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Solution methods for the growth of a repeating imperfection in the line of a strut on a nonlinear foundation
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This paper is a theoretical and numerical study of the uniform growth of a repeating sinusoidal imperfection in the line of a strut on a nonlinear elastic Winkler type foundation. The imperfection is introduced by considering an initially deformed shape which is a sine function with an half wavelength. The restoring force is either a bi-linear or an exponential prole. Periodic solutions of the equilibrium problem are found using three dierent approaches: a semi-analytical method, an explicit solution of a Galerkin method and a direct numerical resolution. These methods are found in very good agreement and show the existence of a maximum imperfection size which leads to a limit point in the equilibrium curve of the system. The existence of this limit point is very important since it governs the appearance of localization phenomena.

Using the Galerkin method, we then establish an exact formula for this maximum imperfection size and we show that it does not depend on the choice of the restoring force. We also show that this method provides a better estimate with respect to previous publications. The decrease of the maximum compressive force supported by the beam as a function of the imperfection magnitude is also determined. We show that the leading term

Introduction

The subject of beam buckling can be found in several situations in industrial applications. Among the most studied are the thermal track buckling and the buckling of subsea pipelines under the eect of temperature and/or pressure. In the latter case, buckling can appear and in both the vertical and horizontal planes, according to the existing restraints imposed by the environment and the backll. Numerous authors have studied these two applications due to their high practical importance, and have proposed solution methods to determine buckling loads and post-buckling situations. Along time, the techniques used have progressed, based rstly on analytical analyses and latter on numerical methods mostly derived from nite elements models. Thus, based on some early work by [START_REF] Kerr | On the stability of the railroad track in the vertical plane[END_REF][START_REF] Kerr | Analysis of thermal track buckling in the lateral plane[END_REF] studying the stability of railway tracks subjected to thermal buckling, several authors such as [START_REF] Bournazel | Vertical buckling of buried pipes[END_REF]; [START_REF] Hobbs | Pipeline buckling caused by axial loads[END_REF][START_REF] Hobbs | In-service buckling of heated pipelines[END_REF] have proposed solution methods where the equilibrium equations were solved in post-buckling congurations to establish relevant buckling loads. In these works, the soil was supposed rigid, while the external forces acting on the beam was assumed as constant as a dead weight or constant friction force. One of the key features of these theories is the fact that the loss of contact (or movement) induces a loss of global stiness of the structure which leads to subcritical buckling and innite buckling loads if no imperfection is assumed. Using slightly dierent arguments, other models were proposed in [START_REF] Croll | A simplied model of upheaval thermal buckling of subsea pipelines[END_REF] and Maltby and Calladine (1995b). In the latter work, equilibrium equations were obtained by assuming sine deections in the post-buckling situations and using an approximate Galerkin solution method. This method was compared with numerical solutions in Maltby and Calladine (1995a) and against experimental results in Maltby and Calladine (1995b). Though using an approximate solution method, the approach showed good results with respect to the numerical simulation. In order to improve the earlier methods, numerical models were developed in [START_REF] Ju | Thermal buckling of oshore pipelines[END_REF]; [START_REF] Klever | A dedicated nite-element model for analyzing buckling response of submarine pipelines[END_REF]; [START_REF] Leroy | Behavior of buried exible pipelines[END_REF]; [START_REF] Yun | Model for beam-mode buckling of buried pipelines[END_REF] to incorporate for instance additional non linear effects in the models, such as non linear geometric and material models. One of the key aspects of work related to the study of the upheaval buckling is the study of the localization phenomenon, which was suspected early in the pioneering work of Tveergard andNeedleman (1980, 1981). This aspect was analyzed through numerical simulations in these rst papers and in [START_REF] Hunt | Comparative lagrangian formulations for localized buckling[END_REF]; [START_REF] Hunt | Principles of localized buckling for a strut on an elastoplastic foundation[END_REF], and through analytical approaches based on a double scale expansion of the equilibrium equations in [START_REF] Potier-Ferry | Foundations of elastic postbuckling theory[END_REF], for a beam resting on an elastic non-linear foundation. Based on these results, the study of the localization phenomenon, was continued by using Galerkin techniques (see [START_REF] Wadee | Eects of periodic and localized imperfections on struts on nonlinear foundations and compression sandwich panels[END_REF][START_REF] Whiting | A galerkin procedure for localized buckling of a strut on a nonlinear elastic foundation[END_REF] using the displacement envelopes obtained through the double-scale expansion of [START_REF] Potier-Ferry | Foundations of elastic postbuckling theory[END_REF]. A lot of attention has also been paid to the estimation of the mechanical restraint induced by the soil friction and to the eect of backll on the pipeline behavior, since the corresponding forces were found to highly inuence the mechanical behavior of the pipe. In order to feed the corresponding models, experiments were performed (see [START_REF] Palmer | Uplift resistance of buried submarine pipelines: comparison between centrifuge modeling and full-scale tests[END_REF][START_REF] Schaminee | Soil response for pipeline upheaval buckling analyses: full-scale laboratory tests and modelling[END_REF]Trautmann et al., 1985a,b) either through centrifuge testing of small-scale pipeline models or through direct testing of buried full scale pipe sections.

The present paper is an attempt to provide additional solutions for the study of the growth of a repeating imperfection in the line of a strut on a nonlinear foundation. In this work, the foundation is supposed to act through an either bi-linear or exponential regularized friction model relating the interaction line force to the transverse displacement (see section 2). These two kinds of models are indeed found in the above mentioned papers describing the soilpipe interaction models. In the former case, a solution method (piecewise solution) in section 3 is proposed by explicitly solving the equilibrium equation in the regions where the foundation acts linearly and where the friction force is constant, and by connecting the two solutions by adequate boundary solutions. Alternatively, a Galerkin approach of the same problem is developed in section 3 and leads to an explicit solution of the problem, which is developed for the two regularization models. The piecewise solution and the Galerkin approach are consequently compared together and with numerical solutions of the problem in section 4. The post-buckling problem is then studied through the Galerkin approach which provides precise analytical solutions, focusing on the characteristics of a limit point (see section 5) in the equilibrium curve depending on the magnitude of the initial imperfection. The imperfection is W 0 , the compressive load is P and the buckling displacement is W . Springs have a nonlinear elastic force-displacement relationship P (W ).

Formulation of the dierential equation

This section formulates the dierential equation for the growth of an imperfection in the line of a strut on a nonlinear Winkler-type foundation, see gure 1. The imperfection is introduced by supposing an initially deformed shape W 0 whose form is

W 0 = A 0 sin ( π L X ) , ( 1 
)
with A 0 the amplitude of the imperfection, L its length and X the longitudinal coordinate. The compressive load is P and the restoring force per unit length is P . These two forces are assumed to be conservative. The dierential equation governing the deection W may be derived either: directly by equilibration of forces; or from the Principal of Virtual Work; or using an energy formulation. The latter approach is adopted here; the total potential energy at rst order being

V = L ∫ 0   1 2 EIW ′′ 2 -P ( 1 2 W ′ 2 + W 0 ′ W ′ ) - W ∫ 0 P (t) dt   dX, (2) 
where a prime indicates dierentiation with respect to X. The rst term is the strain energy of bending (EI is the bending stiness of the strut), the second is the work done by the load P and the remainder is the energy stored in the elastic foundation. Equilibrium is given by stationary values of V . In what follows the strut is assumed to be simply supported, such that the conditions at the boundaries are W (0) = W (L) = 0. The calculus of variations on (2) gives, for a virtual displacement δW such that δW (0) = δW (L) = 0

δV = EI [ δW ′ W ′′ ] 0 L + L ∫ 0 [ EIW ′′′′ + P ( W ′′ + W ′′ 0 ) -P (W ) ] δW dX, (3) 
so that the Euler-Lagrange equation and the conditions at the boundaries for a simply supported strut are

EIW ′′′′ + P W ′′ -P (W ) = -P W ′′ 0 , ( 4a 
)
W (0) = 0, (4b) 
W ′′ (0) = 0, (4c) 
W (L) = 0, (4d) 
W ′′ (L) = 0. (4e) 
In equation (4a), P is the compressive load before buckling. The compressive load after buckling, considering a strut of section S, should be written as N = P -ES 2L L ∫ 0 (W ,X ) 2 dX, last term of this expression being a geometric shortening which allows for the additional length introduced by the lateral movement. Therefore, N should be used in the equation for equilibrium. However, [START_REF] Tveergard | On localized thermal track buckling[END_REF] have shown that the buckle will only become unstable if N (y) has a maximum is correct for an isolated halfwave but is not correct for a long strut which contains a sequence of half-waves end-to-end. In such a case the key point is that a localization of the buckling, in which one particular half-wave grows at the expenses of its neighbours, can occur whenever the curve P (y) has a maximum. Under this consideration, and as Maltby and Calladine (1995b) did, we use P instead of N as the load parameter.

The restoring force

The restoring force per unit length is assumed to be nonlinear and two particular P functions are considered. The rst one is referred as the bi-linear function and is dened by 

P (W ) =    -KW if |W | < ∆, -K∆ if W > ∆, K∆ if W < -∆, ( 5 
)
where K is the linear stiness and ∆ the mobilization. These two constants are positive. The second P function considered in this paper is referred as the exponential prole and is dened by

P (W ) =    -K∆ ( 1 -e -W ∆ ) if W > 0, K∆ ( 1 -e W ∆ ) if W < 0. (6) 
The two P functions share the same initial slope and limiting force (see gure 2(a)).

Nondimensionalization

Let's introduce a characteristic length

L char = ( EI K )1 4 and nondimensional quantities l = L L char , x = X L char , w = W ∆ , w 0 = W 0 ∆ , λ = P KL char 2 , p = P K∆ . ( 7 
)
Hence, from (4) the deection w is solution of the dierential problem

w ′′′′ + λw ′′ -p (w) = -λw ′′ 0 , ( 8a 
)
w (0) = 0, (8b) 
w ′′ (0) = 0, (8c)

w (l) = 0, (8d) 
w ′′ (l) = 0, (8e) 
the dimensionless imperfection being

w 0 = a 0 sin ( π l x ) , (9) 
with a 0 = A 0 ∆ . After nondimensionalization, the bi-linear function rewrites

p (w) =    -w if |w| < 1, -1 if w > 1, 1 if w < -1, ( 10 
)
such that the dimensionless mobilization and limiting force equal 1. The nondimensional exponential prole is given by

p (w) = { -(1 -e -w ) if w > 0, 1 -e w if w < 0. (11) 
Figure 2(b) shows the evolution of these two dimensionless restoring forces for w > 0.

Theoretical resolution

In this paper, imperfections with dimensionless lengths l < √ 2π are considered. In order to give a practical meaning to this inequation, let's consider the case of an imperfect railway. The most common rails in France (rail type 50E6) have a weight per meter of about m = 500 N m -1 , a length from 10 to 400 m (length between two joints connection) and a bending stiness of about EI = 4 × 10 6 N m 2 . Considering a coecient of friction φ between steel and concrete of 0.4 and a mobilization ∆ from 0.1 to 1 mm it comes a linear stiness K = mgφ ∆ (g being the gravity) from 2 × 10 5 to 2 × 10 6 N m -2 and a characteristic length L char from 1 to 2 m. Therefore l < √ 2π would correspond to a repeating sinusoidal imperfection in the railway whose half-wavelength is no more than 10 m. In a more general way, l < √ 2π deals with imperfections whose length does not exceed some meters. Therefore the specic calculations described in this paper have been made in the context of a small-scale experimental setup.

For l < √ 2π, the rst buckling mode predicted by the linear analysis is excited when

λ = λ c = ( π l ) 2 + ( π l ) -2 , ( 12 
)
and it has the same shape as the imperfection. In what follows we will also introduce the Euler load λ e

λ e = ( π l ) 2 , ( 13 
)
which is the buckling load of the rst mode when the restoring force equals 0.

Two theories are developed to solve the equilibrium problem. The rst one, named piecewise solution theory is an exact resolution of the equilibrium problem when the bi-linear restoring force is considered. The second theory is based on a Galerkin method: it leads to an approximate resolution of the equilibrium problem by considering equally the bi-linear or the exponential restoring force. To initiate this method, the deection shape is assumed to be a sinusoid, as the imperfection. Explicit solutions of the Galerkin equation are obtained without any assumptions.

Piecewise solution theory

The principle of the piecewise solution theory is to solve (8a) on each piece of the bi-linear function. Then, the solutions are connected thanks to the boundary conditions and assuming the continuity of w, w ′ , w ′′ and w ′′′ at two connecting points x 1 and x 2 . Substituting p (w) by -w and by -1 in (8a) yields respectively

w ′′′′ 1 + λw ′′ 1 + w 1 = -λw ′′ 0 , ( 14a 
)
w ′′′′ 2 + λw ′′ 2 = -1 -λw ′′ 0 . ( 14b 
)
The solutions w 1 and w 2 belong to two ane spaces of dimension 4 given by

w 1 = w 1h + w 1part , ( 15a 
)
w 2 = w 2h + w 2part , ( 15b 
)
where w 1h and w 2h satisfy the homogeneous equations

w 1h ′′′′ + λw 1h ′′ + w 1h = 0, (16a) 
w 2h ′′′′ + λw 2h ′′ = 0. ( 16b 
)
Inserting w 1h = Ae r 1 x and w 2h = Be r 2 x in ( 16) yields two algebraic equations

r 4 1 + λr 1 2 + 1 = 0, (17a) 
r 4 2 + λr 2 2 = 0, (17b) 
whose solutions are

r 1 (1) = 1 2 [ -2λ + 2 ( λ 2 -4 ) 1/2 ] 1/2 , (18a) r 1 (2) = - 1 2 [ -2λ + 2 ( λ 2 -4 ) 1/2 ] 1/2 , (18b) r 1 (3) = 1 2 [ -2λ -2 ( λ 2 -4 ) 1/2 ] 1/2 , (18c) r 1 (4) = - 1 2 [ -2λ -2 ( λ 2 -4 ) 1/2 ] 1/2 , ( 18d 
)
and

r 2 = 0, ± √ λi. ( 19 
)
Let's introduce α i and ω i the real and imaginary parts of r 1 (i) . For λ < 2, the roots r 1 are complex numbers and the function w 1h is

w 1h = A 1 e α 1 x cos (ω 1 x) + A 2 e α 2 x cos (ω 2 x) + A 3 e α 1 x sin (ω 1 x) +A 4 e α 2 x sin (ω 2 x) , ( 20 
)
with A 1 , A 2 , A 3 and A 4 four real constants. For λ = 2, the roots r 1 are double imaginary numbers (r

1 (1) = r 1 (3) and r 1 (2) = r 1 (4) ). The function w 1h is w 1h = (A 1 x + A 2 ) cos (x) + (A 3 x + A 4 ) sin (x) . ( 21 
)
For λ > 2, the roots r 1 are imaginary numbers. The solution w 1h is

w 1h = A 1 cos (ω 1 x) + A 2 cos (ω 3 x) + A 3 sin (ω 1 x) + A 4 sin (ω 3 x) . ( 22 
)
For λ ̸ = 0 the function w 2h is given by

w 2h = B 1 + B 2 x + B 3 cos ( √ λx ) + B 4 sin ( √ λx ) , ( 23 
)
with B 1 , B 2 , B 3 and B 4 four real constants.

Since w 1h and w 2h depend on 4 undetermined constants, these functions will be noted

w 1h (x, A 1 , A 2 , A 3 , A 4 ) and w 2h (x, B 1 , B 2 , B 3 , B 4 ).
The functions w 1part and w 2part appearing in (15a) and (15b) are particular solutions of (14a) and (14b), with w 0 given by (9). Searching w 1part and w 2part as w 1part = Aw 0 and w 2part = Cx 2 + Aw 0 , yields

w 1part = λ λ c -λ w 0 , ( 24a 
)
w 2part = - 1 λ x 2 2 + λ λ e -λ w 0 . (24b)
Finally, the functions w 1 and w 2 , dened by ( 15a) and (15b), are

w 1 = w 1h (x, A 1 , A 2 , A 3 , A 4 ) + λ λ c -λ w 0 , ( 25a 
)
w 2 = w 2h (x, B 1 , B 2 , B 3 , B 4 ) - 1 λ x 2 2 + λ λ e -λ w 0 . ( 25b 
)
In what follows, we will introduce the function w 3 dened as

w 3 = w 1h (x, C 1 , C 2 , C 3 , C 4 ) + λ λ c -λ w 0 . ( 26 
)
This function is a solution of (14a), as w 1 , but with 4 dierent undetermined constants C 1 , C 2 , C 3 and C 4 .

The aim of the piecewise solution theory is to search for a deection w solution of ( 8) by connecting the functions w 1 , w 2 and w 3 at two unknown points x 1 and x 2 such that

w =            w 1 if x ∈ [0, x 1 [ , 1 if x = x 1 , w 2 if x ∈ ]x 1 , x 2 [ , 1 if x = x 2 , w 3 if x ∈ ]x 2 , l] . ( 27 
)
With these notations, the boundary conditions (8b), (8c), ( 8d) and ( 8e) rewrites

w 1 (0) = 0, (28a) 
w ′′ 1 (0) = 0, (28b) 
w 3 (l) = 0, ( 28c 
)
w ′′ 3 (l) = 0. ( 28d 
)
The continuity of the displacement, the tangent, the curvature and the shear at x 1 yields

w 1 (x 1 ) -w 2 (x 1 ) = 0, (29a) 
w ′ 1 (x 1 ) -w ′ 2 (x 1 ) = 0, (29b) 
w ′′ 1 (x 1 ) -w ′′ 2 (x 1 ) = 0, (29c) 
w ′′′ 1 (x 1 ) -w ′′′ 2 (x 1 ) = 0, (29d) 
and at x 2

w 2 (x 2 ) -w 3 (x 2 ) = 0, (30a) w ′ 2 (x 2 ) -w ′ 3 (x 2 ) = 0, ( 30b 
)
w ′′ 2 (x 2 ) -w ′′ 3 (x 2 ) = 0, (30c) w ′′′ 2 (x 2 ) -w ′′′ 3 (x 2 ) = 0. (30d) 
Equations ( 28), ( 29) and ( 30) lead to a linear system with 12 equations and 12 unknowns (i.e. the amplitudes A i , B i and C i ). A matrix representation of this system is

G (x 1 , x 2 ) a = b (w 0 , x 1 , x 2 ) , ( 31 
)
with G a 12 by 12 real matrix and a the vector of the unknown amplitudes.

The vector b contains the particular solutions w 1part and w 2part which depend on w 0 , x 1 and

x 2 . If det (G) ̸ = 0 then a (w 0 , x 1 , x 2 ) = G -1 (x 1 , x 2 ) b (w 0 , x 1 , x 2 ) . ( 32 
)
Equation ( 32) express the amplitudes as functions of x 1 and x 2 . These two connecting points are obtained by solving the nonlinear system

f 1 (w 0 , x 1 , x 2 ) = w 1 (x 1 ) -1 = 0, (33a) 
f 2 (w 0 , x 1 , x 2 ) = w 2 (x 2 ) -1 = 0. (33b) 
The numerical resolution of this system has been carried out with Matlab, using the fzero function. This function tries to nd a zero of (33) near X 0 , X 0 being a vector of length two. Depending on λ (33) has 0 or several solutions. For small λ, the restoring force p remains linear, such that w = w 1 for any x ∈ [0, l]. Thus, (33) has no solution. For high λ, the restoring force p is nonlinear: the existence and the uniqueness of a solution for (33) is not trivial. In this paper, we only search for a solution which satises

x 1 ∈ [0, l/2],
x 2 ∈ [l/2, l] and x 2 = l -x 1 : the connecting points are symmetric relative to x = l/2. This condition is specied adjusting the X 0 vector used by the fzero function. Typically, X 0 = [l/2; l/2] is a good candidate to easily nd the symmetric connecting points. Once the connecting points are calculated, we determine the amplitudes A i , B i and C i thanks to (32), the functions w 1 , w 2 and w 3 thanks to (25a), (25b), ( 26) and nally the deection w via (27).

Galerkin method

The Galerkin procedure (see [START_REF] Fox | An introduction to the Calculus of Variations[END_REF]) may be seen as being derived from (3) by assuming that the modes which go to make up w are given by

w = n ∑ i=1 y i ϕ i , ( 34 
)
where each y i is an undetermined amplitude of each shape function ϕ i . Depending on the form of w in (34), we can perform periodic or localized buckling analysis. For a very long imperfection in the line of a strut on a cubic foundation, [START_REF] Whiting | A galerkin procedure for localized buckling of a strut on a nonlinear elastic foundation[END_REF] performed the latter, using the functions predicted by the asymptotical analysis (see [START_REF] Wadee | Asymptotic and rayleigh-ritz routes to localized buckling solutions in an elastic instability problem[END_REF] as test functions.

The amplitudes of each shape function are determined numerically using a variable-order variable-step Adams method. In this paper we do not search for localized solutions: we use a unique test function which has the same shape as the imperfection. It means that the deection w is searched as

w = y sin ( π l x ) , ( 35 
)
with y > 0.

Inserting δw in the dimensionless form of (3) gives

l ∫ 0 sin ( π l x ) [ w ′′′′ + λ ( w ′′ + w ′′ 0 ) -p (w) ] dx = 0. (36) 
Writing the restoring force as p (w) = -w -N (w) yields a relation between the load λ and the amplitude y

λ = 1 a 0 + y [ λ c y + Q (y) λ e ] , (37) 
with

Q (y) = 2 l ∫ l 0 sin ( π l x ) N ( y sin ( π l x )) dx. (38) 
The assumption N ( y sin

( π l x )) = N (y) sin ( π l x
) introduced by Maltby and Calladine (1995b) yields N = Q. Such an assumption will not be introduced in this paper. However, we will see how this assumption aects the result.

Note that since the integrand function in ( 38) is l/2-periodic, the Q function does not change when the deection is searched as w = y sin ( nπ l x

) . Then, when the imperfection is w 0 = a 0 sin ( nπ l x

) , the equilibrium paths are still given by (37) with λ e = ( nπ l ) 2 and λ c = λ e + λ -1 e .

In practice, the equilibrium paths predicted by the Galerkin method are plotted using (37), varying y and evaluating λ.

Bi-linear restoring force

Considering the bi-linear restoring force, the Q function rewrites

Q (y) = 2H (y -1) π { y [ arcsin ( 1 y ) - π 2 ] + ( y 2 -1 y 2 )1 2 } , ( 39 
)
where H is the Heaviside function dened by H (y -1) = 0 if y < 1 and H (y -1) = 1 if y ≥ 1. The proof of this result is reported in Appendix A.

Exponential restoring force

Considering the exponential restoring force, the Q function rewrites

Q (y) = 2 [ I1 (y) -L1 (y)] -y, ( 40 
)
where I 1 and L 1 are respectively the modied Bessel and Struve functions of parameter 1. The proof of this result is reported in Appendix B.

Theoretical and numerical results

In this section, the equilibrium paths predicted by the piecewise solution theory, the Galerkin procedure and a numerical resolution of (8) are compared. We also determine the inuence of the restoring force (bi-linear or exponential) on the shape of the equilibrium paths.

Piecewise solution theory

The equilibrium paths predicted by the piecewise solution theory are depicted in gure 3(a) for a 0 from 0 to 1.19. For a small imperfection size, the equilibrium path shows the load increasing at rst but then hits a maximum (limit point, or saddle-node bifurcation point) that is below λ c (or equals for a 0 = 0), and the rest of the path asymptotically decreases to the Euler load when max (w) → ∞. Thus, the system is subcritical. Moreover, the greater the imperfection size, the greater the reduction in the maximum load. Thus the system is imperfection sensitive. For high imperfection sizes, the equilibrium path increases monotically and λ → λ e < λ c when max (w) → ∞.

From these observations we infer the existence of a critical amplitude a 0c such that Function w 1 (solid line), function w 2 (dashed line), function w 3 (dash-dotted line). The functions w 1 and w 2 are connected at x = x 1 ≈ 0.618 (rst vertical dotted line). The functions w 2 and w 3 are connected at x = x 2 ≈ 2.382 (second vertical dotted line). The horizontal dotted line represents the mobilization. l = 3, a 0 = 0, λ = 1.75.

• if a 0 > a 0c then the equilibrium paths do not have a limit point and the equilibrium states are stable,

• if a 0 < a 0c then the equilibrium paths have a limit point (y m , λ m ).

For y < y m (resp. y > y m ) the equilibrium states are stable (resp. unstable). An unstable equilibrium state is represented in gure 4 by connecting the functions w 1 , w 2 , and w 3 .

The determination of a 0c is reported in section 5.

Galerkin method and numerical results

Bi-linear restoring force

For the bi-linear function, the equilibrium paths predicted by the Galerkin method and those obtained via a numerical resolution of (8), using the ODE45 solver from Matlab (this routine uses a variable step Runge-Kutta method), are represented in gures 3(b) and 3(c). The equilibrium paths are identical to those predicted by the piecewise solution theory (the relative error between the two theories and the numerical resolution being less than 0.1%). Since the Galerkin test function and the imperfection have the same shape, in the case of a bi-linear restoring force the deection is an amplication of the imperfection.

Exponential restoring force

For the exponential prole, the equilibrium paths predicted by the Galerkin method and those obtained via a numerical resolution of ( 8), are represented in gures 5 and 6. Once again they are identical, thus the deection w is an amplication of the imperfection. The equilibrium paths predicted by Maltby and Calladine (1995b) have also been reported in gure 5. The assumption introduced by Maltby and Calladine (1995b) (see section 3.2) leads to an underestimation of the load. In section 5 we will show that the existence of a limit point is also aected by this assumption.

In gure 5 the equilibrium paths predicted for a bi-linear restoring force have been reported in order to discuss the inuence of the restoring force. It appears that the restoring force (bi-linear or exponential) has no inuence on the shape of the equilibrium paths (the variations are preserved, it always exists a limit point for small imperfection sizes, the same asymptotes are recovered). Nevertheless, the equilibrium paths for an exponential prole are below the equilibrium paths for a bi-linear prole. Therefore, the choice of the restoring force has a non negligible inuence on the maximal load acceptable by the system. This point is the purpose of the next section.

Limit point

A limit point corresponds to a maximum of λ. Therefore, if it exists, this point (y m , λ m ) satises dλ dy (y m ) = 0, that is to say using (37)

(a 0 + y m ) dQ dy (y m ) -Q (y m ) = -a 0 λ c λ e . ( 41 
)
This equation yields

Q(ym) λe = a 0 λ c -(a 0 + y m ) f (a 0 )
with f a function of a 0 . Inserting this last expression in (37) yields

λ m = λ (y m ) = λ c -f (a 0 ) . ( 42 
)
In practice, the coordinates of a limit point are obtained by varying y m and looking for an amplitude a 0 which satises (41). that y m is an increasing function of a 0 and diverges for the same critical amplitude. This amplitude is determined by enforcing y m → ∞ in (41). It yields

a 0c = 4 π λ -2 e , ( 43 
)
whose dimensional equivalent form is

A 0c = 4 π L 4 π 4 EI K∆. ( 44 
)
This result is of great importance since it governs the appearance of localized solutions, as demonstrated in [START_REF] Tveergard | On localized thermal track buckling[END_REF]. In that paper, they indeed showed the close link between the existence of a limit point in the λ (y) curve and localization, the bifurcation into a localized form occurring a little way beyond this limit point.

Considering the bi-linear restoring force, when a 0 → 0, equation ( 41) has an innity of solutions y m in ]0, 1]. This observation is coherent with the equilibrium paths depicted in gures 3 since the points lying on the plateau λ = λ c are a maximum.

Considering the exponential restoring force, y m → 0 when a 0 → 0. This result is coherent with the equilibrium paths depicted in gures 5(a) and 6(a) since (0, λ c ) is a maximum.

Substituting Q (y m ) by N (y m ) = -y m + 1 -e -ym in (41) (assumption made by Maltby and Calladine (1995b)) and enforcing y m → ∞ yields

a 0c = λ e , ( 45 
)
whose dimensional equivalent form is

A 0c = L 4 π 4 EI K∆, (46) 
which is 4 π times smaller than the exact prediction (43). This result means that a stable equilibrium (i.e. an equilibrium path without a limit point) predicted with the assumption introduced by Maltby and Calladine (1995b), could in fact be unstable (see gure 9).

Figure 7(b) represents the evolution of the limit point λ m as a function of a 0 . Considering the two restoring forces, the same asymptotes are observed: λ m → λ e when a 0 → a 0c and λ m → λ c when a 0 → 0. We also observe that the assumption introduced by Maltby and Calladine (1995b) (see section 3.2) leads to an underestimation of the limit load. These observations are coherent with the equilibrium paths depicted in gures 3, 5 and 6.

Figure 8 shows the evolution of λ c -λ m as a function of a 0 , in a logarithmic scale. This picture allows to determine a scaling for the function f appearing in (42). Considering the bi-linear restoring force, for small amplitudes a 0 , λ m -λ c scales as

λ m -λ c ∼ -a 0 . ( 47 
)
When the exponential restoring force is considered this scaling becomes

λ m -λ c ∼ -a 1/2 0 . ( 48 
)
We observe in gure 8 that the assumption introduced by Maltby and Calladine (1995b) has no inuence on this last scaling.

Conclusion

In this paper, the growth of a repeating sinusoidal imperfection in the line of a strut on a nonlinear elastic Winkler type foundation is considered. The imperfection is introduced by considering an initially sinusoidal deformed shape with an half wavelength. The imperfection length is chosen such that the buckle mode predicted by the linear theory has the same shape as the imperfection (rst buckle mode). The nonlinearities are only due to the restoring force provided by the foundation. This restoring force is expressed as a force-displacement relationship which is either a bi-linear or an exponential function. The equilibrium problem is solved using three dierent methods. The rst one, named piecewise solution theory, is dedicated to the bi-linear prole and leads to an exact resolution of the equilibrium problem. The second one is available whatever the restoring force and is based on a Galerkin procedure. This procedure is initiated with a test function which has the same shape as the imperfection. It yields an explicit relation between the compressive load and the amplitude of the test function. This expression is an exact solution of the Galerkin equation and gives an approximate solution of the equilibrium problem. The last method is a numerical resolution of the equilibrium problem, using the ODE45 solver from Matlab. These three solving methods yield the same results: whatever the restoring force (bi-linear or exponential), the bifurcation is subcritical, the system is imperfection sensitive and the deformed shape is an amplication of the default. Moreover, it exists a critical imperfection size a 0c = 4 π λ -2 e (λ e being the Euler load) which does not depend on the restoring force and such that • if a 0 > a 0c , then the equilibrium path shows the load increasing monotically and remains asymptotic to the Euler load.

• if a 0 < a 0c , then the equilibrium path shows the load increasing at rst but then hits a limit point and the rest of the path is asymptotic to the Euler load.

This paper provides a better estimate of a 0c with respect to previous publications.

For each restoring fore, an approximate mathematical rule is derived relating the imperfection size a 0 to the corresponding limit load λ m . Considering the bi-linear prole (resp. the exponential prole) the limit point scales as λ m -λ c ∼ -a 0 (resp. λ m -λ c ∼ -a 1/2 0 ), where λ c is the critical load issued from the classical linear analysis. Therefore, the scaling of the limit point depends on the regularization method.

In this paper, the restoring force and the compressive load are independant. Nevertheless, in some industrial applications (such as in drilling problems) the restoring force slightly depends on the axial compressive load. Therefore, we are currently carrying out a study with a bi-linear restoring force proportional to the axial load. First results issued from the Galerkin approach indicate that it is necessary to redene the dimensionless parameters, leading to new scalings for the critical imperfection size and the limit load.

where Sgn is the sign function. Since p = -w -N (w) it comes N (w) = (Sgn (w) -w) H (|w| -1) .

(A.2)

For an imperfection with an half-wavelength, it can be assumed that w > 0.

Then, the Q function is (see (38)) 

Q (y) = - 2 l ∫ l 0 [ y sin ( π l x ) -1 ] sin ( π l x

Figure 1 :

 1 Figure1: Half-wavelength imperfection in the line of a strut resting on an elastic foundation. The imperfection is W 0 , the compressive load is P and the buckling displacement is W . Springs have a nonlinear elastic force-displacement relationship P (W ).

Figure 2 :

 2 Figure 2: (a) Restoring force. (b) Dimensionless restoring force. Bi-linear prole (solid line), exponential prole (dashed line). Dotted lines: limiting plateau (horizontal line), mobilization (vertical line).

Figure 3 :

 3 Figure3: Equilibrium paths predicted by (a) the piecewise solution theory, (b) the Galerkin method, (c) the numerical resolution of (8), case of a bi-linear restoring force. On each graph, the equilibrium paths are plotted (from top to bottom) for a 0 = 0, a 0 = 0.0238, a 0 = 0.595, a 0 = 1.19 and l = 3. Dotted lines: critical load (upper line), Euler load (lower line), mobilization (vertical line).

Figure 4 :

 4 Figure 4: Deection predicted by the piecewise solution theory. (b) is a zoom of (a). Function w 1 (solid line), function w 2 (dashed line), function w 3 (dash-dotted line). The functions w 1 and w 2 are connected at x = x 1 ≈ 0.618 (rst vertical dotted line). The functions w 2 and w 3 are connected at x = x 2 ≈ 2.382 (second vertical dotted line). The horizontal dotted line represents the mobilization. l = 3, a 0 = 0, λ = 1.75.

Figure 5 :Figure 6 :Figure 7 :Figure 8 :Figure 9 :

 56789 Figure5: Equilibrium paths predicted by the Galerkin method. Bi-linear restoring force (solid line), exponential restoring force (dashed lines). Galerkin method (upper dashed line), Galerkin method with the Maltby and Calladine (1995b) assumption (lower dashed line). Dotted lines: critical load (upper line), Euler load (lower line), mobilization (vertical line). l = 3, a 0 = 0 (a), a 0 = 0.0238 (b), a 0 = 0.595 (c), a 0 = 1.19 (d).

Q

  0. Therefore, the function Q can be written asQ (y) = -2H (y -(t) -1] sin (t) H (y sin (t) -1) dt. (A.5)The argument of the Heaviside function under the integral sign equals 0 whensin (t) = 1 y , that is to say for t = t 1 = arcsin (1 y) and t = π -t 1 . It comes that the function Q is non zero between t 1 and π -t 1 from (39) is recovered.The terms W n are classical to calculate. For n = 2p and n = 2p + 1 it yields appearing in (B.5) into odd and even indices gives Q (y) = Σ 1 (y) + Σ 2 (y) with Σ 1 (y) =and I1 the modied Struve and Bessel functions of pa- rameter 1. FinallyQ (y) = Σ 1 (y) + Σ 2 (y) = 2 [ I1 (y) -L1 (y)] -y,(B.11) and the result from (40) is recovered.

Appendix A. Function Q, bi-linear restoring force

The aim of this Appendix is to calculate the function Q appearing in (39) when the bi-linear restoring force is considered.

Introduce H the Heaviside function dened as

restoring force

The aim of this Appendix is to calculate the function Q appearing in (40) when the exponential restoring force is considered. For this calculus, we recall that the modied Struve and Bessel functions of parameter 1 can be expended as power series

Substituting the exponential function in (11) by its power series yields