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Joint Modeling of Received Power, Mean Delay,
and Delay Spread for Wideband Radio Channels
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Wei Fan , Senior Member, IEEE, François-Xavier Briol , Laurent Clavier , Senior Member, IEEE,
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Abstract— We propose a multivariate log-normal distribution
to jointly model received power, mean delay, and root mean
square (rms) delay spread of wideband radio channels, referred
to as the standardized temporal moments. The model is val-
idated using experimental data collected from five different
measurement campaigns (four indoor scenarios and one outdoor
scenario). We observe that the received power, the mean delay,
and the rms delay spread are correlated random variables, and
therefore, should be simulated jointly. Joint models are able
to capture the structure of the underlying process, unlike the
independent models considered in the literature. The proposed
model of the multivariate log-normal distribution is found to be
a good fit for a large number of wideband data sets.

Index Terms— Mean delay, millimeter-wave, multivariate log-
normal, root mean square (rms) delay spread, temporal moments,
wideband radio channels.

I. INTRODUCTION

STANDARDIZED temporal moments, such as received
power, mean delay, and root mean square (rms) delay

spread, are widely used to summarize power-delay pro-
files (PDPs) of wideband radio channels. Characterization of
these temporal moments is imperative for understanding the
effects of multipath propagation on the received signal [1],
and hence, for the design and analysis of communication and
localization systems. The standardized temporal moments are
derived from transformations of the raw temporal moments
of the instantaneous power of the received signal. Therefore,
the raw moments, and consequently the standardized moments,
are dependent random variables. The raw temporal moments
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have recently been used to estimate parameters of stochastic
radio channel models from measurements [2]–[7]. Mean delay
and rms delay spread have also been used to fit an extension
of the WINNER II model to measurements [8]. In applications
where multiple temporal moments are used, it can be valuable
to consider their dependences to avoid biases that can occur
due to false assumptions of independence.

Independent modeling of received power, mean delay, and
rms delay spread is prevalent in the literature, with their empir-
ical averages and cumulative distribution functions (CDFs)
being reported frequently while disregarding their depen-
dences. A survey of the empirical data available for the delay
properties of indoor radio channel is given in [9], where a
variety of marginal models is fit to the mean delay and rms
delay spread from the various data sets. They obtained log-
normal, Gaussian, and Weibull as the best fit models. The
empirical distribution of delay spread has been modeled using
a log-normal distribution in the 910 MHz channel [10], [11],
the 30–400 MHz frequency band [12], at 460 MHz [13],
at 11 GHz [14], and at 39 GHz [15]. A Gaussian distribution
for the rms delay spread has also been proposed based on
empirical data in [16] and [17]. Recently, the rms delay spread
has also been modeled using a bimodal Gaussian mixture
distribution [18] and neural networks [19].

The shortcomings of independent modeling become clear by
considering jointly the received power and rms delay spread
as done in the example in Fig. 1. It is apparent that by
fitting independent log-normal models to the received power
and the rms delay spread, the marginals of the data are
modeled correctly. However, the correlation information in the
data is lost on modeling them independently. Delay spread
is previously found to be correlated with received power at
60 GHz [20] and to mean delay in the ultrahigh frequency
band [21]. One approach to mitigate this problem is to model
the standardized moments jointly. An exception to the inde-
pendent models is the one proposed by Greenstein et al. [11]
where they accounted for the correlation between rms delay
spread and shadow fading after analyzing a wide range of
outdoor measurements, mostly in the 900 MHz frequency
band. They argued that rms delay spread is log-normally
distributed at a given propagation distance, and proposed a
joint log-normal model for path gain1 and delay spread with

1Greenstein et al. [11] defined path gain as the ratio of received power to
transmitted power.
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Fig. 1. Scatter plot of received power and rms delay spread obtained
from AAU-Hall measurements (see Section IV-D) is shown in black (above).
The contour lines from independently fitting log-normal distribution to the
measurements are shown in red. The empirical CDFs of the marginals are
also shown with the fitted log-normal CDF in red (below). Note that the
received power is unitless.

a correlation coefficient of −0.75. However, they did not take
mean delay into account. Moreover, the correlation coefficient
was based on qualitative analysis of scatter plots and on
a single measurement setting. The mutual relations between
the means of the raw temporal moments have been modeled
in [22]–[24] for the in-room case, while their joint distribution
was not studied. To the best of our knowledge, joint char-
acterization of the temporal moments in the millimeter-wave
(mm-wave) band has not been done before.

Potentially, the temporal moments could be modeled jointly
using a multivariate distribution such that the model could be
fitted to new measurements. Joint modeling of multivariate
random variables is considerably more involved than modeling
of scalar random variables because the model is required
to represent the marginals and the dependence structure in
the data at the same time. Only a few univariate probability
distribution functions (pdf’s) exist that have unique multi-
variate extensions, such as the multivariate Gaussian, log-
normal, and Gamma distributions [25]. Copulas [26] can also
be used to model the dependence structure between the random
variables, especially when the marginal distributions lead to
a multivariate distribution that is difficult to handle due to
the lack of analytical expression or difficulties to estimate the
parameters.

After considering several of these methods, we conclude
that the multivariate log-normal is a reasonable choice that
provides a good balance between goodness-of-fit and ease
of interpretation. Moreover, there is substantial support for
log-normality of standardized temporal moments in the liter-
ature. In this article, we propose and validate the multivariate

log-normal model using a wide variety of measurements taken
in different scenarios and frequency ranges, including both
indoor and outdoor settings. Measurement campaigns were
conducted at Lund University [27], University of Lille [28],
and Aalborg University (AAU) [29]. We also present mm-wave
measurements from one indoor and one outdoor campaign in
the 28–30 GHz band conducted recently at AAU. We com-
pare the proposed model with the multivariate Gaussian and
independent marginal models in terms of the Akaike infor-
mation criterion (AIC). Finally, we investigate the model
fits to the raw and standardized temporal moments from the
measurements. Preliminary results have been published in the
conference publication [30].

This article is organized as follows. Section II describes
the raw and standardized temporal moments, and Section III
presents the model. In Section IV, we compare the proposed
model with other modeling choices. Sections V and VI com-
pare the model fits to the raw and standardized temporal
moments of the measurements, respectively. Finally, the con-
clusions are outlined in Section VII.

II. TEMPORAL MOMENTS

Consider a measurement campaign where the channel trans-
fer function between fixed transmit and receive antennas is
recorded using a vector network analyzer (VNA). Sampling
the transfer function, H ( f ), at Ns frequency points in the
measurement bandwidth B results in a separation of � f =
B/(Ns − 1) between the points. We assume that the measure-
ment noise at the nth frequency point, Wn , is additive and
independent of the transfer function, Hn. Then, the measured
frequency-domain signal, Yn , reads

Yn = Hn + Wn, n = 0, 1, . . . , (Ns − 1). (1)

Discrete-frequency, continuous-time inverse Fourier transform
gives the 1/� f -periodic measured time-domain signal

y(t) = 1

Ns

Ns−1∑
n=0

Yn exp( j2πn� f t). (2)

Note that y(t) is often referred to as the impulse response
despite suffering from limited bandwidth and noise. This
terminology is somewhat misleading since strictly speaking
the impulse response is the inverse Fourier transform of H ( f ).
For large bandwidth and high signal-to-noise ratio (SNR), y(t)
can be used as an approximation to the impulse response in
the time interval [0, 1/� f ], provided that the impulse response
decays rapidly enough. To avoid this confusion, we refer to
y(t) as the measured signal.

The raw temporal moments are summary statistics of the
measured signal y(t), where the kth temporal moment is
defined as

mk =
∫ 1

� f

0
tk |y(t)|2dt, k = 0, 1, . . . , (K − 1). (3)

Here, a total of K raw temporal moments are computed
“instantaneously” per realization of y(t), giving the K -
dimensional vector m = [m0, m1, . . . , m K−1]�. The raw
temporal moments are correlated random variables as they are
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Fig. 2. Connections between the magnitude square received signal and the
summary statistics (raw- and standardized temporal moments).

all derived from the received signal power, |y(t)|2. The kth
temporal moment is measured in [second]k .

The standardized temporal moments are obtained from the
first three raw temporal moments. The received power, P0,
the mean delay, τ̄ , and the rms delay spread, τrms, are given
as

P0 = m0, τ̄ = m1

m0
, and τrms =

√
m2

m0
−

(
m1

m0

)2

. (4)

The unit of τ̄ and τrms is in seconds whereas P0 is unit-
less. The deterministic relationship between the raw and the
standardized temporal moments is depicted in Fig. 2. The
nonlinearity of the above transformations and the dependence
of the raw temporal moments complicates the joint character-
ization of mean delay and rms delay spread. Summarizing
Nreal realizations of the measured signal into K temporal
moments therefore results in the K × Nreal dimensional matrix,
M = [m(1), . . . , m(Nreal)]. We will focus our discussion on the
first three temporal moments, (m0, m1, m2), as they suffice for
the received power, mean delay, and rms delay spread but it
is straightforward to extend the framework to include more
moments as long as the marginal distributions fit the same
distribution.

Note that the standardized temporal moments in (4) are
computed from the measured signal, y(t), rather than the
channel impulse response. The impulse response is unob-
servable due to the noise and bandwidth limitations. It is
widespread practice to employ a thresholding procedure to
reduce the effect of the measurement noise on the estimation
of temporal moments. However, such procedures require the
setting of a threshold or dynamic range. The choice of the
threshold affects the resulting estimates in a manner that makes
a comparison between measurements obtained with different
equipment difficult. For this reason, we omit any thresholding
procedure in the present work.

The finite measurement bandwidth also manifests itself in
the rms delay spread as an approximately additive term equal
to the delay spread of the transmitted signal. This effect can
be partially removed by subtracting the delay spread of the
frequency window. This is widespread practice in the literature
and results in a good approximation if the bandwidth is large
and the SNR is high. However, in the case of low SNR

and small-signal bandwidth, this can lead to inaccurate and
sometimes negative estimates of the delay spread. For the
measurements considered in Section IV, where the bandwidth
is very large, the effect of the transmitted signal can be
ignored. Hence, we make no attempt to compensate for the
effect of a finite measurement bandwidth.

III. PROPOSED STATISTICAL MODEL

We intend to jointly model the first three raw temporal
moments, (m0, m1, m2), and use the transformation in (4) to
simulate the mean delay and rms delay spread. In principle,
the standardized temporal moments could be modeled instead
of the raw moments. However, the distribution on the raw
moments implies a distribution on the standardized moments
from which sampling is straightforward. Modeling the raw
moments has the added advantage that their means and covari-
ances are easier to compute analytically for a given channel
model than those of the standardized moments due to the
nonlinear transformation.

We model the vector m = [m0, m1, m2]� as a multivariate
log-normal variable. The exponential of a random vector
following a multivariate Gaussian distribution is multivariate
log-normal distributed. Let x be a K -variate normal random
vector with mean μ and covariance matrix �. Then its
entrywise exponentiation, m = exp(x), yields a log-normal
vector with pdf

f (m; μ,�) =
∏K−1

k=0 (mk)
−1√

(2π)K det �

× exp

(
−1

2
(ln(m) − μ)��−1(ln(m) − μ)

)
. (5)

Here, the logarithm is taken entrywise. By property of the
marginals of the multivariate Gaussian, it is easy to see that
this transform results in a distribution with log-normal mar-
ginals. Note that the parameters of a multivariate log-normal
are the mean vector and the covariance matrix of the associated
multivariate Gaussian distribution. The entries of μ and � are
given as μk = E[ln mk] and �kk′ = cov(ln mk, ln mk′),
for k, k ′ = 0, 1, . . . , K − 1, respectively. Given that raw
temporal moments are log-normally distributed, their means
and covariances can be related to μ and � as

E[mk] = exp

(
μk + 1

2
�kk

)
, and (6)

cov(mk, mk′ ) = exp

(
μk + μk′ + 1

2
(�kk + �k′k′ )

)
×(exp(�kk′ ) − 1). (7)

Note that we model the raw temporal moments as opposed
to Greenstein et al. [11] who model shadow fading and
rms delay spread as jointly log-normal. With the proposed
model, log-normality is preserved for the received power and
mean delay due to the multiplicative transform applied on
m0 and m1. However, the distribution of rms delay spread
depends on a more complicated transformation (see (4)) and
hence cannot easily be derived in closed form.
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TABLE I

SUMMARY OF DIFFERENT MEASUREMENT DATA SETS

A. Estimation of Parameters

The parameters of the proposed model need to be esti-
mated from measured data in order to use the model for
simulation purposes. Here, we refer to the matrix of raw
temporal moments, M, as the data. This data matrix is obtained
by summarizing Nreal realizations of the measured signal
using (3). Assuming independent and identically distributed
(i.i.d.) realizations, maximum likelihood estimation of μ and
� is achieved by solving the optimization problem

(μ̂, �̂) = argmax
μ,�

Nreal∏
i=1

f
(
m(i); μ,�

)
. (8)

Since μ and � are the mean vector and the covariance
matrix, respectively, of the associated multivariate Gaussian
distribution, their maximum likelihood estimates, μ̂, and �̂,
are

μ̂ = 1

Nreal

Nreal∑
i=1

ln m(i), and (9)

�̂ = 1

Nreal

Nreal∑
i=1

(
ln m(i) − μ̂

)(
ln m(i) − μ̂

)�
. (10)

B. Simulation From the Model

Given a particular value of μ and �, simulation from the
proposed model is straightforward. To generate one sample of
m, or subsequently, one sample of (P0, τ̄ , τrms), the following
steps should be performed.

1) Draw x ∼ N (μ,�).
2) Compute entrywise exponential, m = exp(x).
3) Compute τ̄ and τrms from (4).

IV. MEASUREMENT DATA DESCRIPTION

We now describe the different radio channel measurements
used to validate the proposed model. An overview of the
measurement data sets is given in Table I. The parameter
estimates obtained after fitting the proposed model to the
measurements are reported in Table II.

A. Data Set From Lund University

Polarimetric radio channel measurements at 60 GHz was
recorded in a small meeting room of dimensions 3 ×4 ×3 m3

using a VNA [27]. The room consisted of a table, white-
board, bookshelves, and a window on one of the walls. The
receive antenna was placed at one corner of the room and

the transmit antenna was placed on the table. A water-filled
human phantom was used to block the line-of-sight (LOS) path
to emulate non-line-of-sight (NLOS) scenario. A 5 × 5 virtual
array of dual-polarized antennas was used with an interelement
spacing of 5 mm at both the transmitter and the receiver. This
resulted in a 25 × 25 dual-polarized MIMO system, however,
in this article, we only use the vertical–vertical polarized
channels. Measurements were performed in the bandwidth
range of 58–62 GHz using 801 equally spaced frequency
points. For further details on the measurement campaign,
see [27].

B. Data Set From Lille University

Measurements were taken in a computer laboratory of floor
area 7.15 × 5.2 m2 at 26 sites, covering the whole room. The
60 GHz channel sounder developed at IEMN [28] used two
heterodyne emission and reception heads developed by mono-
lithic integration with frequencies ranging from 57 to 59 GHz
and with intermediate frequencies of 1 to 3 GHz. A dedicated
network analyzer allows, after calibration, the vectored mea-
sure of the frequency transfer function by steps of 1.25 MHz.
The resulting impulse response has a delay resolution of 0.5 ns
and a maximum measurable delay of 800 ns. In this article,
we select a subset of the entire data set, specifically, taking
the measurements from the first three sites having the same
distance between the transmit and receive antennas in LOS
condition. Each site consists of 250 positions separated by
2 mm. The transmitter was fixed in a corner, close to the
roof, pointed toward the opposite corner. The receiver was
oriented toward the transmitter in the horizontal plane but
not in the vertical one. Horizontal linear polarization patch
antennas were employed.

C. AAU Data, Industry Scenario

Short-range ultrawideband measurement campaigns were
conducted in a 33 × 14 × 6 m3 industrial factory hall at
the Smart Production Lab, AAU. The factory hall was a
typical high clutter density environment with large metallic
machinery such as welding machines, hydraulic press, and
material processing machines. Measurements were collected
over the frequency range 3–8 GHz using a Rhode & Schwarz
ZND 8.5 GHz VNA and omnidirectional broadband biconical
antennas at both the transmitter and the receiver. During the
measurements, the transmitter was placed at a fixed location
and the receiver location was varied to obtain horizontal
distances between 1 and 9 m. A total of 95 channel transfer
functions were obtained with a frequency resolution of 1 MHz
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Fig. 3. (a) Layout and (b) photograph of the indoor hall taken during the
measurement campaign conducted at Aalborg University. The measurements
corresponding to the first receive antenna array position are presented in this
article.

corresponding to 5001 samples over the 5 GHz bandwidth.
Detailed description of the measurements can be found in [29].

D. AAU Data, Hall Scenario

Measurements were conducted in a large hall scenario
as illustrated in Fig. 3(a). A photograph taken during the
measurement campaign is also shown in Fig. 3(b). The hall
had a floor area of 44 ×25 m2 with a height of approximately
10 m. As shown in the picture and the layout sketch, tables,
metallic pillars, concrete pillars, stairs, etc. were in the hall.
The VNA measurements were taken with the ultrawideband
radio-over-fiber channel sounder developed at AAU [31].
Quasi-omnidirectional biconical antennas [32] were used. The
receive antenna was fixed with a height of 1 m to the ground
while transmit antenna was installed on a rotator and rotated
with 720 uniform steps on a circle with a radius of 0.54 m.
In each step, the channel transfer function from 28 to 30 GHz
was swept with 1500 samples in the frequency domain. In this
article, we analyze the first of the 19 different locations
recorded. For this location, the transmitter-receiver distance
was around 15 m in NLOS condition.

E. AAU Data, Outdoor Scenario

Outdoor measurements were conducted in an open area
in-between the two buildings as shown in Fig. 4. The same

Fig. 4. (a) Aerial view and (b) photograph of the environment for the outdoor
measurement campaign conducted at Aalborg University. Measurements from
transmit antenna location number 7 are presented in this article.

channel sounder is used as in the indoor hall scenario. In this
case, the transmitter antenna was rotated with a radius of
0.25 m in 360 uniform steps. In each step, the channel transfer
function from 28 to 30 GHz was swept with 2000 samples.
The receive antenna was fixed on a roof edge with a height
of around 20 m. To increase the SNR, the receive antenna
was replaced by a horn antenna with half-power-beamwidths
around 30◦ in both azimuth and elevation. Moreover, its
main beam was down tilted to appropriately cover the trans-
mit antenna. Data were collected from 15 transmit transmit
antenna locations as indicated in Fig. 4. The data presented in
this article are from the seventh location which was in LOS
condition.

V. MODEL COMPARISON

To characterize the raw temporal moments jointly, their
marginal distributions as well as their correlation structure
needs to be well represented. We compare the proposed model
against competing model choices for the available data sets.
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TABLE II

PARAMETER ESTIMATES OBTAINED USING MAXIMUM LIKELIHOOD ESTIMATION. EACH ENTRY CORRESPONDS TO THE ESTIMATE FOR SOME SCALAR
PARAMETER θ , WHICH CORRESPONDS TO AN ELEMENT OF EITHER THE 3-D MEAN (COLUMN) VECTOR μ OR THE 3 × 3 DIMENSIONAL

COVARIANCE MATRIX � . THE NUMBER IN BRACKET (δ) IS THE HALF-WIDTH OF THE 95% CONFIDENCE INTERVAL FOR

THAT PARAMETER, SO THAT THE INTERVAL TAKES THE FORM (θ − δ, θ + δ)

TABLE III

AIC VALUES FOR DIFFERENT MODEL CHOICES FOR THE RAW TEMPORAL MOMENTS. BEST MODEL IS INDICATED IN BOLD. NOTE

THAT THE JOINT AIC FOR THE INDEPENDENT MODELS IS THE SUM OF THE AIC VALUES OF THE THREE MARGINALS

A. Model Comparison Using AIC

We compare the proposed joint model with the model of
a multivariate Gaussian distribution. We also include three
independent models for the raw temporal moments based
on log-normal, Gaussian, and Gamma distributions. We omit
comparison with the multivariate Gamma distributions in [25]
as they did not give useful results when fitted to the raw
temporal moments. Model comparison is done by computing
the AIC value [33] of the competing models. AIC is a common
tool for model selection that estimates the quality of different
models relative to each other. It compares models through
their likelihoods, but penalizes models with a larger number
of parameters κ . One motivation for this penalty comes from
Ockham’s razor, which states that, when comparing models,
one should prefer the simplest model which explains the data
well. The criterion is computed as follows:

AIC = −2L + 2κ (11)

where L is the maximized log-likelihood of the data. Given a
set of models fitted by maximum likelihood to the same data,
the preferred model is the one with the lowest AIC value.
The reader is referred to [34, Ch. 2] for a detailed discussion.
We also considered the Bayesian information criterion (BIC),
which penalizes more than AIC for a large number of para-
meters (see [34, Ch. 3] and [35]). However, the ordering of

the models was found to be the same for both the criteria, and
therefore we omit the BIC values here.

The models are fitted to the five aforementioned data sets by
maximizing their likelihood. The parameter estimates obtained
for the proposed model are reported in Table II. The AIC
values of the joint fit of the raw temporal moments are reported
in Table III, with κ = 9 for the multivariate distributions, and
κ = 6 for the independent marginal models. The proposed
model comes out as the better choice for the joint fit for three
out of five data sets, with the multivariate Gaussian performing
better for Lille Data and AAU-Outdoor. However, the AIC
values for both the joint models are close to each other.
It is evident that modeling the random variables independently
leads to a significantly poorer fit than either of the joint
models, no matter which distribution is chosen. We remark
that using more complicated models such as copulas [26] to
model the dependence structure may lead to a better fit, but
could be harder to interpret.

B. Log-Normal Versus Gaussian Marginals

We now compare the marginal fits of the multivariate
log-normal and Gaussian distributions for modeling the raw
temporal moments. To assess model fit, the quantiles of the
data are plotted against the theoretical quantiles of the model
being assessed. If the model is a good fit, then the quantiles
of the data and the theoretical quantiles should be close to
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Fig. 5. Quantiles of the measured raw temporal moments from Lille (left) and AAU-Outdoor (right) data versus the theoretical quantiles of fitted log-normal
and Gaussian distributions. The theoretical quantile-quantile line passing through the first and third quantile is shown in red.

one another, and the points will hence lie approximately on
a straight line. On the other hand, any deviation from this
line might indicate issues with the fit of the model. See [36,
Sec. 10.2] for more details. We show the Q-Q plots for two
of the five data sets, namely the Lille and the AAU-Outdoor
data, in Fig. 5, as they highlight the difference between the
fits obtained from both the distributions. The Q-Q plots of
AAU-Outdoor data are representative of what we observed
for the other data sets, therefore we exclude reporting them.

We observe that for AAU-Outdoor data, the marginals
are well-modeled by both the log-normal and the Gaussian
distributions. The fit is similar for both distributions, and it
is not apparent which model performs better. As can be seen
in Fig. 6, the marginals in AAU-outdoor data are very close
to being symmetric, which means that the Gaussian fits well.
However, for the Lille data, it is evident that the log-normal
distribution outperforms the Gaussian in terms of the mar-
ginals. The log-normal is able to model the left tail and the
center of the distribution very well, but sometimes performs
poorly for the right tail. On the other hand, the Gaussian is
not able to model either of the tails. Moreover, the Gaussian
assigns non-zero probabilities to quantiles below zero, which is
not the case for the data as temporal moments are non-negative
random variables. Hence, the multivariate log-normal is a
better choice. Note that a good marginal fit does not imply
good overall fit in terms of AIC and vice-versa, as is the case
for Lille data. This is simply because the AIC measures a
different property of the model which does not require the
marginals to fit perfectly.

The deviation of the right tail of the data from the fit-
ted marginals is to be expected due to the low number of
such extreme points. Such points are in-frequent and could
potentially arise due to a number of factors such as noise,
interference, measurement conditions, etc. Therefore, we argue
that the right tail is not as important to model perfectly,
and thus make no adjustment for it. However, this should be
scrutinized further in applications where this effect could be
important.

VI. MODEL FIT TO RAW TEMPORAL MOMENTS

The parameter estimates, obtained by fitting the proposed
model to the data sets using (9) and (10), are reported
in Table II. We also compute and report the 95% confidence
intervals for each of the estimates in Table II (see Appendix for
details). The confidence intervals are very small for the mean
estimates, and an order of magnitude smaller for the covari-
ance estimates. The fit of the proposed model to the various
data sets is shown in Fig. 6 where each row corresponds to a
particular data set. The marginal distributions of the data and
the fitted model are shown on the left while 2-D scatter plots
for all pairs of temporal moments are shown on the right along
with contour lines of the fitted distribution.

First, we observe in Fig. 6 that the distribution of the raw
temporal moments varies across the different data sets. This is
attributed to the contrasting scenarios that the measurements
were taken in, along with the use of different equipment,
antennas, and measurement settings. We also observe that the
raw temporal moments are highly correlated random variables.
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Fig. 6. Density estimates and scatter plots of raw temporal moments obtained from the different measurements (shown in black) versus the density and
contour plots of the fitted proposed model (shown in red). Each row corresponds to one of the data sets. All the axes are in linear scale. The parameter
estimates are in Table II.

Marginal distributions for Lille and AAU-Industry data are
skewed, while those from other data sets are more symmetric.
We notice a fanning out of the scatter plots on the top-right
of all the indoor data sets, which is not present in the outdoor
data. Despite the variability in the data, the proposed model fits
the data well, even the skewed ones. There is a high correlation
between the raw moments, in particular between m0 and m1,
since the basic functions used to compute them in (3) are not
orthogonal. This is captured well by the model.

VII. MODEL FIT TO STANDARDIZED MOMENTS

We now compare the distribution of the standardized tem-
poral moments obtained from the measurements with those

from the proposed model. Mean delay and rms delay spread
are computed from the raw temporal moments using (4),
while the received power is equal to m0. Pairwise scatter
plots of P0, τ̄ , and τrms from the data and the proposed joint
model are shown in Fig. 7. We also include the samples
obtained from independently fitting a log-normal distribu-
tion to the standardized moments from the data sets. The
log-normal is chosen as it was the best in terms of AIC
amongst the independent models as per Table III. Here,
we exclude the AAU-Industry data as the low number of
sample points makes it difficult to make any useful con-
clusions on the correlation behavior. We observe in Fig. 7
that the standardized temporal moments are also dependent



BHARTI et al.: JOINT MODELING OF RECEIVED POWER, MEAN DELAY, AND DELAY SPREAD FOR WIDEBAND RADIO CHANNELS 4879

Fig. 7. Scatter plots of received power, mean delay, and rms delay spread from data (in black), and from the proposed model (in red). The samples simulated
by independently fitting log-normal marginals to P0, τ̄ , and τrms from the data are in blue. Number of points simulated is same as in the measurements. The
scales of the corresponding plots are the same.

random variables, and the proposed model is able to capture
their dependence structure. In contrast, correlation informa-
tion between the variables is lost when they are simulated
independently.

Sample Pearson correlation coefficients between P0, τ̄ , and
τrms from the data are given in Table IV. For paired sam-
ples {(a1, b1), . . . , (am, bm)}, the sample Pearson correlation

coefficient is defined as

ρ̂a,b =
∑m

j=1(a j − ā)(b j − b̄)√∑m
j=1(a j − ā)2

√∑m
j=1(b j − b̄)2

(12)

where ā and b̄ are the sample means. We also compute 95%
confidence intervals for the correlation estimates using the
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TABLE IV

SAMPLE PEARSON CORRELATION COEFFICIENTS BETWEEN STANDARDIZED TEMPORAL MOMENTS OF MEASURED DATA. THE CORRELATION
COEFFICIENTS FOR THE MODEL IS COMPUTED USING 10 000 SAMPLES OF SIMULATED DATA. THE NUMBER IN PARENTHESIS (ε) IS THE 95%

BOOTSTRAP CONFIDENCE INTERVAL OF THE CORRELATION ESTIMATES COMPUTED USING 1000 RESAMPLES,
SUCH THAT THE INTERVAL IS OF THE FORM (ρ − ε, ρ + ε)

bootstrap method [37, Ch. 6]. The correlation coefficients
obtained from the fitted model, computed from 10 000 samples
to get a robust estimate, are also reported in Table IV. Mean
delay and rms delay spread have a positive correlation that
varies from 0.53 for the Lund data to as high as 0.97 for
AAU-Outdoor. The received power is negatively correlated
with both τ and τrms. In general, the correlation tends to
increase with the size of the environment, with the outdoor
case being highly correlated. The model is able to replicate
the varying correlation between P0 and τrms that is observed
in the data, as opposed to having a fixed correlation coefficient
suggested in [11]. Note that the correlation coefficient between
τ̄ and τrms for the model fitted to the Lille data set is not
within the bootstrap interval. This is due to the banana-like
shape of their scatter plot which is not replicated by the model
(see Fig. 7).

VIII. CONCLUSION

Joint modeling of received power, mean delay, and rms
delay spread provides more accurate models in a range of
scenarios as opposed to independent modeling. The proposed
model of the multivariate log-normal distribution seems to be a
reasonable choice for simulating these standardized moments,
however, the fit can be improved by using more complex mod-
els. The proposed model is simple, easy to simulate from, and
easy to fit to new measurements in both indoor and outdoor
settings using standard estimators. The raw temporal moments
are dependent random variables which should be simulated
jointly; as a result, the same is also true for the standardized
temporal moments. The correlation of these moments changes
from scenario to scenario, but can be inferred efficiently in
each case.

In the light of the strong correlation observed in the mea-
surements, assuming independence might lead to significant
errors in some applications. Hence, reporting of the marginal
distributions of the standardized moments is insufficient and
a clearer picture can be obtained by considering both their
means and covariances. The correlation between these stan-
dardized moments can be used to validate multipath models
instead of just their marginal fits. The correlation should also
be accounted for in the analysis and simulation of radio
channels.

The means and covariances of the temporal moments poten-
tially depend on a number of physical factors. The relationship

between the means and the transmitter-receiver distance has
been studied for indoor scenarios. However, the effect of the
distance on the covariance matrix is presently unclear. For
multipath models, the covariance matrix is known to depend on
the first- and second-order intensity functions which governs
the arrival process. Since both intensity functions are affected
by antenna directivity, the covariance matrix should also be.
Nevertheless, these effects are not yet well-understood and
should be the topic of further studies.
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APPENDIX

PARAMETER INFERENCE FOR THE LOG-NORMAL

In this section, we recall how to derive the maximum
likelihood estimates and related confidence intervals for a
log-normal distribution. Let Y = (Y1, . . . , Yd) be a mul-
tivariate log-normal random variable. We will denote this
distribution LN (μ,�), where μ and � denote the parameters.
Then, X = (X1, . . . , Xd) = (log(Y1), . . . , log(Yd)) is a
multivariate Gaussian random variable with mean vector μ

and covariance matrix �. ta, wSince the maximum likelihood
estimator is invariant to one-to-one transformations of the
dae can simply take the logarithm of our data points and
compute the maximum likelihood estimate corresponding to
Gaussian data. Given N i.i.d. observations {yi}N

i=1, we hence
compute xi = log yi for i = 1, . . . , N , and return the following
estimates:

μ̂ = 1

N

N∑
i=1

xi , and (13)

�̂ = 1

N

N∑
i=1

(xi − μ̂)(xi − μ̂)�. (14)

Now, let the K free parameters be combined into a single
vector θ = (α,β), where α = (μ1, . . . , μd), and β =
(�11, . . . , �dd). Note that �i j = � j i . The Fisher information
matrix reads

I (α,β) =
[

I (α) 0
0 I (β)

]
(15)
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where, for 1 ≤ m, n ≤ K , the (m, n) entry of the matrix is

I (α)m,n = ∂μ�

∂αm
�−1 ∂μ

∂αn
, 1 ≤ m, n ≤ d (16)

I (β)m,n = 1

2
tr

(
�−1 ∂�

∂βm
�−1 ∂�

∂βn

)
. (17)

On further simplification, the entries of the Fisher information
matrix become

I (α)m,n = �−1
mn, (18)

I (β)m,n = 1

2
tr
(
�−1Em�−1En

)
(19)

where Em is a d × d matrix of all zeros except the (i, i)
entry corresponding to βm = �ii which is 1. Note that for
βm = �i j , i �= j , both (i, j) and ( j, i) entry of Em will be 1.
Same goes for En . The 95% confidence interval for the mth
parameter of the Gaussian, (θm ± δm) is

θm ± 1.96√
N

√
I−1

m,m

where I−1
m,m is the (m, m) entry of I−1.

REFERENCES

[1] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge
Univ. Press, Aug. 2005.

[2] W.-D. Wu, C.-H. Wang, C.-C. Chao, and K. Witrisal, “On parameter
estimation for ultra-wideband channels with clustering phenomenon,” in
Proc. IEEE 68th Veh. Technol. Conf., Sep. 2008, pp. 1–5.

[3] A. Bharti, R. Adeogun, and T. Pedersen, “Parameter estimation for
stochastic channel models using temporal moments,” in Proc. IEEE Int.
Symp. Antennas Propag. USNC-URSI Radio Sci. Meeting, Jul. 2019,
pp. 1267–1268.

[4] A. Bharti, R. Adeogun, and T. Pedersen, “Estimator for stochastic
channel model without multipath extraction using temporal moments,” in
Proc. IEEE 20th Int. Workshop Signal Process. Adv. Wireless Commun.
(SPAWC), Jul. 2019, pp. 1–5.

[5] A. Bharti and T. Pedersen, “Calibration of stochastic channel models
using approximate Bayesian computation,” in Proc. IEEE Globecom
Workshops (GC Wkshps), Dec. 2019, pp. 1–6.

[6] A. Bharti, R. Adeogun, and T. Pedersen, “Learning parameters of sto-
chastic radio channel models from summaries,” IEEE Open J. Antennas
Propag., vol. 1, pp. 175–188, 2020.

[7] R. Adeogun, “Calibration of stochastic radio propagation models using
machine learning,” IEEE Antennas Wireless Propag. Lett., vol. 18,
no. 12, pp. 2538–2542, Dec. 2019.

[8] Z. Latinovic and H. Huang, “A channel model for indoor time-of-arrival
ranging,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1415–1428,
Feb. 2020.

[9] M. K. Awad, K. T. Wong, and Z.-b. Li, “An integrated overview of
the open Literature’s empirical data on the indoor radiowave chan-
nel’s delay properties,” IEEE Trans. Antennas Propag., vol. 56, no. 5,
pp. 1451–1468, May 2008.

[10] D. Cox and R. Leck, “Distributions of multipath delay spread and
average excess delay for 910-MHz urban mobile radio paths,” IEEE
Trans. Antennas Propag., vol. AP-23, no. 2, pp. 206–213, Mar. 1975.

[11] L. J. Greenstein, V. Erceg, Y. S. Yeh, and M. V. Clark, “A new path-
gain/delay-spread propagation model for digital cellular channels,” IEEE
Trans. Veh. Technol., vol. 46, no. 2, pp. 477–485, May 1997.

[12] J. Fischer, M. Grossmann, W. Felber, M. Landmann, and A. Heuberger,
“A novel delay spread distribution model for VHF and UHF mobile-to-
mobile channels,” in Proc. 7th Eur. Conf. Antennas Propag., EuCAP,
Apr. 2013, pp. 469–472.

[13] G. Wang, G. Zhu, S. Lin, J. Ding, D. Fei, and H. Zhang, “Channel
measurement and modeling in highway scenario at 460 MHz,” in Proc.
IEEE Int. Symp. Antennas Propag. USNC-URSI Radio Sci. Meeting,
Jul. 2019, pp. 2119–2120.

[14] J. Li, B. Ai, R. He, M. Yang, and Z. Zhong, “Multi-frequency channel
characterization for massive MIMO communications in lobby environ-
ment,” China Commun., vol. 16, no. 9, pp. 79–92, Sep. 2019.

[15] X. Zhang, G. Qiu, J. Zhang, L. Tian, P. Tang, and T. Jiang, “Analysis of
millimeter-wave channel characteristics based on channel measurements
in indoor environments at 39 GHz,” in Proc. 11th Int. Conf. Wireless
Commun. Signal Process. (WCSP), Oct. 2019, pp. 1–6.

[16] Y. Yu, Y. Liu, W. Lu, and H. Zhu, “Measurement and empiri-
cal modelling of root mean square delay spread in indoor fem-
tocells scenarios,” IET Commun., vol. 11, no. 13, pp. 2125–2131,
Sep. 2017.

[17] M. Schmieder, T. Eichler, S. Wittig, M. Peter, and W. Keusgen, “Mea-
surement and characterization of an indoor industrial environment at
3.7 and 28 GHz,” in Proc. 14th Eur. Conf. Antennas Propag. (EuCAP),
Mar. 2020, pp. 1–5.

[18] J. Yu et al., “Channel measurement and modeling of the small-
scale fading characteristics for urban inland river environment,”
IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3376–3389,
May 2020.

[19] Y. Yu, W.-J. Lu, Y. Liu, and H.-B. Zhu, “Neural-network-based root
mean delay spread model for ubiquitous indoor Internet-of-Things
scenarios,” IEEE Internet Things J., vol. 7, no. 6, pp. 5580–5589,
Jun. 2020.

[20] A. Prokes, T. Mikulasek, M. Waldecker, B. K. Engiz, and J. Blumenstein,
“Multipath propagation analysis for static urban environment at 60
GHz,” in Proc. Int. Conf. Electr. Comput. Technol. Appl. (ICECTA),
Nov. 2019, pp. 1–4.

[21] M. S. Varela and M. G. Sanchez, “RMS delay and coherence bandwidth
measurements in indoor radio channels in the UHF band,” IEEE Trans.
Veh. Technol., vol. 50, no. 2, pp. 515–525, Mar. 2001.

[22] G. Steinbock, T. Pedersen, B. H. Fleury, W. Wang, and R. Raulefs, “Dis-
tance dependent model for the delay power spectrum of in-room radio
channels,” IEEE Trans. Antennas Propag., vol. 61, no. 8, pp. 4327–4340,
Aug. 2013.

[23] T. Pedersen, “Modeling of path arrival rate for in-room radio channels
with directive antennas,” IEEE Trans. Antennas Propag., vol. 66, no. 9,
pp. 4791–4805, Sep. 2018.

[24] T. Pedersen, “Stochastic multipath model for the in-room radio chan-
nel based on room electromagnetics,” IEEE Trans. Antennas Propag.,
vol. 67, no. 4, pp. 2591–2603, Apr. 2019.

[25] S. Kotz, N. Balakrishnan, and N. L. Johnson, Continuous Multivariate
Distributions. Hoboken, NJ, USA: Wiley, Apr. 2000.

[26] R. B. Nelsen, An Introduction to Copulas. Berlin, Germany: Springer-
Verlag, 2007. [Online]. Available: https://www.ebook.de/de/product/
5270140/roger_b_nelsen_an_introduction_%to_copulas.html

[27] C. Gustafson, D. Bolin, and F. Tufvesson, “Modeling the polari-
metric mm-wave propagation channel using censored measurements,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016,
pp. 1–6.

[28] M. Fryziel, C. Loyez, L. Clavier, N. Rolland, and P. A. Rolland,
“Path-loss model of the 60-GHz indoor radio channel,” Microw.
Opt. Technol. Lett., vol. 34, no. 3, pp. 158–162, Aug. 2002.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
mop.10402

[29] M. Razzaghpour et al., “Short-range UWB wireless channel measure-
ment in industrial environments,” in Proc. Int. Conf. Wireless Mobile
Comput., Netw. Commun. (WiMob), Oct. 2019, pp. 1–6.

[30] A. Bharti, L. Clavier, and T. Pedersen, “Joint statistical modeling of
received power, mean delay, and delay spread for indoor wideband
radio channels,” in Proc. 14th Eur. Conf. Antennas Propag. (EuCAP),
Mar. 2020, pp. 1–5.

[31] A. W. Mbugua, W. Fan, K. Olesen, X. Cai, and G. F. Pedersen,
“Phase-compensated optical fiber-based ultrawideband channel sounder,”
IEEE Trans. Microw. Theory Techn., vol. 68, no. 2, pp. 636–647,
Feb. 2020.

[32] X. Cai and W. Fan, “A complexity-efficient high resolution propagation
parameter estimation algorithm for ultra-wideband large-scale uniform
circular array,” IEEE Trans. Commun., vol. 67, no. 8, pp. 5862–5874,
Aug. 2019.

[33] H. Akaike, “A new look at the statistical model identifica-
tion,” IEEE Trans. Autom. Control, vol. 19, no. 6, pp. 716–723,
Dec. 1974.

[34] G. Claeskens and N. L. Hjort, Model Selection Model Averaging.
Cambridge, U.K.: Cambridge Univ. Press, 2008.

[35] J. Ding, V. Tarokh, and Y. Yang, “Model selection techniques: An
overview,” IEEE Signal Process. Mag., vol. 35, no. 6, pp. 16–34,
Nov. 2018.

[36] J. A. Rice, Mathematical Statistics and Data Analysis, 2nd ed. Pacific
Grove, CA, USA: Duxbury Press, 1994.

[37] B. Efron and R. Tibshirani, An Introduction to Bootstrap. London, U.K.:
Chapman & Hall, May 1994.



4882 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 69, NO. 8, AUGUST 2021

Ayush Bharti (Member, IEEE) received the B.E.
degree in electrical and electronics engineering from
the Birla Institute of Technology and Sciences,
Pilani, India, in 2015, and the M.Sc. degree in signal
processing and computing from Aalborg University,
Aalborg, Denmark, in 2017, where he is currently
pursuing the Ph.D. degree with the Department of
Electronic Systems.

His research interests include likelihood-free
inference, statistical signal processing, and radio
channel modeling.

Ramoni Adeogun (Senior Member, IEEE) received
the B.Eng. degree in electrical and computer engi-
neering from the Federal University of Technology,
Minna, Nigeria, in 2007, and the Ph.D. degree in
electronic and computer systems engineering from
the Victoria University of Wellington, Wellington,
New Zealand, in 2015.

He is currently a Post-Doctoral Fellow at Aalborg
University, Aalborg, Denmark, and also as an
External Research Engineer with Nokia Bell Labs,
Aalborg. Prior to joining Aalborg University, he has

also worked in various positions at the University of Cape Town, SA,
Odua Telecoms Ltd., and the National Space Research and Development
Agency, Nigeria. His research interests include channel characterization,
machine learning and AI for communications, intelligent spectrum access,
and interference management.

Xuesong Cai received the B.S. and Ph.D. degrees
(Hons.) from Tongji University, Shanghai, China,
in 2013 and 2018, respectively.

In 2015, he conducted a three-month internship
with Huawei Technologies, Shanghai. He was also a
Visiting Scholar with the Universidad Politécnica de
Madrid, Madrid, Spain, in 2016. From 2018 to 2020,
he was a Post-Doctoral Research Fellow with the
APMS Section, Department of Electronic Systems,
Aalborg University (AAU), Aalborg, Denmark.
Since April 2020, he has been a Post-Doctoral

Fellow with the Wireless Communication Networks Section, Department of
Electronic Systems, AAU, cooperating with Nokia Bell Labs. His research
interests include propagation channel measurement, high-resolution parameter
estimation, channel characterization, channel modeling, over-the-air testing,
and UAV communications for 5G wireless communications.

Dr. Cai was a recipient of the Chinese National Scholarship for Ph.D.
Candidates and the Excellent Student Award in 2016, the Excellent
Student Award and the “ZTE Fantastic Algorithm” Award in 2017,
the Outstanding Doctorate Graduate awarded by the Shanghai Municipal
Education Commission and “ZTE Blue Sword-Future Leaders Plan” in 2018,
and the “Seal of Excellence” with the European Horizon 2020’s Marie
Skłodowska-Curie actions call in 2019.

Wei Fan (Senior Member, IEEE) received the
Bachelor of Engineering degree from the Harbin
Institute of Technology, Harbin, China, in 2009,
the master’s double degree (Hons.) from the
Politecnico di Torino, Turin, Italy, and the Grenoble
Institute of Technology, Grenoble, France, in 2011,
and the Ph.D. degree from Aalborg University,
Aalborg, Denmark, in 2014.

From February 2011 to August 2011, he was with
Intel Mobile Communications, Herlev, Denmark,
as a Research Intern. He conducted a three-month

internship at Anite Telecoms OY, Oulu, Finland, in 2014. He is now an
Associate Professor with Aalborg University. His main areas of research
are over-the-air testing of multiple antenna systems, radio channel sounding,
modeling, and emulation.

François-Xavier Briol received the bachelor’s
degree with integrated master’s degree in math-
ematics, operational research, statistics and eco-
nomics (MMORSE) and the Ph.D. degree in
statistics from the University of Warwick, Coventry,
U.K., in 2014 and 2019, respectively.

He was briefly a Research Associate at Imperial
College London, London, U.K., and the University
of Cambridge, Cambridge, U.K., before joining
University College London (UCL) in 2019, where
he is now a Lecturer in statistical science. He is

also a Group Leader in data-centric engineering at The Alan Turing Institute,
the U.K.’s national institute for data science and AI, where he currently leads
a project on “Fundamentals of Statistical Machine Learning.” His research
interests include statistical computation and inference for large-scale and
computationally expensive probabilistic models.

Laurent Clavier (Senior Member, IEEE) received
the Ph.D. degree in signal processing from
TELECOM Bretagne (now IMT Atlantique), Brest,
France, in 1997, and the HDR degree from Lille
University, Lille, France, in 2009.

Since October 2011, he has been a Professor
with the Mines-Telecom Institute (IMT Lille Douai),
the Institut d’Electronique de Microélectronique et
de Nanotechnolo-gie (IEMN) (UMR CNRS 8520),
and the Institut de Recherche sur les composants
logiciels et matériels pour l’Information et la

Communication Avancée (IRCICA) (USR CNRS 3380). His research
activities concern digital communications and the physical layer of wireless
networks for the IoT, more specifically energy autonomous sensor networks.
He is particularly interested in the interference model and impact on ultradense
wireless networks.

Troels Pedersen (Member, IEEE) received the
M.Sc. degree in digital communications and the
Ph.D. degree in wireless communications from
Aalborg University, Aalborg, Denmark, in 2004 and
2009, respectively.

In 2005, he was a Guest Researcher with the
FTW Telecommunications Research Center Vienna,
Vienna, Austria. He joined the Department of
Electronic Systems, Aalborg University, as an
Assistant Professor, in 2009, and became an
Associate Professor in 2012. In 2012, he was a

Visiting Professor with the Institut d’Électronique et de Télécommunications
de Rennes, University of Rennes 1, Rennes, France. His current research
interests include statistical signal processing and communication theory,
including sensor array signal processing, radio geolocation techniques, radio
channel modeling, and radio channel sounding.

Dr. Pedersen received the Teacher of the Year Award from the Study Board
for Electronics and IT, Aalborg University, in 2011 and 2017.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


