¼ −2C11, C22 ≃ 2.16753 [22].
RG resummation.—We consider the RG operator (see,

e.g., [23]) that parametrizes the scale variation in a
(massive) theory:

M
d
dM

≡M
∂

∂M
þ βðg2Þ ∂

∂g2
− γgmðg2Þmg

∂

∂mg
; ð6Þ

where M is a renormalization scale, βðg2Þ≡ dg2=d lnM
dictates the running coupling, and the anomalous mass
dimension γgmðg2Þ≡ dðlnmgÞ=d lnM is further discussed
below. In our convention with g2 ≡ 4παs,

βðg2Þ ¼ −2bg0g4 − 2bg1g
6 þ � � � ;

γgmðg2Þ ¼ γg0g
2 þ γg1g

4 þ � � � ; ð7ÞFIG. 1. Connection between ring sum and one-loop HTL.
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where bg0, b
g
1 are the QCD “pure gauge” contributions

ð4πÞ2bg0 ¼
11Nc

3
; ð4πÞ4bg1 ¼

34N2
c

3
: ð8Þ

Given that HTL involves a gluonmass termmg, from aRG
standpoint [24]we considermg blind to its precise dynamical
origin as a screening mass, motivating us to use the massive
RG Eq. (6). Indeed, despite the nonlocal HTL Lagrangian,
the next-to-next-to-leading-order (NNLO) perturbative HTL
calculations give new mg-dependent UV divergences and
related counterterms having a renormalizable form, aswill be
seen below, thus defining EFT anomalous dimensions in
standard fashion. It is important to stress that the RG
coefficients for such a massive theory are T ¼ 0 entities
by definition, even though they enter thermal or in-medium
contributions as well. More precisely, within T ≠ 0 HTL
calculations, the divergences frommg ≠ 0 occur in two-loop
order αsðm2

gT2; m3
gTÞ terms, and the corresponding (unique)

one-loop counterterm Δmg was obtained first in [6]. Using
this Δmg and the standard relation between bare mass
mB

g , Zmg
counterterm and Eq. (7): mB

g ≡mgZmg
≃

mg½1 − g2γg0=ð2ϵÞ þOðg4Þ�, we easily identify

γg0 ¼
11Nc

3ð4πÞ2 ≡ bg0: ð9Þ

Namely, the LO interactions from HTL that contribute to
renormalize mg give a divergent contribution identical to
the one defining bg0. Although striking, this equality of pure
gauge bg0 and γg0 is merely a one-loop order accident.
Incidentally, it is worth noting that the same result [Eq. (9)]
was obtained independently from a localizable, renorma-
lizable gauge-invariant setup for a (vacuum) gluon mass
[25]: this is not a coincidence since those universal RG
quantities are vacuum quantities independent of T, μ. The
two-loop order γg1, entering the NLO RG [Eq. (7)] in our
construction, has also been calculated from the same T ¼
μ ¼ 0 formalism, with the result [26] ð4πÞ4γg1 ¼ 77N2

c=12.
Furthermore, the mass renormalization within Eq. (5),
PHTL
LO ðmg → mgZmg

Þ, generates additional terms that com-
bine with genuine two-loop contributions [Eq. (3)].
Importantly, the unwanted nonlocal lnðmE=MsÞ=ϵ diver-
gence in Eq. (3) exactly cancels in those combinations,
while (local) remnant divergences after mass renormaliza-
tion are renormalized by vacuum energy E0 (≡ − P)
counterterms, always necessary in a massive theory.
According to Weinberg’s theorem [23], such local counter-
terms prove the renormalizability of the T ¼ 0 HTL
pressure at NLO αsm4

g, i.e., next-to-next-to-next-to-
leading-order α3s. The LO vacuum energy counterterm

is the one determined in HTL [6,21], ΔEð1Þ
0 ¼

dAm4
g=ð8πÞ2=ð2ϵÞ. At NLO its expression is given in

[22]. Remark that renormalizingmg in Eq. (5) alsomodifies
the “finite” coefficients in Eq. (4) as

2p−2 → p−2;

p−1 → p−1 −
8πγg0
Nc

�
C11 −

1

4

�
≃ p−1 − 0.5381;

p0 → p0 −
8πγg0
Nc

�
C22 −

C11

2

�
≃ p0 − 0.9229: ð10Þ

In [19] nontrivial cancellation mechanisms between soft
αsm4

E and (presently not known) α3s hard contributions are
convincingly argued to remove the divergent terms in
Eq. (3), and to obtain the correct α3s ln2 mE coefficient,
2p−2 → p−2. In our massive renormalized scheme, the
right p−2 originates directly from standard mass renorm-
alization cancellation mechanisms. This simple alternative
picture appears consistent with generic EFT constructions
[27], where all EFT UV divergences are renormalized,
defining EFT anomalous dimensions, sufficient to extract
lnmE dependencies from the RG.
Having identified these key RG ingredients at T ¼ 0,

obtaining the LL and NLL at successive orders follows a
well-established procedure [23]. Power counting [19]
dictates the soft pressure expansion to all orders

Psoft ∼m4
g

X∞
p¼1

ðg2Þp−1
Xp
l¼0

ap;llnp−l
�
mg

M

�
; ð11Þ

with M the (MS scheme) renormalization scale. The
ap;0lnpðmg=MÞ, p ≥ 1 are the leading logarithmic (LL),
ap;1lnp−1ðmg=MÞ, p ≥ 2 the next-to-leading logarithmic
(NLL) coefficients and so on, with ap;p the nonlogarithmic
coefficients at successive orders. Upon applying the RG
Eq. (6) on Eq. (11) considering g fixed, we obtain
recurrence relations. First, for the LL series, we obtain

−pap;0 ¼ ½4γg0 þ 2bg0ðp − 2Þ�ap−1;0; p ≥ 2; ð12Þ

where a1;0 is given in Eq. (5). Before proceeding it is
worthwhile to give a first concrete outcome of Eq. (12) that
immediately gives at NLO

a2;0 ¼ −2γg0a1;0 ≡ −2bg0a1;0; ð13Þ

determining the LL term g2m4
ga2;0 ln2ðmg=MÞ. Upon using

Eqs. (5), (8), it gives ð4πÞa2;0 ¼ NcdA=ð8πÞ2p−2, which
perfectly matches Eqs. (3), (4) for mg ≡mE with p−2 in
Eq. (10). We stress that all LLs in Eq. (12) rely on the sole
one-loop lnðmg=MÞ coefficient a1;0 in Eq. (5) and thus are
completely independent from the results in [17,19], where
m4

Eαs ln
2mE was obtained from involved two-loop HTL

calculations. To obtain the latter from the above simple
RG relations the important feature is having identified γg0.
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More interestingly, Eq. (12) gives all higher order LL
coefficients, a new result that we resum explicitly below.
One obtains similarly the NLL series (defined for p ≥ 2)

ð1 − pÞap;1 ¼ ½4γg0 þ 2bg0ðp − 2Þ�ap−1;1
þ ½4γg1 þ 2bg1ðp − 3Þ�ap−2;0
þ γg0ðp − 1Þap−1;0: ð14Þ

We recall that at a given perturbative order g2p, the only
new terms to calculate are the single logarithm ap;p−1 and
nonlogarithmic ap;p terms. Both the LL and NLL series
above are convergent and can thus be resummed.
Perturbatively RG invariant pressure.—Before giving

resummed LL and NLL expressions, it is convenient to
develop a related important ingredient of our construction,
namely to restore a RG invariant (RGI) massive pressure.
Indeed, applying Eq. (6) to Eq. (5) gives a remnant scale
dependence at leading HTL order, ∼m4

g lnM, a well-known
feature of massive theories. The appropriate way to deal
with this is to realize that the RG Eq. (6) has an
inhomogeneous term, defining a (gluon) vacuum energy
anomalous dimension Γ̂g

0ðg2Þ ¼ Γg
0 þ Γg

1g
2 þ � � �, by anal-

ogy with other massive sector vacuum energies [28,29]:

dPHTL

d lnM
≡ −m4

gΓ̂
g
0ðg2Þ ¼

d
d lnM

�
m4

g

X
k≥0

sgkg
2k−2

�
; ð15Þ

Γ̂g
0ðg2Þ being related to the vacuum energy counterterms

(see Ref. [22]). Thus, an RGI combination is PRGI≡
PHTL −m4

g
P

k s
g
kg

2k−2, where the sgk coefficients are most
simply determined [24] perturbatively from the second
equality in Eq. (15): at LO and NLO we obtain, respec-
tively,

sg0 ¼ −
a1;0

2ðbg0 − 2γg0Þ
¼ −dA

2ð8πÞ2bg0
; ð16Þ

sg1 ¼ a1;1 þ
a2;1
4γg0

þ a1;0
4

þ sg0
2γg0

ðbg1 − 2γg1Þ; ð17Þ

where a1;1 ¼ −a1;0C11 in Eq. (5). Embedding Eq. (16)
within Eq. (12) [30], one can easily resum the LL series as

Psum
LL ¼ −

sg0m
4
g

g2
f
1−4ð γ

g
0

2bg
0

Þ
1 ¼ −

sg0m
4
g

g2
f−11 ;

f1 ¼ 1þ 2bg0g
2 ln

mg

M
; ð18Þ

where we also used Eq. (9). It is straightforward to check
that Eq. (18) reproduces at all orders the coefficients in
Eq. (12). The last equality in Eq. (18) tells that the LL series
iterates simply like the (pure gauge) running coupling, but
this is merely an accident of LO RG Eq. (9).

Similarly, after more algebra one can resum formally the
NLL series. Adapting results from [31] we obtain

Psum
NLL ¼ −sg0m4

g

g2f4A0−1
2

½Rðf2Þ�B
�
1 −

a01;1g
2

sg0f2
−
a2;2g4

sg0f
2
2

�
; ð19Þ

Rðf2Þ ¼ ½1þ g2bg1=ðbg0f2Þ�=ð1þ g2bg1=b
g
0Þ;

f2 ¼ 1þ ½2bg0g2 þ 2ðbg1 − γg0b
g
0Þg4� ln

mg

M
þOðg6Þ;

ð20Þ

and A0 ¼ γg0=ð2bg0Þ, A1 ¼ γg1=ð2bg1Þ, B ¼ 4ðA1 − A0Þ. The
exact f2 expression, reproducing Eq. (14) to all orders from
Eq. (19), is given in [22]. Equation (20) gives numerically
good approximations as long as the coupling is not too
large (αs ≲ 0.5).
A few remarks are worth making regarding the input

content of Eq. (19): (i) it is rather generic, but numerically
relies on the lowest order “purely soft” NLL coefficient
a2;1 ∝ p−1 in Eq. (3), calculated in [19]. Accordingly,
Eq. (19) does not include the (presently unknown) QCD
mixed soft-hard NLL contributions; see Ref. [19]. (ii) One
obtains a01;1 ≡ a1;1 − sg1 with a1;1 defined in Eq. (5), since
the NLO subtraction coefficient sg1 in Eq. (17) contributes a
correction to a1;1. (iii) a2;2 in Eq. (19) incorporates the
Oðg2m4

gÞ nonlogarithmic term p0 in Eq. (3): the precise
connection between the parameters in Eq. (19) and p−1, p0

in Eqs. (3) and (10) is a2;1 ¼ Nc=ð4πÞa1;0ð2p−1Þ, a2;2 ¼
−Nc=ð4πÞa1;0p0, after modifying p−1, p0 in Eq. (10).
Soft and hard pressure matching.—The massive RG

construction above basically concerns the soft pressure
contributions, thus lnmg=M → lnmE=Ms, with overall
factor m4

E ∼ α2s ; see Eq. (2). While the hard contribution
in Eq. (1), known exactly only at α2s order, is added
perturbatively to Eqs. (18) and (19). The latter RGI
expressions formally cancel the soft scale dependence up
to neglected Oðg2m4

EÞ, Oðg4m4
EÞ terms, respectively. At

Oðα2sÞ, it is equivalent to the complete soft scale cancella-
tion operating in the factorization picture; thus, we can
choose any Ms. While at αp≥3s orders, partial ignorance
of hard and mixed contributions incites us to take Ms ∼
OðmEÞ in the lnmE=Ms terms.
Another feature to account for while combining the soft and

hardcontributions is thatEq. (19) entails a nonlogarithmic term
∼α2sa1;1 with a1;1 from Eq. (17), obviously different from the
genuine “soft +hard” α2s term in Eq. (1). Since only soft
contributions are RG-resummed, to avoid wrong contamina-
tions in nonlogarithmic hard terms fromRG-inducedNLL soft
terms, one should perturbatively subtracta1;1m4

E from the total
expression [which does not affect higher order NLL terms
generated by a1;1 within Eq. (19)].
As a last important subtlety, note that although the

subtraction terms as above determined, Eqs. (16) and
(17), are sufficient to define LO and NLO RGI pressures
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Eqs. (18) and (19), actually the complete integration of
Eq. (15) entails an extra boundary condition (see Ref. [22]),

PBC
RGI ¼ m4

gðM0Þ
�

sg0
g2ðM0Þ

þ sg1

�
; ð21Þ

of similar form as the subtraction terms but involving a
(boundary) scale M0 ≠ M. We can use this freedom to set
M0 such that Eq. (21) provides an appropriate EFT
matching [27] of the soft pressure to the full one at
Oðα2sÞ, i.e., with M0 ∼OðμÞ, consistently also with the
Stefan-Boltzmann limit.
Collecting all, our final pressure expression is obtained

upon formally replacing Psoft
α3s

in Eq. (1) by

Psum
αp≥3s

¼ Psum
ðNÞLL þ PBC

RGI −m4
E

�
a1;1 þ a1;0 ln

mE

Ms

�
− Pmatch

α2s
;

ð22Þ

with a1;1 ¼ 0, sg1 ≡ 0 for Psum
LL , and Pmatch

α2s
given in

Eq. (B10) in [22]. The last three terms in Eq. (22) are
required to match Eq. (1) consistently (i.e., without double
counting), so that all RG-induced extra terms are Oðα3sÞ.
Numerical results and comparisons.—In Fig. 2, the RGI

LL and NLL resummed pressures from Eq. (22) [32] are
compared to the present state-of-the-art Eqs. (1), (3) as a
function of μB ¼ 3μ. The central scale valuesMh ¼ 2μ and
the μ ≤ Mh ≤ 4μ remnant scale dependence are illustrated
for the different quantities, using in Eqs. (1) and (22) the
exact NLO QCD running coupling αsðMhÞ with [33]
ΛMS ∼ 0.32 GeV. For sensible comparisons we also adopt
the minimal sensitivity-determined [34] soft scale in [18],
Ms ∼ 0.275 mE. Finally, we fix M0 ¼ 2μ in Eq. (21), a

natural choice as it calibrates Eq. (22) to the central Mh
values of the NNLO pressure.
Note first importantly that the sole LL resummation,

given by Eq. (18) with −sg0 → a1;0g2 lnmg=M, gives a
sizeably reduced scale dependence compared to the NNLO
pressure Eq. (1) atOðα2sÞ, as Eq. (18) induces positive αp≥3s

contributions partly canceling the negative α2s coefficient in
Eq. (1). However, this effect is approximately cancelled
once including p−1; p0 α3s-order terms Eqs. (4) and (10).
Next, for the LL and NLL RGI pressures, deviations from
the state-of-the-art (“NNLOþ soft N3LO” in Fig. 2) are
noticeable. The central scale (Mh ¼ 2μ) RGI pressure is
slightly higher for fixed μ values, with very moderate
differences between LL and NLL pressures. Importantly,
the remnant scale dependencies of the resummed pressures
are reduced as compared to NNLOþ soft N3LO results:
only slightly for the LL pressure, due to cancellations with
p−1; p0 Oðα3sÞ terms, but significantly for the NLL one,
both for Mh and Ms variations [35], due to αp≥3s terms
induced both by NLL and the RGI-restoring terms in
Eqs. (19) and (22).
In conclusion, we have obtained compact explicit

expressions for the all order “double” resummations of
LL and NLL soft contributions to the cold and dense QCD
pressure that go well beyond previously established results.
Our RG resummation construction moreover gives clearly
improved residual scale dependence. This should provide
improved control toward lower μB values to match with the
extrapolated EOS from the nuclear matter density region.
We thus anticipate that our present results may have strong
implications once embedded within a more realistic EOS. It
is not difficult to extend our framework to include different
chemical potential and nonzero masses for the quarks in
order to more realistically describe the EOS relevant for
beta equilibrium and neutron star properties, which we
leave for future investigation.

We thank Marcus B. Pinto and Aleksi Vuorinen for
discussions.
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