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This paper deals with the small oscillations of two circular cylinders immersed in a viscous stagnant uid. A new theoretical approach based on an Helmholtz expansion and a bipolar coordinate system is presented to estimate the uid forces acting on the two bodies. We show that these forces are linear combinations of the cylinders accelerations and velocities, through viscous uid added coecients. The self-added mass and damping coecients are shown to decrease with both the Stokes number and the separation distance. The cross-added mass and damping coecients tend to increase with the Stokes number and the separation distance. Compared to the inviscid results, the eect of viscosity is to add a correction term which scales as Sk -1/2 . When the separation distance is suciently large, the two cylinders behave as if they were independent and the Stokes predictions for an isolated cylinder are recovered. Compared to previous works, the present theory oers a simple and exible alternative for an easy determination of the uid forces and related added coecients. To our knowledge, this is also the rst time that a numerical approach based on a penalization method is presented in the context of uid-structure interactions for relatively small Stokes numbers, and successfully compared to theoretical predictions.

Introduction

The determination of the uid force acting on an immersed body has been the topic of considerable experimental and theoretical studies, covering a full range of applications, from turbomachinery [START_REF] Furber | Is the weis-fogh principle exploitable in turbomachinery?[END_REF], heat exchangers tube banks [START_REF] Chen | Vibration of nuclear fuel bundles[END_REF][START_REF] Chen | Dynamics of heat exchanger tube banks[END_REF] to biomechanics of plants [START_REF] Langre | Eects of wind on plants[END_REF] or energy harvesting of exible structures [START_REF] Doare | Piezoelectric coupling in energy-harvesting uttering exible plates: linear stability analysis and conversion eciency[END_REF][START_REF] Singh | Energy harvesting from axial uid-elastic instabilities of a cylinder[END_REF][START_REF] Michelin | Energy harvesting eciency of piezoelectric ags in axial ows[END_REF][START_REF] Virot | Coupling between a ag and a spring-mass oscillator[END_REF][START_REF] Eloy | Aeroelastic instability of cantilevered exible plates in uniform ow[END_REF]. Early researches were stimulated by the need of understanding the eect of the inertia of a surrounding uid on the frequency of an oscillating pendulum [10]. Assuming an inviscid uid, [START_REF] Poisson | Sur les mouvements simultanés d'un pendule et de l'air environnant[END_REF][START_REF] Green | Researches on the vibration of pendulums in uid media[END_REF][START_REF] Stokes | On some cases of Fluid Motion[END_REF] showed that the uid make the mass of the pendulum to increase by a factor that depends on the uid density and the geometry of the pendulum. Since these pioneer works, this apparent increase of mass has commonly been referred as the added mass concept. It has been investigated in various experiments [START_REF] Clough | Eects of eathquakes on underwater structures[END_REF][START_REF] Chandrasekaran | Virtual mass of submerged structures[END_REF][START_REF] Stelson | Virtual mass and acceleration in uids[END_REF][START_REF] Keulegan | Forces on cylinders and plates in an oscillating uid[END_REF][START_REF] Garrison | Hydrodynamic loads induced by earthquakes[END_REF][START_REF] Sarpkaya | Separated ow about lifting bodies and impulsive ow about cylinders[END_REF][START_REF] Chandrasekaran | Vibration of submerged structures[END_REF][START_REF] Skop | Add Mass and Damping Forces on Circular Cylinders[END_REF][START_REF] Sarpkaya | Forces on cylinders and spheres in a sinusoidally oscillating uid[END_REF] in which a single body is accelerated in a uid initially at rest. The acceleration of the body induces a uid motion which in returns induces an inertia eect from which an added mass coecient is computed.

The concept of added mass also applies to multiple immersed bodies, although its formulation is more complex as it involves "self-added" and "cross-added" mass coecients. The self-added mass coecient characterizes the force on a body due to its own motion. The cross-added coecient characterizes the uid-coupling force on a stationary body due to the motion of an other body. Considering multiple arrangements, many experimental rigs have been built [START_REF] Yamamoto | Hydrodynamic forces on groups of cylinders[END_REF][START_REF] Yamamoto | Hydrodynamic forces on multiple circular cylinders[END_REF][START_REF] Dalton | Potential ow past a group of circular cylinders[END_REF][START_REF] Chen | Design guide for calculating hydrodynamic mass. part 1: Circular cylindrical structures[END_REF][START_REF] Chen | Added mass and damping of a vibrating rod in conned viscous uids[END_REF][START_REF] Moretti | Hydrodynamic inertia coecients for a tube surrounded by rigid tubes[END_REF][START_REF] Shin | Flow-induced vibration in lmfbr steam generators: A state-of-the-art review[END_REF][START_REF] Chen | Vibration of nuclear fuel bundles[END_REF][START_REF] Chen | Vibration of a group of circular cylinders in a conned uid[END_REF][START_REF] Chen | Vibrations of a group of circular cylindrical structures in a liquid[END_REF][START_REF] Wu | Dynamic analysis of multibody system immersed in a uid medium[END_REF] to obtain precise measurements of these coecients. From a theoretical stand point, the added coecients should be computed from the Navier-Stokes equations. However, in many practical situations, the eects of uid viscosity and compressibility are neglected and a potential theory is carried out. A method of images [START_REF] Hicks | On the motion of two cylinders in a uid[END_REF][START_REF] Greenhill | Functional images in cartesians[END_REF][START_REF] Basset | A Treatise on Hydrodynamics[END_REF][START_REF] Carpenter | On the motion of two cylinders in an ideal uid[END_REF][START_REF] Birkho | Hydrodynamics[END_REF][START_REF] Gibert | Vibration of structures in a static uid medium[END_REF][START_REF] Landweber | Added masses and forces on two bodies approaching central impact in an inviscid uid[END_REF] or a complex analyis based on conformal transformations [START_REF] Wang | Interaction of two circular cylinders in inviscid uid[END_REF][START_REF] Burton | Hydrodynamic forces on two moving discs[END_REF][START_REF] Tchieu | Fluid-structure interaction of two bodies in an inviscid uid[END_REF][START_REF] Scolan | On the use of conformal mapping for the computation of hydrodynamic forces acting on bodies of arbitrary shape in viscous ow. part 2: multi-body conguration[END_REF][START_REF] Crowdy | Analytical solutions for uniform potential ow past multiple cylinders[END_REF][START_REF] Crowdy | A new calculus for two-dimensional vortex dynamics[END_REF] are usually derived to solve the boundary value problem governing the uid potential function. For small amplitude motions not entailing ow separation, the potential theory will accurately give the added mass coecients, and tabulated results are available in the literature for a wide variety of immersed geometries [START_REF]Tables of hydrodynamic mass factors for translational motion[END_REF]. All of the above-mentioned studies have dealt with an ideal uid, whereas the viscous eects may be important for some applications such as bodies relatively close to each other. Considering the small oscillations of a single body in a viscous uid, Stokes [START_REF] Stokes | On the eect of the internal friction of uids on pendulums[END_REF] solved the linearized Navier-Stokes equations and showed that the uid force is a linear combination of two components related to the acceleration of the body and its velocity. The coecients of this linear combination are commonly referred as the viscous added mass and the viscous added damping, respectively. Stokes found that the eect of viscosity is to add to the ideal uid added mass coecient a correction term which depends on the uid mass density and viscosity, the frequency of oscillation, and a characteristic length scale. All of these eects can be regrouped in a single dimensionless number, the Stokes number.

The extension of this work to the case of multiple bodies remains a challenging theoretical problem, mainly due to the viscous boundary conditions to account for. One approach developped in [START_REF] Chen | Vibration of nuclear fuel bundles[END_REF] is to associate to each body a uid potential and a stream function, governed by a Laplace and an Helmholtz equation, respectively. Introducing a polar coordinate system attached to each body, a method of separation of variables is used to expand the uid functions as an innite trigonometric series with unknown coecients. Applying the viscous boundary conditions into each local coordinate system yields a set of linear equations for these unknowns. The number of equations depends on the number of bodies and the number of terms used in the series expansions. In the end, the set of linear equations has to be solved numerically. The two cylinders problem could be solved in this framework, but even for such a restricted number of bodies, the method of [START_REF] Chen | Vibration of nuclear fuel bundles[END_REF] is hardly tractable.

In this paper, we build on our previous work which dealt with ideal uids [START_REF] Lagrange | A new analytical approach for modeling the added mass and hydrodynamic interaction of two cylinders subjected to large motions in a potential stagnant uid[END_REF] to introduce a exible theoretical method and obtain an estimation of the viscous added coecients. In addition to this theoretical work, we perform some numerical simulations where the immersed boundary conditions are considered with a penalization method. The choice of this approach relies on its eectiveness and simplicity of implementation in CFD codes, without deep modication of the algorithmic structure. The basic idea is to add a forcing term in the Navier-Stokes equation set over the area of the immersed body in order to locally impose the velocity of the body [START_REF] Peskin | The immersed boundary method[END_REF]. The method does not require any mesh update related to the motion of the body, any complex geometrical considerations on the position of the wall in regard to the computational grid or any high order interpolations as done with some other approaches (e.g. ALE methods [START_REF] Loubère | Reale: A reconnectionbased arbitrary-lagrangianâeulerian method[END_REF], cut-cell methods [START_REF] Cheny | Ls-stag method: A new immersed boundary/level-set method for the computation of incompressible viscous ows in complex moving geometries with good conservation properties[END_REF], immersed body methods [START_REF] Gronski | A simple and ecient direct forcing immersed boundary method combined with a high order compact scheme for simulating ows with moving rigid boundaries[END_REF]). In the present work, we actually use a variant method initially proposed by [START_REF] Pasquetti | A pseudo-penalization method for high reynolds number unsteady ows[END_REF], called the pseudo-penalization method, in which disappears the stiness nature of the Navier-Stokes equations due to the forcing term. The penalization and pseudo-penalization methods are particularly ecient in uid problems with moderate or high Reynolds numbers (see e.g. [START_REF] Mittal | Immersed boundary methods[END_REF][START_REF] Kadoch | A volume penalization method for incompressible ows and scalar advection diusion with moving obstacles[END_REF][START_REF] Kolomenskiy | Two-and threedimensional numerical simulations of the clap-ing-sweep of hovering insects[END_REF][START_REF] Schneider | Immersed boundary methods for numerical simulation of conned uid and plasma turbulence in complex geometries : a review[END_REF][START_REF] Minguez | High-order large-eddy simulation of ow over the Ahmed body car model[END_REF][START_REF] Nore | Numerical simulation of the von karman sodium dynamo experiment[END_REF]) but has never been tested in problems with low Reynolds numbers, as considered in the present work. This paper is organized as follows. Section 2 presents the problem and the governing equations for two circular cylinders immersed in a viscous uid at rest. In section 3, we propose a theoretical approach based on an Helmholtz decomposition and a bipolar coordinate system to obtain an approximate solution of the uid problem. We derive expressions for the uid potential and stream functions, from which we compute the uid forces on the cylinders. In section 4 we describe the numerical simulations that we have performed to solve the uid problem. The results of our investigation are presented in section 5. Throughout, we directly compare the theoretical predictions to the numerical simulations. We start with comparing the time evolutions of the uid forces acting on the cylinders, when one is stationary while the other is imposed a sinusoidal vibration. We then analyze the dependance of the uid added coecients with the Stokes number and the separation distance. Some scaling laws are derived in the limit of large Stokes numbers. Finally, section 6 summarizes our ndings. We consider the simple harmonic motions of two rigid circular cylinders C j , (j = 1, 2), with centers O j , radii R j , boundaries ∂C j , immersed in an innite 2D viscous uid domain, as illustrated in gure 1. The angular frequency of the cylinders is Ω and their displacement vectors are U j . The uid is Newtonian, homogeneous, of volume mass density ρ and kinematic viscosity ν. The Navier-Stokes equations and the boundary conditions for the incompressible uid ow

(V, P ) write ∇ • V = 0, (1a) ∂V ∂T + ∇V • V + 1 ρ ∇P -ν∆V = 0, (1b) 
V -

dU j dT = 0 on ∂C j , j = {1, 2}. (1c) 
The third equation expresses the continuity of velocities at the cylinder boundaries. The uid force acting on C j is the sum of a pressure and a viscous term, and writes

F j = - ∂C j P n j dL j + ρν ∂C j ∇V + (∇V) T • n j dL j . (2) 
In this equation, n j is the outward normal unit vector to ∂C j , (∇V) T the transposate tensor of ∇V and dL j an innitesimal line element of integration.

Dimensionless equations

In what follows, we use R 2 and Ω -1 as a characteristic length and time. Introducing t = T Ω, we dene the dimensionless cylinders displacements u * j , uid ow (v * , p * ) and uid force f * j as

U j = U u * j , V = U Ω v * , P = ρU R 2 Ω 2 p * , F j = ρU (R 2 Ω) 2 f * j , (3) 
with

U = max (|U 1 |, |U 2 |).
To reduce the number of parameters of the problem we also introduce the rescaled quantities

r = R 1 R 2 , ε = E R 2 , KC = U R 2 , Sk = R 2 2 Ω ν , (4) 
as the radius ratio, separation distance, Keulegan-Carpenter number and Stokes number (i.e. vibration Reynolds number), respectively.

Introducing (3) in (1), the dimensionless Navier-Stokes equations write

∇ • v * = 0, ( 5a 
) ∂v * ∂t + KC∇v * • v * + ∇p * - 1 Sk ∆v * = 0, ( 5b 
) v * - du * j dt = 0 on ∂C j , j = {1, 2}. ( 5c 
)
Introducing (3) in (2), the dimensionless uid force acting on C j write

f * j = - ∂C j p * n j dl j + 1 Sk ∂C j ∇v * + (∇v * ) T • n j dl j , (6) 
with dl j = dL j /R 2 .

Theoretical approach

In the limit of small oscillations, i.e. KC = o(1), the nonlinear convective term in the Navier-Stokes equations is negligible. Introducing u * j = {e it u j }, v * = {e it v}, p * = {e it p}, the equations (5) rewrite

∇ • v = 0, ( 7a 
) iv + ∇p - 1 Sk ∆v = 0, (7b) 
v -iu j = 0 on ∂C j , j = {1, 2}, (7c) 
with the real part operator.

Helmholtz decomposition

We seek a solution of (7) as a superposition of an irrotational and a divergencefree ow (Helmholtz decomposition)

v = ∇ϕ + ∇ × A, (8) 
with ϕ and A = Ae z some unknown potential and stream functions. Introducing this decomposition in [START_REF] Michelin | Energy harvesting eciency of piezoelectric ags in axial ows[END_REF] yields

∆ϕ = 0, (9a) 
∇ × (∆A -iSkA) -Sk∇ (iϕ + p) = 0, ( 9b 
) ∇ϕ + ∇ × A -iu j = 0 on ∂C j , j = {1, 2}. (9c) 
Taking the divergence and the curl of (9b) yields two equations p = -iϕ and ∆A + β 2 A = 0 with β = √ -iSk, (10) from which the pressure and the stream functions can be determined. Let z = x + iy be the complex number whose real and imaginary parts are the cartesian coordinates x and y, measured from the midpoint O of the two cylinders centers, O 1 and O 2 , see gure 2.

Bipolar coordinates

x ε 2 2r O y z ( ) h z ζ = σ τ 2 τ 1 τ ζ 1 O 2 O 1 C 2 C 2π
Let h(z) be the conformal mapping dened as

ζ = σ + iτ = h (z) = i ln z -x B + a z -x B -a , (11) 
with x B = (r 2 -1) / (2d) and

a = d 2 -(1 + r) 2 d 2 -(1 -r) 2 2d , d = r + ε + 1. (12) 
In [START_REF] Poisson | Sur les mouvements simultanés d'un pendule et de l'air environnant[END_REF], 0 < σ ≤ 2π and τ ∈ R are the real and imaginary parts of ζ, respectively. They are also the bipolar coordinates of a point in the plane (x, y). The images of C 1 and C 2 are the straight lines with ordinates τ 1 and τ 2 given by τ 1 = -sinh -1 (a/r) < 0 and τ 2 = sinh -1 (a) > 0.

The Laplace operator and the uid velocity vector in bipolar coordinates are

∆ϕ = 1 κ στ 2 ∂ 2 ϕ ∂σ 2 + ∂ 2 ϕ ∂τ 2 , ( 14a 
) v = 1 κ στ ∂ϕ ∂σ + ∂A ∂τ e σ + ∂ϕ ∂τ - ∂A ∂σ e τ , (14b) 
with κ στ = a/[cosh (τ ) -cos (σ)] the Lamé coecient and 

the physical basis vectors. The uid equations [START_REF] Eloy | Aeroelastic instability of cantilevered exible plates in uniform ow[END_REF] in the bipolar coordinates system write

∂ 2 ϕ ∂σ 2 + ∂ 2 ϕ ∂τ 2 = 0, (16a) 
∂ 2 A ∂σ 2 + ∂ 2 A ∂τ 2 + β 2 κ στ 2 A = 0, (16b) 
∂ϕ ∂σ + ∂A ∂τ = (iu jx )g jy -(iu jy )g jx on τ = τ j , j = {1, 2}, (16c) ∂ϕ ∂τ - ∂A ∂σ = (iu jx )g jx + (iu jy )g jy on τ = τ j , j = {1, 2}, (16d) 
with g jx = κ στ j e x • e τ j , g jy = κ στ j e y • e τ j . These are 2π periodic functions of σ given by

g jx (σ) = -a cos (σ) cosh (τ j ) -1 (cosh (τ j ) -cos (σ)) 2 = ∞ n=1 g jn cos (nσ), (17a) 
g jy (σ) = -a sin (σ) sinh (τ j ) (cosh (τ j ) -cos (σ)) 2 = ∞ n=1 g jn sgn (τ j ) sin (nσ), (17b) 
with g jn = -2nae -n|τ j | .

Ad-hoc problem, uid forces and added coecients

Since the problem is linear in u jx and u jy , the uid functions are linear combinations of the form

ϕ = (u 1x ϕ 1x + u 2x ϕ 2x ) + (u 1y ϕ 1y + u 2y ϕ 2y ) , (18a) A = (u 1x A 1x + u 2x A 2x ) + (u 1y A 1y + u 2y A 2y ) . (18b)
The diculty in nding ϕ jα and A jα arises from the fact that the Helmolhz equation (16b) has a variable coecient, κ στ . Instead, we consider the adhoc problem in which κ στ is replaced by some unknown constant k, that will be determined later on. A method of separation of variables is then used to nd the ad-hoc functions ϕ jα and A jα . The boundary conditions (16c), (16d) along with [START_REF] Keulegan | Forces on cylinders and plates in an oscillating uid[END_REF] indicate that ϕ jα and A jα are linear combinations of cos (nσ) and sin (nσ). Introducing these linear combinations in the Laplace and the Helmholtz equations, we also obtain that ϕ jα (resp. A jα ) is a linear combination of cosh (nτ ) and sinh (nτ ) (resp. cosh (lτ ) and sinh (lτ

) with l = n 2 -(βk) 2 .
All in all, the ad-hoc functions write

ϕ = (iu 1x ) ∞ n=1 cos (nσ) ϕ (1) n (τ 1 , τ 2 , l) cosh (nτ ) + ϕ (2) n (τ 1 , τ 2 , l) sinh (nτ ) -(iu 1y ) ∞ n=1 sin (nσ) ϕ (1) n (τ 1 , τ 2 , l) cosh (nτ ) + ϕ (2) n (τ 1 , τ 2 , l) sinh (nτ ) + (iu 2x ) ∞ n=1 cos (nσ) ϕ (1) n (τ 2 , τ 1 , l) cosh (nτ ) + ϕ (2) n (τ 2 , τ 1 , l) sinh (nτ ) + (iu 2y ) ∞ n=1 sin (nσ) ϕ (1) n (τ 2 , τ 1 , l) cosh (nτ ) + ϕ (2) n (τ 2 , τ 1 , l) sinh (nτ ) , (19a) 
A = (iu 1x ) ∞ n=1 sin (nσ) A (1) n (τ 1 , τ 2 , l) cosh (lτ ) + A (2) n (τ 1 , τ 2 , l) sinh (lτ ) + (iu 1y ) ∞ n=1 cos (nσ) A (1) n (τ 1 , τ 2 , l) cosh (lτ ) + A (2) n (τ 1 , τ 2 , l) sinh (lτ ) + (iu 2x ) ∞ n=1 sin (nσ) A (1) n (τ 2 , τ 1 , l) cosh (lτ ) + A (2) n (τ 2 , τ 1 , l) sinh (lτ ) -(iu 2y ) ∞ n=1 cos (nσ) A (1) n (τ 2 , τ 1 , l) cosh (lτ ) + A (2) n (τ 2 , τ 1 , l) sinh (lτ ) , (19b) 
with ϕ (j) n and A (j) n given in Appendix B. Plugging the Helmholtz decomposition v = ∇ ϕ + ∇ × A and the pressure equation p = -i ϕ in (6) yields the ad-hoc uid forces f

* j = {e it f j }           f 1x f 1y f 2x f 2y           = π ([M ] -i [C])           u 1x u 1y u 2x u 2y           , (20) 
with [M ] and [C] the added mass and damping matrices

[M ] =           m (1) self 0 m cross 0 0 m (1) self 0 -m cross m cross 0 m (2) self 0 0 -m cross 0 m (2) self           , [C] =           c (1) self 0 c cross 0 0 c (1) self 0 -c cross c cross 0 c (2) self 0 0 -c cross 0 c (2) self           . ( 21 
)
The self-added mass m (j) self and damping c (j) self relate the uid force on C j to its own motion. The cross-added mass m cross and damping c cross relate the uid force on C m to the motion of C j , j = m.

All the uid added coecients in ( 21) are functions of the radius ratio r, the dimensionless separation distance ε and the Stokes number Sk. A general closed-form expression for these coecients is not tractable, but some simplications are possible in particular cases. For example, as Sk → ∞ (inviscid uid), the ow is purely potential, i.e. ( A, c (j) self , c cross ) → (0, 0, 0), and the added mass coecients simplify to

m (1) self → m (1)P OT self = ∞ n=1 4na 2 e 2nτ 1 tanh [n (τ 2 -τ 1 )] as Sk → ∞, (22a) 
m (2) self → m (2)P OT self = ∞ n=1 4na 2 e -2nτ 2 tanh [n (τ 2 -τ 1 )] as Sk → ∞, (22b) 
m cross → m P OT cross = ∞ n=1 -4na 2 e -n(τ 2 -τ 1 ) sinh [n (τ 2 -τ 1 )] as Sk → ∞. (22c) 
For the sake of clarity, we have reported the study of the variations of m (j)P OT self and m P OT cross in appendix A.

Determination of the ad-hoc constant k

In the previous section, we have obtained solutions of an ad-hoc problem in which the Lamé coecient κ στ has been replaced by some constant k. As a result, the ad-hoc functions A, ϕ and p do not satisfy the Navier-Stokes equation (9b), leading to a non zero local residual

W = u 1x W 1x + u 2x W 2x + u 1y W 1y + u 2y W 2y , (23) 
with

W jα = ∇ × ∆ A jα -iSk A jα and A jα = A jα e z .
The constant k is determined from the condition that the weigthed residual

W = 2π 0 τ 2 τ 1 (|W 1x | w 1x + |W 2x | w 2x + |W 1y | w 1y + |W 2y | w 2y )κ στ 2 dτ dσ, (24) 
must vanish for some given weight functions w jα . In this study, we consider two families of weight functions, which yields two sets of ad-hoc functions. In the least squares method, the weight functions are chosen in the form

w jα = d dk |W jα | , (25) 
such that the residual W vanishes when

χ (k) = 2π 0 τ 2 τ 1 |W 1x | 2 + |W 2x | 2 + |W 1y | 2 + |W 2y | 2 κ στ 2 dτ dσ, (26) 
is minimum. We call χ LS this minimum, reached for k = k LS .

In the collocation method, the residual W is forced to vanish on the cylinders boundaries. The weight functions are chosen to be the Dirac functions δ

w jα = d dk |W jα | (δ (τ -τ 1 ) + δ (τ -τ 2 )) , (27) 
such that the residual W vanishes when

χ (k) = 2π 0 |W 1x | 2 + |W 2x | 2 + |W 1y | 2 + |W 2y | 2 κ στ 2 (σ, τ 1 ) dσ + 2π 0 |W 1x | 2 + |W 2x | 2 + |W 1y | 2 + |W 2y | 2 κ στ 2 (σ, τ 2 ) dσ, (28) 
is minimum. We call χ COL this minimum, reached for k = k COL .

The evolutions of k LS , k COL , χ LS and χ COL , versus the Stokes number Sk are shown in Fig. 3, for equal size cylinders (r = 1) and three dimensionless separation distances ε = {0.5, 1, 2}. We nd that both k LS and k COL decrease with Sk, increase with ε, but remain close to 1. This can be explained from the fact that the bipolar coordinates (σ, τ ) are conformally equivalent to the cartesian coordinates (x, y), in which the Helmholtz equation is similar to (16b) under the change (σ, τ, κ στ ) → (x, y, 1). The numerical method to solve the Navier-Stokes equations ( 5) is based on the projection method of [START_REF] Guermond | An overview of projection methods for incompressible ows[END_REF] and the delta formulation of [START_REF] Goda | A multistep technique with implicit dierence schemes for calculating two or three dimensional cavity ows[END_REF]. The equations are discretized following a nite volume approach on a staggered structured grid (MAC procedure) with a second order approximation in time and space.

A dierentiation forumula (BDF2) is used for the time discretization of (5b), leading to

3v * (n+1) 2δt + -4v * (n) + v * (n-1) 2δt + NL (n+1) + ∇p * (n) - 1 Sk ∆v * (n+1) = 0, (29) 
with NL = KC ∇v * • v * and n the subscript for the time step. The convective term at time (n+1)δt is computed from a linear extrapolation of the estimated values at time nδt and (n -1)δt, i.e. 1) . The space discretization of the convective and viscous terms are approximated with a second order centered-scheme. An implicit discretization is applied to the viscous term in order to increase the numerical stability. The pressure gradient is explicitly dened, as suggested in the projection method.

NL (n+1) = 2NL (n) -NL (n-
Introducing δv * i (n+1) = v * i (n+1) -v * i (n)
as the time increment of the i-th component of the velocity vector v * , the equation ( 29) reduces to a Helmholtz equation

δv * i (n+1) - 2 3 δt Sk ∆ δv * i (n+1) = S (n,n-1) i , (30) 
where S (n,n-1) i contains all the explicit terms of [START_REF] Shin | Flow-induced vibration in lmfbr steam generators: A state-of-the-art review[END_REF]. The equation ( 30) is solved by means of an Alternating Direction Implicit method, see [START_REF] Peaceman | The numerical solution of parabolic and elliptic dierential equations[END_REF].

The Helmholtz decomposition of v * (n+1) with a potential function Φ yields the two equations

∆Φ = ∇ • v * (n+1) δt and Φ = p * (n+1) -p * (n) - 1 Sk ∇ • v * (n+1) . (31) 
The Poisson's equation is solved using a direct method based on the partial diagonalization of the Laplace operator. Having determined Φ, the pressure at time (n + 1)δt is computed from the second equation of [START_REF] Chen | Vibrations of a group of circular cylindrical structures in a liquid[END_REF]. Finally, the velocity eld v * (n+1) is corrected in order to satisfy the divergence-free condition

v * (n+1) := v * (n+1) - 3 2 δt∇Φ. (32) 

The pseudo penalization method

The pseudo penalization method is based on the standard volume penalty method, see [START_REF] Peskin | The immersed boundary method[END_REF][START_REF] Mittal | Immersed boundary methods[END_REF][START_REF] Kadoch | A volume penalization method for incompressible ows and scalar advection diusion with moving obstacles[END_REF], and has shown to be eective in solving uid-structure interaction problems involving moving bodies, see [START_REF] Pasquetti | A pseudo-penalization method for high reynolds number unsteady ows[END_REF][START_REF] Nore | Numerical simulation of the von karman sodium dynamo experiment[END_REF]. The principle is to solve some penalized Navier-Stokes equations over a single domain, instead of considering two separate domains (uid and solid) interacting through a set of boundary conditions. The original contribution of [START_REF] Pasquetti | A pseudo-penalization method for high reynolds number unsteady ows[END_REF] relies on the removal of specic terms in the Navier-Stokes equations in order to turn them into steady penalized Stokes equations in the solid domains, where the penalty term is directly provided by the time-discretization scheme.

The penalization of (29) writes

3v * (n+1) 2δt + (1 -χ) -4v * (n) + v * (n-1) 2δt + NL (n+1) + ∇p * (n) - 1 Sk ∆v * (n+1) = 0, (33) 
with χ a penalty function dened as χ = 1 in the solid domains and χ = 0 in the uid domain. In [START_REF] Hicks | On the motion of two cylinders in a uid[END_REF], 3v * (n+1) /(2δt) can be seen as a forcing term that makes v * to tend to zero in the solid domains. Although v * does not strictly vanishes in the solid domains, the consistency of the method scales as δt/Sk. Since the forcing term is provided by the time step, 3/(2δt), it does not aect the stiness of the equations, preventing spurious eects or stability constraints, unlike the standard penalization methods.

For a body moving with a velocity v 0 * , (33) can be reformulated as

3v * (n+1) 2δt + (1 -χ) -4v * (n) + v * (n-1) 2δt + NL (n+1) + ∇p * (n) - 1 Sk ∆v * (n+1) = χ 3v 0 * 2δt , (34) 
and solved with the numerical method mentionned in section 4.1.

Results

We now present the results of our predictions, considering the case in which C 1 is stationary while C 2 is imposed a sinusoidal displacement in the x -direction.

For the geometric parameters, we have investigated the case of two equal size cylinders, corresponding to a radius ratio r = 1. Three representative values were chosen for the dimensionless separation distance (depicted in the insets of gures 4, 5 and 6): a small gap, ε = 0.5; a gap with size one radius, ε = 1; and a large gap, ε = 2. In the presentation of our results, we rst consider the eect of the Stokes number 100 ≤ Sk ≤ 900 and the dimensionless separation distance on the time evolution of the uid forces. We then analyze the evolution of the magnitude h j and phase φ j of the forces, including the case ε → ∞ for which Stokes [START_REF] Stokes | On the eect of the internal friction of uids on pendulums[END_REF] obtained

f 2x = π m ISO self -ic ISO self u 2x = π   1 + 4 √ iSk K1 √ iSk K0 √ iSk   u 2x , (35) 
with K 0 and K 1 the modied Bessel functions of second kind. We nally study the evolution of the uid added coecients and derive some scaling laws for large Stokes numbers. Throughout the study, we perform some numerical simulations to corroborate the theoretical predictions, also providing a discussion on the limitations of both approaches.

Theoretical predictions

Since the problem is symetric about the axis τ = 0, we have

τ 1 = -τ 2 , m (1) 
self = m (2) self = m self , c (1) 
self = c (2) 
self = c self and m (1)P OT self = m

(2)P OT self = m P OT self . The dimensionless ad-hoc uid forces are computed from [START_REF] Chandrasekaran | Vibration of submerged structures[END_REF], with u 1 = 0, u 2x = -i and u 2y = 0, leading to

f 1x = π (m cross -ic cross ) u 2x = h 1 e iφ 1 u 2x , (36a) 
f 2x = π (m self -ic self ) u 2x = h 2 e iφ 2 u 2x . (36b)

Numerical setup

Concerning the numerical simulations, the computational domain size S is considered suciently large to minimize the end eects. For the small and medium separation distances (ε = 0.5 and ε = 1), we set S = 20 × 17. For ε = 2, we set S = 22 × 17 so that the distance between the cylinders and the domain ends is similar to the cases ε = 0.5 and ε = 1. For all the simulations, the Keulegan-Carpenter number is set to KC = 10 -2 . The cartesian grid is built with a regular distribution over the cylinder domains, including the displacement zone. The dimensionless cell size is 2 × 10 -3 in both the x and y directions. It follows that the smallest spatial scale of our problem, i.e. the cylinder displacement, is discretized over ten square cells, which yields a satisfying spatial resolution. The cell-size distribution outside the cylinder domain is performed with a hyperbolic tangent function and vary from 2×10 -3 to 3.25×10 -2 , with a maximum size ratio of 1.42%. The meshsize is 3060 × 1850 for ε = 0.5 and ε = 1, and 3300 × 1850 for ε = 2. The time step is set to δt = 2 × 10 -3 for Sk = 100 and δt = 5 × 10 -3 for Sk > 100. Regarding the boundary conditions at the domain ends, the normal velocity is set to zero to ensure a null ow rate far from the cylinders and the normal derivative of the tangential component is imposed to zero. The normal component of the pressure gradient is also set to zero, which is the usual boundary condition for the pressure eld when the ow rate is imposed.

Fluid forces

The time evolutions of the uid forces are depicted in gures 4, 5 and 6. The theoretical predictions show that the forces are sinusoidal functions whose amplitude and phase depend on Sk (viscous eects) and ε (connement eects).

To study this sensitivity, we plot in gure 7 the evolutions of the magnitude The solid lines refer to the least squares approximation and the dotted lines refer to the collocation approximation. The dimensionless separation distance is ε = 0.5 (black color), ε = 1 (red color), ε = 2 (blue color) and ε → ∞ (green color). On a) and b), the horizontal dashed lines are the asymptotic limits as Sk → ∞. Closed circles correpond to numerical predictions. On b) and c) the black, blue and red circles are indistinguishable because superimposed.
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h j and the phase φ j . We observe that h j is maximum for the moving cylinder, diverges to innity when Sk → 0 and decreases to h 1 → π|m P OT cross | and

h 2 → π|m P OT self | as Sk → ∞ (inviscid uid).
The magnitude is also shown to be maximum for the small values of ε (strong connement) and to decrease to h 1 → 0 and h 2 → π|m ISO self | as ε → ∞ (isolated cylinders). Thus, as one would expect, the uid forces are all the more intense as both the viscous and connement eects are important. The gure 7 b) shows that the forces are in phase opposition, i.e. φ 1 = φ 2 + π, with φ 1 increasing from φ 1 → π/2 as Sk → 0 to φ 1 → π as Sk → ∞. We note that the connement has a very weak eect on the phase, leading to a slight increase of φ j with ε. The variations of φ j imply that the direction of the uid forces depends on Sk and, to a lesser extent on ε. From ( 36), the uid forces vanish and reverse their direction when {e it f jx } = {e i(t+φ j ) h j u jx } = h j sin (t + φ j ) = 0, i.e. t = -φ j + kπ, k ∈ Z. At that time, the dimensionless displacement u 2 = sin(t) of the moving cylinder equals u * 2 = ± sin (φ j ). In gure 7 c), we show that the uid forces cause the cylinders to attract (resp. repel) each other when

-1 ≤ u 2 < -|u * 2 | (resp. |u * 2 | ≤ u 2 < 1). In the nar- row range -|u * 2 | ≤ u 2 < |u * 2 |
, the cylinders are attracted (resp. repelled) to each other if the velocity of the moving cylinder is positive (resp. negative). An estimation of u * 2 is made possible from the observation that it is weakly sensitive to ε (at least for ε ≥ 0.5) and thus can be approximated by its limit as ε → ∞. From [START_REF] Basset | A Treatise on Hydrodynamics[END_REF] 

and u * 2 = ± sin(φ 2 ) = ± sin(arg(f 2x /u 2x )), it comes that u * 2 ≈= ± sin arctan c ISO self m ISO self ≈ ± c ISO self m ISO self 2 + c ISO self 2 , (37) 
which is the equation of the green line (ε → ∞) shown in gure 7 c). An asymptotic expansion of the modied Bessel functions K j entering in the definition of m ISO self and c ISO self , see [START_REF] Basset | A Treatise on Hydrodynamics[END_REF], yields that u 2 * = O Sk -1/2 as Sk → ∞. Finally, we note that the theoretical predictions for h j and φ j are successfully corroborated by the numerical simulations, in the sense that similar trends are clearly recovered. Still, we note that the numerical simulations are poorly sensitive to ε and slightly understimate the magnitude h 2 of the uid force acting on the moving cylinder, especially in the range of low Stokes numbers. A detailed discussion on the dierences between the theoretical and numerical approaches is reported in section 5.5.

Fluid added coecients

We now proceed with analyzing the evolutions of the uid added coecients m self , c self , m cross and c cross entering in the computation of the uid forces. The solid lines refer to the least squares approximation and the dotted lines refer to the collocation approximation. The dimensionless separation distance is ε = 0.5 (black color), ε = 1 (red color), ε = 2 (blue color) and ε → ∞ (green color). The horizontal dashed lines are the asymptotic limits [START_REF] Sarpkaya | Forces on cylinders and spheres in a sinusoidally oscillating uid[END_REF] as Sk → ∞. Closed circles correpond to numerical predictions.

1 -1/2 1 -1/2 1 1/2 1 1/2 ε → ∞ 0.5 ε = 1 ε = 2 ε = ε → ∞ 0.5 ε = 1 ε = 2 ε = ε → ∞ 0.5 ε = 1 ε = 2 ε = 0.5 ε = 1 ε = 2 ε = ε → ∞
The evolutions of m self and c self are depicted in gures 8 a) and b). We observe that m self and c self diverge to innity as Sk → 0 and decrease to m self → m P OT self and c self → 0 as Sk → ∞ (inviscid uid). The log-log plots in the insets of gures 8 a) and b) indicate that [START_REF] Gibert | Vibration of structures in a static uid medium[END_REF] In addition to the dependence on the Stokes number, m self and c self are also sensitive to the connement. The two coecients are maximum for the small values of ε (strong connement) and decrease to m self → m ISO self and

m self = m P ot self + O Sk -1/2 and c self = O Sk -1/2 as Sk → ∞.
c self → c ISO self as ε → ∞ (isolated cylinders).
As both Sk and ε tend to inn-ity, we recover the classical results for an isolated cylinder in a perfect uid, m self → 1 and c self → 0.

The evolutions of m cross and c cross are depicted in gures 8 c) and d). We observe that m cross is negative and converges to m cross → 0 as Sk → 0. As Sk increases, m cross rst decreases, then hits a minimum, and nally increases to

m cross → m P OT cross as Sk → ∞.
We hypothesize that the non-monotic variations of m cross are related to an antagonist competition between the viscous and the connement eects. The term c cross is also negative, diverges to c cross → -∞ as Sk → 0 and increases to c cross → 0 as Sk → ∞. The log-log plots in the insets of gures 8 c) and d) indicate that [START_REF] Landweber | Added masses and forces on two bodies approaching central impact in an inviscid uid[END_REF] The coecients m cross and c cross are also sensitive to the connement: they are minimum for the small values of ε (strong connement) and increase to m cross → 0 and c cross → 0 as ε → ∞ (isolated cylinders). In such a case, and as expected, there is no uid force acting on the stationary cylinder.

m cross = m P ot cross + O Sk -1/2 and c cross = O Sk -1/2 as Sk → ∞.
Here again, the theoretical predictions for the uid added coecients are successfully corroborated by the numerical simulations, in the sense that similar variations are recovered. However, we note that both approaches do not exactly exhibit the same sensitivity to the connement eect, leading to some deviations in the predictions, in particular concerning the self added coecients at low Stokes numbers. We discuss the possible origins of these deviations in the next section.

Discussion on numerics versus theory

The gure 8 shows that the simulations tend to underestimate m self and c self , and surestimate m cross and c cross . To quantify this deviation, we introduce the quantity ι, dened as the relative distance between the numerical and the theoretical predictions of some quantity Q : ι = |Q num. -Q th. |/|Q num. |. The gure 9 and the tables in appendix C show that ι is maximum for the small values of Sk and ε. We attribute this deviation to the fact that the theoretical approach is based on an approximation (least squares or collocation method) which loses its accurary when Sk and ε become small, as shown in the study of the residuals in gure 3 b). Also, the numerical simulation, which is based on a penalization method, hardly makes the dierence between the solid and the uid domains for the low values of Sk. In any case, the relative deviation for m self (resp. m cross ) is always smaller than ι ≤ 10% (resp. ι < 20%). The deviation for the damping coecients c self and c cross is more pronounced, with ι ≤ 50% and ι ≤ 35%, respectively. Note that the maximum deviations are observed for Sk ∈ [0, 400] , ε < 1, and are less important when using the least squares method. Even if the approximations of the theoretical and numerical approaches can be invoked, the slope steepness of the damping coecients also contributes to the enhancement of the relative deviation in such a range of Sk and ε. It follows that both approaches yield similar trends, bringing out the same behavior of the uid coecients, despite some deviations in the particular case of a very viscous uid (low Sk) in a conned environnement (ε < 1).

Conclusion

We have considered the problem of the small oscillations of two cylinders immersed in a viscous uid initially at rest. A theoretical approach based on an Helmholtz decomposition of the uid velocity vector and a bipolar coordinate system has been carried out to estimate the uid forces acting on the two cylinders. In addition to this new theoretical work, we also have developed a numerical approach based on a pseudo-penalization method. Such a numerical method has been shown particularly ecient in solving uid-structure interaction problems, in particular for moderate or high Stokes numbers.

We studied the case in which one cylinder is stationnary while the other one is imposed an harmonic motion. We show that the amplitude, the phase and the direction of the uid forces are sensitive to the Stokes number and the separation distance between the cylinders. The two forces are in phase opposition and their amplitude decreases to the inviscid limits as Sk increases. The eect of viscosity is to add to the ideal uid added coecients a correction term which scales as Sk -1/2 . When the separation distance increases, the uid coecients converge to the limits of an isolated cylinder derived by Stokes [START_REF] Stokes | On the eect of the internal friction of uids on pendulums[END_REF]. The theoretical predictions are successfully corroborated by the numerical simulations, in the sense that similar trends are recovered, despite some deviations for low Sk and ε.

As an improvement to our previous work on ideal uids [START_REF] Lagrange | A new analytical approach for modeling the added mass and hydrodynamic interaction of two cylinders subjected to large motions in a potential stagnant uid[END_REF], the new theoretical approach carried out in the present article is able to capture the eects of viscosity on the uid forces. It oers a simple and exible alternative to the fastidious and hardly tractable approach developed by [START_REF] Chen | Vibration of nuclear fuel bundles[END_REF]. To our knowledge, this is also the rst time that the pseudo-penalization method is presented in the context of relatively small Stokes numbers. As such, the present work should foster further developements of this easy to implement numerical method, to tackle complex uid-structure interaction problems.

A Evolutions of m (j)P OT self and m P OT cross

In this appendix, we study the variations of the uid added coecients m (j)P OT self and m P OT cross , given by ( 22). We show in gure A.1 that m (j)P OT self (resp. m P OT cross ) increases (resp. decreases) with the radius ratio r while it decreases (resp. increases) with the dimensionless separation distance ε. When r → 0, the cylinder C 1 transforms to a point and the system is equivalent to an isolated cylinder C 2 , leading to the classical result m (2)P OT self → 1. On the other hand, when r → ∞, the cylinder C 1 transforms to an innite plane and the system is equivalent to a cylinder C 2 near a wall. In such a case, we obtain

m (1)P OT self → ∞, (A.1a) m (2)P OT self → m W ALL self = -4 ∞ n=1 nε (2 + ε) 4 n + 16 n 2ε + 2 ε (2 + ε) + 2 -2 n -2ε + 2 ε (2 + ε) + 2 2n + 4 n , (A.1b) m P OT cross → m W ALL cross = 8 ∞ n=1 4 n nε (2 + ε) 4 n -2 ε (2 + ε) + 2ε + 2 2n .
(A.1c) Values of m W ALL self are presented in gure A.2, showing a perfect agreement with the predictions of [START_REF] Mazur | Motion of a circular cylinder near a vertical wall[END_REF] and [START_REF] Chen | Flow-Induced Vibration of Circular Cylindrical Structures[END_REF].

B Functions ϕ (j)

n and A (j) n

The functions ϕ (j) n and A (j) n appearing in [START_REF] Sarpkaya | Separated ow about lifting bodies and impulsive ow about cylinders[END_REF] are determined from the boundary conditions (16c), (16d). It yields a linear system of equations, whose solution is

              ϕ (1) n (ξ 1 , ξ 2 , l) ϕ (2) n (ξ 1 , ξ 2 , l) A (1) n (ξ 1 , ξ 2 , l) A (2) n (ξ 1 , ξ 2 , l)               = [M n (ξ 1 , ξ 2 , l)] -1               -2 nae -n|ξ 1 | sgn (ξ 1 ) -2 nae -n|ξ 1 | 0 0               , (B.1) with [M n (ξ 1 , ξ 2 , l)] =              
-n cosh (nξ 1 ) -n sinh (nξ 1 ) sinh (lξ 1 ) l cosh (lξ 1 ) l n sinh (nξ 1 ) n cosh (nξ 1 ) -n cosh (lξ 1 ) -n sinh (lξ 1 ) 

-n cosh (nξ 2 ) -n sinh (nξ 2 ) sinh (lξ 2 ) l cosh (lξ 2 ) l n sinh (nξ 2 ) n cosh (nξ 2 ) -n cosh (lξ 2 ) -n sinh (lξ 2 )               . (B.2)

C Tables of comparison numerics versus theory

In this appendix, we report the theoretical and numerical values of the uid added coecients m self , c self , m cross and c cross , for ε = 0.5 ( 
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 1 Figure 1. Schematic diagram of the system: two oscillating cylinders C j with radii R j , centers O j , displacement vectors U j (T ), are immersed in a uid of kinematic viscosity ν. The small oscillations of C j generate an incompressible uid ow. The midpoint of O 1 and O 2 is O and the separation distance is E.

Figure 2 .

 2 Figure 2. Sketch of the conformal mapping ζ = h(z) dened by equation (11). The conformal function ζ = h(z) maps C 1 and C 2 into two parallel lines of equation ζ = iτ 1 and ζ = iτ 2 .

Figure 3 .

 3 Figure 3. Evolutions of k LS , k COL , χ LS , χ COL , versus the Stokes number Sk. The solid lines refer to the least squares approximation and the dotted lines refer to the collocation approximation. The dimensionless separation distance is ε = 0.5 (black color), ε = 1 (red color) and ε = 2 (blue color). The radius ratio is r = 1.
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 22222111114 Figure 4. Dimensionless uid force {e it f jx } as a function of the dimensionless time t, for various Stokes numbers Sk. The dimensionless separation distance is ε = 0.5.
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 1 
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 5 Figure 5. Dimensionless uid force {e it f jx } as a function of the dimensionless time t, for various Stokes numbers Sk. The dimensionless separation distance is ε = 1.
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 22222111116 Figure 6. Dimensionless uid force {e it f jx } as a function of the dimensionless time t, for various Stokes numbers Sk. The dimensionless separation distance is ε = 2.

Figure 7 .

 7 Figure 7. Evolutions of a) the magnitude h j = |f jx /u 2x | and b) the phase φ j = angle (f jx /u 2x ) versus the Stokes number Sk. On c), the arrows show the direction of the uid forces depending on Sk, ε and the dimensionless displacement of C 2 . The solid lines refer to the least squares approximation and the dotted lines refer to the collocation approximation. The dimensionless separation distance is ε = 0.5 (black color), ε = 1 (red color), ε = 2 (blue color) and ε → ∞ (green color). On a) and b), the horizontal dashed lines are the asymptotic limits as Sk → ∞. Closed circles correpond to numerical predictions. On b) and c) the black, blue and red circles are indistinguishable because superimposed.

Figure 8 .

 8 Figure 8. Evolutions of the uid added coecients versus the Stokes number, Sk.The solid lines refer to the least squares approximation and the dotted lines refer to the collocation approximation. The dimensionless separation distance is ε = 0.5 (black color), ε = 1 (red color), ε = 2 (blue color) and ε → ∞ (green color). The horizontal dashed lines are the asymptotic limits[START_REF] Sarpkaya | Forces on cylinders and spheres in a sinusoidally oscillating uid[END_REF] as Sk → ∞. Closed circles correpond to numerical predictions.

Figure 9 .

 9 Figure 9. Evolutions of the relative deviation, ι, versus the Stokes number, Sk. The solid lines refer to the least squares approximation while the dotted lines refer to the collocation approximation. The dimensionless separation distance is ε = 0.5 (black color), ε = 1 (red color), ε = 2 (blue color).

Figure A. 1 .

 1 Figure A.1. Fluid added coecients, given by (22), versus the radius ratio r. Evolution of a) m (1)P OT self , b) m (2)P OT self and c) m P OT cross . The horizontal dotted lines on b) and c) show the limits as r → ∞, see eq. (A.1). The dimensionless separation distance is ε = 0.5 (black color), ε = 1 (red color), ε = 2 (blue color).
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 212 Figure A.2. Added mass coecient m W ALL self , given by (A.1) for a cylinder vibrating near a wall.

  0 10 -3 (regular over cylinder areas) -hmax= 3.25 10 -2 Time step : t= 2.0 10 -3 (SK=100) , t= 5.0 10 -3 (SK=300), t= 1.0 10 -2 (SK>300)

  0 10 -3 (regular over cylinder areas) -hmax= 3.25 10 -2 Time step : t= 2.0 10 -3 (SK=100) , t= 5.0 10 -3 (SK=300), t= 1.0 10 -2 (SK>300)

  The evolutions of χ LS and χ COL indicate that the theory becomes less accurate as the Stokes number and the dimensionless separation distance decrease (i.e. as the viscous and the connement eects becomes preponderant).

	4 Numerical simulation
	4.1 Solving the Navier-Stokes equations

Table C .

 C 1 Table of the uid added coecients and the relative deviation, ι. The notations LS and COL refer to the Least Squares and Collocation methods. The dimensionless separation distance is ε = 0.5.

  table C.1), ε = 1 (table C.2) and ε = 2 (table C.3). The numerical values correspond to the closed symbols shown in gure 8. The relative deviation ι is also reported in the tables.

	Comparison theory / numerics		
	Sk		self m				c	self			cross m			cross c	
		LS	COL	LS	COL	LS	COL	LS	COL
			Numerics		Numerics		Numerics		Numerics
			LS		COL		LS		COL		LS		COL		LS		COL
	100	1.35	1.36	0.390	0.413	-0.293	-0.296 -0.0910 -0.0990
			1.30				0.326			-0.283			-0.0754
		3.8%	4.6%	20%	27%	3.5%	4.6%	21%	31%
	300	1.22	1.22	0.210	0.219	-0.266	-0.268 -0.0475 -0.0508
			1.19				0.189			-0.240			-0.0419
		2.5%	2.5%	11%	16%	11%	12%	13%	21%
	500	1.18	1.18	0.159	0.165	-0.258	-0.259 -0.0357 -0.0379
			1.14				0.156			-0.231			-0.0348
		3.5%	3.5%	1.9%	5.8%	12%	12%	2.6%	8.9%
	700	1.15	1.16	0.133	0.138	-0.253	-0.254 -0.0297 -0.0314
			1.13				0.135			-0.228			-0.0300
		1.8%	2.6%	1.5%	2.2%	11%	11%	1.0%	4.7%
	900	1.14	1.14	0.116	0.120	-0.250	-0.251 -0.0258 -0.0273
			1.12				0.122			-0.226			-0.0270
		1.8%	1.8%	4.9%	1.6%	11%	11%	4.4%	1.1%
	Relative deviation :										
	Theory Numerics													
	Numerics															

Table C .

 C 2 Table of the uid added coecients and the relative deviation, ι. The notations LS and COL refer to the Least Squares and Collocation methods. The dimensionless separation distance is ε = 1.

	Comparison theory / numerics	
	Eps= 2.0															
	Sk		self m				c	self			cross m				cross c
		LS	COL	LS	COL	LS	COL	LS	COL
			Numerics		Numerics		Numerics		Numerics
			LS		COL		LS		COL		LS		COL		LS		COL
	100	1.31	1.32	0.329	0.338	-0.160	-0.162 -0.0465 -0.0498
			1.27			0.310			-0.135			-0.0372
		3.1%	3.9%	6.1%	9.0%	19%	20%	25%	34%
	300	1.19	1.19	0.185	0.188	-0.146	-0.147 -0.0242 -0.0254
			1.16			0.181			-0.123			-0.0208
		2.6%	2.6%	2.2%	3.9%	19%	20%	16%	22%
	500	1.15	1.15	0.142	0.144	-0.142	-0.142 -0.0182 -0.0189
			1.12			0.149			-0.119			-0.0174
		2.7%	2.7%	4.7%	3.4%	19%	19%	4.6%	8.6%
	700	1.13	1.13	0.120	0.121	-0.139	-0.140 -0.0152 -0.0157
			1.11			0.130			-0.117			-0.0150
		1.8%	1.8%	7.7%	6.9%	19%	20%	1.3%	4.7%
	900	1.11	1.11	0.105	0.106	-0.138	-0.138 -0.0132 -0.0136
			1.10			0.117			-0.116			-0.0135
		0.91%	0.91%	10%	9.4%	19%	19%	2.2%	0.74%
	Relative deviation :										
	Theory Numerics													
	Numerics															

Table C .

 C 3 Table of the uid added coecients and the relative deviation, ι. The notations LS and COL refer to the Least Squares and Collocation methods. The dimensionless separation distance is ε = 2.
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