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Abstract

This paper deals with the small oscillations of two circular cylinders immersed
in a viscous stagnant �uid. A new theoretical approach based on an Helmholtz
expansion and a bipolar coordinate system is presented to estimate the �uid forces
acting on the two bodies. We show that these forces are linear combinations of
the cylinders accelerations and velocities, through viscous �uid added coe�cients.
The self-added mass and damping coe�cients are shown to decrease with both the
Stokes number and the separation distance. The cross-added mass and damping
coe�cients tend to increase with the Stokes number and the separation distance.
Compared to the inviscid results, the e�ect of viscosity is to add a correction term
which scales as Sk−1/2. When the separation distance is su�ciently large, the two
cylinders behave as if they were independent and the Stokes predictions for an
isolated cylinder are recovered. Compared to previous works, the present theory
o�ers a simple and �exible alternative for an easy determination of the �uid forces
and related added coe�cients. To our knowledge, this is also the �rst time that
a numerical approach based on a penalization method is presented in the context
of �uid-structure interactions for relatively small Stokes numbers, and successfully
compared to theoretical predictions.

Key words: Vibration; Fluid-structure interaction; Fluid forces; Coupling
coe�cients; Added mass; Added damping; Viscosity e�ect; Stokes number;
Penalization method
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1 Introduction

The determination of the �uid force acting on an immersed body has been the
topic of considerable experimental and theoretical studies, covering a full range
of applications, from turbomachinery [1], heat exchangers tube banks [2,3] to
biomechanics of plants [4] or energy harvesting of �exible structures [5,6,7,8,9].
Early researches were stimulated by the need of understanding the e�ect of
the inertia of a surrounding �uid on the frequency of an oscillating pendulum
[10]. Assuming an inviscid �uid, [11,12,13] showed that the �uid make the
mass of the pendulum to increase by a factor that depends on the �uid density
and the geometry of the pendulum. Since these pioneer works, this apparent
increase of mass has commonly been referred as the added mass concept. It
has been investigated in various experiments [14,15,16,17,18,19,20,21,22] in
which a single body is accelerated in a �uid initially at rest. The acceleration
of the body induces a �uid motion which in returns induces an inertia e�ect
from which an added mass coe�cient is computed.

The concept of added mass also applies to multiple immersed bodies, although
its formulation is more complex as it involves "self-added" and "cross-added"
mass coe�cients. The self-added mass coe�cient characterizes the force on
a body due to its own motion. The cross-added coe�cient characterizes the
�uid-coupling force on a stationary body due to the motion of an other body.
Considering multiple arrangements, many experimental rigs have been built
[23,24,25,26,27,28,29,2,30,31,32] to obtain precise measurements of these co-
e�cients. From a theoretical stand point, the added coe�cients should be
computed from the Navier-Stokes equations. However, in many practical sit-
uations, the e�ects of �uid viscosity and compressibility are neglected and a
potential theory is carried out. A method of images [33,34,35,36,37,38,39] or
a complex analyis based on conformal transformations [40,41,42,43,44,45] are
usually derived to solve the boundary value problem governing the �uid po-
tential function. For small amplitude motions not entailing �ow separation,
the potential theory will accurately give the added mass coe�cients, and tab-
ulated results are available in the literature for a wide variety of immersed
geometries [46].

All of the above-mentioned studies have dealt with an ideal �uid, whereas
the viscous e�ects may be important for some applications such as bodies
relatively close to each other. Considering the small oscillations of a single body
in a viscous �uid, Stokes [47] solved the linearized Navier-Stokes equations
and showed that the �uid force is a linear combination of two components
related to the acceleration of the body and its velocity. The coe�cients of this
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linear combination are commonly referred as the viscous added mass and the
viscous added damping, respectively. Stokes found that the e�ect of viscosity
is to add to the ideal �uid added mass coe�cient a correction term which
depends on the �uid mass density and viscosity, the frequency of oscillation,
and a characteristic length scale. All of these e�ects can be regrouped in a
single dimensionless number, the Stokes number.

The extension of this work to the case of multiple bodies remains a challenging
theoretical problem, mainly due to the viscous boundary conditions to account
for. One approach developped in [2] is to associate to each body a �uid poten-
tial and a stream function, governed by a Laplace and an Helmholtz equation,
respectively. Introducing a polar coordinate system attached to each body, a
method of separation of variables is used to expand the �uid functions as an
in�nite trigonometric series with unknown coe�cients. Applying the viscous
boundary conditions into each local coordinate system yields a set of linear
equations for these unknowns. The number of equations depends on the num-
ber of bodies and the number of terms used in the series expansions. In the
end, the set of linear equations has to be solved numerically. The two cylin-
ders problem could be solved in this framework, but even for such a restricted
number of bodies, the method of [2] is hardly tractable.

In this paper, we build on our previous work which dealt with ideal �uids
[48] to introduce a �exible theoretical method and obtain an estimation of
the viscous added coe�cients. In addition to this theoretical work, we per-
form some numerical simulations where the immersed boundary conditions
are considered with a penalization method. The choice of this approach relies
on its e�ectiveness and simplicity of implementation in CFD codes, without
deep modi�cation of the algorithmic structure. The basic idea is to add a
forcing term in the Navier-Stokes equation set over the area of the immersed
body in order to locally impose the velocity of the body [49]. The method
does not require any mesh update related to the motion of the body, any
complex geometrical considerations on the position of the wall in regard to
the computational grid or any high order interpolations as done with some
other approaches (e.g. ALE methods [50], cut-cell methods [51], immersed
body methods [52]). In the present work, we actually use a variant method
initially proposed by [53], called the pseudo-penalization method, in which
disappears the sti�ness nature of the Navier-Stokes equations due to the forc-
ing term. The penalization and pseudo-penalization methods are particularly
e�cient in �uid problems with moderate or high Reynolds numbers (see e.g.
[54,55,56,57,58,59]) but has never been tested in problems with low Reynolds
numbers, as considered in the present work.

This paper is organized as follows. Section 2 presents the problem and the
governing equations for two circular cylinders immersed in a viscous �uid at
rest. In section 3, we propose a theoretical approach based on an Helmholtz
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decomposition and a bipolar coordinate system to obtain an approximate so-
lution of the �uid problem. We derive expressions for the �uid potential and
stream functions, from which we compute the �uid forces on the cylinders.
In section 4 we describe the numerical simulations that we have performed
to solve the �uid problem. The results of our investigation are presented in
section 5. Throughout, we directly compare the theoretical predictions to the
numerical simulations. We start with comparing the time evolutions of the
�uid forces acting on the cylinders, when one is stationary while the other is
imposed a sinusoidal vibration. We then analyze the dependance of the �uid
added coe�cients with the Stokes number and the separation distance. Some
scaling laws are derived in the limit of large Stokes numbers. Finally, section
6 summarizes our �ndings.

2 De�nition of the problem and governing equations
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Figure 1. Schematic diagram of the system: two oscillating cylinders Cj with radii
Rj , centers Oj , displacement vectors Uj (T ), are immersed in a �uid of kinematic
viscosity ν. The small oscillations of Cj generate an incompressible �uid �ow. The
midpoint of O1 and O2 is O and the separation distance is E.

We consider the simple harmonic motions of two rigid circular cylinders Cj,
(j = 1, 2), with centers Oj, radii Rj, boundaries ∂Cj, immersed in an in�nite
2D viscous �uid domain, as illustrated in �gure 1. The angular frequency of the
cylinders is Ω and their displacement vectors are Uj. The �uid is Newtonian,
homogeneous, of volume mass density ρ and kinematic viscosity ν. The Navier-
Stokes equations and the boundary conditions for the incompressible �uid �ow
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(V, P ) write

∇ ·V = 0, (1a)

∂V

∂T
+∇V ·V +

1

ρ
∇P − ν∆V = 0, (1b)

V − dUj

dT
= 0 on ∂Cj, j = {1, 2}. (1c)

The third equation expresses the continuity of velocities at the cylinder bound-
aries. The �uid force acting on Cj is the sum of a pressure and a viscous term,
and writes

Fj = −
∫
∂Cj

PnjdLj + ρν
∫
∂Cj

[
∇V + (∇V)T

]
· njdLj. (2)

In this equation, nj is the outward normal unit vector to ∂Cj, (∇V)T the
transposate tensor of ∇V and dLj an in�nitesimal line element of integration.

2.1 Dimensionless equations

In what follows, we use R2 and Ω−1 as a characteristic length and time. Intro-
ducing t = TΩ, we de�ne the dimensionless cylinders displacements u∗j , �uid
�ow (v∗, p∗) and �uid force f∗j as

Uj = U u∗j ,V = UΩ v∗, P = ρUR2Ω
2 p∗,Fj = ρU (R2Ω)2 f∗j , (3)

with U = max (|U1|, |U2|).

To reduce the number of parameters of the problem we also introduce the
rescaled quantities

r =
R1

R2

, ε =
E

R2

, KC =
U

R2

, Sk =
R2

2Ω

ν
, (4)

as the radius ratio, separation distance, Keulegan-Carpenter number and Stokes
number (i.e. vibration Reynolds number), respectively.

Introducing (3) in (1), the dimensionless Navier-Stokes equations write

∇ · v∗ = 0, (5a)

∂v∗

∂t
+KC∇v∗ · v∗ +∇p∗ − 1

Sk
∆v∗ = 0, (5b)

v∗ −
du∗j
dt

= 0 on ∂Cj, j = {1, 2}. (5c)
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Introducing (3) in (2), the dimensionless �uid force acting on Cj write

f∗j = −
∫
∂Cj

p∗njdlj +
1

Sk

∫
∂Cj

[
∇v∗ + (∇v∗)T

]
· njdlj, (6)

with dlj = dLj/R2.

3 Theoretical approach

In the limit of small oscillations, i.e. KC = o(1), the nonlinear convective
term in the Navier-Stokes equations is negligible. Introducing u∗j = <{eituj},
v∗ = <{eitv}, p∗ = <{eitp}, the equations (5) rewrite

∇ · v = 0, (7a)

iv +∇p− 1

Sk
∆v = 0, (7b)

v − iuj = 0 on ∂Cj, j = {1, 2}, (7c)

with < the real part operator.

3.1 Helmholtz decomposition

We seek a solution of (7) as a superposition of an irrotational and a divergence-
free �ow (Helmholtz decomposition)

v = ∇ϕ+∇×A, (8)

with ϕ and A = Aez some unknown potential and stream functions. Intro-
ducing this decomposition in (7) yields

∆ϕ = 0, (9a)

∇× (∆A− iSkA)− Sk∇ (iϕ+ p) = 0, (9b)

∇ϕ+∇×A− iuj = 0 on ∂Cj, j = {1, 2}. (9c)

Taking the divergence and the curl of (9b) yields two equations

p = −iϕ and ∆A+ β2A = 0 with β =
√
−iSk, (10)

from which the pressure and the stream functions can be determined.
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3.2 Bipolar coordinates
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Figure 2. Sketch of the conformal mapping ζ = h(z) de�ned by equation (11). The
conformal function ζ = h(z) maps C1 and C2 into two parallel lines of equation
ζ = iτ1 and ζ = iτ2.

Let z = x + iy be the complex number whose real and imaginary parts are
the cartesian coordinates x and y, measured from the midpoint O of the two
cylinders centers, O1 and O2, see �gure 2.

Let h(z) be the conformal mapping de�ned as

ζ = σ + iτ = h (z) = i ln
(
z − xB + a

z − xB − a

)
, (11)

with xB = (r2 − 1) / (2d) and

a =

√
d2 − (1 + r)2

√
d2 − (1− r)2

2d
, d = r + ε+ 1. (12)

In (11), 0 < σ ≤ 2π and τ ∈ R are the real and imaginary parts of ζ,
respectively. They are also the bipolar coordinates of a point in the plane
(x, y). The images of C1 and C2 are the straight lines with ordinates τ1 and τ2
given by

τ1 = −sinh−1 (a/r) < 0 and τ2 = sinh−1 (a) > 0. (13)

The Laplace operator and the �uid velocity vector in bipolar coordinates are

∆ϕ =
(

1

κστ

)2
(
∂2ϕ

∂σ2
+
∂2ϕ

∂τ 2

)
, (14a)

v =
1

κστ

[(
∂ϕ

∂σ
+
∂A

∂τ

)
eσ +

(
∂ϕ

∂τ
− ∂A

∂σ

)
eτ

]
, (14b)

with κστ = a/[cosh (τ)− cos (σ)] the Lamé coe�cient and

eσ =
1

κστ

(
∂x

∂σ
ex +

∂y

∂σ
ey

)
, eτ =

1

κστ

(
∂x

∂τ
ex +

∂y

∂τ
ey

)
, (15)
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the physical basis vectors. The �uid equations (9) in the bipolar coordinates
system write

∂2ϕ

∂σ2
+
∂2ϕ

∂τ 2
= 0, (16a)

∂2A

∂σ2
+
∂2A

∂τ 2
+ β2κστ

2A = 0, (16b)

∂ϕ

∂σ
+
∂A

∂τ
= (iujx)gjy − (iujy)gjx on τ = τj, j = {1, 2}, (16c)

∂ϕ

∂τ
− ∂A

∂σ
= (iujx)gjx + (iujy)gjy on τ = τj, j = {1, 2}, (16d)

with gjx = κστjex · eτj , gjy = κστjey · eτj . These are 2π periodic functions of σ
given by

gjx (σ) = −a cos (σ) cosh (τj)− 1

(cosh (τj)− cos (σ))2
=
∞∑
n=1

gjn cos (nσ), (17a)

gjy (σ) = −a sin (σ) sinh (τj)

(cosh (τj)− cos (σ))2
=
∞∑
n=1

gjn sgn (τj) sin (nσ), (17b)

with gjn = −2nae−n|τj |.

3.3 Ad-hoc problem, �uid forces and added coe�cients

Since the problem is linear in ujx and ujy, the �uid functions are linear com-
binations of the form

ϕ = (u1xϕ1x + u2xϕ2x) + (u1yϕ1y + u2yϕ2y) , (18a)

A = (u1xA1x + u2xA2x) + (u1yA1y + u2yA2y) . (18b)

The di�culty in �nding ϕjα and Ajα arises from the fact that the Helmolhz
equation (16b) has a variable coe�cient, κστ . Instead, we consider the ad-
hoc problem in which κστ is replaced by some unknown constant k, that will
be determined later on. A method of separation of variables is then used
to �nd the ad-hoc functions ϕ̃jα and Ãjα. The boundary conditions (16c),
(16d) along with (17) indicate that ϕ̃jα and Ãjα are linear combinations of
cos (nσ) and sin (nσ). Introducing these linear combinations in the Laplace
and the Helmholtz equations, we also obtain that ϕ̃jα (resp. Ãjα) is a linear
combination of cosh (nτ) and sinh (nτ) (resp. cosh (lτ) and sinh (lτ) with l =√
n2 − (βk)2.
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All in all, the ad-hoc functions write

ϕ̃ = (iu1x)
∞∑
n=1

cos (nσ)
[
ϕ(1)
n (τ1, τ2, l) cosh (nτ) + ϕ(2)

n (τ1, τ2, l) sinh (nτ)
]

− (iu1y)
∞∑
n=1

sin (nσ)
[
ϕ(1)
n (τ1, τ2, l) cosh (nτ) + ϕ(2)

n (τ1, τ2, l) sinh (nτ)
]

+ (iu2x)
∞∑
n=1

cos (nσ)
[
ϕ(1)
n (τ2, τ1, l) cosh (nτ) + ϕ(2)

n (τ2, τ1, l) sinh (nτ)
]

+ (iu2y)
∞∑
n=1

sin (nσ)
[
ϕ(1)
n (τ2, τ1, l) cosh (nτ) + ϕ(2)

n (τ2, τ1, l) sinh (nτ)
]
,

(19a)

Ã = (iu1x)
∞∑
n=1

sin (nσ)
[
A(1)
n (τ1, τ2, l) cosh (lτ) + A(2)

n (τ1, τ2, l) sinh (lτ)
]

+ (iu1y)
∞∑
n=1

cos (nσ)
[
A(1)
n (τ1, τ2, l) cosh (lτ) + A(2)

n (τ1, τ2, l) sinh (lτ)
]

+ (iu2x)
∞∑
n=1

sin (nσ)
[
A(1)
n (τ2, τ1, l) cosh (lτ) + A(2)

n (τ2, τ1, l) sinh (lτ)
]

− (iu2y)
∞∑
n=1

cos (nσ)
[
A(1)
n (τ2, τ1, l) cosh (lτ) + A(2)

n (τ2, τ1, l) sinh (lτ)
]
,

(19b)

with ϕ(j)
n and A(j)

n given in Appendix B.

Plugging the Helmholtz decomposition ṽ = ∇ϕ̃ + ∇ × Ã and the pressure
equation p̃ = −iϕ̃ in (6) yields the ad-hoc �uid forces f̃∗j = <{eitf̃j}

f̃1x

f̃1y

f̃2x

f̃2y


= π ([M ]− i [C])



u1x

u1y

u2x

u2y


, (20)

with [M ] and [C] the added mass and damping matrices

[M ] =



m
(1)
self 0 mcross 0

0 m
(1)
self 0 −mcross

mcross 0 m
(2)
self 0

0 −mcross 0 m
(2)
self


, [C] =



c
(1)
self 0 ccross 0

0 c
(1)
self 0 −ccross

ccross 0 c
(2)
self 0

0 −ccross 0 c
(2)
self


.

(21)

The self-added mass m
(j)
self and damping c

(j)
self relate the �uid force on Cj to its

own motion. The cross-added mass mcross and damping ccross relate the �uid
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Figure 3. Evolutions of kLS , kCOL, χLS , χCOL, versus the Stokes number Sk. The
solid lines refer to the least squares approximation and the dotted lines refer to the
collocation approximation. The dimensionless separation distance is ε = 0.5 (black
color), ε = 1 (red color) and ε = 2 (blue color). The radius ratio is r = 1.

force on Cm to the motion of Cj, j 6= m.

All the �uid added coe�cients in (21) are functions of the radius ratio r,
the dimensionless separation distance ε and the Stokes number Sk. A general
closed-form expression for these coe�cients is not tractable, but some simpli-
�cations are possible in particular cases. For example, as Sk → ∞ (inviscid

�uid), the �ow is purely potential, i.e. (Ã, c
(j)
self , ccross) → (0, 0, 0), and the

added mass coe�cients simplify to

m
(1)
self → m

(1)POT
self =

∞∑
n=1

4na2e2nτ1

tanh [n (τ2 − τ1)]
as Sk →∞, (22a)

m
(2)
self → m

(2)POT
self =

∞∑
n=1

4na2e−2nτ2

tanh [n (τ2 − τ1)]
as Sk →∞, (22b)

mcross → mPOT
cross =

∞∑
n=1

−4na2e−n(τ2−τ1)

sinh [n (τ2 − τ1)]
as Sk →∞. (22c)

For the sake of clarity, we have reported the study of the variations of m
(j)POT
self

and mPOT
cross in appendix A.

3.4 Determination of the ad-hoc constant k

In the previous section, we have obtained solutions of an ad-hoc problem in
which the Lamé coe�cient κστ has been replaced by some constant k. As
a result, the ad-hoc functions Ã, ϕ̃ and p̃ do not satisfy the Navier-Stokes
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equation (9b), leading to a non zero local residual

W = u1xW1x + u2xW2x + u1yW1y + u2yW2y, (23)

with Wjα = ∇ ×
(
∆Ãjα − iSkÃjα

)
and Ãjα = Ãjαez. The constant k is

determined from the condition that the weigthed residual

W =

2π∫
0

τ2∫
τ1

(|W1x|w1x + |W2x|w2x + |W1y|w1y + |W2y|w2y)κστ
2dτdσ, (24)

must vanish for some given weight functions wjα. In this study, we consider
two families of weight functions, which yields two sets of ad-hoc functions. In
the least squares method, the weight functions are chosen in the form

wjα =
d

dk
|Wjα| , (25)

such that the residual W vanishes when

χ (k) =

2π∫
0

τ2∫
τ1

(
|W1x|2 + |W2x|2 + |W1y|2 + |W2y|2

)
κστ

2dτdσ, (26)

is minimum. We call χLS this minimum, reached for k = kLS.

In the collocation method, the residual W is forced to vanish on the cylinders
boundaries. The weight functions are chosen to be the Dirac functions δ

wjα =
d

dk
|Wjα| (δ (τ − τ1) + δ (τ − τ2)) , (27)

such that the residual W vanishes when

χ (k) =

2π∫
0

(
|W1x|2 + |W2x|2 + |W1y|2 + |W2y|2

)
κστ

2 (σ, τ1) dσ

+

2π∫
0

(
|W1x|2 + |W2x|2 + |W1y|2 + |W2y|2

)
κστ

2 (σ, τ2) dσ, (28)

is minimum. We call χCOL this minimum, reached for k = kCOL.

The evolutions of kLS, kCOL, χLS and χCOL, versus the Stokes number Sk
are shown in Fig. 3, for equal size cylinders (r = 1) and three dimensionless
separation distances ε = {0.5, 1, 2}. We �nd that both kLS and kCOL de-
crease with Sk, increase with ε, but remain close to 1. This can be explained
from the fact that the bipolar coordinates (σ, τ) are conformally equivalent
to the cartesian coordinates (x, y), in which the Helmholtz equation is similar
to (16b) under the change (σ, τ, κστ ) → (x, y, 1). The evolutions of χLS and
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χCOL indicate that the theory becomes less accurate as the Stokes number
and the dimensionless separation distance decrease (i.e. as the viscous and the
con�nement e�ects becomes preponderant).

4 Numerical simulation

4.1 Solving the Navier-Stokes equations

The numerical method to solve the Navier-Stokes equations (5) is based on
the projection method of [60] and the delta formulation of [61]. The equations
are discretized following a �nite volume approach on a staggered structured
grid (MAC procedure) with a second order approximation in time and space.
A di�erentiation forumula (BDF2) is used for the time discretization of (5b),
leading to

3v∗(n+1)

2δt
+
−4v∗(n) + v∗(n−1)

2δt
+ NL(n+1) +∇p∗(n) − 1

Sk
∆v∗(n+1) = 0, (29)

with NL = KC ∇v∗ ·v∗ and n the subscript for the time step. The convective
term at time (n+1)δt is computed from a linear extrapolation of the estimated
values at time nδt and (n − 1)δt, i.e. NL(n+1) = 2NL(n) − NL(n−1). The
space discretization of the convective and viscous terms are approximated
with a second order centered-scheme. An implicit discretization is applied to
the viscous term in order to increase the numerical stability. The pressure
gradient is explicitly de�ned, as suggested in the projection method.

Introducing δv∗i
(n+1) = v∗i

(n+1) − v∗i (n) as the time increment of the i-th com-
ponent of the velocity vector v∗, the equation (29) reduces to a Helmholtz
equation

δv∗i
(n+1) − 2

3

δt

Sk
∆
[
δv∗i

(n+1)
]

= S
(n,n−1)
i , (30)

where S
(n,n−1)
i contains all the explicit terms of (29). The equation (30) is

solved by means of an Alternating Direction Implicit method, see [62].

The Helmholtz decomposition of v∗(n+1) with a potential function Φ yields the
two equations

∆Φ =
∇ · v∗(n+1)

δt
and Φ = p∗(n+1) − p∗(n) − 1

Sk
∇ · v∗(n+1). (31)

The Poisson's equation is solved using a direct method based on the partial
diagonalization of the Laplace operator. Having determined Φ, the pressure
at time (n + 1)δt is computed from the second equation of (31). Finally,

12



the velocity �eld v∗(n+1) is corrected in order to satisfy the divergence-free
condition

v∗(n+1) := v∗(n+1) − 3

2
δt∇Φ. (32)

4.2 The pseudo penalization method

The pseudo penalization method is based on the standard volume penalty
method, see [49,54,55], and has shown to be e�ective in solving �uid-structure
interaction problems involving moving bodies, see [53,59]. The principle is to
solve some penalized Navier-Stokes equations over a single domain, instead of
considering two separate domains (�uid and solid) interacting through a set
of boundary conditions. The original contribution of [53] relies on the removal
of speci�c terms in the Navier-Stokes equations in order to turn them into
steady penalized Stokes equations in the solid domains, where the penalty
term is directly provided by the time-discretization scheme.

The penalization of (29) writes

3v∗(n+1)

2δt
+ (1− χ)

[
−4v∗(n) + v∗(n−1)

2δt
+ NL(n+1)

]
+∇p∗(n) − 1

Sk
∆v∗(n+1)

= 0, (33)

with χ a penalty function de�ned as χ = 1 in the solid domains and χ = 0
in the �uid domain. In (33), 3v∗(n+1)/(2δt) can be seen as a forcing term
that makes v∗ to tend to zero in the solid domains. Although v∗ does not
strictly vanishes in the solid domains, the consistency of the method scales as
δt/Sk. Since the forcing term is provided by the time step, 3/(2δt), it does
not a�ect the sti�ness of the equations, preventing spurious e�ects or stability
constraints, unlike the standard penalization methods.

For a body moving with a velocity v0
∗, (33) can be reformulated as

3v∗(n+1)

2δt
+ (1− χ)

[
−4v∗(n) + v∗(n−1)

2δt
+ NL(n+1)

]
+∇p∗(n) − 1

Sk
∆v∗(n+1)

= χ
3v0

∗

2δt
, (34)

and solved with the numerical method mentionned in section 4.1.
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5 Results

We now present the results of our predictions, considering the case in which C1
is stationary while C2 is imposed a sinusoidal displacement in the x - direction.
For the geometric parameters, we have investigated the case of two equal size
cylinders, corresponding to a radius ratio r = 1. Three representative values
were chosen for the dimensionless separation distance (depicted in the insets
of �gures 4, 5 and 6): a small gap, ε = 0.5; a gap with size one radius, ε = 1;
and a large gap, ε = 2. In the presentation of our results, we �rst consider the
e�ect of the Stokes number 100 ≤ Sk ≤ 900 and the dimensionless separation
distance on the time evolution of the �uid forces. We then analyze the evolution
of the magnitude hj and phase φj of the forces, including the case ε→∞ for
which Stokes [47] obtained

f2x = π
(
mISO
self − icISOself

)
u2x = π

1 +
4√
iSk

K1

(√
iSk

)
K0

(√
iSk

)
u2x, (35)

with K0 and K1 the modi�ed Bessel functions of second kind. We �nally study
the evolution of the �uid added coe�cients and derive some scaling laws for
large Stokes numbers. Throughout the study, we perform some numerical sim-
ulations to corroborate the theoretical predictions, also providing a discussion
on the limitations of both approaches.

5.1 Theoretical predictions

Since the problem is symetric about the axis τ = 0, we have τ1 = −τ2,
m

(1)
self = m

(2)
self = mself , c

(1)
self = c

(2)
self = cself and m

(1)POT
self = m

(2)POT
self = mPOT

self .
The dimensionless ad-hoc �uid forces are computed from (20), with u1 = 0,
u2x = −i and u2y = 0, leading to

f̃1x = π (mcross − iccross)u2x = h1e
iφ1u2x, (36a)

f̃2x = π (mself − icself )u2x = h2e
iφ2u2x. (36b)

5.2 Numerical setup

Concerning the numerical simulations, the computational domain size S is
considered su�ciently large to minimize the end e�ects. For the small and
medium separation distances (ε = 0.5 and ε = 1), we set S = 20 × 17. For
ε = 2, we set S = 22× 17 so that the distance between the cylinders and the
domain ends is similar to the cases ε = 0.5 and ε = 1. For all the simulations,
the Keulegan-Carpenter number is set to KC = 10−2.
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Figure 4. Dimensionless �uid force <{eitfjx} as a function of the dimensionless time
t, for various Stokes numbers Sk. The dimensionless separation distance is ε = 0.5.

The cartesian grid is built with a regular distribution over the cylinder do-
mains, including the displacement zone. The dimensionless cell size is 2×10−3

in both the x and y directions. It follows that the smallest spatial scale of our
problem, i.e. the cylinder displacement, is discretized over ten square cells,
which yields a satisfying spatial resolution. The cell-size distribution outside
the cylinder domain is performed with a hyperbolic tangent function and vary
from 2×10−3 to 3.25×10−2, with a maximum size ratio of 1.42%. The meshsize
is 3060×1850 for ε = 0.5 and ε = 1, and 3300×1850 for ε = 2. The time step
is set to δt = 2×10−3 for Sk = 100 and δt = 5×10−3 for Sk > 100. Regarding
the boundary conditions at the domain ends, the normal velocity is set to zero
to ensure a null �ow rate far from the cylinders and the normal derivative of
the tangential component is imposed to zero. The normal component of the
pressure gradient is also set to zero, which is the usual boundary condition for
the pressure �eld when the �ow rate is imposed.

5.3 Fluid forces

The time evolutions of the �uid forces are depicted in �gures 4, 5 and 6. The
theoretical predictions show that the forces are sinusoidal functions whose am-
plitude and phase depend on Sk (viscous e�ects) and ε (con�nement e�ects).
To study this sensitivity, we plot in �gure 7 the evolutions of the magnitude
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Figure 5. Dimensionless �uid force <{eitfjx} as a function of the dimensionless time
t, for various Stokes numbers Sk. The dimensionless separation distance is ε = 1.
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Figure 6. Dimensionless �uid force <{eitfjx} as a function of the dimensionless time
t, for various Stokes numbers Sk. The dimensionless separation distance is ε = 2.
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hj and the phase φj. We observe that hj is maximum for the moving cylin-
der, diverges to in�nity when Sk → 0 and decreases to h1 → π|mPOT

cross| and
h2 → π|mPOT

self | as Sk → ∞ (inviscid �uid). The magnitude is also shown to
be maximum for the small values of ε (strong con�nement) and to decrease
to h1 → 0 and h2 → π|mISO

self | as ε → ∞ (isolated cylinders). Thus, as one
would expect, the �uid forces are all the more intense as both the viscous and
con�nement e�ects are important.
The �gure 7 b) shows that the forces are in phase opposition, i.e. φ1 = φ2 +π,
with φ1 increasing from φ1 → π/2 as Sk → 0 to φ1 → π as Sk → ∞. We
note that the con�nement has a very weak e�ect on the phase, leading to a
slight increase of φj with ε. The variations of φj imply that the direction of
the �uid forces depends on Sk and, to a lesser extent on ε. From (36), the �uid
forces vanish and reverse their direction when <{eitf̃jx} = <{ei(t+φj)hjujx} =
hj sin (t+ φj) = 0, i.e. t = −φj + kπ, k ∈ Z. At that time, the dimensionless
displacement u2 = sin(t) of the moving cylinder equals u∗2 = ± sin (φj). In
�gure 7 c), we show that the �uid forces cause the cylinders to attract (resp.
repel) each other when −1 ≤ u2 < − |u∗2| (resp. |u∗2| ≤ u2 < 1). In the nar-
row range − |u∗2| ≤ u2 < |u∗2|, the cylinders are attracted (resp. repelled) to
each other if the velocity of the moving cylinder is positive (resp. negative).
An estimation of u∗2 is made possible from the observation that it is weakly
sensitive to ε (at least for ε ≥ 0.5) and thus can be approximated by its limit
as ε→∞. From (35) and u∗2 = ± sin(φ2) = ± sin(arg(f2x/u2x)), it comes that

u∗2 ≈= ± sin

(
arctan

(
cISOself

mISO
self

))
≈ ±

cISOself√(
mISO
self

)2
+
(
cISOself

)2 , (37)

which is the equation of the green line (ε → ∞) shown in �gure 7 c). An
asymptotic expansion of the modi�ed Bessel functions Kj entering in the def-

inition of mISO
self and cISOself , see (35), yields that u2

∗ = O
(
Sk−1/2

)
as Sk →∞.

Finally, we note that the theoretical predictions for hj and φj are successfully
corroborated by the numerical simulations, in the sense that similar trends
are clearly recovered. Still, we note that the numerical simulations are poorly
sensitive to ε and slightly understimate the magnitude h2 of the �uid force
acting on the moving cylinder, especially in the range of low Stokes numbers.
A detailed discussion on the di�erences between the theoretical and numerical
approaches is reported in section 5.5.

5.4 Fluid added coe�cients

We now proceed with analyzing the evolutions of the �uid added coe�cients
mself , cself , mcross and ccross entering in the computation of the �uid forces.
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Figure 8. Evolutions of the �uid added coe�cients versus the Stokes number, Sk.
The solid lines refer to the least squares approximation and the dotted lines refer
to the collocation approximation. The dimensionless separation distance is ε = 0.5
(black color), ε = 1 (red color), ε = 2 (blue color) and ε → ∞ (green color). The
horizontal dashed lines are the asymptotic limits (22) as Sk → ∞. Closed circles
correpond to numerical predictions.

The evolutions of mself and cself are depicted in �gures 8 a) and b). We
observe that mself and cself diverge to in�nity as Sk → 0 and decrease to
mself → mPOT

self and cself → 0 as Sk →∞ (inviscid �uid). The log-log plots in
the insets of �gures 8 a) and b) indicate that

mself = mPot
self +O

(
Sk−1/2

)
and cself = O

(
Sk−1/2

)
as Sk →∞. (38)

In addition to the dependence on the Stokes number, mself and cself are
also sensitive to the con�nement. The two coe�cients are maximum for the
small values of ε (strong con�nement) and decrease to mself → mISO

self and
cself → cISOself as ε → ∞ (isolated cylinders). As both Sk and ε tend to in�n-
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ity, we recover the classical results for an isolated cylinder in a perfect �uid,
mself → 1 and cself → 0.

The evolutions of mcross and ccross are depicted in �gures 8 c) and d). We
observe that mcross is negative and converges to mcross → 0 as Sk → 0. As Sk
increases, mcross �rst decreases, then hits a minimum, and �nally increases to
mcross → mPOT

cross as Sk →∞. We hypothesize that the non-monotic variations
of mcross are related to an antagonist competition between the viscous and the
con�nement e�ects. The term ccross is also negative, diverges to ccross → −∞
as Sk → 0 and increases to ccross → 0 as Sk → ∞. The log-log plots in the
insets of �gures 8 c) and d) indicate that

mcross = mPot
cross +O

(
Sk−1/2

)
and ccross = O

(
Sk−1/2

)
as Sk →∞. (39)

The coe�cients mcross and ccross are also sensitive to the con�nement: they
are minimum for the small values of ε (strong con�nement) and increase to
mcross → 0 and ccross → 0 as ε→∞ (isolated cylinders). In such a case, and
as expected, there is no �uid force acting on the stationary cylinder.

Here again, the theoretical predictions for the �uid added coe�cients are suc-
cessfully corroborated by the numerical simulations, in the sense that similar
variations are recovered. However, we note that both approaches do not exactly
exhibit the same sensitivity to the con�nement e�ect, leading to some devia-
tions in the predictions, in particular concerning the self added coe�cients at
low Stokes numbers. We discuss the possible origins of these deviations in the
next section.

5.5 Discussion on numerics versus theory

The �gure 8 shows that the simulations tend to underestimate mself and cself ,
and surestimate mcross and ccross. To quantify this deviation, we introduce
the quantity ι, de�ned as the relative distance between the numerical and the
theoretical predictions of some quantity Q : ι = |Qnum. − Qth.|/|Qnum.|. The
�gure 9 and the tables in appendix C show that ι is maximum for the small
values of Sk and ε. We attribute this deviation to the fact that the theoretical
approach is based on an approximation (least squares or collocation method)
which loses its accurary when Sk and ε become small, as shown in the study
of the residuals in �gure 3 b). Also, the numerical simulation, which is based
on a penalization method, hardly makes the di�erence between the solid and
the �uid domains for the low values of Sk. In any case, the relative deviation
for mself (resp. mcross) is always smaller than ι ≤ 10% (resp. ι < 20%). The
deviation for the damping coe�cients cself and ccross is more pronounced, with
ι ≤ 50% and ι ≤ 35%, respectively. Note that the maximum deviations are
observed for Sk ∈ [0, 400] , ε < 1, and are less important when using the least
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Figure 9. Evolutions of the relative deviation, ι, versus the Stokes number, Sk. The
solid lines refer to the least squares approximation while the dotted lines refer to the
collocation approximation. The dimensionless separation distance is ε = 0.5 (black
color), ε = 1 (red color), ε = 2 (blue color).

squares method. Even if the approximations of the theoretical and numerical
approaches can be invoked, the slope steepness of the damping coe�cients
also contributes to the enhancement of the relative deviation in such a range
of Sk and ε. It follows that both approaches yield similar trends, bringing
out the same behavior of the �uid coe�cients, despite some deviations in the
particular case of a very viscous �uid (low Sk) in a con�ned environnement
(ε < 1).
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6 Conclusion

We have considered the problem of the small oscillations of two cylinders im-
mersed in a viscous �uid initially at rest. A theoretical approach based on an
Helmholtz decomposition of the �uid velocity vector and a bipolar coordinate
system has been carried out to estimate the �uid forces acting on the two
cylinders. In addition to this new theoretical work, we also have developed a
numerical approach based on a pseudo-penalization method. Such a numer-
ical method has been shown particularly e�cient in solving �uid-structure
interaction problems, in particular for moderate or high Stokes numbers.

We studied the case in which one cylinder is stationnary while the other one
is imposed an harmonic motion. We show that the amplitude, the phase and
the direction of the �uid forces are sensitive to the Stokes number and the
separation distance between the cylinders. The two forces are in phase opposi-
tion and their amplitude decreases to the inviscid limits as Sk increases. The
e�ect of viscosity is to add to the ideal �uid added coe�cients a correction
term which scales as Sk−1/2. When the separation distance increases, the �uid
coe�cients converge to the limits of an isolated cylinder derived by Stokes
[47]. The theoretical predictions are successfully corroborated by the numer-
ical simulations, in the sense that similar trends are recovered, despite some
deviations for low Sk and ε.

As an improvement to our previous work on ideal �uids [48], the new theoret-
ical approach carried out in the present article is able to capture the e�ects of
viscosity on the �uid forces. It o�ers a simple and �exible alternative to the fas-
tidious and hardly tractable approach developed by [2]. To our knowledge, this
is also the �rst time that the pseudo-penalization method is presented in the
context of relatively small Stokes numbers. As such, the present work should
foster further developements of this easy to implement numerical method, to
tackle complex �uid-structure interaction problems.

A Evolutions of m
(j)POT
self and mPOT

cross

In this appendix, we study the variations of the �uid added coe�cientsm
(j)POT
self

and mPOT
cross, given by (22).

We show in �gure A.1 that m
(j)POT
self (resp. mPOT

cross) increases (resp. decreases)
with the radius ratio r while it decreases (resp. increases) with the dimen-
sionless separation distance ε. When r → 0, the cylinder C1 transforms to a
point and the system is equivalent to an isolated cylinder C2, leading to the
classical result m

(2)POT
self → 1. On the other hand, when r → ∞, the cylinder
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Figure A.1. Fluid added coe�cients, given by (22), versus the radius ratio r. Evolu-
tion of a) m(1)POT

self , b) m(2)POT
self and c) mPOT

cross. The horizontal dotted lines on b) and
c) show the limits as r → ∞, see eq. (A.1). The dimensionless separation distance
is ε = 0.5 (black color), ε = 1 (red color), ε = 2 (blue color).

C1 transforms to an in�nite plane and the system is equivalent to a cylinder
C2 near a wall. In such a case, we obtain

m
(1)POT
self →∞, (A.1a)

m
(2)POT
self → mWALL

self = −4
∞∑
n=1

nε (2 + ε)
(

4n + 16n
(
2ε+ 2

√
ε (2 + ε) + 2

)−2n)
−
(
2ε+ 2

√
ε (2 + ε) + 2

)2n
+ 4n

,

(A.1b)

mPOT
cross → mWALL

cross = 8
∞∑
n=1

4nnε (2 + ε)

4n −
(
2
√
ε (2 + ε) + 2ε+ 2

)2n . (A.1c)
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Figure A.2. Added mass coe�cient mWALL
self , given by (A.1) for a cylinder vibrating

near a wall.

Values of mWALL
self are presented in �gure A.2, showing a perfect agreement

with the predictions of [63] and [64].

B Functions ϕ(j)
n and A(j)

n

The functions ϕ(j)
n and A(j)

n appearing in (19) are determined from the bound-
ary conditions (16c), (16d). It yields a linear system of equations, whose solu-
tion is

ϕ(1)
n (ξ1, ξ2, l)

ϕ(2)
n (ξ1, ξ2, l)

A(1)
n (ξ1, ξ2, l)

A(2)
n (ξ1, ξ2, l)


= [Mn (ξ1, ξ2, l)]

−1



−2nae−n|ξ1| sgn (ξ1)

−2nae−n|ξ1|

0

0


, (B.1)

with

[Mn (ξ1, ξ2, l)] =



−n cosh (nξ1) −n sinh (nξ1) sinh (lξ1) l cosh (lξ1) l

n sinh (nξ1) n cosh (nξ1) −n cosh (lξ1) −n sinh (lξ1)

−n cosh (nξ2) −n sinh (nξ2) sinh (lξ2) l cosh (lξ2) l

n sinh (nξ2) n cosh (nξ2) −n cosh (lξ2) −n sinh (lξ2)


.

(B.2)
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Comparison theory / numerics 

Eps= 0.5 

Sk  selfm  selfc  
crossm  

crossc  
LS COL LS COL LS COL LS COL 

Numerics Numerics Numerics Numerics 
LS  COL  LS  COL  LS  COL  LS  COL  

100 1.48 1.49 0.498 0.547 -0.443 -0.449 -0.157 -0.175 
1.37 0.364 -0.408 -0.130 

8.0% 8.8% 37% 50% 8.6% 10% 21% 35% 

300 1.32 1.33 0.272 0.300 -0.403 -0.410 -0.0815 -0.0926 
1.24 0.208 -0.372 -0.0706 

6.5% 7.3% 31% 44% 8.3% 10% 15% 31% 

500 1.26 1.28 0.207 0.228 -0.390 -0.395 -0.0611 -0.0693 
1.20 0.171 -0.358 -0.0581 

5.0% 6.7% 21% 33% 8.9% 10% 5.2% 19% 

700 1.24 1.25 0.173 0.191 -0.382 -0.387 -0.0507 -0.0577 

1.18 0.148 -0.353 -0.0499 

5.1% 5.9% 17% 29% 8.2% 9.6% 1.6% 16% 

900 1.22 1.23 0.152 0.167 -0.377 -0.382 -0.0441 -0.0502 

1.17 0.133 -0.349 -0.0448 

4.3% 5.1% 14% 26% 8.0% 9.5% 1.6% 12% 

 

Relative deviation : 
Theory Numerics

Numerics



  

Numerical setup : 

Domain size = 18.5 x 20 

Mesh size : 3060 x 1850  

hmin= 2.0 10-3  (regular over cylinder areas) - hmax= 3.25 10-2 

Time step : t= 2.0 10-3  (SK=100) ,  t= 5.0 10-3  (SK=300), t= 1.0 10-2  (SK>300) 

 

Table C.1
Table of the �uid added coe�cients and the relative deviation, ι. The notations LS
and COL refer to the Least Squares and Collocation methods. The dimensionless
separation distance is ε = 0.5.

C Tables of comparison numerics versus theory

In this appendix, we report the theoretical and numerical values of the �uid
added coe�cients mself , cself , mcross and ccross, for ε = 0.5 (table C.1), ε = 1
(table C.2) and ε = 2 (table C.3). The numerical values correspond to the
closed symbols shown in �gure 8. The relative deviation ι is also reported in
the tables.
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Comparison theory / numerics 

Eps= 2.0 
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Relative deviation : 
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Numerics



  

Numerical setup : 

Domain size = 18.5 x 20 

Mesh size : 3060 x 1850  

hmin= 2.0 10-3  (regular over cylinder areas) - hmax= 3.25 10-2 

Time step : t= 2.0 10-3  (SK=100) ,  t= 5.0 10-3  (SK=300), t= 1.0 10-2  (SK>300) 

 

Table C.3
Table of the �uid added coe�cients and the relative deviation, ι. The notations LS
and COL refer to the Least Squares and Collocation methods. The dimensionless
separation distance is ε = 2.
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