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RIGIDITY IN GENERALIZED ISOTHERMAL FLUIDS
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Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

Kleber Carrapatoso and Matthieu Hillairet

Institut Montpelliérain Alexander Grothendieck, CNRS, Univ. Montpellier, France

Abstract. We investigate the long-time behavior of solutions to the isother-

mal Euler equation. By writing the system with a suitable time-dependent

scaling we prove that the densities of global solutions display universal disper-
sion rate and asymptotic profile. This result estends to Korteweg or quantum

Navier Stokes equations, as well as generalizations of these equations where
the convex pressure law is asymptotically linear near vacuum.

1. Introduction.

1.1. Isentropic Euler equation: existence of singularities. In the isentropic
case γ > 1, the Euler equation on Rd, d ≥ 1,{

∂tρ+ div (ρu) = 0, ρ|t=0 = ρ0,

∂t(ρu) + div(ρu⊗ u) + κ∇ (ργ) = 0, ρu|t=0 = J0,
(1.1)

enjoys the formal conservations of mass,

M(t) =

∫
Rd
ρ(t, x)dx ≡M(0),

and entropy (or energy),

E(t) =
1

2

∫
Rd
ρ(t, x)|u(t, x)|2dx+

1

γ − 1

∫
Rd
ρ(t, x)γdx ≡ E(0).

In general, smooth solutions are defined only locally in time (see [11, 7, 14]). Indeed,
as first noticed in [11], considering the new unknown

(a, v) =
(
ρ
γ−1
2 , v

)
turns (1.1) into 

∂ta+ v · ∇a+
γ − 1

2
adiv v = 0, a|t=0 = ρ

γ−1
2

0 ,

∂tv + v · ∇v + κ
2γ

γ − 1
a∇a = 0, v|t=0 =

J0

ρ0
.

(1.2)
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This system is hyperbolic symmetric (with a constant symmetrizer), so there exists
a unique local solution (a, u) ∈ C(0, T ;Hs)1+d, provided that s > 1 + d/2 and

ρ
γ−1
2

0 , v0 = J0
ρ0
∈ Hs(Rd).

It is also proven in [11] (and generalized in [14]) that if a|t=0 and v|t=0 are smooth
and compactly supported, then no matter how small they may be (and unless both
are identically zero), the solution to (1.2) will develop a singularity in finite time.
The proof relies on two key arguments:

• As long as the solution is smooth, its speed of propagation is zero (for instance,
view the equations like ODEs).

• A virial computation shows that if the solution is global, then it is dispersive:

d2

dt2

∫
Rd
|x|2ρ(t, x)dx ≥ E(t) inf (2, 3(γ − 1)) = E0 inf (2, 3(γ − 1)) > 0,

where we have used (one more time) the assumption γ > 1 and the conserva-
tion of the energy (which is granted in the case of smooth solutions).

Suppose that the solution remains smooth for all time. Integrating the above esti-
mate twice yields ∫

|x|2ρ(t, x)dx & t2.

This is incompatible with the fixed compact support of ρ and the conservation of
mass, since these properties imply, for some K > 0 independent of time,∫

|x|2ρ(t, x)dx ≤
∫
|x|<K

|x|2ρ(t, x)dx . K2d

∫
ρ(t, x)dx = K2dM(0).

Therefore, a singularity appears in finite time.

1.2. Isentropic Euler equation: some global solutions and their asymp-
totic behavior. A first global existence of smooth solutions was obtained by
D. Serre [12], under an extra geometric assumption involving a special structure
for the initial velocity. For 1 < γ ≤ 1 + 2/d, change the unknown functions

ρ(t, x) =
1

(1 + t)d
R

(
t

1 + t
,

x

1 + t

)
, u(t, x) =

1

1 + t
U

(
t

1 + t
,

x

1 + t

)
+

x

1 + t
,

and assume that R
γ−1
2

0 , U0 ∈ Hs, for some s > 1+d/2. This means ρ
γ−1
2

0 ∈ Hs (like
before), and u0(x)− x ∈ Hs (hence u0 6∈ L2).

Theorem 1.1 (D. Serre, [12]). There exists η > 0 such that if

‖(ρ(γ−1)/2
0 , U0)‖Hs(Rd) ≤ η,

then there is a unique global solution, in the sense that (R,U) ∈ C([0,∞);Hs(Rd))1+d.
In addition, there exists R∞, U∞ ∈ Hs(Rd) such that∥∥∥∥(ρ(t, x)− 1

td
R∞

(x
t

)
, u(t, x)− x

1 + t
− 1

1 + t
U∞

(x
t

))∥∥∥∥
L∞(Rd)

−→
t→∞

0.

Back to the initial unknown functions, we infer (this is a rather straightforward
consequence of the proof in [12], see [6]):
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Corollary 1.2. Let 1 < γ ≤ 1+2/d and s > d/2+1. If R∞, U∞ ∈ Hs(Rd) are such

that ‖(R(γ−1)/2
∞ , U∞)‖Hs(Rd) ≤ η, then there exists Cauchy data ρ0, u0 ∈ Hs(Rd)

such that the solution is global in time in the same sense as above, and∥∥∥∥(ρ(t, x)− 1

td
R∞

(x
t

)
, u(t, x)− x

1 + t
− 1

1 + t
U∞

(x
t

))∥∥∥∥
L∞(Rd)

−→
t→∞

0.

Some comments are in order:

• The assumptions on the velocity is reminiscent of the “good case” in Burgers’
equation: particles spread out. Generalizations of this result can be found in
[9, 8].

• In this regime, the density is dispersive, and dispersive rate is universal,

‖ρ(t)‖L∞(Rd) .
1

td
.

• However, the asymptotic profile R∞ may be any smooth, small function.

1.3. Isothermal case. In the case γ = 1,{
∂tρ+ div (ρu) = 0,

∂t(ρu) + div(ρu⊗ u) + κ∇ρ = 0,
(1.3)

with κ > 0, the mass is still conserved,

M(t) =

∫
Rd
ρ(t, x)dx ≡M(0),

as well as the entropy, which now reads

E(t) =
1

2

∫
Rd
ρ(t, x)|u(t, x)|2dx+ κ

∫
Rd
ρ(t, x) ln ρ(t, x)dx ≡ E(0).

Now, the energy has no definite sign: no a priori estimate like in the argument of
[11] is available. We show that rigidity results are available in this case though,
involving a large time behavior in sharp contrast with the case 1 < γ ≤ 1 + 2/d of
[12].

2. A large family of explicit solutions. To simplify the presentation, we assume
d = 1 in this section, and refer to [6] for the general case. Consider

ρ0(x) = b0e
−α0x

2

, u0(x) = β0x.

As noticed by M. Yuen [15], the above structure is preserved by the flow:

ρ(t, x) = b(t)e−α(t)x2

, u(t, x) = β(t)x,

and solving the PDE (1.3) becomes equivalent to solving the ODEs

α̇+ 2αβ = 0, β̇ + β2 − 2κα = 0, ḃ = −βb.
Following T. Li and D. Wang [10], seek

α(t) =
α0

τ(t)2
, β(t) =

τ̇(t)

τ(t)
.

We come up with the ODE

τ̈ =
2κα0

τ
, τ(0) = 1, τ̇(0) = β0.

At this stage, the surprising fact is the universal behavior of solutions to the above
equation, regardless of initial data.
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Lemma 2.1 ([5]). Let a0, κ̃ > 0, β0 ∈ R. Consider the ordinary differential equa-
tion

τ̈ =
2κ̃

τ
, τ(0) = a0 , τ̇(0) = β0.

It has a unique solution τ ∈ C2(0,∞), and it satisfies, as t→∞,

τ(t) = 2t
√
κ̃ ln t (1 +O(`(t))) , τ̇(t) = 2

√
κ̃ ln t (1 +O(`(t))) ,

where `(t) :=
ln ln t

ln t
.

Back to (1.3), this yields

ρ(t, x) ∼
t→∞

b0

2t
√
α0κ ln t

e−x
2/(2t

√
κ ln t)2 , u(t, x) ∼

t→∞

x

t
.

Here, we emphasize the property

b0/
√
α0 ∝ ‖ρ0‖L1 .

Note that since the velocity is linear in x, this provides explicit solutions for the
(Newtonian) isothermal Navier-Stokes equation.

Remark 2.2. It is possible to consider an initial Gaussian density which is not
centered at the origin, or, equivalently,

ρ0(x) = b0e
−α0x

2

, u0(x) = β0x+ c0.

Then

ρ(t, x) = b(t)e−α(t)(x−x(t))2 , u(t, x) = β(t)x+ c(t),

with b, α and β like before, and

x(t) = c0t, c(t) = c0

(
1− τ̇(t)

τ(t)
t

)
.

Remark 2.3 (Universal dynamics for the density). In this Gaussian case, the func-
tion ρ exhibits two interesting features. We get a new dispersive rate, different from
the one proved in [12] in the case 1 < γ ≤ 1 + 2/d (logarithmic correction). More
suprisingly, the density enjoys a universal asymptotic profile: no matter what the
initial variance is, the asymptotic one is always the same.

Remark 2.4 (Generalization to other equations). The same approach can be ex-
tended to

∂tρ+ div (ρu) = 0,

∂t(ρu) + div(ρu⊗ u) + κ∇ρ =
ε2

2
ρ∇
(

∆
√
ρ

√
ρ

)
+ ν div (ρD(u)) ,

with ε, ν ≥ 0 and D(u) = 1
2 (∇u+ t∇u). The term in ε corresponds to Korte-

weg equation (this term moldes capillarity). The term in ν corresponds to quan-
tum Navier–Stokes equation, to take dissipative effects into account (see[4] for the
derivation). Essentially, we proceed like before, and get the ODE

τ̈ε,ν =
2κα0

τε,ν
+ ε2 α2

0

(τε,ν)3
− να0

τ̇ε,ν

(τε,ν)2
, τε,ν(0) = 1, τ̇ε,ν(0) = β0.

It turns out that ε and ν do not alter the large time behavior, and we observe the
same universal large time dynamics as for the isothermal Euler equation; see [6] for
details.
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3. Isothermal Euler equation and universal large time dynamics. Moti-
vated by the remarkable observations in the one-dimensional Gaussian case, we
introduce another change of unknown functions, in the case of the general space
dimension d ≥ 1. Consider the universal dispersion τ ,

τ̈ =
2κ

τ
, τ(0) = 1 , τ̇(0) = 0 , (3.1)

and change the unknown functions

ρ(t, x) =
1

τ(t)d
R

(
t,

x

τ(t)

)
‖ρ0‖L1

‖Γ‖L1

, u(t, x) =
1

τ(t)
U

(
t,

x

τ(t)

)
+
τ̇(t)

τ(t)
x,

where

Γ(y) = e−|y|
2

is the Gaussian that appeared in the previous section. The system in (ρ, ρu) is
equivalent to 

∂tR+
1

τ2
div (RU) = 0,

∂t(RU) +
1

τ2
div(RU ⊗ U) + 2κyR+ κ∇R = 0.

(3.2)

Naturally, the conservation of mass remains. The good news is that we gain some
positivity in the entropy. Indeed, define the pseudo-energy

E(t) :=
1

2τ2

∫
R|U |2 + κ

∫
(R|y|2 +R lnR).

Formally, it satisfies

Ė(t) = −D(t) =: − τ̇

τ3

∫
R|U |2.

We also have

E(t) :=
1

2τ2

∫
R|U |2 + κ

∫
R ln

R

Γ
,

and since
∫
R =

∫
Γ, the Csiszár-Kullback inequality (see e.g. [1])

‖f − g‖2L1(Rd) ≤ 2‖f‖L1(Rd)

∫
f(x) ln

(
f(x)

g(x)

)
dx

shows that E is the sum of two non-negative terms. As a matter of fact, Csiszár-
Kullback inequality is not used: it is just a hint that more estimates are availabel
in terms of (R,U) than in terms of (ρ, u).

Lemma 3.1. Suppose that
∫
Rd R(t, y)dy is bounded and E(t) ≤ Λ for all t ≥ 0.

There exists C0 > 0 such that

1

τ2

∫
Rd
R|U |2 +

∫
Rd
R(1 + |y|2 + | lnR|) ≤ C0, ∀t ≥ 0.

Proof. We decompose E in order to introduce a sum of positive terms,

E+(t) :=
1

2τ2

∫
R|U |2 + κ

(∫
R|y|2 +

∫
R≥1

R lnR

)
.

Since E is non-increasing, we have

E+(t) ≤ Λ + κ

∫
R<1

R ln
1

R
. 1 +

∫
Rd
R1−η.
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By interpolation,∫
Rd
R1−η ≤ Cη‖R‖1−η−dη/2L1(Rd)

‖|y|2R‖dη/2
L1(Rd)

, 0 < η <
2

d+ 2
.

Therefore, since the mass is conserved,

E+(t) ≤ Λ + CE+(t)dη/4

and since dη/4 < 1, E+(t) is uniformly bounded for t ≥ 0. As E+ is the sum of
three non-negative terms, each one is uniformly bounded, and the only remaining
term in E is also bounded.

Recall that

Ė(t) = −D(t) =: − τ̇

τ3

∫
R|U |2 ≤ 0.

Therefore, E is naturally bounded from above. The previous lemma shows that E
is bounded from below, hence ∫ ∞

0

D(t)dt <∞.

We can now state our main result.

Theorem 3.2. Let (R,U) be a global weak solution, with constant mass.

1. If sup
t≥0
E(t) <∞, then∫

Rd
yR(t, y)dy −→

t→∞
0 and

∣∣∣∣∫
Rd

(RU)(t, y)dy

∣∣∣∣ −→t→∞∞,
unless

∫
yR(0, y)dy =

∫
(RU)(0, y)dy = 0 (a case where each of these quantites

remains identically zero).
2. If sup

t≥0
E(t) <∞ and the energy E satisfies E(t) = o (ln t) as t→∞, then∫

Rd
|y|2R(t, y)dy −→

t→∞

∫
Rd
|y|2Γ(y)dy.

3. If sup
t≥0
E(t) +

∫ ∞
0

D(t)dt <∞, then R(t, ·) ⇀ Γ weakly in L1(Rd) as t→∞.

Remark 3.3 (Wasserstein distance). Theorem 3.2 implies the large time conver-
gence of R to Γ in the Wasserstein distance W2, defined, for ν1 and ν2 probability
measures, by

Wp(ν1, ν2) = inf

{(∫
Rd×Rd

|x− y|pdµ(x, y)

)1/p

; (πj)]µ = νj

}
,

where µ varies among all probability measures on Rd ×Rd, and πj : Rd ×Rd → Rd
denotes the canonical projection onto the j-th factor. This implies, for instance,
the convergence of fractional momenta (see e.g. [13, Theorem 7.12])∫

|y|2sR(t, y)dy −→
t→∞

∫
|y|2sΓ(y)dy, 0 ≤ s ≤ 1.

In [6], we prove the above result in the following generalized framework:

• The result remains valid in the presence of capillarity (Korteweg equation)
and quantum dissipation (quantum Navier-Stokes).
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• The result remains valid also with a generalized pressure law:
∂tρ+ div (ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇P (ρ) =
ε2

2
ρ∇
(

∆
√
ρ

√
ρ

)
+ ν div (ρDu) ,

with P convex and P ′(0) = κ > 0.

Remark 3.4. In the case where 0 ≤ ε ≤ ν and ν > 0, with P (ρ) ≡ κρ, we have
another rigidity result: up to an extraction, sequences of solutions on (0, T ) enjoying
uniformly the conservation of mass, and “natural” inequalities (energy dissipation,
BD-entropy dissipation, Mellet-Vasseur inequality in (R,U)), converge to a weak
solution on (0, T ). The proof, presented in [6], follows the same argument as in [2].

4. Elements of proof. We present the main arguments to prove Theorem 3.2.
Details can be found in [6]. Many features of the proof are similar to the arguments
given in [5] in the context of a Schrödinger equation with logarithmic nonlinearity.

4.1. Main Theorem: proof of the first point. Define

I1(t) =

∫
Rd

(RU)(t, y)dy, I2(t) =

∫
Rd
yR(t, y)dy.

We compute

İ1 = − 1

τ2

∫
Rd

div(RU ⊗ U)− 2κI2 − κ
∫
Rd
∇R = −2κI2,

thanks to Lemma 3.1. Similarly, we compute

İ2 = − 1

τ2

∫
Rd
y div(RU) =

1

τ2

∫
Rd
RU ≡ 1

τ2
I1,

since, from Lemma 3.1 and Cauchy-Schwarz inequality,

R|y||U | ∈ L∞loc(0,∞;L1(Rd)).

Then J2 := τI2 satisfies J̈2 = 0, hence

I2(t) =
−I1(0)t+ I2(0)

τ(t)
, I1(t) = I1(0)− 2κ

∫ t

0

I2(s)ds.

The first point is then an easy consequence of Lemma 2.1.

4.2. Main Theorem: proof of the second point. Recall that the energy (en-
tropy) E is formally conserved,

E(t) =
1

2

∫
Rd
ρ(t, x)|u(t, x)|2dx+ κ

∫
Rd
ρ(t, x) ln ρ(t, x)dx.

In view of the change of unknown functions (ρ, u) 7→ (R,U), rewrite E:

E(t) =
1

2τ2

∫
R|U |2dy +

(τ̇)2

2

∫
R|y|2dy +

τ̇

τ

∫
Ry · Udy + κ

∫
R lnRdy

− κ ln
(
τd
) ∫

Rdy.

We already know that the first and fourth terms are uniformly bounded (Lemma 3.1),

and that the third term is O(
√

ln t)) (Lemma 3.1, Cauchy-Schwarz inequality, and
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Lemma 2.1), while each of the second and last term is potentially of order ln t
(Lemma 2.1). Therefore, if E(t) = o(ln t),

2

∫
R|y|2dy − d

∫
Rdy = o(1), hence

∫
R|y|2dy −→

t→∞

d

2

∫
Γdy =

∫
|y|2Γ(y)dy.

4.3. Main Theorem: proof of the last point. Discarding terms which seem
negligible for large time in (3.2), we get∂tR+

1

τ2
div (RU) = 0,

∂t(RU) + 2κyR+ κ∇R = 0,

hence

∂t
(
τ2∂tR

)
= κLR, where Lf = ∆f + 2 div(yf)

is a Fokker–Planck operator. Since τ2 � (τ̇ τ)2 as t→∞ (Lemma 2.1), we expect

∂t
(
τ2∂tR

)
= τ2∂2

tR+ 2τ̇ τ∂tR ≈ 2τ̇ τ∂tR,

hence, for large time, ∂sR ≈ LR, for the new time variable

s(t) = κ

∫
1

τ τ̇
=

1

2

∫
τ̈

τ̇
=

1

2
ln τ̇(t) ∼

t→∞

1

4
ln ln t.

The large time behavior is thus expected to be dictated by the Fokker–Planck
equation

∂sR∞ = LR∞, Lf = ∆f + 2 div(yf).

It was established in [3] that any solution to this equation, obeying the bounds
given by Lemma 3.1, satisfies

‖R∞(t)− Γ‖L1(Rd) −→
t→∞

0.

To make the argument rigorous, set s(t) = 1
2 ln τ̇(t). At this stage, we emphasize

that this rescaled time turns out to be rather natural: in view of Lemma 2.1,

s(t) ∼
t→∞

1

4
ln ln t.

This property conciles the fact that R∞ converges to Γ exponentially fast in s
(due to a spectral gap), and the fact that the convergence of the above quadratic
quantities involved a logarithmic convergence in t.

Now denote by α : s 7→ α(s) = t its inverse mapping. Set R̄(s, y) = R(t, y),
Ū(s, y) = U(t, y):

∂sR̄−
2κ

(τ̇ ◦ α)2
∂sR̄+

κ

(τ̇ ◦ α)2
∂2
s R̄ = LR̄+

1

(τ ◦ α)2
∇2 : (R̄Ū ⊗ Ū).

As a consequence of Lemma 3.1,
∫∞

0
D(t)dt <∞, which now reads∫ ∞

0

(
τ̇ ◦ α
τ ◦ α

)2 ∥∥∥√R̄Ū∥∥∥2

L2(Rd)
ds <∞.

For s ∈ [0, 1] and sn →∞, let R̄n(s, y) = R̄(s+ sn, y), Ūn(s, y) = Ū(s+ sn, y):

sup
n∈N

sup
s∈[0,1]

∫
Rd
R̄n(1 + |y|2 + | ln R̄n|)dy ≤ C,

lim
n→∞

∫ 1

0

(
τ̇ ◦ αn
τ ◦ αn

)2 ∥∥∥√R̄nŪn∥∥∥2

L2(Rd)
ds = 0.
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Dunford–Pettis criterion implies that there exists R∞ ∈ L1((0, 1)×Rd), such that,
up to extracting a subsequence,

R̄n ⇀ R∞ weakly in L1((0, 1)× Rd) as n→∞,
and

∫
Rd R∞ =

∫
Rd R̄n =

∫
Rd Γ (tightness).

lim
n→∞

∫ 1

0

(
τ̇ ◦ αn
τ ◦ αn

)2 ∥∥∥√R̄nŪn∥∥∥2

L2(Rd)
ds = 0

yields
1

(τ ◦ αn)2
∇2 : (R̄nŪn ⊗ Ūn) ⇀ 0, hence ∂sR∞ = LR∞.

On the other hand, we can show that R∞ is stationary, ∂sR∞ = 0, and we conclude
thanks to the result of Arnold, Markowich, Toscani and Unterreiter [3]. The limit
is unique, so no extraction is actually needed.
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