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Abstract

We present a combined analytical approach and numerical study on the stability of a ring bound

to an annular elastic substrate, which contains a circular cavity. The system is loaded by depres-

surizing the inner cavity. The ring is modeled as an Euler-Bernoulli beam and its equilibrium

equations are derived from the mechanical energy which takes into account both stretching and

bending contributions. The curvature of the substrate is considered explicitly to model the work

done by its reaction force on the ring. We distinguish two different instabilities: periodic wrinkling

of the ring or global buckling of the structure. Our model provides an expression for the critical

pressure, as well as a phase diagram that rationalizes the transition between instability modes.

Towards assessing the role of curvature, we compare our results for the critical stress and the wrin-

kling wavelength to their planar counterparts. We show that the critical stress is insensitive to the

curvature of the substrate, while the wavelength is only affected due to the permissible discrete

values of the azimuthal wavenumber imposed by the geometry of the problem. Throughout, we

contrast our analytical predictions against finite element simulations.
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I. INTRODUCTION

Wrinkling is a stress-driven mechanical instability that occurs when a stiff and slender

surface layer, bonded to a compliant substrate, is subject to compression. This universal in-

stability phenomenon is found in numerous natural and technological/engineering examples,

over a wide range of length scales, including: carbon nanotubes [1], pre-stretched elastomers

used in flexible electronics applications [2], human skin [3], drying fruit [4], surface morphol-

ogy of the brain [5] and mountain topographies generated due to tectonic stresses [6, 7].

Over the past decade, there has been an upsurge of interest in the study of the mechan-

ics of wrinkling, along with a change of paradigm in regarding surface instabilities as an

opportunity for functionality, instead of a first step in the route to structural failure [8, 9].

The first mechanical studies of wrinkling were motivated by the stability of sandwich panels

[10], used in lightweight structural applications, in which the core acts as a soft substrate

for the much stiffer skin. More recently, [11] showed how the wrinkling of a thin film on

an elastomeric substrate can be used to produce complex self-organized patterns. Their

seminal work has instigated the realization of wrinkling through several different actuation

mechanisms, including thermal mismatch [12], tissue growth/atrophy [5, 13, 14], swelling by

a liquid [15] or vapor solvent [16], and pneumatics [17]. The opportunities in applications

opened by such a wide range of external stimuli have enabled the usage of wrinkling in

photonics [18], optics [19], self-assembly [20], microfluidics [21] and morphogenesis [22].

In order to provide a theoretical background to these recent developments, several authors

have built on the pioneering work of [10], who first provided close form solutions for the

critical stress and wavelength obtained when an initially straight beam, adhered to an infinite

plane substrate, is placed under a state of uniaxial compression. [23] extended this work to

consider the case of a plate adhered to a flat substrate under equi-biaxial compression and

performed a nonlinear analysis of the Föppl-von Kármán equations [24, 25]. [26] further

refined these efforts by considering the effect of a finite substrate. Both studies showed

the existence of multiple buckling modes associated with the same value of critical stress.

The stability of these modes under different loadings conditions has been addressed by [27–

29], who produced a stability diagram covering the evolution from low to high values of

overstress. However, experiments by [30] found disagreement at low values of overstress,

suggesting that a finite intrinsic curvature of their experimental system, even if small, may
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play an important role in dictating pattern selection.

Early studies of wrinkling on curved substrates, as in the flat configuration, were also

motivated by a structural problem; in this case, in the context of the stability of the outer

shell of rockets [31–33]. More recent studies that consider instabilities as a possible source of

functionality have led to applications of curved configurations in adhesion [34], microfluidics

[35], morphogenesis of microparticles [36], optics [37] and aerodynamic drag reduction [17].

Curvature also plays a relevant role in the growth of biological systems [38]. Despite these

important emerging applications, the mechanics of wrinkling on curved substrates remains

poorly understood, when compared to the planar counterpart.

Systematic Finite Element simulations of wrinkling in curved systems have been per-

formed [3, 4, 39, 40] that highlighted a complex pattern formation process. These numerical

studies also suggested the possibility for curvature to affect the selected patterns and modify

the relevant characteristic length scales, which calls for a robust theoretical backing. Ana-

lytical predictions are challenged by the difficulty of modeling the stiffness of the substrate,

even in two-dimensional configurations. [41] and [30] used the stiffness provided by [10] for

the flat case, such that their model therefore neglects the contribution of curvature on the

response of the substrate. [4] used the prediction provided by [42], which accounts for cur-

vature but does not consider its influence on the wrinkling wavelength and their prediction

does not converge to the classical planar case when the curvature tends to zero. As such,

there is a need to quantify the effect of curvature on the stiffness of the substrate and its

subsequent influence on wrinkling.

Here, to the best of our knowledge, we provide the first analytical work that accounts for

both the curvature of a (2D) shell-substrate system, as well as the finite size of the substrate.

As an initial step, we focus our study on a curved film adhered to a cylindrical substrate,

instead of dealing with non-zero Gaussian curvature geometries, which is left for a future

study. We assume axial–symmetry to further simplify the system to the 2D problem of a ring

on an annular substrate. Mechanical loading is applied by depressurizing a circular cavity

inside the substrate, which places the system under a state of compression. This geometry is

motivated by recent experiments [17] that demonstrated the usage of wrinkling on spherical

samples for switchable and tunable aerodynamic drag reduction. In our simplified 2D system,

we solve the elasticity problem for the substrate and derive a close form expression for its

stiffness, which is then used in the stability analysis of the ring to quantify the buckling
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patterns.

The paper is organized as follows: In § II, we introduce our system along with its material

and geometrical parameters. We also describe the possible instability modes, and present a

simplified phase diagram, with the aim of providing physical insight on the problem. In § III,

we then introduce the kinematics of the ring attached to the substrate and determine the

stiffness of the substrate. We proceed by defining a strain energy that includes both bending

and stretching of the ring, as well as the effect of the substrate. Energy minimization yields

the equilibrium equations of the problem. An asymptotic expansion is then used to calculate

the principal solution and the bifurcation at the onset of instability. In § IV, we describe

the finite element simulations that we have performed for this same system.

The results of our investigation are presented in § V. Throughout, we directly compare the

analytical predictions to the numerical simulations. We start with the fundamental solution

and the critical conditions that lead to instability. We then construct a phase diagram

which rationalizes the dependence of the instability modes on the governing parameters.

The results for our system are then quantitatively compared to those for wrinkling of a film

on a planar substrate, highlighting the effect of curvature. Finally, § VI summarizes our

findings and provides perspectives for potential extensions of our work in future studies.

II. DEFINITION OF THE PROBLEM

We study the stability of a thin elastic ring, bound to an equally curved 2D substrate

that contains an inner cavity, a schematic diagram of which is presented in Fig. 1(a). The

system is initially at equilibrium, with identical pressures inside and outside of the sample.

Motivated by recent experiments on spherical specimens [17], the system is then loaded

by applying a depressurization, P, to the inner cavity. The thickness of the ring is H,

its Young’s modulus EF and its Poisson’s ratio νF . We refer to EF = EF/(1 − νF 2) as the

reduced Young’s modulus of the film. The substrate is made of a linearly elastic material with

Young’s modulus ES, Poisson’s ratio νS and reduced Young’s modulus ES = ES/(1− νS2).

The thickness of the substrate is R−R0, where R0 is the radius of the inner cavity.

For convenience, we now introduce new rescaled quantities to reduce the number of

parameters of the problem. As such, we use R and EF to normalize lengths and pressures
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FIG. 1. (a) Schematic diagram of our system: a ring is bound to a curved substrate which contains

a circular cavity. The system is loaded by applying a pressure differential between the inside of the

cavity and the outside of the ring. (b-d) Representative examples of the three possible instability

modes of a ring on a curved substrate which contains a cavity that is depressurized. (b) Wrinkling

mode (h = 10−2 and ξ = 103), (c) global buckling mode (h = 10−2 and ξ = 106) and (d) Biot

mode (h = 10−2 and ξ = 102). (e) is a zoom in of (d) that exhibits the deformation of the surface

of the inner cavity in the Biot mode. The adjacent colorbar applies to pictures b-e) and refers to

the maximum principal component of the strain tensor of the mode, which has been normalized

by the maximum value of each configuration.

and define

h =
H

R
, β =

R0

R
, ξ =

EF

ES
, p =

P

EF
, (1)

as the dimensionless thickness, cavity size, stiffness ratio, and pressure, respectively.

The principal solution corresponds to an axisymmetric deformation that leads to a de-

crease of both the inner and outer radii. As the depressurization increases, the onset of

instability is reached. In Fig. 1(b-e) we show representative results obtained from Finite El-

ement Modeling (FEM), of the three possible instability configurations of the ring-substrate

system, for different values of the dimensionless ring thickness, h, and ratio of stiffness,

ξ. For these results, all the other mechanical properties were kept constant: the Poisson’s

ratios of the film and substrate are νF = νS = 0.5, and the dimensionless size of the cavity

is β = 0.2. In the simulations, this is achieved by fixing R = 100 units of length and ES = 1

units of pressure, while changing the values of H, R0 and EF accordingly. More details of

our numerical simulations are provided in §IV.
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The first mode, a representative example of which is shown in Figure 1(b) for h = 10−2

and ξ = 103, corresponds to periodic wrinkling of the film with a well defined wavelength.

The displacements are localized in the region close to the film. The second instability mode,

for example at h = 10−2 and ξ = 106 in Figure 1(c), corresponds to a global buckling of the

structure, where both the ring and the cavity deform into an ellipse such that the wavelength

is λ = πR.

In addition to these two instability modes (wrinkling and global buckling), we have also

numerically observed an instability on the inner surface of the cavity. However, this third

mode does not affect the ring and is only found for low values of cavity size and stiffness

ratio (ξ = 102 and h = 10−2 in Fig. 1c-d). This instability was first discussed by [43] and

we therefore refer to it as the Biot mode; it is local in nature and only depends on the

compressive strain at the inner surface. This type of instability mode has been recently

studied in the case of elastomeric materials with voids by [44] and [45]. Understanding the

specifics of this Biot mode is however outside the scope of our work and we shall not take it

into account in our analytical model and systematic numerical investigation.

A schematic phase diagram of our system is provided in Fig. 2. For low values of h and

ξ, the ring wrinkles with a short wavelength. As either h or ξ are increased, the wavelength

also increases. Once these parameters reach a critical value, represented by the dashed line

in Fig. 2, the instability transitions from wrinkling to global buckling. In what follows, we

focus on rationalizing how the wavelength of the wrinkling mode, and the threshold value

for the transition to global buckling, evolve with the elastic and geometrical parameters of

the system.

III. ANALYTICAL MODEL

The ring is treated as an Euler-Bernoulli beam. The effect of the substrate is modeled as

a restoring force that acts on the ring and is determined by solving the elasticity problem

of the substrate with adequate boundary conditions. Minimization of the potential energy

provides the equilibrium equations of the problem, which are solved using an asymptotic

expansion that yields the principal and bifurcated solutions.
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FIG. 2. Schematic phase diagram of the instability modes of the system, obtained for a critical

value of the pressure differential: i) wrinkling of the ring or ii) global buckling of the structure

(shaded regions). The primary parameters that govern this transition are the stiffness and thickness

ratios: ξ = EF /ES and h = H/R, respectively. The depicted examples from FEM simulations are

for an incompressible film and substrate, νF = νS = 0.5. They were obtained for R = 100 units

of length and ES = 1 units of pressure, while varying H and EF . The colorbar refers to the

maximum principal component of the strain tensor of the mode, which has been normalized by the

maximum value of each configuration.

A. Kinematics, energy formulation and equations of equilibrium

We model the ring as an extensible Euler-Bernoulli beam made of an homogeneous and

isotropic material. Polar coordinates are used to track the position of the ring center-line, C.

The initial configuration of the ring, prior to depressurization, is assumed to be circular. The

origin, O, is located at the center of the cavity, and the initial and equilibrium configurations

of an arbitrary point of C are represented by M0 and M , respectively. Vectors are expressed
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in the physical base (er, eθ), derived from the polar coordinates (r, θ). The initial position

of C is OM0 = (R, 0), as shown in the inset of Fig.1(a). When the system is loaded by

depressurizing the cavity, C deforms into a new configuration given by the position vector

OM = R (1 + v (θ) , u (θ)), where v and u are the dimensionless radial and orthoradial

displacements, respectively.

The infinitesimal arclength of C in the initial and deformed configurations are denoted

by ds0 = |dOM0| and ds = |dOM|, respectively. Moreover, defining the tangent vector

T = dOM/ds, allows us to express the curvature of C in the deformed configuration as

κ/R = |dT/ds|. Here, κ is dimensionless and can be written in terms of v and u as

κ = 1 + (−1 + 2u′ + 2v) v′′ + v2 − v − u′2 + (−u+ v′)u′′ +
1

2

(
v′

2 − u2
)

+ h.o.t., (2)

where the prime notation represents derivation with respect to θ and high order terms

(h.o.t.) are neglected under the assumption of small displacements and moderate rotations.

We now define the elongation of the ring as e = ds/ds0 to express the stretching deformation,

η = (e2 − 1)/2, in terms of v and u as

η =
1

2

[
u′

2
+ v2 + (u− v′)2

]
+ (1 + v)u′ + v, (3)

so that the hoop stress in the film is σ0 = EFη.

Following Euler-Bernoulli beam theory [25], the total energy of deformation E of the ring

is the sum of a stretching energy ES and a bending energy EB,

E = ES + EB =

2πR∫
0

Eds0, (4)

with

ES =

2πR∫
0

EFH

2
η2ds0, (5a)

EB =

2πR∫
0

EFH
3

24R2
(κ− 1)2ds0, (5b)

and E is the energy of deformation per unit length of the initial configuration of the ring.

Assuming that the reaction force of the substrate derives from a potential
2πR∫
0

Wds0, the
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equilibrium states of the ring are the solutions of

δES + δEB −
2πR∫
0

δWds0 = 0, (6)

where δA is the variation of quantity A, for an arbitrary displacement field R (δv, δu), which

is 2π periodic. The computation of the variations in Eq. (6) leads to the Euler-Lagrange

equations for the equilibrium of the ring,

∂E
∂v
−
(
∂E
∂v′

)′

+

(
∂E
∂v′′

)′′

− ∂δW

∂δv
= 0, (7a)

∂E
∂u
−
(
∂E
∂u′

)′

+

(
∂E
∂u′′

)′′

− ∂δW

∂δu
= 0, (7b)

along with static boundary conditions that are naturally satisfied due to the 2π periodicity

condition on the displacements v and u. All derivative terms in Eq. (7b) are explicitly

reported in Appendix A.

B. Asymptotic expansion and reactive force of the substrate

We seek a solution of Eq. (7) as an expansion of the form

v = v0 + εA sin (mθ) +O
(
ε2
)
, (8a)

u = εB cos (mθ) +O
(
ε2
)
, (8b)

where (v0, 0) corresponds to a radial pre-buckling deformation and ε(A sin (mθ) , B cos (mθ))

represents an instability of azimuthal wavenumber m. From the requirement of 2π periodic

functions v and u, m has to be an integer. Also, we consider m > 1 since m = 1 corresponds

to a solid body translation of the ring. The instability displacement field has amplitudes εA

and εB, where ε is a small parameter.

Before substituting Eq. (8) into Eq. (7) and solving at each order in ε, we first need to

determine the work, δW , done by the reaction force, F = −
(
σe⊥ + τe‖

)
, that the substrate

exerts on the ring. The normal stress σ and the tangential stress τ at the interface between

the ring and the substrate are computed by solving the corresponding two-dimensional

elasticity problem using an Airy function, with pressure P at r = R0 and the displacement

field given by Eq. (8), at r = R.
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It is worth to note that in our computation, we enforce the continuity of the displacement

and stress fields at the interface ring/substrate, similarly to [46]. This is a main difference

with previous studies of wrinkling surfaces, e.g. in [33], who assumed zero shear stress and

continuity of the normal stress. Such an approach yields a stretching energy in the ring

much larger than the bending energy, in contradiction to what is expected in the wrinkling

of a thin film [27]. Our explicit solution for the boundary value problem of the substrate is

reported in B.

In short, we find that the stresses σ and τ at the interface are

σ

EF
= k0v0 + kεA sin(mθ)− γp, (9a)

τ

EF
= µεB sin(mθ), (9b)

with the following governing parameters

k0 =
(1− νS) (1− β2)

1− 2νS + β2

1

ξ
, (10a)

k =
(1− νS)

2

(
SA + SB

B

A

)
1

ξ
, (10b)

µ =
(1− νS)

2

(
SB

A

B
+ TB

)
1

ξ
, (10c)

γ =
2β2 (1− νS)

1− 2νS + β2
. (10d)

Here, k0, k, and µ are the dimensionless pre-wrinkling, wrinkling and shear stiffnesses of

the substrate, respectively. The coefficient γ quantifies the effect of pressure, p, on the ring

through the term −γp in Eq. (9a). The value of γ is smaller than one, reflecting the fact that

the transmitted pressure decreases within the substrate. There are however two exceptions

for which γ = 1: the limit where there is no substrate, β → 1, and the limit of a perfectly

incompressible substrate, νS → 0.5, in which the volumetric pressure remains constant

throughout the substrate. The quantities SA, SB and TB used in Eq. (10) are functions

of both the cavity size β and the azimuthal wavenumber m, and their full expressions are

reported in B.

From the solution of the linear elasticity problem for the substrate (see B), the reaction

force, F, has a constant direction along er. However, based on physical intuition, one would

expect the restoring force to change its direction as the ring deforms. Accounting for this

scenario in full would have required solving the elasticity problem for the substrate, with
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nonlinear kinematics. Here, for simplicity, we assume that the magnitude of the restoring

force is given by the solution of the linear elasticity problem, while the direction of the force

is given by the vectors e⊥ and e‖. Depending on which configuration of the ring is used

(initial or deformed), two cases need to be considered to define the normal and tangential

vectors e⊥ and e‖, respectively. If we define these vectors from the initial configuration, then(
e⊥, e‖

)
= (er, eθ), so that the reaction force F keeps a constant direction while the ring

deforms. If we use the deformed configuration, then F is modeled as a follower force whose

direction changes with the ring deformation. In this case,
(
e⊥, e‖

)
= (N,T), where N is the

inward normal vector orthogonal to the ring center-line, in its deformed state. In order to

take both of these options into account in the same model, we define a parameter, χ, which

can take the values χ = 1 or χ = 0, when either the undeformed or deformed configurations

are used. Thus, we express the reaction force and its elementary work per unit length of the

ring as

F = − [(σer + τeθ)χ+ (σN + τT) (χ− 1)] , (11a)

δW = F ·R (δver + δueθ). (11b)

where · is the Euclidean dot product.

1. The principal solution: order 0 in ε

We now proceed to obtain the principal solution and the critical instability modes by

substituing Eq. (8) into Eq. (7) and solving the resulting equations for each order of ε. At

order 0, Eq. (3) for the stretching deformation η yields η0 = v0 = σ0/EF and the linear

approximation of the Euler-Lagrange Eq. (7a)

v0 =
γp

h+ h3/12 + k0
=

σ0

EF
, (12)

relates the dimensionless pressure, p, and the dimensionless hoop stress, σ0/EF , in the ring.

Note that Eq. (7b) is automatically satisfied at order 0 in ε. In the absence of a substrate,

the ratio σ0/P reads

lim
β→1

(σ0
P

)
=

1

h
+O (h) , (13)

and in the limit of the ring that is much stiffer than the substrate we obtain

lim
ξ→∞

(σ0
P

)
=
γ

h
+O (h) , (14)
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so that σ0
P
< lim

ξ→∞

(
σ0
P

)
≤ lim

β→1

(
σ0
P

)
. For νS = 0.5, we have γ = 1 through the definition in

Eq. (10d) and both limits in Eqs. (13) and (14) are equal. Thus, the hoop stress in a very

stiff ring lying on a soft incompressible substrate is the same as the hoop stress in a ring

with no substrate, which serves as a verification of the rationale thus far.

2. The instability: order 1 in ε

At order 1 in ε, the Euler-Lagrange Eqs. (7) write

(a1p+ ã1)A+
(
b1p+ b̃1

)
B = 0, (15a)

(a2p+ ã2)A+
(
b2p+ b̃2

)
B = 0, (15b)

where ai, ãi, bi and b̃i are functions of the azimuthal wavenumber m, the stiffness ratio ξ, the

cavity size β and the substrate Poisson’s ratio νS, reported in full in C. The linear system

in Eq. (15) has a nontrivial solution when its determinant vanishes, which for a given value

of m occurs at the dimensionless pressure

pm =
Pm

EF
=

−ã1b̃2 + b̃1ã2

a1b̃2 + ã1b2 − b1ã2 − b̃1a2
. (16)

The critical azimuthal wavenumber and the dimensionless critical pressure can now be ob-

tained from Eq. (16) by minimizing over all possible values of m

[mc, pc] = min
m=2,3,...

(pm) . (17)

For the general case, this minimization must be performed numerically. However, in the

absence of the substrate, we obtain that mc = 2 and Eq. (16) simplifies to

lim
β→1

(pc) = lim
β→1

(p2) = − 1

4− χ
h3 − 4

(4− χ)2
h5 +O

(
h7
)
. (18)

The term of order h3 corresponds to the classical dimensionless critical pressure for a ring

with no substrate [25, 47–49]. The term in h5 is a correction also reported by [50]. In the

limit of a ring much stiffer than the substrate, we also have mc = 2, with

lim
ξ→∞

(pc) = lim
ξ→∞

(p2) = −1

2

(−1 + 2νS − β2)h3

β2 (−1 + νS) (4− χ)
− 2 (−1 + 2νS − β2)h5

β2 (−1 + νS) (4− χ)2
+O

(
h7
)
, (19)

so that lim
ξ→∞

(pc) ≤ lim
β→1

(pc) < 0. Again, for νS = 0.5, we observe that the limits equal,

corroborating the physical intuition that as the stiffness ratio ξ increases, the effect of the

substrate becomes negligible.
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C. Critical stress, wavelength and comparison to wrinkling on a planar substrate

To determine the effect of curvature on the instability, we compare the critical hoop stress,

σc, in the ring, given by Eq. (12) with p = pc, as well as the wavelength λc = 2πR/mc of the

wrinkling mode, against their counterparts for an initially planar film on a plane substrate

of infinite thickness [23]

σPlane =
EF
4

(
3
ES
∗

EF

)2/3

=
EF
4

(
4(1− νS)2

3− 4νS

3

ξ

)2/3

, (20a)

λPlane = 2πH

(
1

3

EF

ES
∗

)1/3

= 2πH

(
1

3

3− 4νS

4(1− νS)2
ξ

)1/3

, (20b)

where ES
∗

= 4ES(1− νS)2/(3 − 4νS) is the effective stiffness of the substrate. Together,

Eqs. (20) and (12) yield

σc
σPlane

=
4γpc

h+ h3/12 + k0

(
12(1− νS)2

3− 4νS

1

ξ

)−2/3
, (21a)

λc
λPlane

=
1

hmc

(
3− 4νS

12(1− νS)2
ξ

)−1/3
, (21b)

and, in the limit of absence of the substrate, Eq. (21a) reduces to

lim
β→1

(
σc

σPlane

)
=

1

σPlane
lim
β→1

(σc) =
1

σPlane
lim
β→1

(σ2) =
4

4− χ

(
12(1− νS)2

(3− 4νS) ξ

)−2/3
h2+O

(
h4
)
,

(22)

where νS is the Poisson’s ratio of the substrate in the planar case.

In § V D, we shall make use of Eqs. (21) and Eq. (22) to further quantify the sensitivity

of the stress and wavelength to the curvature of the substrate.

IV. NUMERICAL SIMULATIONS

In § V, we will contrast the predictions from the above analysis with the results of a

series of finite element simulations performed using the commercial package Abaqus, with

the BUCKLE analysis, which provides the buckling load and the corresponding eigenmodes.

As in the analytical study, the cylindrical structure was modeled as an annulus of a

soft substrate with a stiffer thin film adhered to its exterior, under plane strain conditions.
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The bonding between the substrate and the film is assumed to be perfect, such that both

share nodes. Negative pressure is applied on the interior surface, to model the effect of the

pressure differential between the inner surface of the annulus (the cavity) and the exterior

of the system. The buckling analysis provides the value of the critical pressure, pc, as well

as the corresponding critical mode. Rigid body motions are removed by constraining the

displacement of two points on the film.

Both substrate and film are modeled as incompressible linearly elastic materials, νS =

νF = 0.5. These results were compared to additional simulations using a Neo-Hookean

model but no difference was observed given the low values of strain involved. The substrate

was modeled using quadrilateral plane strain elements. Due to the incompressibility, the

corresponding hybrid element, CPE4H, was used. The film was modeled using B21 beam

elements. In order to account for the effect of plane strain, the stiffness of the beam is

defined as EF/ (1− ν2F ).

All of the results presented were obtained using 1000 elements in the circumferential

direction, and 150 (R−R0) elements in the radial direction. The mesh size was validated

with a convergence analysis. By way of example, differences less than 0.5% in critical pressure

were obtained when comparing results for a mesh with twice the elements in each direction,

even in the cases of wrinkling with the shorter wavelengths. The deviations between the

two meshes were, however, larger (∼ 5%) for the case when the critical buckling mode is a

Biot instability, due to the infinite number of wavelengths associated to the same buckling

mode. However, as stated in § II, this mode shall not be studied in detail as we focus on

the wrinkling and global buckling loads.

To test the validity of using beam theory to describe the ring in our problem, we also

performed numerical simulations with 2D solid elements (CPE4H, the same used for the

substrate) and found excellent agreement with the simulations using beam elements. How-

ever, in order to achieve such agreement, the mesh needs to be greatly refined, resulting in

a significant increase in computational cost. Attempts to use a mesh size similar to that of

our previous simulations showed clear disagreement. Given the excellent agreement between

the two versions - either using CPE4H (with a fine mesh) or B21 for the ring - as well as

the significantly lower computational cost of the B21 elements, we have decided to use beam

elements for the ring in our analysis.
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V. RESULTS

Having introduced our analytical and numerical methods, we now present the results of

a systematic exploration of the mechanical response of our system for different geometric

and material parameters. Throughout, we provide a direct comparison between analytical

results and numerical simulations, finding good agreement. A few instances of discrepancy

will also be discussed.

For the geometric parameters, we have varied the cavity size, β = R0/R, and the dimen-

sionless thickness, h = H/R. Three representative values were chosen for β (depicted in the

insets of Fig. 3a-c): a small cavity, β = 0.2; a cavity with size half of the external radius,

β = 0.5; and a large cavity, β = 0.8. Moreover, h was varied in the range 10−3 to 10−1.

This parameter has two different physical interpretations. On one hand, for a substrate with

given curvature, i.e. fixed R, increasing h is equivalent to increasing the thickness of the

ring. On the other hand, for a ring of given thickness H, the value of h decreases with the

curvature, 1/R.

For the material properties, we have considered values for the stiffness ratio between the

film and the substrate, ξ = ĒF/ĒS, spanning over five orders of magnitude, from 102 to 107.

The substrate is taken to be incompressible, νS = 0.5, since most of the relevant experiments

that have motivated our study [11, 12, 17, 51] use nearly incompressible elastomeric sub-

strates. Moreover, it is important to note that, even if the analytical model has been derived

assuming a general value of νS, it is expected to be less accurate for increasing deviations

from incompressibility. This was analyzed by [30], who showed that for the wrinkling of

plates deviations when νS = 0.3 are of just a few percent.

In the presentation of our results, we first consider the effect of h and ξ on the hoop-stress

and on the critical pressure. Then, we rationalize the transition from wrinkling to global

buckling, shown in Fig. 1. We finally compare the critical stress and wavelength of the

wrinkling mode to their planar substrate counterparts and discuss the effect of curvature.

A. Hoop stress prior to wrinkling

In Fig. 3, we plot the hoop stress in the ring, normalized by the pressure, σ0/P , as a

function of the dimensionless thickness, h = H/R. We find that the hoop stress decreases
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monotonically with the dimensionless thickness, and increases with both the stiffness ratio

and the cavity size. When the ring is much stiffer than the substrate (i.e. ξ →∞), the hoop

stress scales as σ0/P ∼ (H/R)−1, with a prefactor given by Eq. (14). For a given thickness

of the ring and a given cavity size, the hoop stress in the ring decreases as the curvature of

the substrate increases. This observation is consistent with the classic result for the hoop

stress, σ0 = PR/H, for a depressurized thin-walled cylindrical pressure vessel. This result

can be recovered from Eq. (12) by taking γ = 1, k0 = 0 and performing a Taylor expansion

in h, about 0.

B. Critical pressure

In Fig. 4, we plot the dimensionless critical pressure, |pc| = |Pc|/EF , as a function of

the dimensionless thickness, h, and observe two different regimes. For low values of h, the

ring wrinkles with an azimuthal wavenumber mc � 2, with a critical pressure |pc| that

increases with h. When h reaches a threshold value, h∗, the wavenumber decreases suddenly

to mc = 2; the nature of the instability changes from a wrinkling to a global buckling mode.

In this regime, there is a clear asymptote as ξ → ∞, given by Eq. (19), which corresponds

to the buckling of a ring with no substrate.

Depending on the model used for the reaction force of the substrate (constant direction

force, χ = 1, or follower force, χ = 0, see § III B), Eq. (11) yields two different analytical

predictions, shown in Fig. 4 as a solid line for χ = 0, and a dashed line for χ = 1. We

note that the agreement between FEM simulations and analytical predictions is superior for

χ = 0, in particular for the global mode. In other words, it is better to model the reaction

force of the substrate as a pressure field which remains normal to the ring center-line C as it

deforms, than as a force with constant direction. Thus, from now on, all analytical results

will be only presented for χ = 0.

Despite the overall good agreement between the analytical and numerical results, there

are noticeable discrepancies in the global modes for low values of the stiffness ratio. The

reason is that, for ξ = 102, the strains in the substrate can become significant, such that the

assumptions for our linear theory are no longer valid (see B). A particularly extreme case

is the appearance of Biot modes for β = 0.2 and ξ = 102. These modes, although possible,

only occur in a small region of our parameter space and, as mentioned above, are beyond
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FIG. 3. Pre-instability hoop stress, σ0, in the ring, normalized by the pressure, P , as a function

of the dimensionless ring thickness, h = H/R. Cavity sizes are: (a) β = 0.2, (b) β = 0.5 and

(c) β = 0.8. The Poisson’s ratio of the substrate is νS = 0.5. Analytical predictions are given by

Eq. (12) as solid lines and FEM results are plotted as data points. The legend (bottom right) is

common to all three plots.

the scope of this work.

In short, our model exhibits limitations if the ring and the substrate have comparable

stiffness, or when there is a Biot mode (small cavity). Apart from this extreme combi-

nation of parameters, rarely observed in experimental configurations, the model performs

successfully.
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FIG. 4. Dimensionless critical pressure |pc| = |Pc|/EF versus the dimensionless ring thickness

h = H/R, for several stiffness ratios ξ = EF /ES and cavity sizes β: (a) β = 0.2, (b) β = 0.5 and

(c) β = 0.8. Theory (lines) is given by Eq. (17). The Poisson’s ratio of the substrate is νS = 0.5.

The legend (bottom right) is common to all three plots.

C. Phase diagram

We proceed by focusing on the transition from wrinkling to global buckling, towards

first constructing a phase diagram in the (ξ, h) parameter space and then quantifying the

dependence of the boundary, h∗(ξ), between the two modes on the size of the cavity, β.

Given that we do not have a closed form expression for h∗, we use a numerical method

which tracks any jump from mc = 2 to m∗c > 2 in Eq. (17), when h is decreased.

In Fig. 5(a), we plot h∗ as a function of ξ, for β = 0.5. The boundary between modes

is consistent with a power-law, h∗ ∼ ξ−3, which divides the phase diagram into a wrinkling
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FIG. 5. (a) Phase diagram in the (ξ, h) parameter space, showing the transition boundary, h∗,

from wrinkling to global buckling, for β = 0.5. (b) Phase diagram for β = 0.2 to β = 0.8. Solid

lines are analytical predictions and dotted lines correspond to the numerical fit ξ = f2h
f1 . (c)

Fitting coefficients, f1 and f2, as functions of β. (d) Azimuthal wavenumber of the wrinkling mode

for h = h∗, as a function of β. The Poisson’s ratio of the substrate is νS = 0.5.

domain (h < h∗) and a global buckling domain (h > h∗, shaded region). Again, there is

good agreement between numerical and analytical solutions.

In Fig. 5(b), we extend the phase diagram to cavity sizes from β = 0.2 to β = 0.8. We

predict that the power-law with exponent −3, mentioned above for β = 0.5, is still valid as

β increases, even if there are some deviations towards the higher values. To quantify the

appropriateness of the −3 power-law, we fit a curve of the form ξ = f2h
f1 to the analytically

calculated boundaries. In Fig. 5(c) we plot the fitting parameters f1 and f2 as a function of

β. We find that the exponent is f1 ≈ −3 for β < 0.7, and then decreases rapidly to a value

of f1 ≈ −4.25 for β = 0.8. The decrease of the prefactor f2 is more pronounced and reflects
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the fact that h∗ decreases as β increases.

The evolution of m∗c (i.e. azimuthal wavenumber of the wrinkling mode for h = h∗) as a

function of β and ξ is presented in Fig. 5(d). We observe that m∗c increases with β, while

it is nearly insensitive to ξ. For example, for β = 0.5, we find that m∗c = 9 for ξ > 102 and

m∗c = 10 for ξ = 102. Predictions for ξ > 102 are in relatively good agreement with finite

element simulations, which have shown that m∗c = 10. For ξ = 102, FEM simulations yield

m∗c = 15, pointing out, once again, the limitation of our analytical approach in the limit

when the stiffness of the ring and the substrate become comparable.

D. Comparison of wrinkling in our curved system with that on infinite planar

substrate

Thus far, we have shown that the ring may wrinkle or buckle globally, depending on

the curvature and stiffness of the substrate. We now focus on the wrinkling mode of the

ring, with the aim of comparing the critical stress and wavelength of our curved system

to their counterparts for a infinite planar substrate. We shall center our discussion of this

comparison for β = 0.5. In D, we report the results for β = 0.2 and β = 0.8, which are

qualitatively similar.

In Fig. 6(a), we plot σc/σPlane given by Eq. (21a), as a function of h. For h < h∗

(wrinkling domain), we find that σc/σPlane ≈ 1, in agreement with the FEM simulations.

To further quantify how close to unity is this ratio, in Fig. 6(b) we plot the dimensionless

critical normal force σch/EF as a function of the planar result, σPlaneh/EF . We obtain a

line with unit slope, indicating that the substrate curvature has no significative effect on the

critical stress for wrinkling. From this observation, and using Eq. (12) with σ0 = σPlane, we

write the following approximation for the dimensionless critical pressure,

|pc| =
h+ k0
γ

σPlane

EF
+O

(
h3
)
, (23)

with k0 and γ given by Eq. (10). Finally, back to Fig. 6(a), for h > h∗ (global buckling

domain), we find that σc/σPlane first decreases with h, then reaches a local minimum and

eventually increases as a power-law with slope 2, towards the asymptotic limit given by

Eq. (22). The evolution of σc/σPlane in the global buckling domain is also reproduced well

by FEM simulations.
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FIG. 6. (a) Critical stress σc normalized by its planar substrate counterpart, σPlane, as a function

of the dimensionless ring thickness h = H/R. (b) Dimensionless critical normal force versus planar

substrate counterpart. Analytical predictions (solid lines) are given by Eq. (21a) and FEM results

are shown as data points. Insets are sketches of the wrinkling and global buckling modes. The

cavity size is β = 0.5 and the Poisson’s ratio of the substrate is νS = 0.5. The legend is common

to both plots.

We now investigate the effect of curvature on the wavelength of the instability mode.

In Fig. 7(a), we plot λc/λPlane, given by Eq. (21b), as a function of h. Focusing on the

wrinkling domain, we find that λc/λPlane ≈ 1, in agreement with FEM simulations. In

Fig. 7(b), once again, we quantify how close to unity this ratio is by plotting the critical

wavelength λc as a function of the planar result, λPlane. To first approximation, noting the

large dynamic range (at least two orders of magnitude) in both axes of the plot, we find a

line with unit slope that passes through the origin, suggesting that the substrate curvature

has no significative effect on the wavelength of the wrinkling mode. The only deviations

arise from the discrete nature of the wavenumber, since the geometry of the ring enforces 2π

periodic wrinkling modes. To highlight this phenomenon, in Fig. 7(c), we plot the critical

azimuthal wavenumber mc, given by Eq. (17), as a function of h and we superimpose the

planar substrate result (dashed line), mPlane = 2πR/λPlane. We find that mc is a decreasing

stair function of h. The deviation in wavelength between the curved and planar cases scales

as (|λc − λPlane|)/λPlane ∼ 1/m, which is maximum for m∗c . As shown previously in Fig.
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FIG. 7. (a) Critical wavelength, λc, normalized by its planar substrate counterpart, λPlane, as

a function of the dimensionless ring thickness h = H/R. Analytical predictions (solid lines) are

given by Eq. (21b). (b) Zoom of the wrinkling domain by plotting λc versus λPlane. (c) Azimuthal

wavenumber mc of the wrinkling mode as a function of h. Analytical predictions (solid lines) are

given by Eq. (17). Dotted lines show mc for the planar substrate case. Insets on (a) and (b)

are sketches of the wrinkling and global buckling modes. Inset on (c) is a zoom in showing the

difference in mc for the curved and planar substrates. The cavity size is β = 0.5 and the Poisson’s

ratio of the substrate is νS = 0.5. FEM results shown as data points. The legend (bottom right)

is common to all three plots.

5(d), m∗c increases with β, hence the deviation (|λc−λPlane|)/λPlane is maximum for a small

cavity size. By way of example, for β = 0.5, Fig. 5(d) indicates that m∗c = 9, leading to a

maximum deviation (|λc − λPlane|)/λPlane ≈ 10%, that rapidly decreases as m increases.

22



VI. CONCLUSION

We have considered the two-dimensional problem of a ring bound to an elastic substrate

which contains a cavity that is depressurized. An energy formulation was used to derive

the Euler-Lagrange equations that govern the equilibrium of the ring, and solved them via

an asymptotic expansion. As an improvement to previous results in the literature, our

analytical approach accounts for the effect of curvature in modeling the reaction force of the

substrate. These analytical results were compared with numerical simulations.

We first studied the principal solution, obtaining an expression for the hoop stress in

the ring as a function of the applied pressure. We then performed a stability analysis of

the problem to determine the critical pressure, Pc, and the corresponding instability mode.

Depending on the dimensionless thickness and stiffness ratio (h and ξ) we have identified

two different regimes: local wrinkling of the ring, and global buckling of the structure. The

boundary between both regions of instability was described via a detailed phase diagram,

which quantifies the value of h and ξ at which the transition between instabilities occurs

and takes into account the cavity size, β. Our results can be used as a design guideline to

target a desired mode. Finally, we have shown that the critical stress for wrinkling and the

resulting wavelength do not depend significantly on the curvature of the substrate. However,

curvature imposes a discretization of the wrinkling wavelength due to the periodic closing

conditions of the ring.

Our study focused on a 2D curved system which exhibits instability modes analogous to

the cylindrical pattern found for uniaxial compression of a film on a flat infinite substrate.

Considering more complex loading conditions (e.g. also introducing axial loading) or shells

with non-zero Gaussian curvature, should lead to more complex patterns that deserve to be

investigated further. Having validated the FEM analysis, as well as carefully considering

the elastic response of the curved substrate, extending the study to these other scenarios

and addressing the issue of pattern selection is an exciting avenue for future research.
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Appendix A: Derivative terms in Euler-Lagrange equation

The terms in the Euler-Lagrange equation for the equilibrium of the film, Eq. (7b), are

∂E
∂v

= −h
2

12

(
−2v2 + (2− 4v ′′) v + 2v ′′ − v ′

2
+ 2uu ′′ − 4u ′v ′′ − 2v ′u ′′ + 2u ′

2
+ u2

)(
v ′′ + v − 1

2

)
+

1

2

(
v2 + (2 + 2u ′) v + u ′

2
+ 2u ′ + (u− v ′)

2
)

(1 + v + u ′) (A1a)
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24
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and

∂δW

∂δv
=

1

2

2τ (−1 + χ) (−1 + u ′ + v) (u− v ′)− σ
(
(−1 + χ) v ′2 − 2u (−1 + χ) v ′ + 2 + (−1 + χ)u2
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(A2b)

Appendix B: Response of the substrate

In this appendix we consider the boundary value problem of the substrate, subjected

to the ring displacement R (v (θ) , u (θ)), v and u given by Eq. (8), at the interface r = R

between the ring and the substrate and to the pressure P at r = R0 = βR. The substrate

is assumed to be in a state of plane strain. We note α = 3 − 4νS and introduce the shear

modulus G = ES (1− νS)
/

2. The components of the stress in the substrate are represented

by σrr, σrθ, and the displacement field is (Ur, Uθ). The 2D problem of elasticity is solved by

finding an Airy function of the form [52],

φm (r, θ) = B1r
2 +B2 ln (r) + ε

(
A1r

m+2 + A2r
−m+2 + A3r

m + A4r
−m) sin (mθ) , (B1)

where Ai and Bi are unknown constants determined by the boundary conditions

σrr (R0, θ) = −P, (B2a)

σrθ (R0, θ) = 0, (B2b)

Ur (R, θ) = Rv (θ) , (B2c)

Uθ (R, θ) = Ru (θ) , (B2d)

which are assumed to apply at r = R0 and r = R. The first two equations stand for the

continuity of the stress at the boundary of the cavity, whereas the last two stand for the

continuity of the displacement at the interface between the substrate and the ring.

The stress and displacement fields resulting from the Airy function Eq. (B1) are [53]

σrr (r, θ) = 2B1 +
B2

r2
+

 −A1 (m+ 1) (m− 2) rm − A2 (m+ 2) (m− 1) r−m

−A3m (m− 1) rm−2 − A4m (m+ 1) r−m−2

 sin (mθ) ,

(B3a)
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σrθ (r, θ) =

 −A1m (m+ 1) rm + A2m (m− 1) r−m

−A3m (m− 1) rm−2 + A4m (m+ 1) r−m−2

 cos (mθ) , (B3b)

Ur (r, θ) =
1

2G

B1 (α− 1) r − B2

r
+

 A1 (α−m− 1) rm+1 + A2 (α +m− 1) r−m+1

−A3mr
m−1 + A4mr

−m−1

 sin (mθ)

 ,
(B3c)

Uθ (r, θ) =
1

2G

 −A1 (α +m+ 1) rm+1 + A2 (α−m+ 1) r−m+1

−A3mr
m−1 − A4mr

−m−1

 cos (mθ). (B3d)

Applying the boundary conditions Eq. (B2) to Eq. (B3) yields a linear system for Ai and

Bi, with solution

B1 =
1

2 (β2 + 1− 2νS)

[
ESv0 (1− νS)− Pβ2

]
, (B4a)

B2 =
−R2β2

β2 + 1− 2νS

[
ESv0 (1− νS) + P (1− 2νS)

]
, (B4b)
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2 (−m2 + 1) β2m+2 +m2β2m+4 + β4m+2α + (m2 − 1 + α2) β2m + αβ2
GR−mA

+
(m− 1) β2m+2 + (−m− α + 1) β2m − β2

2 (−m2 + 1) β2m+2 +m2β2m+4 + β4m+2α + (m2 − 1 + α2) β2m + αβ2
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(m+ 1) β2m+2 + β4m+2 + β2m (α−m− 1)

2 (−m2 + 1) β2m+2 +m2β2m+4 + β4m+2α + (m2 − 1 + α2) β2m + αβ2
GRmB,

(B4d)

A3 = − β2 ((α−m+ 1) (m+ 1) β2m +m2β2m+2 + α + 1 +m)

(2 (−m2 + 1) β2m+2 +m2β2m+4 + β4m+2α + (m2 − 1 + α2) β2m + αβ2)m
GR−m+2A

− β2 (m2β2m+2 − 1 + (−m− α + 1) (m+ 1) β2m −m+ α)

(2 (−m2 + 1) β2m+2 +m2β2m+4 + β4m+2α + (m2 − 1 + α2) β2m + αβ2)m
GR−m+2B,
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(B4e)

A4 = − (−m2β2m+2 + (m− 1) (α +m+ 1) β2m − (α−m+ 1) β4m) β2

(2 (−m2 + 1) β2m+2 +m2β2m+4 + β4m+2α + (m2 − 1 + α2) β2m + αβ2)m
GRm+2A

− (m2β2m+2 + (m− 1) (α−m− 1) β2m − (−m− α + 1) β4m) β2

(2 (−m2 + 1) β2m+2 +m2β2m+4 + β4m+2α + (m2 − 1 + α2) β2m + αβ2)m
GRm+2B.

(B4f)

Substituting Ai and Bi into Eq. (B3) yields the stress at the interface r = R

σrr (R, θ) = K0Rv0 +KRεA sin (mθ)− γP, (B5a)

σrθ (R, θ) = MRεB cos (mθ) , (B5b)

where

K0 = ES
1

R

(1− νS) (1− β2)

1− 2νS + β2
, (B6a)

K = ES
1

R

(1− νS)

2

(
SA + SB

B

A

)
, (B6b)

M = ES
1

R

(1− νS)

2

(
SB

A

B
+ TB

)
, (B6c)

γ =
2β2 (1− νS)

1− 2νS + β2
, (B6d)

and

ψSA = 2
(
−m2

(
β4 + 2 + α

)
+ (3 + α)

(
m2 − 1

)
β2 + 2 (α + 1)

)
β2m

−
(
((α + 1)m+ α− 1) β4m − (α + 1)m+ α− 1

)
β2,

(B7a)

ψSB = −2m
(
−m2

(
β4 + 1

)
+ 2

(
m2 − 1

)
β2 + 1 + α

)
β2m

+
(
((α− 1)m+ α + 1) β4m + (α− 1)m− α− 1

)
β2,

(B7b)

ψTB = 2
(
−m2β4 + (1− α)

(
m2 − 1

)
β2 + αm2

)
β2m

−
(
((α + 1)m+ α− 1) β4m − (α + 1)m+ α− 1

)
β2,

(B7c)

ψ =
(
m2β4 −

(
m2 − 1

) (
2β2 − 1

)
+ α2

)
β2m + αβ2

(
1 + β4m

)
. (B7d)
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The dimensionless stress at the interface and the dimensionless stiffness parameters are

obtained from Eq. (B5), by dividing it with EF ,

σ

EF
= k0v0 + kεA sin(mθ)− γp, (B8a)

τ

EF
= µεB sin(mθ), (B8b)

k0 =
K0R

EF
=

(1− νS) (1− β2)

1− 2νS + β2

1

ξ
, (B8c)

k =
KR

EF
=

(1− νS)

2

(
SA + SB

B

A

)
1

ξ
, (B8d)

µ =
MR

EF
=

(1− νS)

2

(
SB

A

B
+ TB

)
1

ξ
, (B8e)

as indicated in Eq. (10).

We note that in the case of an inextensible wrinkling mode, A/B = m, the stiffness K

simplifies to K̃ given by

K̃ = ES
1

R

(1− νS)

2

(
SA + SB

1

m

)
= ES

1

mR

2(1− νS)2 (β−2m − β2m + 2m (1− β−2)) (m2 − 1)

(β−1 − β)2 (m2 − 1) + (β−m − βm)2 (3− 4νS) +
(

3−4νS
β

+ β
)2 , (B9)

which, for a substrate with no cavity, leads to the limiting case

lim
β→0

(
K̃
)

= ES
1

mR

2(1− νS)2 (m2 − 1)

3− 4νS
, (B10)

and, for an infinite plane substrate, yields

lim
R→∞

(
lim
β→0

(
K̃
))

= KPlane = ES
4(1− νS)2

3− 4νS

π

λ
, (B11)

in agreement with [27].
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Appendix C: Terms of the linear stability analysis

The terms ai, ãi, bi and b̃i that appear in Eq. (16) are

a1 = −4ξh

((
m4 +

3

2
− 11

4
m2

)
h2 − 9− 3m2

)
γ

h+ h3/12 + k0
, (C1a)

ã1 = h
((
m2 − 1

)2
h2 + 12

)
ξ + 6 (1− νS)SA, (C1b)

b1 = −4ξh

(
1

4
h2m3 + 12m

)
γ

h+ h3/12 + k0
, (C1c)

b̃1 = −12ξhm+ 6 (1− νS)SB, (C1d)

a2 = −
(
h3m2 + 48h+ 12k0 (1− χ)

)
mξ

γ

h+ h3/12 + k0
+ 12γ (1− χ)mξ, (C1e)

ã2 = −12hmξ + 6 (1− νS)SB, (C1f)

b2 =
(
36hm2 + h3 + 12h+ 12k0 (1− χ)

)
ξ

γ

h+ h3/12 + k0
− 12γ (1− χ) ξ, (C1g)

b̃2 = 12hm2ξ + 6 (1− νS)TB (C1h)

where γ, k0, SA, SB and TB were given in B.

Appendix D: Influence of the cavity size

In Figs. 8 and 9, we plot the h dependence of σc/σPlane and λc/λPlane, for cavity sizes

β = 0.2 and β = 0.8, respectively. These plots are qualitatively similar to those obtained

for β = 0.5 in Figs. 6 and 7, and discussed in §V D of the main text.
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FIG. 8. (a) Critical stress σc normalized by its planar substrate counterpart σPlane, as a function

of the dimensionless ring thickness h = H/R. Analytical prediction is given by Eq. (21a). (b)

Critical wavelength λc normalized by its planar substrate counterpart λPlane, as a function of h.

Analytical prediction is given by Eq. (21b). Insets are sketches of the wrinkling and global buckling

modes. The cavity size is β = 0.2 and the Poisson’s ratio of the substrate is νS = 0.5. The legend

is common to both plots.
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