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ABSTRACT 

 
The importance of fluid-elastic forces in tube bundle 

vibrations can hardly be over-emphasized, in view of their 
damaging potential. In the last decades, advanced models for 
representing fluid-elastic coupling have therefore been 
developed by the community of the domain. Those models are 
nowadays embedded in the methodologies that are used on a 
regular basis by both steam generators providers and operators, 
in order to prevent the risk of a tube failure with adequate safety 
margins. From an R&D point of view however, the need still 
remains for more advanced models of fluid-elastic coupling, in 
order to fully decipher the physics underlying the observed 
phenomena. As a consequence, new experimental flow-
coupling coefficients are also required to specifically feed and 
validate those more sophisticated models. Recent experiments 
performed at CEA-Saclay suggest that the fluid stiffness and 
damping coefficients depend on further dimensionless 
parameters beyond the reduced velocity. 
 

In this work, the problem of data reduction is first 
revisited, in the light of dimensional analysis. For single-phase 
flows, it is underlined that the flow-coupling coefficients 
depend at least on two dimensionless parameters, namely the 
Reynolds number Re  and the Stokes number Sk . Therefore, 
reducing the experimental data in terms of the compound 
dimensionless quantity rV Re Sk  necessarily leads to 
impoverish results, hence the data dispersion. In a second step, 
experimental data are presented using the dimensionless 
numbers Re  and Sk . We report experiments, for a 3x5 square 
tube bundle subjected to water transverse flow. The bundle is 
rigid, except for the central tube which is mounted on a flexible 
suspension allowing for translation motions in the lift direction. 
 

The evolutions of the flow-coupling coefficients with the flow 
velocity are determined using two different experimental 
procedures: (1) In the direct method, an harmonic motion of 
increasing frequency is imposed to the tube. (2) In the indirect 
method, the coefficients are obtained from the modal response 
of the tube (frequency, damping). The coefficient identification 
was performed well beyond the system instability boundary, by 
using active control, allowing an exploration of a significant 
range of flow velocity.  
 
For a given Sk , the results show that: (a) at low Re , the flow-
coupling coefficients are close to zero; (b) at intermediate Re , 
the flow stabilizes the tube; (c) at high Re , the flow destabilizes 
the tube, leading to a damping-controlled instability at a critical
Re . Reducing the data in terms of Re  and Sk  clarifies the 
various experimental "branches", which are mixed when using

rV . The two identification techniques lead to reasonably 
compatible fluid-elastic coefficients. 
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         Dimensionless total damping coefficient 

fC                   Fluid-added damping  
0
fC                   Fluid-added damping in still fluid 
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 0
f f fC C C           Fluid-added damping due to fluid velocity 

sC                   Structural damping of the moving tube 
D                   Tube diameter 
aF                           Excitation fluid force 

0F                   Frequency of first mode in still fluid 

fK                   Fluid-added stiffness 

sK                   Structural stiffness of the moving tube 
L                    Tube length 
l L D                   Tube aspect ratio 

sM                   Structural mass of the moving tube 

fM                   Fluid-added mass 
P                    Tube bundle pitch 
p P D                 Pitch ratio 

gRe DV           Reynolds number 
2

0Sk D F                 Stokes number 

0 22 s f

f

M M
Sc

D L





     Scruton number 

gV                    Gap flow velocity 

 0r gV V DF             Reduced velocity 
X                    Tube modal displacement 
f                     Mass density of the fluid  

                     Kinematic viscosity of the fluid  
0                    Damping of first mode in still fluid 
                    Characteristic length 
M                    Characteristic mass 
                    Characteristic time 
 
 
 
 

 
 
 

INTRODUCTION 
 
The knowledge of the fluid force acting on a structure 

subject to a cross flow is a crucial information that must be 
accounted for when designing heat-exchanger tube bundles. 
The large vibrations resulting from a fluid-elastic instability 
may lead to some mechanical degradation of the concerned 
tube, which may affect the power plant operation and safety. 
This instability can be described as a self-excited feedback 
mechanism between the motion of the structure and the fluid 
forces. Since the pioneering work of Tanaka and Takahara [1], 
several authors [2-10] measured the fluid-elastic force to feed 
the stability criterion models developed by  Connors [11], 
Blevins [12], Chen [2,3], Lever and Weaver [13-15], Price and 
Païdoussis [16-18], Granger et al. [19,20] and Tanaka et al. [21]. 

Still, further experimental work is needed to accurately 
understand the effects of changing the tube mass, damping, 
frequency or diameter, as well as the bundle configuration, even 
for a single flexible tube within a rigid bundle subject to single-
phase flow.  

 
There are basically two techniques for obtaining the fluid-

elastic force. The direct method [1,7-10] is based on imposing 
a controlled oscillatory motion to a given tube within a rigid 
bundle and measuring the forces exerted by the flow as a 
function of the flow velocity and of the motion frequency. The 
fluid-elastic force is obtained from the transfer function 
between the tube displacement and the measured force from 
which the structural inertia term is subtracted. The indirect 
method [4-6,22,23] applies to an instrumented tube, for which 
the fluid-elastic force is extracted from the changes in the modal 
frequency and damping of the vibrating tube. Both techniques 
have advantages and drawbacks, concerning the complexity of 
the setup, the sensitivity to external perturbations and the range 
of parameters that may be explored. Given all these constraints, 
an experimental rig allowing both measuring methods, as well 
as exploring beyond the instability threshold, has been 
developed at CEA, see [4-6, 22,23].  In this paper, we analyse 
these experimental results in the light of a dimensional analysis. 
In particular, we investigate the influence of the tube frequency 
and the water flow velocity on the fluid-elastic force.  

 
 

DIMENSIONAL FLUID-ELASTIC COEFFICIENTS 
 
We consider the vibration of a flexibly mounted tube (diameter
D , length L ), part of a 3x5 square tube bundle (pitch P ), 
immerged in a viscous fluid of volume mass density f , 

kinematic viscosity   and gap velocity gV , see Fig. 1. We note

sM , sC  and sK  the mass, damping and rigidity coefficients of 
the first mode of vibration of the flexible tube in air. The modal 
displacement X  in the lift direction is assumed to satisfy the 
equation:  
 
     s f s f s f aM M X C C X K K X F       , (1) 
 
where aF  is an excitation fluid force considered as independent 
on the tube motion. The modal frequency of the flexible tube in 
still water is 

 
    0 2s s fF K M M   . (2) 

 
As most often assumed, we postulate that the added mass fM  
does not depend on flow velocity, but only on fluid density and 
bundle geometry. In other words, fM  is an unknown function 

fMH  of  , , ,f D L P  :   
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  , , ,

ff M fM H D L P . (3) 

 
On the other hand, we consider that the fluid added damping 

fC  and rigidity fK  depend, at least, on the flexible tube 

frequency 0F , the fluid material properties f , , the gap 

velocity gV , as well as the bundle geometry  
 

  0 , , , , , ,
ff C f gC H F V D L P  , (4) 

 
  0 , , , , , ,

ff K f gK H F V D L P  . (5) 

 
Let 0

fC  be the fluid added damping coefficient in still fluid, 

defined as the value of fC  as 0gV  . Then,  0
f f fC C C  is a 

measure of the effect of the fluid velocity gV  on the fluid added 

damping coefficient fC , and is a function of  

 0, , , , , ,f gF V D L P  : 

 
 

  0, , , , , ,
f

f f gC
C H F V D L P  . (6)  

   
The relations of dependence (3) to (6) constitute a minimal 
model, based on experimental observations, bibliography 
reporting and physical intuition. More advanced models would 
also consider the effect of some other parameters, for e.g. the 
roughness of the tubes.  
 
 
DIMENSIONLESS FLUID-ELASTIC COEFFICIENTS 
 
The dimensional analysis is based on the Vaschy-Buckingham 
theorem. The theorem states that an equation involving n  
physical variables with k fundamental units (usually 3k   in 
classical mechanics) can be reduced to an equation 
involving n k  dimensionless parameters. Thus, introducing a 
scale of length  , mass M  and time  , the equations (3), (5) 
and (6) are physically meaningful if     
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As (7) involves five dimensional quantities with two 
fundamental dimensions (length and mass), it can be reduced to 
a relation between three dimensionless quantities. Similarly, as 
(8) and (9) involve eight dimensional quantities with three 
fundamental dimensions (length, mass and time), they can be 
reduced to a relation between five dimensionless quantities. 
These dimensionless quantities are not unique and derive from 
a specific choice for the characteristic length  , mass M  and 
time  . Picking D  , 2

fM D L  and gD V  , the 
dimensionless equations rewrite 
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with l L D , p P D , gRe DV  , and 0r gV V DF  the   
tube aspect ratio, the pitch ratio, the Reynolds number and the 
reduced velocity, respectively. In what follows, we shall also 
make use of the Stokes number, obtained from the ratio between 
Re  and rV : 2

0rSk Re V D F   . To study the stability of 
the tube, we introduce the total damping coefficient

   0
T s f s fc C C C C   , which also rewrites as  
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Introducing    2

02 s f fSc M M D L    and 

     0
0 02 2s f s fC C M M F     

 as the Scruton number 

and the reduced damping parameter for a flexible tube in a still 
fluid, (13) simplifies to 
 

  1 , , , , .
4 T

D r
T c r

c Vc H V l Re p Sc
Sc

    (14) 

 
It follows that the tube is stable if 0Tc  , unstable if 0Tc   and 
the stability threshold  0Tc   is a function of  , , , ,rV l Re p Sc .  

 
The above dimensionless analysis shows that the fluid-elastic 
coefficients Dc  and Kc  are not a function of rV  only, but also 
depend on the Reynolds number. The reduced velocity has the 
disadvantage to encapsulate both 0F  and gV  in a same 
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dimensionless number, whereas these two parameters are 
independent. Consequently, to distinguish the effect of the 
frequency and the fluid flow on the variation of the fluid-elastic 
coefficient, it is preferable to use the couple of dimensionless 
numbers  ,Sk Re  instead of  ,rV Re . Adopting this point of 
view in the next sections, Dc  and Kc  are seen as functions of 

 , , ,Sk l Re p . Similarly, the total damping coefficient Tc  

depends on  , , , ,Sc Sk l Re p . 
 
EXPERIMENTAL SETUP AND MEASUREMENT 
METHODS 
 

 
 

 
 
 

Figure 1. Bundle and flexibly mounted tube. 
 

 

 
 
 

Figure 2. Experimental setup. 

 
An experimental setup, has been built at CEA to study the 

variations of the fluid-elastic coefficients Dc  and Kc . This 
experimental setup is sketched in figures 1 and 2 and described 
briefly in the following. Readers should refer to [4-6,22,23] for 
an extensive description. The tube bundle has immersed length 

300 mmL   and diameter 30 mmD  , with a pitch ratio
/ 1.5P D  . As depicted in Fig. 1, the moving tube is in the 

central position of a 3 5  square bundle made of rigid tubes 
(plus two columns of 5 half-tubes at the boundaries). The 
central tube is supported by two parallel flexible steel blades 
allowing large vibrations in the lift direction. The tube bundle 
is subject to a cross water flow with a gap speed in the range 

0 ~ 6 m/sgV  . In terms of dimensionless numbers, this range 

of variation for gV  yields 50 ~ 10Re  . The fluid-elastic 

coefficients Dc  and Kc  are measured using two experimental 
approaches.  

 
In the indirect method, the motion of the flexible tube is 

free and the measurement of its displacement and velocity is 
provided by a laser transducer (Keyence LK-G500). In order to 
investigate the variations of the fluid-elastic coefficients well 
beyond the stability threshold, a feedback control loop made of 
an electro-dynamical shaker was used, see [4-6,23]. The 
coefficients Dc  and Kc  are obtained from the variations of the 
tube motion frequency and damping. This technique for 
extraction of the fluid-elastic coefficients from the modal 
parameters is simple and proved robust enough. Since three 
coefficients are to be extracted from only two modal 
parameters, the assumption of a constant added mass (e.g. a 
velocity-independent flow inertia coefficient) has to be 
somewhat arbitrarily enforced, which is a disadvantage of this 
identification method. Any possible changes in fM  due to the 
fluid velocity will then be reflected in the coupling coefficient

fK . The modal frequency of the moving tube is set by changing 
the thickness of the blades or by adding a suitable mass to the 
moving fixture. Several configuration tests, denoted L1, L2, L3, 
L3B, L4B and L4TI, see Table 1, have been performed, 
covering a large range of frequencies 0 13 ~ 39 HzF  . The 
second modal frequency is much larger than 0F , such that the 
tube dynamics is mainly a rigid translation. 

 
In the direct method, an harmonic motion of imposed 

frequency is directly applied to the tube, thanks to a PRODERA 
shaker, see Fig. 2. The fluid force acting on the flexible tube is 
only measured in the lift direction with a KISTLER sensor. The 
coefficients Dc  and Kc  are directly extracted from the measure 
of the fluid force. This method, first introduced by Tanaka in 
the 80’s and mainly followed by Chen in the 90’s has yield some 
interesting results. However, despite its apparent simplicity, it 
has been progressively abandoned due to its difficult 
experimental implementation. Three measurement campaigns, 

FLOW DIRECTION 

Electro-dynamical 
shaker  PRODERA  

shaker  

Laser 
transducer  
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denoted L1TI 2017, L1TI 2018 and L3TI have been conducted, 
with imposed frequencies covering the range 0 13 ~ 39 HzF  .    

 

 
 

Table 1. Tested configurations. Indirect method. 

 

 
EXPERIMENTAL RESULTS 

 
In this section, we present the experimental measurements 

of  Dc , Kc  and Tc , obtained from the indirect and direct 
methods. We focus on the evolution of these dimensionless 
coefficients with the Reynolds and the Stokes numbers. On the 
following figures, curves with identical colours correspond to 
configuration tests with similar Stokes numbers, see Table 1.  

 
The measurements of Dc  obtained from the indirect 

method are shown in Fig. 3. Whatever the Stokes number, a 
clear general trend is observed. At low Reynolds numbers, 

0Dc  , such that the fluid velocity has a negligible effect on 
the stability of the tube. At intermediate Reynolds numbers, 

Dc  becomes negative such that the tube is getting stabilized. 
In this range of Re , some kinetic energy is conveyed by the 
vibrating tube to the fluid, which in turn propagates this energy 
through the far domain. This corresponds to an energy loss for 
the tube leading to a damping of its vibrations. It is believed that 
the energy propagation through the far domain is enhanced by 
some fluid vortices whose existence still needs to be proven. At 
high Reynolds numbers, Dc  increases and the tube becomes 

unstable for some critical cRe , corresponding to 0Tc  . In 
this range of Re , some elastic and kinetic energy is conveyed 

by the fluid motion to the tube. This corresponds to an energy 
gain for the tube whose vibrations are amplified. In this range, 
we note that Dc  decreases with the Stokes number Sk , such 
that a tube with a high frequency is more stable than a tube with 
a low frequency. 

 
In figures 4, 5 and 6, we compare the measurements of Dc  

obtained from the indirect method and the direct method. For 
41,169 10Sk    (i.e. 0 13 HzF  , figure 4) and 41,7 10Sk    

(i.e. 0 18 HzF  , figure 5) the two methods yield similar 
experimental results. For 42,382 10Sk    (i.e. 0 26 HzF  , 
figure 6), significant differences are observed, especially at low 
Reynolds numbers. We attribute these differences to a bad 
signal to noise ratio due to some parasitic frequencies in the 
experimental setup as the forcing frequency 0F   of the direct 
method is increased. Also, at high forcing frequencies, the 
precise determination of the fluid-elastic force is complicated 
as most of the measured force has an inertia origin.    

 
The measurements of Kc  obtained from the indirect 

method are shown in Fig. 7. At low Reynolds numbers, the data 
are scattered and difficult to analyze in the sense that no special 
trend is clearly observed.  However, if the fluid velocity has a 
negligible effect on the dynamics of the structure, as it is 
believed from the analysis of Dc , then one would expect that

0Kc  . At intermediate Reynolds numbers, Kc  becomes 
positive such that the relative rigidity of the tube diminishes. As 
already pointed out, this could be related to the existence of 
some fluid vortices interacting with the structure. At high 
Reynolds numbers, Kc  decreases such that the relative rigidity 
of the tube is enhanced. Still, Kc  being positive, the total 
rigidity s fK K of the tube in a flowing fluid is smaller than 

its rigidity sK  in a fluid at rest. Thus, in this range of Re , the 
frequency of the tube vibrations is smaller than 0F .   

 
The evolution of the total damping coefficient Tc  is shown 

in Fig. 8. The variations of this coefficient are directly related 
to those of Dc  through the equation (14). Consequently, at low 
Reynolds numbers, 0Dc   yields 1Tc  . In this range of 
Re  the fluid velocity does not affect the stability of the 
structure. At intermediate Reynolds numbers, Tc increases (i.e. 

Dc  decreases), meaning that the tube loses some energy and 
gets stabilized. At high Reynolds numbers, Tc  decreases (i.e. 

Dc  increases) meaning that the tube is gaining some energy 
from the fluid, leading to amplified vibrations. Eventually, at a 
critical Reynolds number cRe , the total damping coefficient 
vanishes and the tube becomes unstable. The figure 8 clearly 
shows that the stability threshold cRe  increases with the Stokes 
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number Sk . The determination of the exact relation between 
cRe  and Sk  is however difficult from the present 

experimental results as the configuration tests listed in Table 1 
do not have exactly the same Scruton numbers. Still, we show 
in figure 9 that the representation of Tc  versus the reduced 
velocity rV Re Sk  does not yield a collapse of the 
experimental data on a master curve, in particular close to the 
stability threshold 0Tc  . In other words, the flow-coupling 
coefficients do not only depend on rV , and contrarily to the 
prediction of Connors [11], cRe  is probably not a linear 
function of S k . 

     
Finally, the dependence of the fluid-elastic coefficients 

with the Stokes number might be explained by several physical 
reasons. The most likely one is that the flow regime might be 
triggered by the tube frequency. The tube frequency might also 
affect the time-lag between the tube motion and the fluid forces. 
Whatever the physical explanation, the results presented 
suggest a strong dependence on both the flow Reynolds number 
and the Stokes number, beyond the classicaly assumed 
dependence on the reduced velocity.  

 

 
 

Figure 3. Evolution of the flow added damping coefficient 
Dc  with the Reynolds and the Stokes numbers.  

Indirect method. 
 
 

 
Figure 4. Evolution of the flow added damping coefficient 

Dc  with the Reynolds number.  

Indirect and direct methods. 41.169 10Sk   . 
 
 

 
 

Figure 5. Evolution of the flow added damping coefficient 
Dc  with the Reynolds number. 

 Indirect and direct methods. 41.7 10Sk   . 
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Figure 6. Evolution of the flow added damping coefficient 
Dc  with the Reynolds number.  

Indirect and direct methods. 42.382 10Sk   . 
 
 

 
Figure 7. Evolution of the flow added rigidity coefficient 

Kc  with the Reynolds and the Stokes numbers.  
Indirect method. 

 
 

 
 

Figure 8. Evolution of the total damping coefficient Tc  
with the Reynolds and the Stokes numbers.  

Indirect method. 
 

 
 
 
 
 

 
 

Figure 9. Evolution of the total damping coefficient Tc  
with the reduced velocity and the Stokes number. 

Indirect method 
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CONCLUSIONS 
 

In this work, we have studied the lift vibration of a flexible 
tube subject to a single phase cross flow. The flexible tube is 
located in the central position of a square rigid tube bundle. A 
dimensional analysis shows that the fluid-elastic coefficients 
are not a function of the reduced velocity only, but also depend 
on the Reynolds number. This observation is confirmed in our 
experiments by using two different methods of measurement. In 
the direct method, an harmonic motion of increasing frequency 
is imposed to the tube. In the indirect method, the coefficients 
are obtained from the changes in tube vibration frequency and 
damping. Both methods suggest the existence of three different 
dynamics for the flexible tube. At low Reynolds numbers, the 
fluid velocity has no effect on the stability of the tube. At 
moderate Reynolds numbers, the tube loses some energy and 
gets stabilized. At large Reynolds numbers, the tube gains some 
energy from the fluid and becomes unstable at a critical 
Reynolds. The experiments show that a tube with a high 
frequency is more stable than a tube with a low frequency. 
Finally, it shall be noted that some significant differences are 
observed in comparing the results of measurement from the two 
experimental methods as the Stokes number is increased and as 
the Reynolds numbers is decreased (i.e. low reduced velocities). 
We attribute these differences to a bad signal to noise ratio due 
to some parasitic frequencies in the experimental setup as the 
forcing frequency of the direct method is increased. Still, these 
first comparisons are very encouraging and should foster further 
developments of the direct method. 
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