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In this paper, we report experimental results on the stability of a fluid inside a precessing and
resonant cylinder. Above a critical Reynolds number, the Kelvin mode forced by precession trig-
gers an instability which saturates at intermediate Re and which leads to a turbulent flow at high
Reynolds numbers. Particle Image Velocimetry measurements in two different sections of the cylin-
der have revealed the 3D structure of this instability. It is composed of two free Kelvin modes whose
wavenumbers and frequencies respect the conditions for a triadic resonance with the forced Kelvin
mode, as is obtained for the elliptical instability. Moreover, an experimental diagram of stability
has been established by varying both the precessing angle and the Reynolds number. It shows a
good agreement with a scaling analysis based on a triadic resonance mechanism.

The knowledge of the flow forced by a precessional
motion is of critical importance in several domains. In
aeronautics, the liquid propellant contained in a flying
object can be forced by precession. The resulting flow
can create a destabilizing torque on the object and thus
modify its trajectory dangerously. In geophysics the
Earth’s precession modifies the flow of its liquid core and
is therefore of signicative importance in understanding
the geodynamo (among other effects such as convection,
boundary layers, elliptic or tidal instability [1]). The
flow inside a cylinder subjected to precession can be
decomposed as a sum of a shear along the cylinder axis
and a superposition of Kelvin modes which become
resonant for particular precession frequencies. McE-
wan [2] first observed that this flow can become unstable
and even turbulent for large Reynolds numbers. This
behavior has also been reported by Manasseh [3–5], and
Kobine [6]. Several scenarios have been proposed to
explain this instability. Studying the case of an infinite
cylinder, Mahalov [7] proposed a mechanism of triadic
resonance between the flow shear and two Kelvin modes.
Kerswell [8] suggested that a given Kelvin mode can
trigger a triadic resonance with two other Kelvin modes
leading to an instability. Another scenario, suggested by
Kobine [6, 9] is that the main flow could be modified by
a geostrophic mode (due to nonlinear effects) eventually
leading to a centrifugal instability.

An experimental set-up has been built to study the
precession of a cylinder of height H along its axis ẑ and
radius R, full of water of kinematic viscosity ν. More
details about the set-up can be found in [10]. The cylin-
der rotates at the angular frequency Ω1 (measured with
an accuracy of 0.1%) around its axis. It is mounted on
a platform which rotates at the angular frequency Ω2

(measured with an accuracy of 0.2%). Once the spin-up
stage is completed, the cylinder is tilted with an angle α
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(determined with an absolute accuracy of ±0.1◦) with re-
spect to the rotation axis of the platform. Particle Image
Velocimetry (PIV) measurements in transverse sections
of the cylinder are made. To perform the acquisition of a
PIV field, we use small markers illuminated with a thin
light sheet created by a Yag pulsed laser. The particle
images are recorded by a camera mounted on the rotating
platform. The horizontal velocity and the axial vorticity
fields in the cylinder frame of reference are thus mea-
sured. More details about PIV treatment can be found
in [11].

In the following, variables are made dimensionless
by using R and Ω = Ω1 + Ω2 cosα as characteristic
length and characteristic frequency. The dynamics of
this precessing system depends on four dimensionless
numbers: the aspect ratio h = H/R, the frequency ratio
ω = Ω1/Ω, the Rossby number Ro = Ω2 sinα/Ω and
the Reynolds number Re = ΩR2/ν. The cylindrical
coordinates are used in the reference frame of the
cylinder and noted (r, θ, z), where z = 0 corresponds to
the mid-height section of the cylinder.

Figure 1 shows the axial and instantaneous flow vor-
ticity for a small precessing angle (α = 1◦) and differ-
ent Reynolds numbers. The laser sheet is at an altitude
z ≃ h/4. For Re = 3500 (Fig. 1a), the flow mainly
consists of two stationary counter rotating vortices. A
classical linear and inviscid theory is sufficient to ex-
plain this observation. By assuming a small Rossby num-
ber (weak precession, negligible nonlinear effects) and a
large Reynolds number (negligible viscous effects), the
linearized Euler equation at order O(Ro) is

∂v

∂t
+ 2ẑ× v +∇p = −2Roω r cos (ωt+ θ) ẑ, (1)

where 2ẑ × v is the dimensionless Coriolis force and p
the dimensionless pressure including all potential terms.
The right-hand side of Eq. (1) is the precession forcing
which forces a particular solution of Eq. (1): vpart =
−2Ro r sin (ωt+ θ) ẑ. This solution does not satisfy the
boundary conditions of no outward flow at z = ±h/2.
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FIG. 1: Axial vorticity ζ of the flow for different Reynolds
numbers at z = h/4. (a) For Re = 3500 the stable flow ex-
hibits the forced Kelvin mode. (b) For Re = 6000 the flow is
unstable and exhibits a free Kelvin mode with m1 = 5 super-
imposed to the forced Kelvin mode. The temporal evolution
of the instability can be observed in the corresponding movie.
(c) For Re = 24400 the flow is turbulent. For these three
cases h = 1.62, ω = 1.18, Ro = 0.0031.

Thus, we must complete this solution with a solution of
the homogeneous equation (Eq. (1) without forcing), so
that the boundary condition at the upper and lower walls
is satisfied. Due to time and azimuthal dependance of
the forcing, the homogeneous solution is a sum of Kelvin
modes of azimuthal wavenumber m = 1 and angular fre-
quency ω. Finally the solution of Eq. (1) is

v = vpart +

∞∑
i=1

aivi (m = 1, ω, ki) , (2)

where vi (m,ω, ki) is a Kelvin mode of amplitude ai and
whose axial wavenumber ki depends on ω by the disper-
sion relation

ωki
√

4/ω2 − 1 J
′

m

(
ki
√

4/ω2 − 1
)

+2Jm

(
ki
√

4/ω2 − 1
)
= 0, (3)

where Jm is the Bessel function of the first kind, J
′

m its
derivative. The axial vorticity ζi of the i-th Kelvin mode
is

ζi = Jm

(
ki
√
4/ω2 − 1r

)
sin (kiz) cos (ωt+mθ) . (4)

When ki is equal to (2n+1)π/h, with n an integer num-
ber, the i-th Kelvin mode ’fits’ inside the height of the
cylinder and becomes resonant. In our experiments (i.e
for h = 1.62 and ω = 1.18) the first Kelvin mode (which
is theoretically characterized by two lobes of vorticity) is
resonant (its axial wavenumber, noted k, is equal to π/h).
Because the amplitude a1 is predicted to diverge by a
linear analysis it is necessary to include viscous [12] and
nonlinear effects. We have shown in [10] that a1 scales
as RoRe1/2 for low Reynolds numbers (viscous regime,
Re1/2Ro2/3 ≪ 1) and as Ro1/3 for large Reynolds num-
bers (nonlinear regime, Re1/2Ro2/3 ≫ 1). Since the non-
resonant mode amplitudes scale as Ro, the resonant mode
is always predominant.

Figure 1b is a PIV measurement of the axial and in-
stantaneous vorticity field for Re = 6500. For such a
value of Re the flow seen in Fig. 1 is unstable and the
unstable mode exhibits a ring with 10 lobes of vorticity
with alternate sign. It corresponds to a free Kelvin mode
(i.e a solution of Eq. (1) without forcing) whose azimuthal
wavenumber, noted m1 equals 5. This mode m1 = 5 is
superimposed to the forced Kelvin mode m = 1 shown in
Fig. 1a. (As seen on Fig. 1b the average vorticity is nega-
tive for x < 0 and positive for x > 0). Such a flow, which
is three-dimensional and non-stationary, corresponds to
the instability discovered by McEwan [2] and studied by
Manasseh [3] using visualizations, which was called ”res-
onant collapse” since it decreases the amplitude of the
forced Kelvin mode. Indeed, the same structure has been
observed for other aspect ratios (h = 1.8 and h = 2) and
it also leads to the decrease of the forced Kelvin mode’s
amplitude. The visualization of a sequence of instanta-
neous PIV fields shows that the free Kelvin mode ro-
tates as a function of time at a dimensionless frequency
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FIG. 2: Vorticity field of the unstable flow at mid-height of the
cylinder for the same parameters as in figure 1(b) (h = 1.62,
ω = 1.18, Ro = 0.0031, Re = 6500).

ω1 = −0.34±11% in the cylinder frame of reference. For
this Reynolds number, the unstable mode beats probably
due to a nonlinear coupling with the geostrophic mode.
However, the amplitude of this unstable mode is station-
ary close to the threshold (i.e. Re ≃ 4600).

Figure 1c represents the axial and instantaneous vor-
ticity field for even larger Reynolds numbers (Re =
24400). For such a value of Re the flow is disordered and
seems to be turbulent. As suggested by Kerswell [8], this
disordered flow could be the result of successive instabil-
ities: a cascade of bifurcations could lead to a turbulent
state. It can be noted that the Kelvin mode m = 1 forced
by precession is still present since the average vorticity is
still negative for x < 0 and positive for x > 0.

Figure 2 is a PIV measurement of the axial and in-
stantaneous vorticity field measured in a section of the
cylinder lower than in Fig. 1. The laser sheet is at mid-
height of the cylinder (z = 0). According to Eq. (4) the
vorticity of the forced Kelvin mode m = 1 and of the
free Kelvin mode m1 = 5 is equal to 0. At this altitude
a structure with 12 lobes of alternate vorticity is clearly
observed. It corresponds to a free Kelvin mode whose
azimuthal wavenumber, noted m2, is equal to 6. Because
it does not vanish at z = 0 its axial vorticity is given
by Eq. (4) where sin (k2z) has been changed in cos (k2z).
This free Kelvin mode rotates at a dimensionless angu-
lar frequency ω2 = 0.79 ± 2.5% in the cylinder frame of
reference.

The axial velocity (which is in quadrature with respect
to the axial vorticity given by Eq. (4)) of the free Kelvin
mode m1 = 5 (resp. m2 = 6) is a cosine (resp. sine)
function of z. Boundary conditions of no outward flow
at z = ±h/2 imply that the axial wavenumber of the
free Kelvin mode m1 = 5 (resp. m2 = 6) is discretized
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FIG. 3: Dispersion relations of the Kelvin modes. The solid
lines (resp. dashed lines) correspond to the first five branches
of the Kelvin modes with azimuthal wavenumber m1 = 5
(resp. m2 = 6). Solid lines have been translated by k = π/h
and dashed lines have been translated by ω = 1.18. Vertical
dotted lines correspond k = nπ/h, with n an integer, (h =
1.62, ω = 1.18).

as follows: k1 = (2n1 + 1)π/h (resp. k2 = 2n2π/h), n1

(resp. n2) being an integer.
Furthermore, figure 1b and figure 2 show that the

unstable Kelvin modes correspond to the first branch
of the dispersion relation since there is only one ring
of vortices. We can thus infer that k1 = π/h (resp.
k2 = 2π/h) since the point (k1 = π/h, ω1 ≈ −0.34)
(resp. (k2 = 2π/h, ω1 ≈ 0.79)) then falls very close to
the first branch of the dispersion relation (3) for m1 = 5
(resp. m2 = 6) (Fig. 3).

These experiments have allowed to determine the
structure of the instability of a fluid inside a precessing
and resonant cylinder. We have found that the unstable
flow is the sum of three Kelvin modes: the forced one, and
two free modes. The azimuthal wavenumber and the an-
gular frequency of these free modes have been measured
and satisfy the conditions for a triadic resonance with the
forced Kelvin mode

m2 −m1 = 1, ω2 − ω1 ≈ ω, k2 − k1 = k, (5)

where k = π/h is the axial wavenumber of the forced
Kelvin mode. This suggests that the nonlinear coupling
of the three Kelvin modes can trigger an instability, in a
similar way as for the elliptical instability [13, 14].

The resonant condition given in Eq. (5) corresponds to
the crossing points of the dashed and solid lines in Fig. 3,
where the two dispersion relations are plotted in the same
plane; the dispersion relation with m1 = 5 (resp. m2 =
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FIG. 4: Stability diagram of the flow inside a precessing cylin-
der for (h = 1.62, ω = 1.18). Circles represent stable experi-
ments. Blacks triangles represent unstable experiments. The
solid line is an experimental ’fit’ of the threshold. The dashed
line separates the viscous and the nonlinear domains of the
base flow.

6) being horizontally (resp. vertically) translated of k
(resp. translated of −ω). It can be noted that there is an
infinite and denumerable number of possible resonances.
However, the free Kelvin modes observed experimentally
correspond to the crossing point surrounded by a circle
on Fig. 3. These modes satisfy exactly the boundary
conditions at z = ±h/2 (i.e. the crossing point lies on
a vertical dotted line in Fig. 3). This exact resonance is
only valid for h = 1.62. For h ≈ 1.62 ’detuning’ effects
shall come into play and thus decrease the instability
growth rate.
For h ≃ 1.62 two free Kelvin modes involving different

branches of the dispersion relations or different azimuthal
wavenumbers m1 and m2 can exactly resonate with the
forced Kelvin mode. Nevertheless, it can be shown that
there can not be exact resonances for m1 ≤ 4 for the first
branches of the dispersion relations. Thus, the aspect
ratio h = 1.62 corresponds to the exact resonance of the
Kelvin modes with the smallest wavenumbers. Since vol-
ume viscous effects increase with the wavenumbers of the
free Kelvin modes, h = 1.62 is expected to be the aspect
ratio for which the flow is the most unstable. However,
the previous observations are very general and do not
depend on the fact that the triadic resonance is exact or
not. Indeed, experiments with an arbitrary aspect ratio

(h = 1.8) have shown exactly the same instability.

Finally we have plotted in Fig. 4 the stability diagram
of this instability in the Re-Ro plane. The majority of
the experiments close to threshold are in the viscous
domain for the base flow. This means that the ampli-

tude of the forced mode scales as a1 ∼ RoRe1/2 [10].
Based on similarities with the elliptic instability, the
inviscid growth rate σ of the present triadic instability is
expected to scale as the amplitude of the forced Kelvin
mode: σ ∼ a1. The natural decay rate of Kelvin modes
is due both to the boundary viscous layers and volume
viscous effects. The surface (resp. volume) decay rate

σsurf (resp. σvol) scales as σsurf ∼ −Re−1/2 (resp.
σvol ≃ −[m1 + k21(4/ω

2 − 1)]Re−1). In our experiments,
σsurf ≃ σvol for Re ≃ 3000. When the instability is
saturated by volume (i.e. Re < 3000), (resp. boundary,
i.e. Re > 3000) viscous effects, the amplitude of the
forced Kelvin at which the flow becomes unstable
satisfies a1c ∼ Re−1 (resp. a1c ∼ Re−1/2). Thus the
Rossby number at which the flow becomes unstable

scales as Roc ∼ Re−3/2 (resp. Roc ∼ Re−1). A ’fit’ of
the experimental threshold gives Roc ∼ Re−1.38 (solid
line), which is coherent with the theoretical scalings.

In this paper we studied experimentally the flow inside
a precessing and resonant cylinder. At a given Rossby
number the flow is stable for small enough Reynolds num-
bers and exhibits a Kelvin mode forced by the preces-
sional motion. Increasing the Reynolds number above a
critical value the flow becomes unstable (and even turbu-
lent for high Re). Measurements in two different cylinder
sections have revealed the presence of two Kelvin modes
with high azimuthal wavenumbers. Their frequencies and
their wavenumbers satisfy the conditions for a triadic res-
onance with the forced Kelvin mode. Thus, this paper
has confirmed the scenario suggested by Kerswell [8] that
a Kelvin mode can be destabilized by a triadic resonance
mechanism. So, the precessional instability is very gen-
eral since it appears as soon as a Kelvin wave has been
excited (through precession, compression, in the nonlin-
ear stages of the elliptical instability or in the turbulent
flow of a rotating cylinder). A stability diagram has also
been established and showed that the scaling of the crit-
ical Ro as a function of Re is coherent with standard
scaling laws in triadic resonances.

A linear stability analysis based on a mechanism of
triadic resonance between Kelvin modes is currently
under progress and will be the subject of a foregoing
paper.

This study has been carried out under the contract
CEA-CNRS N◦012171.
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