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Abstract

In this paper, we assess the capabilities of the Arbitrary Lagrangian-Eulerian method implemented in the
open-source code TrioCFD to tackle down two fluid-structure interaction problems involving moving bound-
aries. To test the code, we first consider the bi-dimensional case of two coaxial cylinders moving in a viscous
fluid. We show that the two fluid forces acting on the cylinders are in phase opposition, with amplitude
and phase that only depend on the Stokes number, the dimensionless separation distance and the Keulegan-
Carpenter number. Throughout a detailed parametric study, we show that the self (resp. cross) added mass
and damping coefficients decrease (resp. increase) with the Stokes number and the separation distance. Our
numerical results are in perfect agreement with the theoretical predictions of the literature, thereby validating
the robustness of the ALE method implemented in TrioCFD. Then, we challenge the code by considering the
case of a vibrating cylinder located in the central position of a square tube bundle. In parallel to the numer-
ical investigations, we also present a new experimental setup for the measurement of the added coefficient,
using the direct method introduced by Tanaka. The numerical predictions for the self-added coefficients are
shown to be in very good agreement with a theoretical estimation used as a reference by engineers. A good
agreement with the experimental results is also obtained for moderate and large Stokes numbers, whereas an
important deviation due to parasitic frequencies in the experimental setup appears for low Stokes number.
Still, this study clearly confirms that the ALE method implemented in TrioCFD is particularly efficient in
solving fluid-structure interaction problems. As an open-source code, and given its ease of use and its flex-
ibility, we believe that TrioCFD is thus perfectly adapted to engineers who need simple numerical tools to
tackle down complex industrial problems.

Keywords: Vibration; Fluid-structure interaction; Added mass; Added damping; Stokes number; ALE
method; TrioCFD

1. Introduction

The accurate estimation of the force acting on a body moving in a viscous fluid is of crucial importance
for engineers, in particular for those working in fields such as turbomachinery [1], heat exchangers tube
banks [2, 3] or energy harvesting of flexible structures [4, 5, 6, 7, 8]. When the immersed body is subjected
to a small amplitude of motion, Stokes [9] showed that the fluid force is the sum of two terms: an added
mass term related to the body’s acceleration and a damping term related to the body’s velocity. The concept
of added mass and damping terms can be generalized to multiple immersed bodies, introducing some self
and cross-added coefficients. In such a case, the self-added coefficients relate the fluid force on a body to its
motion. On their hand, the cross-added coefficients relate the forces on a body to the other bodies’ motion.
The determination of the added coefficients has been the topic of considerable experimental, [10, 11, 12, 13,
14, 15, 16, 17, 18] and theoretical studies, mostly based on a Helmholtz decomposition associated with a
method of images [19, 20, 21, 22, 23, 24, 25] or a conformal transformation [26, 27, 28, 29, 30, 31, 32, 33].
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Nomenclature

vALE Velocity of the ALE frame reference
J Jacobian of the transformation between the ALE and the Lagrange frame reference
∆t Time step of the numerical simulation
∆tstab Time step which ensure the stability of the numerical simulation at each iteration
∆tconv Convection time step limit of the numerical simulation
∆tdiff Diffusion time step limit of the numerical simulation
∆tmax Maximum time step of the numerical simulations set by the user
CFL Courant-Friedrichs-Lewy number
vh, ph Discrete fluid flow velocity vector and pressure
Vh, Ph Unknowns vectors of the discrete fluid flow velocity vector and pressure
Th Triangulation of the fluid domain
Kj Triangular element of the discretized fluid domain
xi Middle points of the edges of the triangles
wi Control volume associated to xi

χKj
, φi Indicator functions of the triangle Kj and the control volume wi

[M ] Mass matrix operator
[A] Discrete diffusion operator
[L(Vh)] Non-linear discrete convection operator
[G] Discrete gradient operator
[D] Discrete divergence operator
lc, lcfine Largest and smallest mesh size of the fluid domain
∆ Maximum ratio between the lengths of two adjacent edges
Dj Diameter of cylinder Cj

∂Cj Boundary of cylinder Cj

P Pitch between the cylinders
Ω Angular frequency of the cylinders
t, t∗ Dimensional and dimensionless time
∂Cj Boundary of cylinder Cj

nj Outward normal unit vector to cylinder ∂Cj

ρ Fluid mass density
ν Fluid kinematic viscosity
v, v∗ Dimensional and dimensionless fluid flow velocity vector
p, p∗ Dimensional and dimensionless fluid flow pressure
Fj , f∗

j Dimensional and dimensionless fluid force on cylinder Cj

hj , ϕj Magnitude and phase angle of f∗

j

U, u∗ Dimensional and dimensionless displacement vector of the cylinders
U Displacement module of the cylinders
Jn, Yn Bessel functions of the first and second kind
ε Dimensionless separation distance
KC Keulegan-Carpenter number
Sk Stokes number
P/D Pitch ratio
ex, ey Cartesian basis vectors
[Mj ], [Cj ] Added mass and damping matrices
m

(j)
self , c

(j)
self Self-added mass and damping coefficients

mcross, ccross Cross-added mass and damping coefficient
m̃

(j)
self , c̃

(j)
self Asymptotic expansion of m

(j)
self and c

(j)
self as Sk → ∞

m̃cross, c̃cross Asymptotic expansion of mcross and ccross as Sk → ∞
m

(j)pot

self , c
(j)pot

self Inviscid limits of m
(j)
self and c

(j)
self

mpot
cross, cpot

cross Inviscid limits of mcross and ccross

ι Relative deviation between theoretical/experimental and numerical predictions
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These theoretical approaches have shown their efficiency in predicting the added-coefficients in some simple
configurations, but extending to the industrial context remains delicate. As a consequence, engineers devel-
oped fast and robust numerical approaches, such as the immersed body method [34], the cut-cell method [35]
or the penalization method [33, 36, 37, 38, 39, 40, 41]. In the present work, we aim to analysis the efficiency
of the Arbitrary Lagrangian-Eulerian method [42, 43, 44] implemented in the open-source code TrioCFD, de-
veloped by the CEA for the nuclear industry. TrioCFD is a C++ object-oriented parallel software designed for
calculations of unsteady laminar or turbulent fluid flows [45]. The calculations are performed on structured
(parallelepipeds) and non-structured (tetrahedrons) meshes of several millions of control volumes (hybrid
finite volume element, see [46, 47, 48]). The code structure is flexible, allowing the user to choose the dis-
cretization method, the convection and time schemes, as well as the turbulence model. The reader is referred
to the TrioCFD webpage [49] and [50] for a detailed presentation of the code.

This article is organized as follows. Section 2 presents the ALE method and the main equations solved
by TrioCFD. In Section 3, we test the code, considering the vibration of two coaxial cylinders separated by
a fluid layer. The added coefficients are extracted from the numerical predictions of the fluid forces, and
the results are compared with those of the literature. In Section 4, we challenge the code, considering the
vibration of a cylindrical tube located in the central position of a square tube array. Our numerical results
for the fluid coefficients are compared with a phenomenological estimation used by engineers of the nuclear
industry and with some experimental measurements that we have performed on a new experimental set-up
built at CEA. Finally, Section 5 summarizes our findings.

2. Numerics

The numerical simulations of the Navier-Stokes equations have been conducted on the 1.8.0 version of
TrioCFD, a programmable CFD code based on the TRUST platform and a C++ language architecture,
see [50, 51]. This open source code allows the user to choose a wide range of options and parameters, among
which the discretization schemes in space and time, the turbulence models (RANS or LES approaches) or the
boundary conditions. Given its flexibility, the code is widely used in the nuclear industry for massive parallel
and high performance calculations.

In what follows, we briefly present the ALE method implemented in TrioCFD to solve fluid problems with
moving boundaries.

2.1. Principle of the ALE numerical method

To determine the flow of a fluid, it is necessary to describe the kinematics of all its material particles
throughout time. To do so, one can adopt either an Euler description of motion, in which a fluid particle
is identified by its instantaneous position, or a Lagrange description of motion, in which a fluid particle is
identified by its initial position. Both descriptions are totally equivalent, leading to different forms of the
Navier-Stokes equations that can be discretized on a stationary mesh grid (Euler) or a mesh grid that follows
the motion of the fluid particles (Lagrange). In both cases, the mesh grids do not account for the motion of
the boundaries, which makes the numerical simulations of the related Navier-Stokes equations delicate.

To overcome this problem, several approaches, such as the immersed boundary methods [52, 53, 54], or
the ALE method [42, 43, 44] have been developed.

In the ALE approach, a fluid particle is identified by its position relative to a frame moving with a
nonuniform velocity vALE . In this new frame of reference, the Navier-Stokes equations write





∇ · v = 0,

∂Jv

∂t
= J

(
ν∆v − ∇ · ((v − vALE) ⊗ v) − 1

ρ
∇p

)
,

(1a)

(1b)

with J the Jacobian of the transformation between the ALE and the Lagrange descriptions. The ALE method
is actually a hybrid description between the Euler and the Lagrange descriptions, both of them corresponding
to the particular cases vALE = 0 and vALE = v, respectively.
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In the ALE framework, the choice of vALE is arbitrary as long as the deformation of the mesh grid remains
under control. For moderate deformations, vALE is usually defined as the solution of an auxiliary Laplace
problem, see [55]: 




∆vALE = 0 in the fluid domain,

vALE = vsolid at a solid interface,

vALE = 0 at a free surface,

(2a)

(2b)

(2c)

from which the kinematics of the mesh grid is updated, i.e. xnew = xold + ∆tvALE .

2.2. Space and time discretizations

In case of unstructured meshes (triangles in 2D or tetrahedrons in 3D), TrioCFD uses Finite Volume-
Elements (FVE) approach to solving discretized Navier-Stokes equations. These methods combine the Finite
Elements (FE) method with the Finite Volumes (FV) method, gathering the advantages of each approach
for incompressible Navier-Stokes problems [51]. The governing equations (1) are solved through a staggered
approaches: a primary grid for the discrete pressure ph and a face-based staggered dual grid for the discrete
velocity vh = (vx,h, vy,h)T. As shown in Fig. 1, the velocity is evaluated on the centre of the 2D edges (or on
the center of the 3D faces in 3D) while pressure has more degrees of freedom (DoF) and can be evaluated in
the element gravity center and nodes.

As in Finite Volume approach, the local equations are integrated over the control volumes. The control
volumes for the mass equation are the primal mesh cells whereas the dual mesh cells (denoted by w hereafter)
are the control volumes of momentum. The control volume w associated to each face is obtained by joining the
gravity centers of the two adjacent cells Gi and Gj with the vertices S1 and S2 of the shared face (see 1(b)).
The fluxes and the differential operators are computed by means of a FE formulation.

vh

vh

vh

ph •

ph

ph

ph Gi

Gj

•

•
xi

xj
•

•

S1

S2

•

•

Ki

Kj

wi

(a) (b)

Figure 1: (a) DoF of 2D element (black squares for velocity vh, black dots and circles for pressure ph). (b) Control volume wi

between two triangles Ki and Kj of respective center Gi and Gj .

Hereafter, we recall the main ideas of the FVE method [50, 56] and for this purpose, in this section we only
consider the spatial part of the systems (1). Also, in this paragraph, in order to simplify the presentation, we
limit ourselves to the two-dimensional case. Let Th be a triangulation of the domain and Kj ∈ Th a triangle
(j = 1, . . . , NT ). We denote with xi the nodes, which are the middle points of the edges of the triangles and
by wi (i = 1, . . . , NN ) their associated control volumes, see Fig. 1(b). We introduce the following spaces:

Qh = {qh : ∀Kj ∈ Th, qh|Kj
∈ P0(Kj)}, (3a)

Wh = {wh continuous at xi : ∀Kj ∈ Th, wh|Kj
∈ P1(Kj)}, (3b)

Wh = {wh = (wx,h, wy,h)T : wx,h, wy,h ∈ Wh} = W 2
h , (3c)

with Pn a polynomial function of the n-th order. The space Qh is spanned by the indicator functions of the
triangles, χKj

, and Wh is spanned by φi(x), with φi ∈ Wh and φi(xj) = δij . We seek an approximate solution
for the systems (1): (vh, ph) ∈ Wh × Qh.
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In order to have a discrete formulation, we integrate the mass equation over the triangles Kj and the
momentum equation over the control volumes ωi as:





−
∫

∂ωi

(ν∇vh − 1
ρ

ph[I]) · ndσi +
∫

∂ωi

((vh − vh,ALE) ⊗ vh) · ndσi = 0 ∀i ∈ [1, . . . , NN ] ,

∫

∂Kj

vh · ndσj = 0 ∀Kj ∈ Th,

(4a)

(4b)

with dσi and dσj a Lebesgue measure of ∂ωi and ∂Kj, respectively, and [I] the identity matrix.
Then, one can expand (vh, ph) in the bases of the correspondent spaces as follows:

vh(x) =
NN∑

i=1

vh(xi)φi(x),

ph(x) =
NT∑

j=1

ph(Kj)χKj
.

(5)

Plugging (5) into (4) for the linear terms and using the identity (a ⊗ b) · c = a(b · c) for the nonlinear
terms, results in:






−
NN∑

j=1

∫

∂ωi

(νvh(xj) ⊗ ∇φj) · ndσi +
NT∑

j=1

1
ρ

ph(Kj)
∫

∂ωi

χKj
ndσi +

+
∫

∂ωi

vh(vh · n)dσi −
∫

∂ωi

vh(vh,ALE · n)dσi = 0 ∀i ∈ [1, . . . , NN ] ,

NN∑

i=1

vh(xi) ·
∫

∂Kj

φindσj = 0 ∀Kj ∈ Th.

(6a)

(6b)

The unknown vectors are defined as follows:

Vh =
[
Uh = [vx,h(xi)]i=1,...,NN

Vh = [vy,h(xi)]i=1,...,NN

]
, Ph =

1
ρ

[ph(Kj)]
j=1,...,NT

, (7)

and the following matrix elements:

[Ã]ij := −
∫

∂ωi

ν∇φj · ndσi, [Dℓ]ij :=
∫

∂Kj

φinℓdσj , [Gℓ]ij :=
∫

∂ωi

χKj
nℓdσi,

where the subscript ℓ indicates the components of the normal vector n = (nx, ny).
The convection term can be written as:

∫

∂ωi

vh(vh · n)dσi =
∫

∂ωi

vh




NN∑

j=1

vh(xj)φj · n



 dσi. (8)

The x-projection of (8) yields an equation for the first component vx,h of vh:

∫

∂ωi

vx,h




NN∑

j=1

vh(xj)φj · n


 dσi =

NN∑

j=1

vx,h(xj)
∫

∂ωi

vx,hφjnxdσi +
NN∑

j=1

vy,h(xj)
∫

∂ωi

vx,hφjnydσi.

We can define the following matrix elements:

[Lx(Uh)]ij =
∫

∂ωi

vx,hφjnxdσi, [Ly(Uh)]ij =
∫

∂ωi

vx,hφjnydσi.

5



The second component would give as a result [Lx(Vh)]ij and [Ly(Vh)]ij . Finally, by introducing the following
notation:

[A] =
(

[Ã] 0
0 [Ã]

)
, [D] =

(
[Dx] [Dy ]

)
, [G] =

(
[Gx]
[Gy ]

)
, [L(Vh)] =

(
[Lx(Uh)] [Ly(Uh)]
[Lx(Vh)] [Ly(Vh)]

)
, (9)

the discrete system can be written in the compact form:

{
[A]Vh − [L(Vh)]Vh + [L(Vh)]Vh,ALE − [G]Ph = 0,

[D]Vh = 0.

(10a)

(10b)

In the present work, the integral (8) is computed numerically by using MUSCL, i.e. a Monotone Upstream-
Centred Scheme for Convective flows [57], see Appendix A. Applying the numerical FVE discretization on
Eq. (1), along with the Forward Euler scheme for the time discretization, results in the following discrete
system:





[M ]

Jn+1Vn+1
h − JnVn

h

∆t
= Jn+1

(
[A]Vn+1

h − [L(Vn
h)]Vn+1

h + [L(Vn)]Vn+1
h,ALE − [G]Pn+1

h

)
,

[D]Vn+1
h = 0,

(11a)

(11b)

where ∆t is the time step (see Appendix B), [M ] is the mass matrix operator, [A] is the discrete diffusion
operator, [L(Vh)] is the non-linear discrete convection operator, [G] is the discrete gradient operator and [D]
is the discrete divergence operator, defined above.

In order to solve the velocity-pressure coupling, a multi-step (projection-correction) technique [58, 59] is
employed, where an intermediate (predicted) velocity V∗

h is computed:

Jn+1

(
1

∆t
[M ] − [A] + [L(Vn

h)]
)

V∗

h =
1

∆t
[M ]JnVn

h + Jn+1[L(Vn
h)]Vn

h,ALE − Jn+1[G]Pn
h , (12)

and the mass conservation is then enforced by solving a Poisson equation for pressure:

[D][M ]−1[G]P
′

h =
1

∆t
[D]V∗

h. (13)

Finally, the velocity is updated using the predicted velocity V∗

h and the pressure increment P
′

h:

Vn+1
h = V∗

h − ∆t[M ]−1[G]P
′

h, Pn+1
h = Pn

h + P
′

h. (14)

In the present work, the linear systems (12) is solved by the iterative solver GMRES from the PETSc
library [60].

3. Study 1. Vibrations of two coaxial cylinders in a viscous fluid

In this section, we test the capabilities of the code TrioCFD along with the ALE approach, considering
the 2D case of two coaxial cylinders vibrating in a viscous fluid. The goal of this preliminary work is to
introduce all the important concepts that will be used in the study of the vibrations of a tube in a square
bundle, considered in §4. In what follows, we introduce the problem, present the numerical setup and finally
discuss our numerical results in comparison with the theoretical estimations of [61, 62].

3.1. Presentation of the problem and governing equations

Let C1 and C2 be two concentric cylinders with diameters Dj and boundaries ∂Cj , j = {1, 2}, see Fig. 2.
One cylinder, either C1 or C2, oscillates in the (x, y) plane with a simple harmonic motion of angular frequency
Ω and a displacement amplitude U . The fluid in the annulus region is Newtonian, homogeneous, with mass
density ρ and kinematic viscosity ν. The fluid flow generated by the oscillation of one cylinder is assumed as
incompressible and two-dimensional.
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Figure 2: Configuration with two concentric cylinders. The fluid in the annulus region is homogeneous with mass density ρ and
kinematic viscosity ν.

The Navier-Stokes equations and the boundary conditions for the fluid flow (v, p) are:





∇ · v = 0,

∂v

∂t
+ (v · ∇)v +

1
ρ

∇p − ν∆v = 0,

v − dU

dt
= 0 on ∂Cj , j = {1, 2}.

(15a)

(15b)

(15c)

The equation (15c) ensures the continuity of velocities at the cylinder boundaries ∂Cj . The fluid force acting
on Cj is the sum of a pressure and a viscous term

Fj = −
∫

∂Cj

pnjdLj + ρν

∫

∂Cj

[∇v + (∇v)T] · njdLj , (16)

where nj is the outward normal unit vector to ∂Cj , see Fig. 2, and dLj is an infinitesimal line element of
integration.

Picking D1/2 and Ω−1 as a characteristic length and time, the dimensionless quantities t∗, u∗, v∗, p∗ and
f∗

j are defined as

t = Ω−1t∗, U = Uu∗, v = UΩv∗, p = ρU
D1

2
Ω2p∗, Fj = ρU

(
D1

2
Ω
)2

f
∗

j . (17)

To reduce the number of parameters of the problem, the following rescaled quantities are also defined

ε =
D2

D1
, KC =

U

D1
, Sk =

D2
1 (Ω/2π)

ν
, (18)

as the dimensionless separation distance, the Keulegan–Carpenter number and the Stokes number, respec-
tively. Introducing (17) in (15) yields the dimensionless Navier–Stokes equations






∇ · v∗ = 0,

∂v∗

∂t∗
+ 2KC(v∗ · ∇)v∗ + ∇p∗ − 2

πSk
∆v∗ = 0,

v∗ − du∗

dt∗
= 0 on ∂Cj , j = {1, 2}.

(19a)

(19b)

(19c)

The dimensionless fluid force acting on Cj is

f
∗

j = −
∫

∂Cj

p∗njdlj +
2

πSk

∫

∂Cj

[∇v∗ + (∇v∗)T] · njdlj , (20)

7



with dlj = 2dLj/D1.
For KC << 1, the dimensionless Navier-Stokes equations are linear. It follows that the fluid forces are

linear combinations of the cylinder velocity du∗/dt∗ and acceleration d2u∗/dt∗2

f∗

j = −π

(
[Mj ]

d2u∗

dt∗2
+ [Cj ]

du∗

dt∗

)
, (21)

with

[Mj ] =

(
m

(j)
self

m
(j)
self

)
and [Cj ] =

(
c

(j)
self

c
(j)
self

)
if Cj is moving, (22a)

[Mj ] =
(

mcross

−mcross

)
and [Cj ] =

(
ccross

−ccross

)
if Cj is stationary. (22b)

The self-added mass and damping coefficients m
(j)
self and c

(j)
self relate the fluid force on the moving cylinder

to its own motion. The cross-added mass and damping coefficients mcross and ccross relate the fluid force on
the stationary cylinder to the motion of the other cylinder. The fluid added coefficients are functions of the
dimensionless separation distance ε and the Stokes number Sk.

For a harmonic displacement u∗ = sin (t∗)ex, the dimensionless fluid forces (21) reduce to

f∗

j = π
(

m
(j)
self sin (t∗) − c

(j)
self cos (t∗)

)
ex, if Cj is moving, (23a)

f∗

j = π (mcross sin (t∗) − ccross cos (t∗)) ex, if Cj is stationary, (23b)

or similarly f∗

j = hj sin (t∗ + ϕj) ex, with

hj = π

√(
m

(j)
self

)2

+
(

c
(j)
self

)2

and ϕj = − arctan

(
c

(j)
self

m
(j)
self

)
if Cj is moving, (24a)

hj = π
√

m2
cross + c2

cross and ϕj = π − arctan
(

ccross

mcross

)
if Cj is stationary. (24b)

Yeh et al. [62] derived some analytical expressions of the fluid added coefficients. Introducing ℜ and ℑ the
real and imaginary part operators, these expressions write

m
(1)
self = ℜ(a11), m

(2)
self = ε2ℜ(a22), mcross = εℜ(a12), (25a)

c
(1)
self = ℑ(−a11), c

(2)
self = ε2ℑ(−a22), ccross = εℑ(−a12), (25b)

with a11 = −(1 + 2a), a22 = 2a/ε, a12 = 1 − 2a/ε2 and

a =

∣∣∣∣∣∣∣∣

1 1 J1(β1) Y1(β1)
0 1 ε−1J1(β2) ε−1Y1(β2)
2 2 β1J0(β1) β1Y0(β1)
0 2 β1J0(β2) β1Y0(β2)

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

1 1 J1(β1) Y1(β1)
ε−2 1 ε−1J1(β2) ε−1Y1(β2)
0 2 β1J0(β1) β1Y0(β1)
0 2 β1J0(β2) β1Y0(β2)

∣∣∣∣∣∣∣∣

−1

. (26)

In (26), Jn and Yn are the Bessel functions of the first and second kind, with arguments β1 = (1 − i)
√

π/2
√

Sk
or β2 = εβ1.

From an asymptotic expansion of these functions as Sk → ∞, we show that (m(j)
self , mcross, c

(j)
self , ccross)

are equivalent to (m̃(j)
self , m̃cross, c̃

(j)
self , c̃cross) with

m̃
(j)
self = m

(j)pot

self +
4√
π

1√
Sk

, m̃cross = mpot
cross − 4√

π

1√
Sk

, (27a)

c̃
(j)
self =

4√
π

1√
Sk

ε4 + ε

(ε2 − 1)2
, c̃cross = − 4√

π

1√
Sk

ε4 + ε

(ε2 − 1)2
, (27b)
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and

m
(1)pot

self =
ε2 + 1
ε2 − 1

, m
(2)pot

self =
ε2(ε2 + 1)

ε2 − 1
, mpot

cross = − 2ε2

ε2 − 1
. (28)

The terms m
(j)pot

self and mpot
cross are the inviscid limits of m

(j)
self and mcross as Sk → ∞. These terms can also

be obtained from a potential theory in which the fluid forces are only due to the pressure field. Note that
c

(j)pot

self = cpot
cross = 0 as there are not damping effects in the inviscid framework.

In §3.3 the theoretical estimations (25) and (27) are compared with the numerical predictions performed
with TrioCFD. Numerically, the fluid forces acting on ∂Cj are computed by the sum of the pressure and
viscous terms in Eq. (16) given by TrioCFD. To extract the added coefficients from the numerical simulations
of the dimensionless fluid forces, we introduce the Fourier inner product over five periods

〈f(t∗), g(t∗)〉 =
1

5π

∫ 10π

0

f(t∗)g(t∗)dt∗. (29)

From (23), it follows that the added-coefficients are

m
(j)
self =

〈sin(t∗), f∗

j (t∗) · ex〉
π

and c
(j)
self = −

〈cos(t∗), f∗

j (t∗) · ex〉
π

if Cj is moving, (30a)

mcross =
〈sin(t∗), f∗

j (t∗) · ex〉
π

and ccross = −
〈cos(t∗), f∗

j (t∗) · ex〉
π

if Cj is stationary. (30b)

3.2. Numerical setup

To discretize the fluid domain, we use an unstructured grid of triangles generated by the Gmsh platform,
see [63]. Due to its adaptive and automatic algorithm, Gmsh makes it possible to choose between two different
local sizes for the 2D mesh: a small local size, lcfine, for elements close to the moving cylinder and a large
local size, lc, for elements close to the stationary cylinder. By this way, a refined mesh is used in the regions
with large gradient fields whereas a loose mesh is used in the areas with low gradient fields. In Appendix E,
a mesh sensitivity analysis clearly shows a convergence of the mass coefficients as lc and lcfine are changed.
The convergence of the damping coefficients is less obvious, especially for high values of Sk. Physically, this
is related to the thickness of the boundary layer, which tends to zero as Sk increases. It follows that a finer
mesh is required close to a cylinder boundary to account for the thickness of the boundary layer and obtain
an accurate estimation of the damping terms. In this work, a compromise between the time of calculation and
the precision (throughout of this work, we indicate the relative deviations of our numerical results compared
to some theoretical or experimental references) is made to choose adequate values for lc and lcfine.

3.3. Results and discussion

The inner cylinder is imposed a sinusoidal displacement in the x-direction for five periods of time,
i.e. u∗ = sin(t∗)ex with t∗ ∈ {0, 10π}. The numerical simulations are performed for ε ∈ {1.25, 1.5, 2},
Sk ∈ {101, 102, 103, 104} and KC = 10−2.

The time evolution of the dimensionless fluid forces is represented in Figs. 3 and 4. A perfect agreement
is obtained between theoretical estimations and numerical predictions. The fluid forces are sinusoidal func-
tions in phase opposition. In Figs. 5 and 6, we show that the amplitudes hj (resp. phases ϕj) decrease (resp.
increase) with both Sk and ε, recovering the asymptotic limits as Sk → ∞ (inviscid limit) and as ε → ∞
(isolated cylinder limit).

The evolution of the added coefficients is depicted in Figs. 7 and 8. The numerical predictions are in very
good agreement with the theoretical estimations, even if a tiny difference is observed in the range of low
Stokes numbers in which the theoretical estimations reach their limit of validity. Still, we confirm that the
self (resp. cross) added coefficients decrease (resp. increase) with both Sk and ε, recovering the asymptotic
limits as Sk → ∞ (inviscid limit) and as ε → ∞ (isolated cylinder limit).

9



Dimensionless time, t* Dimensionless time, t*

Dimensionless time, t* Dimensionless time, t*

D
im

e
n
s
io

n
le

s
s
 �

u
id

 f
o
rc

e
, 

f* j

D
im

e
n
s
io

n
le

s
s
 �

u
id

 f
o
rc

e
, 

f* j

D
im

e
n
s
io

n
le

s
s
 �

u
id

 f
o
rc

e
, 

f* j

D
im

e
n
s
io

n
le

s
s
 �

u
id

 f
o
rc

e
, 

f* j

C1

C2

C1

C2

C1

C2

C1

C2

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 5 10 15 20 25 30

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 5 10 15 20 25 30

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 5 10 15 20 25 30

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 5 10 15 20 25 30

Sk=103

Sk=101

Sk=104

Sk=102

Figure 3: Study 1. Time evolution of the dimensionless fluid forces, for Sk = {101, 102, 103, 104}, ε = 2 and KC = 10−2. The
red and blue solid lines correspond to the theoretical estimations of [62], see Eq. (25). The dashed lines (indistinguishable from
the solid lines for Sk > 102) correspond to the theoretical asymptotic expansion Sk → ∞, see Eq. (27). The symbols correspond
to the numerical predictions.

We introduce the quantity ι, defined as the relative deviation between the numerical and the exact the-
oretical predictions [62] of some quantity Q : ι = |Qth. − Qnum.|/|Qth.|. The Fig. 9 and the Tabs. D.2, D.3
in Appendix D show that ι is very low for the added mass coefficients and it becomes greater for the added
damping coefficients as Sk increases but seems to be weakly influenced by ε. In fact, for large values of Sk,
the damping coefficients become very small and even small differences from the theoretical value produce
significant deviations. Physically, this is related to the thickness of the boundary layer, which tends to zero:
to reduce ι for the damping coefficients a finer mesh at the cylinder boundaries would be required. We shall
note that the theoretical approach [61, 62] is fully linear since the convective term 2KC(v∗ · ∇) v∗ of the
Navier-Stokes equation (19b) is neglected. In the numerical simulations, the nonlinear convective term is re-
tained through a small but nonzero Keulegan-Carpenter number KC = 10−2. However, this difference might
slightly affect the deviation between the theoretical and numerical results. In any case, the relative deviation
for m

(1)
self (resp. mcross) is smaller than ι ≤ 0.6% (resp. ι ≤ 0.2%) while the relative deviation for c

(1)
self (resp.

ccross) is more pronounced, with ι ≤ 5.5% (resp. ι ≤ 6.7%).

A further analysis is carried out to check the scale invariance of the numerical results obtained for ε = 2,
Sk = 104 and KC = 10−2. In the numerical simulation, the dimensional quantities were : D1 = 1, D2 = 2,
U = 10−2 unit of length and Ω = 0.0633 unit of frequency. In this new case study, we set D1 = 0.0316,
D2 = 0.0632, U = 0.0316 × 10−2 unit of length and Ω = 63.3 unit of frequency, such that they are self similar
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Figure 4: Study 1. Time evolution of the dimensionless fluid forces, for ε = {1.25, 1.5, 2}, Sk = 104 and KC = 10−2. The red
and blue solid lines correspond to the theoretical estimations of [62], see Eq. (25). The symbols correspond to the numerical
predictions.

configurations in terms of dimensionless numbers: ε = 2, Sk = 104 and KC = 10−2. The time evolution
of the dimensionless fluid forces is represented in Fig. C.17, for both cases. As expected, the new numerical
predictions

(
m

(1)
self , mcross, c

(1)
self , ccross

)
= (1.71, −2.71, 0.0496, −0.0510) are strictly identical to those

obtained for the first case study
(

m
(1)
self , mcross, c

(1)
self , ccross

)
= (1.71, −2.71, 0.0483, −0.0488), confirm-

ing that the dimensionless added coefficients are functions of Sk, ε and KC.

Finally, we check the symmetry of the fluid added mass and damping matrices for ε = 2, Sk = 104

and KC = 10−2. Therefore, the outer cylinder is imposed a sinusoidal displacement in the x-direction
for five periods of time, i.e. u∗ = sin(t∗)ex with t∗ ∈ {0, 10π}. The time evolution of the dimension-
less fluid forces is represented in Fig. C.18(a). The numerical predictions for the added coefficients are(

m
(2)
self , mcross, c

(2)
self , ccross

)
= (6.71, −2.70, 0.0519, −0.0488) whereas the theoretical estimations are

(
m

(2)
self , mcross, c

(2)
self , ccross

)
= (6.71, −2.71, 0.0460, −0.0460). It follows that the relative deviation be-

tween the two approaches is ι ≤ 12.8%. We attribute this deviation to the mesh refinement and the larger
extension of the surface on which the ALE module acts, compared to the case in which the inner cylinder
moves. In fact, in the ALE approach we need to solve the auxiliary Laplace problem (2) to compute the mesh
velocity, with its own approximations and therefore with an additional numerical error. We shall note that a
finer mesh would have reduced this error and normally we would not have observed such differences.
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Figure 5: Study 1. Evolution of the magnitudes hj and phases ϕj with the Stokes number Sk, for ε = 2 and KC = 10−2.
The red and blue solid lines correspond to the theoretical estimations of [62], see Eq. (25). The dashed lines correspond to the
theoretical asymptotic expansion Sk → ∞, see Eq. (27). The horizontal dashed lines correspond to the theoretical inviscid limits
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Figure 6: Study 1. Evolution of the magnitudes hj and phases ϕj with the dimensionless separation distance ε, for Sk = 104

and KC = 10−2. The red and blue solid lines correspond to the theoretical estimations of [62], see Eq. (25). The dashed
lines correspond to the theoretical asymptotic expansion Sk → ∞, see Eq. (27). The horizontal dashed lines correspond to the
theoretical isolated cylinder limits as ε → ∞. The symbols correspond to the numerical predictions.

As expected, the numerical simulations confirm that the cross added coefficients do not depend on
which cylinder is moving. Indeed, for ε = 2, Sk = 104 and KC = 10−2, when C1 moves we obtained
(mcross, ccross) = (−2.71, −0.0488) whereas when C2 moves we have (mcross, ccross) = (−2.70, −0.0488).
In other words, the dimensionless fluid force acting on C1 as C2 moves is the same as the dimensionless fluid
force acting on C2 as C1 moves, as shown in Fig. C.18(b).

As a conclusion to study 1, we show in Fig. 10 the pressure distribution in the fluid layer when C1 is
imposed a sinusoidal displacement in the x-direction and C2 is stationary, for Sk = 104, ε = 2 and KC = 10−1.
The numerical and theoretical predictions are in very good agreement as the two snapshots look very similar.
Note that these snapshots are taken at a time when C1 has a positive acceleration. As expected from the
inertia effect of the added mass, the fluid pushes C1 in a direction opposite to its acceleration vector, by
creating a negative (resp. positive) pressure on the left (resp. right) side of C1.

In this section we have thoroughly tested the capabilities of our CFD code in predicting the fluid forces in
the case of two coaxial cylinders. In what follows we challenge the code with a more complicated configuration
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Figure 7: Study 1. Evolution of the added coefficients with the Stokes numbers Sk, for ε = 2 and KC = 10−2. The solid lines
refer to the theoretical estimations of [62], see Eq. (25). The dashed lines correspond to the theoretical asymptotic expansion
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consisting of a tube bundle immersed in a viscous fluid.

4. Study 2. Vibrations of a cylinder in a square tube bundle immersed in a viscous fluid

The importance of fluid-elastic forces in tube bundle vibrations can hardly be over-emphasized, in view
of their damaging potential. In the last decades, advanced models for representing the fluid-elastic forces
through added-coefficients have therefore been developed by the community of the domain. Those models
are nowadays embedded in the methodologies that are used on a regular basis by both steam generators
providers and operators, in order to prevent the risk of a tube failure with adequate safety margins. From an
R&D point of view however, the need still remains for more advanced models of the fluid added-coefficients,
in order to fully decipher the physics underlying the observed phenomena.

In what follows, we aim to determine numerically and experimentally (new measurement setup built at
CEA) the effect of the Stokes number Sk on the fluid coefficients, considering the case of a square tube bundle
immersed in a viscous fluid at rest. The numerical results obtained with TrioCFD are thoroughly compared
with the experimental results and also a theoretical approach proposed by [65].

4.1. Presentation of the problem

Let CC be a cylinder of diameter D, located in the central position of a square tube bundle with pitch
P , see Fig. 11 a). The cylinder CC oscillates in the (x, y) plane with a simple harmonic motion of angular
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Figure 8: Study 1. Evolution of the added coefficients with the dimensionless separation distances ε, for Sk = 104 and KC = 10−2.
The solid lines refer to the theoretical estimations of [62], see Eq. (25). The dashed lines correspond to the theoretical asymptotic
expansion Sk → ∞, see Eq. (27). The horizontal dashed lines correspond to the theoretical isolated cylinder limits as ε → ∞.
The symbols correspond to the numerical predictions.

frequency Ω and a displacement amplitude U . All the other cylinders are stationary. The tube bundle is
immersed in a Newtonian and homogeneous fluid, with mass density ρ and kinematic viscosity ν. The fluid
flow generated by the oscillation of the central cylinder is assumed as incompressible and two-dimensional.

Following the approach presented in §3 with D1 = D2 = D, the dimensionless fluid force acting on the
central cylinder writes

f
∗ = −π

(
mself

d2u∗

dt∗2
+ cself

du∗

dt∗

)
, (31)

with mself and cself the self-added mass and damping dimensionless coefficients, respectively. For a given con-
figuration, these coefficients are functions of the pitch ratio P/D, the Keulegan-Carpenter number KC = U/D
and the Stokes number Sk = D2Ω/(2π/ν).

In order to determine the variations of mself and cself with Sk, an experimental setup consisting of 3 × 5
cylinders (plus two columns of 5 half-cylinders at the boundaries) has been built at CEA, see Fig. 11(b). This
setup is briefly presented in the following and the reader is referred to [66, 67, 68] for an extensive description.
Following the principle of the direct method developed by [69], an electro-dynamic shaker (PRODERA 200
N) is used to impose a harmonic motion to the central tube, supported by two parallel flexible steel blades al-
lowing large vibrations in the x direction. The fluid coefficients are directly extracted from the measure of the
fluid force, obtained with two piezo-electric transducers (KISTLER 9132 A). Despite its apparent simplicity,
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Figure 10: Study 1. Dimensionless pressure field, for Sk = 104, ε = 2 and KC = 10−1. The right side figure corresponds to
the theoretical estimation of [61]. The left side figure corresponds to the TrioCFD prediction (the time evolution of the pressure
field can be observed in the corresponding movie [64]).

the method of [69] has been progressively abandoned due to its difficulty to implement experimentally. Still,
here we reconsider this method, performing some new experiments with a tube bundle with pitch P = 0.045
m, made with cylinders of diameter D = 0.03 m and length L = 0.3 m. The central cylinder is imposed a
harmonic displacement in the x-direction with amplitude U = 0.003 m and a frequency F ∈ {5, 10, 15, 20, 25}
Hz. In terms of dimensionless numbers, this corresponds to a pitch ratio P/D = 1.5, a Keulegan-Carpenter
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Figure 11: Study 2. (a) Configuration with 3 × 5 cylinders plus two columns of 5 half-cylinders at the boundaries. The tube
bundle is immersed in a homogeneous fluid with mass density ρ and kinematic viscosity ν. (b) Photo of the experimental setup
designed to measure the fluid coefficients by the direct method.

number KC = 10−1 and a Stokes number Sk ∈ {0.45, 0.90, 1.35, 1.80, 2.25} × 104.

In what follows, we aim to compare the experimental results with TrioCFD predictions. In the discussion
of our results we also refer to the phenomenological estimations of the fluid coefficients provided by [65] for
KC << 1

mself =
π

4
(De/D)2 + 1
(De/D)2 − 1

, cself =
4√
π

1√
Sk

1 + (D/De)3

[1 − (D/De)2]2
, (32)

where De = P (1.07 + 0.56P/D) represents an equivalent diameter introduced to model the confinement of
the tube bundle.

4.2. Numerical setup

The fluid domain is discretized with an unstructured grid of triangles generated by the SALOMÉ platform,
see [70].

Before analyzing the meshes used in the numerical simulations and their properties, we start discussing on
the technique used to design the geometry. In the experimental setup, the geometry is perfectly symmetrical
so that there is no fluid force acting on the cylinders as they are stationary. Numerically, to ensure a zero
hydrostatic force, the same discretization scheme of the fluid domain close to every single cylinder is required,
while maintaining an x and y symmetry of the mesh grid. To do so, we introduce some artificial lines to
subdivide the fluid domain into blocks, each of them being divided into four slices. The automatic and
optimized mesh algorithm ensures that the arrangement of the generated triangles, on each side of the
artificial lines, is perfectly symmetrical, so that all the slices are discretized equally. The MG-CADSurf
Module of SALOMÉ is used for this purpose. We define two mesh sizes: a local size, lcfine, for elements close
to the cylinders and a user size, lc for elements far from the cylinders. A gradation parameter is also set,
∆ = 1.1, as the maximum ratio between the lengths of two adjacent edges.

Firstly, a mesh sensitivity analysis is carried out on a truncated fluid domain (with the last rows of
cylinders cut in half) in order to reduce the time of calculation and speed up the convergence of the grid.
This analysis shows that a mesh grid with lc = 0.0005 and lcfine = 0.00015 is suitable for an accurate
estimation of the fluid forces and the related added coefficients, see Appendix E. Then, the mesh sizes are
kept constant whereas the size of the fluid domain is gradually increased by a distance of ND diameters in
the y-directions, with ND from 1 to 5.
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4.3. Results and discussion

The central cylinder is allowed to move in the x-direction with a sinusoidal displacement of five peri-
ods of time, i.e. u∗ = sin(t∗)ex with t∗ ∈ {0, 10π}. The numerical simulations are performed for Sk ∈
{0.45, 0.90, 1.35, 1.80, 2.25} × 104 corresponding to imposed frequencies in the range F ∈ {5, 10, 15, 20, 25}
Hz. The other parameters are P/D = 1.5 and KC = 10−1.

Before analyzing the variations of the fluid coefficients, we start discussing on the choice of the bound-
ary conditions used in the numerical simulations. In our experiments, the fluid is laterally confined by two
parallel plates. Numerically, a classical wall condition (v = 0) is thus applied on the two lateral sides. The
choice of the boundary condition at the top and bottom sides of the computational domain (y directions) is
more delicate as the tube bundle is experimentally surrounded by two columns of water. To overcome this
problem, we determine the size of the computational domain which yields numerical results poorly sensitive
to this choice. To do so, we test the effect of two types of y boundary conditions: a wall condition and a
Neumann zero stress condition (pn − ρν[∇v + (∇v)T] · n = 0). In Fig. 12, we show the results of this test for
Sk = 1.8 × 104 as the size of the fluid domain increases by a distance of ND diameters in the y-directions.
As ND increases, we observe that mself converges to a constant value that does not depend on the choice
of the y boundary condition. Similarly, the two types of boundary conditions yield very tiny differences on
the values of cself . From these observations, we thus decide to perform all our numerical simulations with
ND = 4 and a wall boundary condition in the y-directions.
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Figure 12: Study 2. Evolution of the self-added coefficients with the size of the fluid domain (the size of the fluid domain increases
by a distance of ND diameters in the y-directions). The blue (resp. red) dashed line corresponds to the numerical predictions
obtained with a wall boundary condition (resp. a Neumann boundary condition) imposed on the top and bottom boundaries of
the computational domain, see Fig. 11. The dimensionless parameters are Sk = 1.8 × 104, P/D = 1.5 and KC = 10−1.

The time evolution of the dimensionless fluid force is represented in Fig. 13. We note that our simulations
are in good agreement with both the theoretical and the experimental estimations, despite a small amplitude
deviation, in particular with the experimental measurements for F ∈ {5, 20} Hz, i.e. Sk ∈ {0.45, 1.8} × 104.
This small deviation will be analyzed more precisely in what follows, considering the variations of the fluid
coefficients mself and cself .

The evolution of the self-added coefficients with the Stokes number, Sk, is depicted in Fig. 14. Our
simulations are in good agreement with the theoretical estimations, in the sense that similar trends are
recovered, bringing out the same behavior of the fluid coefficients. Still, we note that the simulations tend to
underestimate (resp. overestimate) mself (resp. cself ), with a relative deviation always smaller than ι ≤ 3.1%
(resp. ι ≤ 27.5%), see Tab. 1. We attribute these deviations to the fact that the theoretical approach of [65] is
based on a strong approximation in which the tube bundle is modeled as a system of two concentric cylinders,
through the definition of a fictive equivalent diameter determined empirically. Also, the theory of [65] relies
on a linear approach, contrarily to our numerical simulations in which the nonlinear convective term of the
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Figure 13: Study 2. Time evolution of the dimensionless fluid forces, for Sk ∈ {0.45, 0.90, 1.35, 1.80, 2.25} × 104, P/D = 1.5 and
KC = 10−1. The blue solid lines correspond to the theoretical estimations of [65], see Eq. (32). The red solid lines correspond to
the experimental measurements. The orange symbols correspond to the numerical predictions. (For interpretation of the colors
in this figure, the reader is referred to the web version of this article).

dimensionless Navier-Stokes equation is taken into account. The agreement between the numerical predictions
and our experimental results is partial, showing a good agreement for the self-added mass coefficient mself ,
with ι < 7%, but some important deviation for cself , especially for the lowest Stokes number Sk = 0.45×104,
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Figure 14: Study 2. Evolution of the self-added coefficients with the Stokes number Sk, for P/D = 1.5 and KC = 10−1. The
red, blue and orange dashed lines with points refer respectively to the experimental measurements, the theoretical estimations
of [65] and the numerical predictions.

mself cself

SkÞßàáâã

0.45

0.9

1.35

1.8

2.25

Table 1: Study 2. Table of the self-added coefficients as a function of the Stokes number, Sk and relative deviation, ι. The
notations ER and AT refer to the experimental results and the approximate theory. The pitch ratio is P/D = 1.5 and the
Keulegan-Carpenter number is KC = 10−1.

where ι ≈ 105%. It shall be noted that it is very delicate to measure the self-damping coefficient in our
experiments as the determination of cself relies on a tiny phase difference between the fluid force and the
imposed displacement. Also, for such a low Stokes number, i.e. low frequency, our experiments become very
sensitive to parasitic frequencies in the experimental setup, leading to a bad signal to noise ratio. Still, these
first comparisons are very encouraging and should foster further developments of the experimental direct
method.

As a conclusion to study 2, we show in Fig. 15 the pressure distribution when CC is imposed a sinusoidal
displacement in the x-direction, for Sk = 1.8 × 104, P/D = 1.5 and KC = 10−1. Note that this snapshot is
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Figure 15: Study 2. Dimensionless pressure field, for Sk = 1.8 × 104, P/D = 1.5 and KC = 10−1, computed with TrioCFD.

taken at a time when CC has a positive acceleration. As expected from the inertia effect of the added mass,
the fluid pushes CC in a direction opposite to its acceleration vector, by creating a negative (resp. positive)
pressure on the left (resp. right) side of CC .

5. Conclusion and perspectives

In this study, we have first considered the vibration of two coaxial cylinders separated by a viscous fluid.
The ALE numerical approach, based on a mesh update technique that considers the motion of the boundary,
has been carried out with TrioCFD to estimate the fluid forces acting on the two cylinders.

We have started studying the case in which the outer cylinder is stationary while the inner one is imposed
a harmonic motion. The numerical predictions for the fluid forces and the corresponding added coefficients
are in very good agreement with the theoretical estimations, even if a tiny difference is observed in the range
of low Stokes numbers in which the theoretical estimations reach their limit of validity. More specifically, we
have shown that the two forces are in phase opposition and sensitive to the Stokes number, Sk, and the
dimensionless separation distance, ε. The amplitude (resp. phase) of the forces decreases (resp. increases) as
Sk or ε increases, recovering the inviscid limit for large Stokes numbers or the limit of an isolated cylinder
for large ε. The fluid coefficients variations are also correctly reproduced by the numerical simulations, which
are shown to respect the scale invariance expected from the dimensional analysis. Secondly, we have studied
the case in which the inner cylinder is stationary while the outer one is imposed a harmonic motion. From
this study, we have shown that the force acting on the stationary cylinder does not depend on which cylinder
is moving (inner or outer).

After having successfully tested the capabilities of the ALE method implemented in TrioCFD, in the
configuration of two coaxial cylinders, we have considered the problem of a vibrating cylinder located in the
central position of a square tube bundle immersed in a viscous fluid. We have shown that the numerical
predictions for the self-added mass coefficient are in good agreement with the results of our experiments
led at CEA and a theoretical estimation used by engineers. The numerical predictions for the self-added
damping coefficient are also in good agreement with the theoretical estimation. They partially agree with the
experimental results, showing an important divergence for low Stokes numbers. However, such a deviation
is mainly due to our experimental setup, which exhibits a strong sensitivity to parasitic frequencies for low
Stokes numbers.

In conclusion, the ALE method implemented in TrioCFD is particularly efficient in solving fluid-structure
interaction problems with a fluid initially at rest. We are now confident that further developments will make
it possible to tackle three-dimensional problems with an incident fluid flow.
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Appendix A. Discretization of the non-linear convection term: MUSCL scheme

In this paragraph, in order to simplify the presentation, we restrict ourselves to the two-dimensional case.
We recall that in the VDF formulation with each degrees of freedom xi of the speed, we associate a control
volume wi (see Fig. A.16). We have:

∫

wi

∇ · (v ⊗ v)dV =
∫

γi

v(v · n)dσ,

where γi represents the faces of the control volume wi.

γij

Gi

Gj

•

•

xi

xj

•
•

S1

S2

•

•

Mij • Ki

Kj

wi

Figure A.16: Control volume wi associate to the DoF xi

In the MUSCL scheme (Monotone Upstream-Centred Scheme for Convective flows) [57], the flow across
the face γij is approximated based on the Simpson interpolation formula:

∫

γij

v(v · n)dσ ≈ | γij |
6

(
vS1

VS1
+ 4vMij

VMij
+ vGj

VGj

)
,

where we have used the notations shown in Fig. A.16 and, if vMij
· nij > 0:






VS1
= vi+ | xjS1 | ∇vi,

VMij
= vi+ | xjMij | ∇vi,

VGj
= 2vMij

− vS1
,

else, 



VS1
= vj+ | xjS1 | ∇vj ,

VMij
= vj+ | xjMij | ∇vj ,

VGj
= 2vMij

− 2vS1
.
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Different slope limiters are used in order to calculate the ∇vi from the gradients associated with the
triangles Ki and Kj sharing the face S1S2:

∇vi =





minmod(∇vKi
, ∇vKj

),
Van-Leer(∇vKi

, ∇vKj
),

Van-Albanda(∇vKi
, ∇vKj

).

with:

minmod(a, b) :=






0 if a · b ≤ 0,

a if | a |<| b |, a · b > 0,

b if | a |>| b |, a · b > 0.

Van-Leer(a, b) :=





0 if a · b ≤ 0,
2a · b

a + b
otherwise.

Van-Albanda(a, b) :=





0 if a · b ≤ 0,
a · b · (a + b)

a2 + b2
otherwise.

Appendix B. Calculation of the time step

Flexibility of the code lets us to choose the most appropriate time integration schemes, with implicit or
explicit temporal time marching.

The explicit schemes require an additional stability criteria (Courant-Friedrichs-Lewy condition) over the
time step of the simulation, ∆t:

∆t < CFL × ∆tstab, (B.1)

where CFL = O(1) and the time step ∆tstab is calculated as the harmonic mean of the convection time step
∆tconv and diffusion one ∆tdiff as:

1
∆tstab

=
1

∆tconv

+
1

∆tdiff

, (B.2)

with: 



∆tconv =
∆x

max(||v||)

∆tdiff =
∆x2

2ν

(B.3)

and ∆x the minimum mesh size of the fluid domain.
Thus, the time step is calculated as:

∆t = min(∆tstab, ∆tmax) × CFL, (B.4)

where ∆tstab is calculated by TrioCFD before each time step and ∆tmax is set by the user.
We can see that the restriction on the stability time step is due to the diffusion time step, especially

in the case of a fine mesh (quadratic term in ∆x). Thus, an implicit treatment of the diffusion term can
considerably reduce the time of calculation. To overcome this problem, one can use an implicit scheme, as in
our case, or can implicitly treat the diffusion term, at each time step using a conjugate gradient approach.
The time step is then calculated only from the convection time step (when an implicit scheme is used, the
time step is calculated as if the convection is completely explicit even if it is semi-implicit).
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Appendix C. Study 1. Further analyses

In this Appendix, we report further results obtained for the case study 1.

Firstly, we check the scale invariance of the numerical results, considering two self similar configurations
in terms of dimensionless numbers: ε = 2, Sk = 104 and KC = 10−2. The time evolution of the dimensionless
fluid forces is represented in Fig. C.17, for both cases. As expected, the numerical predictions are strictly
identical for both configurations, confirming that the dimensionless added coefficients are functions of Sk, ε
and KC.

Then, we check the symmetry of the fluid added mass and damping matrices for ε = 2, Sk = 104 and
KC = 10−2, imposing a sinusoidal displacement on the outer cylinder. The time evolution of the dimensionless
fluid forces is represented in Fig. C.18(a). Here again, a very good agreement between theoretical estimations
and numerical predictions is observed. Also, Fig. C.18(b) shows that the dimensionless fluid force acting on
C1 as C2 moves is the same as the dimensionless fluid force acting on C2 as C1 moves.
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Figure C.17: Study 1. Testing the scale invariance. Time evolution of the dimensionless fluid forces, for Sk = 104, ε = 2 and
KC = 10−2. The solid lines correspond to the numerical predictions performed with D1 = 1 unit of length. The symbols
correspond to the numerical predictions performed with D1 = 0.0316 unit of length.

Appendix D. Study 1. Tables of comparison numerics versus theory

In this Appendix, we report the tables of comparison between the theoretical and numerical values of the
fluid added coefficients for the case study 1, with two coaxial vibrating cylinders. The relative deviation ι is
also reported in the tables. The notations ET and AT refer to the exact and asymptotic theories.

Appendix E. Effect of the mesh size and time step on the fluid added coefficients

In this Appendix, we report the mesh converge analysis performed for both cases study. For the case
study 1, in Tabs. E.6, E.7, E.8, E.9 and E.10 we clearly show a convergence of the mass coefficients as lc and
lcfine are changed. The convergence of the damping coefficients is less obvious, especially for high values of
Sk. Physically, this is related to the thickness of the boundary layer, which tends to zero as Sk increases.
It follows that a finer mesh is required close to a cylinder boundary to account for the thickness of the
boundary layer and obtain an accurate estimation of the damping terms. Moreover, all the simulations are
performed with CFL = 1 to ensure maximum precision, except for the simulations with a low value of the
Stokes number, Sk ∈ {101, 102} and ε = 2 where the CFL is progressively increased from 1 to 10, without
influencing the quality of the results. Following the numerical approach of the case study 1, we perform a
mesh sensitivity analysis on the case study 2, see Tab. E.11.
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Figure C.18: Study 1. Testing the symmetry of the fluid added mass and damping matrices. (a) Time evolution of the dimen-
sionless fluid forces, for Sk = 104, ε = 2 and KC = 10−2. The red and blue solid lines correspond to the theoretical estimations
of [62], see Eq. (25). The symbols correspond to the numerical predictions. (b) Time evolution of the dimensionless fluid force
on the stationary cylinder, for Sk = 104, ε = 2 and KC = 10−2. The solid line corresponds to the numerical predictions as C1

oscillates. The symbols correspond to the numerical predictions as C2 oscillates.

m(1)
self c(1)selfmcross ccross

Table D.2: Study 1. Case 1. Table of the fluid added coefficients as a function of the Stokes number, Sk and relative deviation,
ι. The notations ET and AT refer to the exact and asymptotic theories. The numerical values refer to symbols shown in Fig. 7.
The dimensionless separation distance is ε = 2 and the Keulegan-Carpenter number is KC = 10−2.

Sk CFLlc lc ne m(1)
self c(1)selfmcross ccross

Table E.6: Study 1. Effect of the mesh size on the fluid added coefficients. The dimensionless separation distance is ε = 1.25 and
the Keulegan-Carpenter number is KC = 10−2.
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m(1)
self c(1)selfmcross ccross

Table D.3: Study 1. Table of the fluid added coefficients as a function of the dimensionless separation distance, ε and relative
deviation, ι. The notations ET and AT refer to the exact and asymptotic theories. The numerical values refer to symbols shown
in Fig. 8. The Stokes number is Sk = 104 and the Keulegan-Carpenter number is KC = 10−2.

m(1)
self c(1)selfmcross ccross

Table D.4: Study 1. Testing the scale invariance. Table of the fluid added coefficients and the relative deviation, ι. The notations
ET and AT refer to the exact and asymptotic theories. The numerical values are extracted from the dimensionless fluid forces
shown in Fig. C.17. The Stokes number is Sk = 104, the dimensionless separation distance is ε = 2 and the Keulegan-Carpenter
number is KC = 10−2.

m(j)
self c(j)

self
mcross ccross

Table D.5: Study 1. Testing the symmetry of the fluid added mass and damping matrices. Table of the fluid added coefficients
and the relative deviation, ι. The notations ET and AT refer to the exact and asymptotic theories. The numerical values are
extracted from the dimensionless fluid forces shown in Fig. C.18(b). The Stokes number is Sk = 104, the dimensionless separation
distance is ε = 2 and the Keulegan-Carpenter number is KC = 10−2.
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Sk CFLlc lc ne m(1)
self c(1)selfmcross ccross

Table E.7: Study 1. Effect of the mesh size on the fluid added coefficients. The dimensionless separation distance is ε = 1.5 and
the Keulegan-Carpenter number is KC = 10−2.

Sk CFLlc lc ne m(1)
self c(1)selfmcross ccross

Table E.8: Study 1. Effect of the mesh size on the fluid added coefficients. The dimensionless separation distance is ε = 2 and
the Keulegan-Carpenter number is KC = 10−2.

Sk CFLlc lc ne m(1)
self c(1)selfmcross ccross

3

Table E.9: Study 1. Testing the scale invariance. Effect of the mesh size on the fluid added coefficients. The dimensionless
separation distance is ε = 2 and the Keulegan-Carpenter number is KC = 10−2.

Sk CFLlc lc ne m ( 2)
self c(2)

self
mcross ccross

Table E.10: Study 1. Testing the symmetry of the fluid added mass and damping matrices. Effect of the mesh size on the fluid
added coefficients. The dimensionless separation distance is ε = 2 and the Keulegan-Carpenter number is KC = 10−2.
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Sk(x104) mself cselflc lcfine ∆ CFL

1.8

Table E.11: Study 2. Effect of the mesh size on the fluid added coefficients. The pitch ratio is P/D = 1.5 and the Keulegan-
Carpenter number is KC = 10−1.
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