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In the case of a gyroscope including a cylindrical fluid-filled cavity, the classic Poinsot’s

coning motion can become unstable. For certain values of the solid inertia ratio, the

coning angle opens under the effect of the hydrodynamic torque. The coupled dynamics

of such a non solid system is ruled by four dimensionless numbers : the small viscous

parameter ε = Re−1/2 (where Re notes the Reynolds number), the fluid-solid inertia ratio

κ which quantifies the proportion of liquid relative to the total mass of the gyroscope,

the solid inertia ratio σ, and the aspect ratio h of the cylindrical cavity. The calculation

of the hydrodynamic torque on the solid part of the gyroscope requires the preliminary

evaluation of the possibly resonant flow inside the cavity. The hydrodynamic scaling

used to derive such a flow essentially depends on the relative values of κ and ε. For small

values of the ratio
√
κ/ε (compared to 1), Gans derived an expression of the growth rate

of the coning angle. The principles of Gans’ approach are briefly recalled but the details

of the whole calculation are not given. At the opposite limit, that is for large values of√
κ/ε, the dominating flow is given by a linear inviscid theory. In order to take account

of viscous effects, we propose a direct method involving an exhaustive calculation of the

flow at order ε. We show that the deviations from Stewartson’s inviscid theory do not

originate from the viscous shear at the walls but rather from the bulk pressure at order

ε related to the Ekman suction. Physical contents of Wedemeyer’s heuristic theory are

analysed in the view of our analytical results. The latter are tested numerically in a large

range of parameters. Complete Navier-Stokes equations are solved in the cavity. The

hydrodynamic torque obtained by numerical integration of the stress is used as a forcing

term in the coupled fluid-solid equations. Numerical results and analytical predictions

show a fairly good quantitative agreement.

1. Introduction

The behaviour of an isolated precessing tank is very dependent on the hydrodynam-

ics of the fluid contained and approaches by energy dissipation evaluation (Garg (1986),

Vanyo (1993)), although very useful, can be insufficient. An accurate prediction of a pos-
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sible destabilization of the coupled fluid-structure system implies a good understanding

of the flow forced by the precessional motion of the container.

Initial theoretical work on rotating fluids can be attributed to Sir W. Thomson (1880),

who suggested that the linear inviscid flow of a disturbed rotating fluid could be writ-

ten as a sum of so-called Kelvin modes. Using Lord Kelvin’s approach, Greenhill (1880)

calculated the inviscid flow in a rotating ellipsoidal cavity. As shown later by Kudlick

(1966) and Greenspan (1968) for sufficiently high Reynolds numbers, viscous effects can

be taken in account as corrections to Kelvin’s inviscid approach. Experiments performed

later (Fultz (1959), McEwan (1970), Kerswell (1995), Meunier (2008)) confirmed not only

the values of the resonant eigen frequencies but also the times of viscous decay predicted

by these linear theories. A theoretical expression of the viscously saturated amplitude

at the resonance was established by Gans (1970). Meunier (2008) confirmed Gans’ pre-

diction and gave a more complete expression for the amplitude of the resonant mode,

taking in account both viscous and non-linear terms in Navier-Stokes equations. How-

ever, further exprimental work performed at sufficiently high Reynolds numbers (McEwan

(1970), Thomson (1970), Manasseh (1992,1994,1996), Mahalov (1993)) showed a system-

atic destabilization of the resonant flow into a fine-scale turbulent flow. This so-called

resonant collapse, probably resulting from a triad mechanism (Lagrange (2008)), was

explored by Kerswell (1999). In the present work, we do not take into account non linear

effects such as triadic coupling senario of destabilization, since only very small coning

angles are considered.

Pioneering theoretical work on the stability of a fluid-filled gyroscope was performed

by Milne (1940), who applied Greenhill’s inviscid solution for an ellipsoidal cavity to

a completely liquid-filled spinning projectile, and exhibited a stability criterion in the

form of a diagram (the so-called Milne’s graph). Two decades later, Stewartson (1958)

extended Milne’s approach to the case of a partially or completely filled cylindrical cavity

(Stewartson’s theory was also based on the assumption that the inside liquid had zero

viscosity). Milne-Stewartson’s theory revealed the existence of unstable ranges of solid

inertia ratio, for which the coning motion of the gyroscope forces a Kelvin mode close to

one of its resonances. However, the discrepancies between these theories and the experi-

ments performed by Ward (1959) were confirmed by further experimental data presented

by Karpov (1962, 1965), Scott (1973) and D’Amico (1977, 1981). Indeed, the observed

resonant frequency of the fluid-filled gyroscope was slightly (but systematically) shifted

compared to the inviscid resonant frequency predicted by Stewartson (by resonant fre-

quency, we mean here the frequency at which the growth rate of the coning angle is

maximum). Besides, the growth rate of the coning angle was not strictly zero outside the

range of unstable solid inertia ratios predicted by Stewartson.

Wedemeyer (1965, 1966) gave the first interpretation of these observations, invoking a

change in the effective aspect ratio of the cylindrical cavity due to the thickness of the

viscous boundary layers. Wedemeyer’s theory, which is valid at high Reynolds numbers,

is based on the following equivalence : the viscous system of aspect ratio H/Rc (H and

Rc denote the height and radius of the cylindrical cavity) behaves as an inviscid system

of aspect ratio (H−δH)/(Rc−δRc), where δH and δRc are the thicknesses of the viscous
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boundary layers on the top and lateral walls of the cylinder, respectively. At sufficiently

high Reynolds numbers, the thicknesses of both boundary layers are proportional to ε.

Consequently, since the value of the inviscid resonant frequency only depends on the

aspect ratio, Wedemeyer’s approach leads to a shift proportional to ε at leading order.

In principle, Wedemeyer’s work, as an extension of Stewartson’s inviscid theory, does not

hold in a close vicinity of any hydrodynamic resonance.

Gans (1984) derived an expression of the growth rate of the coning angle which is

valid close to the resonance by applying the saturated viscous solution proposed by Gans

(1970) himself to the dynamics of a near-resonant fluid-filled gyroscope. Instead of con-

sidering the main contribution of the flow as inviscid, the author calculates the viscously

saturated amplitude of the main resonant Kelvin mode. This amplitude, which is O(ε−1),

is determined by a solvability condition for the problem at the next order.

The main objective of the paper is to extend in a rigorous way Stewartson’s inviscid

theory to the case of a viscous fluid. Unlike Wedemeyer, whose method is heuristic, we

adopt a perturbative approach that allows for an exhaustive calculation of the different

viscous contributions to the total hydrodynamic torque. This method guarantees that

all the contributions of same order are taken into account. The second objective is to

perform an identification of Wedemeyer’s physical ingredients, which are not clear due

to the intuitive nature of the work.

The paper is organized as follows. In section 2, we first present a reminder of Stew-

artson’s approach. We propose a simple criterion which defines the limit of validity of

the theory presented in section 3. The main steps of the theory are given in the body of

the article, while the tedious details of the calculations are gathered in the appendices.

Precisions concerning the regime of applicability of Wedemeyer’s theory are given at the

end of section 3. In section 4, theoretical results are tested for a large range of physical

parameters (Reynolds number Re, fluid-solid inertia ratio κ) by means of numerical simu-

lations. Discrepancies between the numerical results and the present theory are discussed

at the end of the section.

2. Presentation of the problem

2.1. Definition of the frame of reference - Kinematics

A cylindrical cavity full of fluid (viscosity µ, density ρ, kinematic viscosity ν = µ/ρ) is

included in an axisymmetrical solid rigid body. Both solid and fluid parts of the gyroscope

have the same axis of symmetry k̂. The centre of gravity of the whole system is supposed

to be located at the centroid of the cylindrical cavity and we assume the mass of fluid is

relatively small compared to that of the solid. R0 denotes the inertial reference frame.

Two sets of non inertial frames are then introduced, depending on whether we are

interested in the hydrodynamics of the contained liquid or in the fluid-structure coupled

dynamics. Unitary vectors related to a given reference frame are refered to as x̂, ŷ and ẑ

with the appropriate subscript. The first set of reference frames (Rψ, Rθ, Rφ), suitable for

the hydrodynamics, corresponds to the classic Euler’s coordinates (ψ, θ, φ), as shown on
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Figure 1. Definition of the frames of reference. (a) Euler’s angles suitable for hydrodynamics.

(b) Cardan’s angles suitable for coupled fluid-structure dynamics.

Fig. 1(a). In the reference frame of the cylinder Rφ, the position of any point is defined by

its polar coordinates (R, ϕ, Z). Integrality of the theoretical analysis for hydrodynamics

is achieved in Rφ. In the remainder of the text, spin angular velocity φ̇ and precessional

velocity ψ̇ are refered to as Ω1 and Ω2 respectively. Ω is the time-dependent rotation

vector of the whole system.

The second set (Rα, Rβ), suitable for the study of the coupled fluid-structure dynamics,

corresponds the the Cardan’s coordinates (α, β) as depicted in Fig. 1(b). Actually, Rα

and Rβ are the natural reference frames for classic experimental gyroscopes.

2.2. Formulation of hydrodynamics

The Navier-Stokes equations, written in the non-Galilean frame of reference Rφ take on

the following form

∂U

∂T
+ (U · ∇)U + 2Ω×U +

dΩ

dT
×R + Ω× (Ω ×R) = −1

ρ
∇P + ν∆U (2.1a)

and

∇ · U = 0, (2.1b)

with the boundary condition U = 0 at the walls. In equation (2.1a), R, U and P refer to

the radius vector, fluid velocity and pressure respectively. The last three inertial terms of

the left member are the Coriolis acceleration, the acceleration due to the non stationarity

of Ω and to centrifugal acceleration. As we consider the case O′ = O, the term coming

from the acceleration of the centre of gravity vanishes (otherwise, it could be incorporated

in the pressure gradient). To specify the relative position of Rφ and Rθ at T = 0, we

write

Ω = Ω [̂k + εη(T )], (2.2)
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with Ω = Ω · k̂ = Ω1 + Ω2 cos θ, ε = Ω2 sin θ/Ω and η(T ) = cos(Ω1T ) x̂φ − sin(Ω1T ) ŷ
φ
.

Equation (2.1a) can be made dimensionless by choosing εΩRc, Ω−1 and Rc as typical

scales for velocity, time and distance respectively. Using lowercase letters for dimension-

less quantities and neglecting the non linear terms (proportional to ε2), we obtain the

linear dimensionless form of (2.1a)

∂u

∂t
+ 2 k̂× u + ∇p = −2ωr cos(ωt+ ϕ) k̂ + ε2 ∆u, (2.3)

where ε = (ΩR2
c/ν)

−1/2 = Re−1/2 is the small viscous parameter and ω = Ω1/Ω. The

dimensionless pressure, which includes every potential terms, is

p =
P

ρεΩ2R2
c

− 1

2

r2

ε
+ (1 − ω)rz cos(ωt+ ϕ). (2.4)

Further comments must be made on the hypothesis of linearization of equation (2.1a).

For the non linear effects to be negligible in comparison with the viscous ones, the ratio

ε2/ε must be greater than 1. This condition can be rewritten θ < |1 − ω|−1Re−1. As

the forcing frequency and the Reynolds number are known in each case, the limit an-

gle beyond which the non linear effects intervene is fixed (at least in order of magnitude).

In the remainder of the paper, (u, v, w) are the dimensionless cylindrical components

of u in the reference frame Rφ and, for the sake of concision in the notations, v = (u, p)

designates the velocity-pressure field.

Let us give now the expression of the complex solution to the inviscid form (ε = 0) of

equation (2.3). The inviscid flow v(0) in a forced precessing cylinder has been calculated

by several authors (cf. Greenspan (1968) for example). It can be sought in the form of a

particular solution vpart. completed by an infinite sum of Kelvin modes

v(0) = vpart. +

∞∑

i=1

a(0)

i v
(0)

i ei(ωt+ϕ). (2.5)

In the previous expression, v
(0)

i ei(ωt+ϕ) is the Kelvin mode of axial wavenumber k(0)

i ,

radial wave number δ(0)

i and frequency ω with

v
(0)

i =




i
ωrδ(0)

i J ′
1
(δ(0)

i r) + 2J1(δ
(0)

i r)

r(ω2 − 4)
sin(k(0)

i z)

−2rδ(0)

i J ′
1(δ

(0)

i r) + ωJ1(δ
(0)

i r)

r(ω2 − 4)
sin(k(0)

i z)

i
k(0)

i

ω
J1(δ

(0)

i r) cos(k(0)

i z)

J1(δ
(0)

i r) sin(k(0)

i z)




, (2.6)

and the particular solution is

vpart. = (0, 0, 2irei(ωt+ϕ), 0). (2.7)

In the following, u(0)

i , v(0)

i , w(0)

i , and p(0)

i denote the four components of v(0)

i . The amplitude
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Figure 2. Inviscid theory for a precessing cylinder full of fluid (Rc = 0.33 m, H = 0.1 m).

(a) Kelvin’s relation of dispersion. Only the first four branches are plotted. i = 1 (solid), i = 2

(dotted), i = 3 (dashed), i = 4 (dot-dashed). (b) Amplitude of the first two Kelvin modes given

by the inviscid theory. i = 1 (solid), i = 2 (dotted). Numerical simulations presented in section

4 are performed around the first resonance of the first mode ω1,1 = 0.605.

a(0)

i of each Kelvin mode is given by

a(0)

i =
4ω2

(ω − 2)(k(0)

i

2
+ 1)k(0)

i J1(δ
(0)

i ) cos(k(0)

i h)
, (2.8)

where h = H/2Rc. The radial wavenumber δ(0)

i satisfies the Kelvin’s relation

ωδ(0)

i J ′
1(δ

(0)

i ) + 2J1(δ
(0)

i ) = 0, with |ω| < 2 (2.9)

and the axial wavenumber k(0)

i the constitutive relation

δ(0)

i

2
=

4 − ω2

ω2
k(0)

i

2
. (2.10)

The first four Kelvin branches corresponding to the dispersion relation (2.9-2.10) are

plotted in Fig. 2(a). As shown by the expression (2.8), the amplitude a(0)

i of each Kelvin

mode diverges (see Fig. 2(b)) for an infinity of wavenumbers kn = π(2n − 1)/2h (with

n a non zero integer) for which the quantity cos(k(0)

i h) = 0. Thus, in the range ] − 2, 2[,

a double infinity of resonant frequencies ωi,n is obtained by considering on each branch

the frequencies for which k(0)

i = kn. Note that the expression (2.8) does not hold any

longer for ω in a close vicinity of any ωi,n, where Gans’ expression of viscously saturated

amplitude proved to be more relevant.

2.3. Coupled dynamics formulation and Milne-Stewartson’s theory

Since the only torque acting on the solid part of the gyroscope comes from the hydrody-

namic stress, one can write

dJ Ω

dt
= M , (2.11)
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where J is the inertial tensor (which is diagonal in Rphi), and M the hydrodynamic

torque resulting from the integration of hydrodynamic constraints on the cavity walls.

In (2.11), the time derivative is considered in R0. Projecting equation (2.11) on the xα
and yα axis leads to the system

A α̈+ C Ω β̇ = Mxα , (2.12a)

A β̈ − C Ω α̇ = Myα , (2.12b)

where A and C respectively denote the transverse and lengthwise inertia momenta of

the solid part of the gyroscope (J = [A, A, C] in Rphi). (2.12) is equivalent to the more

convenient form

Aζ̈ − iCΩζ̇ = Myα − iMxα , (2.13)

where ζ = β − iα is the complex angular variable. In the linearized equations (2.12) and

(2.13), quadratic terms involving α, β and their time derivatives are neglected owing to

the assumption α, β � 1, which is required for consistency with the earlier assumption

of small coning angles. For an empty cavity (M = 0), the solid describes the classic

precessional Poinsot’s motion for which the axis k̂ generates a cone of a fixed half-angle

θ at the angular velocity Ω2 = (C/A) Ω. In this case ζ = θ exp(i Ω2 T ), Ω2 being a real

number. In the general case of a fluid-filled cavity, ζ is to be sought in the same form,

but with Ω2 in the complex domain. The characteristic time of aperture of the coning

angle then equals [Im(Ω2)]
−1

.

Following Stewartson, we first consider in M the only contribution M (0) of the inviscid

flow (2.5). M (0), which results from the integration of p(0) over the cavity walls, can be

written in the reference frame Rα as a function of ω and the dimensionless precession

frequency s = Ω2/Ω. We obtain

M (0) = ρεΩ2R5
c

[
m(0) + 2πh (1 − ω)

(
h2

3
− 1

4

)]
ei st [ŷ

α
+ i x̂α], (2.14)

where

m(0) = 2π

∞∑

i=1

a(0)

i

[
J2(δ

(0)

i )

δ(0)

i

sin(k(0)

i h) − J1(δ
(0)

i )

k(0)

i
2 [sin(k(0)

i h) − (k(0)

i h) cos(k(0)

i h)]

]
(2.15)

is O(1). Let us now consider a unique resonant frequency ω0 among the double infinity

of ωi,n. We assume ω0 is far enough from any other main hydrodynamic resonance. The

relevance of this assumption is partially ensured by the viscous criterion of viability

established by Gans (1970). Gans’ inequality δ(0)

i < Re1/7 stipulates that for a given

Reynolds number, the Kelvin modes of high radial wave numbers cannot be forced, due

to the viscous effects. For sufficiently low Reynolds numbers, this condition is likely to

drastically reduce the density of resonances in the vicinity of ω0. Considering the values

of Re used in the present paper, the resonance ω0 = ω1,1 (which is examined further)

will be regarded as isolated, but such a verification must be performed in each particular

case.

So, the main diverging term is therefore kept in the Laurent’s expansion of the involved
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Kelvin mode, namely

m(0) ' D(0)

ω0 − ω
. (2.16)

The expression of D(0) is given in appendix A. Using the previous expression of m(0)

and the general form ζ = θ exp(i st) in equation (2.13), we can rewrite the latter as a

polynomial equation of variable s

−s+ σ = κ
D(0)

s− s0

, (2.17)

where

σ = C/A′, κ = ρR5
c/A

′, s0 = 1 − ω0 and A′ = A+ 2π

(
h2

3
− 1

4

)
. (2.18)

To derive equation (2.17), it is recalled that the case of small coning angles is considered,

for which the approximations s ' 1−ω and ε ' θ s are valid. Moreover, the assumption

of quasi-staticity of the coning angle θ is supposed to be satisfied, namely θ̇ � θΩ2 at any

time. Actually, in the coupled situation, the part of the term dΩ/dT in (2.1a) coming

from the variation of the nutation angle θ (recal that θ̇ = 0 in the forced regime), must

be negligible compared to the one coming from the precession. This condition, that can

be rewritten Im(s)/Re(s) � 1, defines the limit of use of the flow (2.5) in a situation in

which θ is free to evolve. In other words, the equation (2.17) is valid for complex values

of s, as long as Im(s) � Re(s).

The physically acceptable solution to equation (2.17) depends on the range in which

the inertia ratio σ lies

s =
1

2

[
(σ + s0) − i[4κD(0) − (σ − s0)

2]1/2
]

for |σ − s0| < 2
√
κD(0) (2.19a)

s =
1

2

[
(σ + s0) − [(σ − s0)

2 − 4κD(0)]1/2
]

for σ < s0 − 2
√
κD(0) (2.19b)

s =
1

2

[
(σ + s0) + [(σ − s0)

2 − 4κD(0)]1/2
]

for σ > s0 + 2
√
κD(0) (2.19c)

All the previous results have been established by Milne (1940) and Stewartson (1958),

for the case of spheroidal and cylindrical cavities respectively. The reduced growth rate

Im(s) is plotted as a function of the inertia ratio σ in Fig. 3(a). As shown in the plot,

inertial effects at Re = ∞ make the fluid-filled gyroscope unstable in a range of width

4
√
κD(0) around s0. The maximum rate of divergence is

√
κD(0).

2.4. Criterion of applicability for corrected Stewartson’s theories

As the main objective of the paper is to extend rigorously Stewartson’s inviscid theory

to the case of a viscous liquid, we have to figure out in which case (that is for which set

of physical parameters) such an approach can be adopted (rather than Gans’ approach).

First, the point is to evaluate the width ∆ω of the Gans’ “window”, that is to say

the range of forcing frequency in which the amplitude of the main flow is saturated by

the viscous effects. Based on Meunier’s modified Gans’ theory (2008), one can show that

the inviscid solution (2.5) is not valid anymore, as soon as the forcing frequency lies in a
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Figure 3. Criterion of validity for corrected Stewartson’s theories. In these plots, we used

κ = 0.003, D(0) = 0.9493 and ε = 0.009. (a) Imaginary part of s as a function of the inertial

ratio σ. (b) inviscid (solid) and viscous (dashed) amplitudes of the Kelvin mode. The criterion of

applicability (2.21) characterizes the width of the inviscid unstable domain (Stewartson’s theory

for the coupled problem) compared to the width of the hydrodynamic viscous domain.

domain of width

∆ω ∼ ε a(0)f−1max[|µ|, εν] (2.20)

around the resonance. Details of the derivation of the previous expression are given in

appendix B. In (2.20) , µ, ν and f are the surface and volume viscous parameters and the

forcing parameter derived by Meunier (2008), the expressions of which are also reminded

in appendix B. The expression of a(0) is given in appendix A (the i-subscript has been

removed since there is no ambiguity about the resonance).

Thus, for a forcing frequency of width ∆ω around ω0, the inviscid solution is diverging,

which makes any corrective approach irrelevant. It therefore appears natural to expect

any Stewarton’s corrected approach to be of interest provided the inviscid unstable do-

main (of width ∼
√
κD(0)) is wider than the range of viscous saturation ∆ω, namely (see

Fig. 3)

√
κ > ε

a(0)

2
√
D(0)f

max[|µ|, εν]. (2.21)

Inequation (2.21) constitutes a (sufficient) criterion of applicability of the theory pre-

sented in the next section. In other words, (2.21) tells us if there is or not a domain

where Stewartson’s corrected theories are relevant. However, (2.21) does not tell us in

which domain of forcing frequency these theories can be used. Actually, for the theory

presented in the next section to apply, the forcing frequency ω must stand outside the

Gans’ window, namely

|ω − ω0| > ∆ω. (2.22)

The previous inequality can be rewritten using the inertia parameter σ = C/A′ and
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considering that σ ' Re(s) ' 1 − ω

|1 − σ − ω0| > ∆ω. (2.23)

This previous criterion of validity characterizes the corrected inertial regime, that is to

say the domain of forcing frequency in which the Stewartson’s corrected theories apply.

3. Treatment of viscous effects in the corrected inertial regime

The pressure torque calculated from the inviscid solution becomes destabilizing in a

domain of frequency of width 4
√
κD(0) around ω0. Nonetheless, experiments performed

by Karpov (1962, 1965) with real liquids clearly show a non zero growth rate outside

the inviscid unstable domain. Unlike Wedemeyer, we present in the next section a direct

calculation of the viscous corrections responsible for instance of such a broadening of the

unstable region. The connection with Wedemeyer’s theoretical results is made afterwards.

In the inertial coupling limit, the global velocity-pressure field is sought in the form of

a double ε-expansion v = vout + vin with

vout = v(0) + εv(1) +O(ε2) in the bulk, (3.1a)

vin = ṽ(0) + ε ṽ(1) +O(ε2) inside the boundary layer. (3.1b)

In addition, the condition vin = 0 outside the boundary layer is required.

3.1. Viscous and pressure torques

Before going further, the relative orders of magnitude of the torques must be discussed.

Quantities with dimension are therefore considered to the end of this paragraph. A hy-

drodynamic torque corresponds to each term of the previous expansions. Thus, M (0),

which intervenes in Stewartson’s theory, results from the integration of the pressure at

leading order in bulk over the cavity walls. In the following, M̃
(0)

notes the torque due to

the viscous shear at leading order, M (1) and M̃
(1)

designate the torques resulting from

integration of the pressures at order ε outside and inside the boundary layer respectively.

Note that the torque resulting from the pressure at leading order in the boundary layer

is always zero (see appendix C).

As shown by (2.14), M (0) is of the same order of magnitude as the scaling factor

ρεΩ2R5
c whereas M̃

(0)

proves to be one order greater in ε, that is M̃
(0)

∼ εM (0). Indeed,

as the viscous constraint at leading order is of order µε−1εΩ, the order of magnitude of the

corresponding torque is µε−1εΩR3
c = ρεεΩ2R5

c . Generally, it can be shown that the shear

torque M̃
(q)

calculated at a given order εq in velocity is of the order εM (q), where M (q)

is the torque calculated at the same order εq in pressure. Consequently, taking account

only of the torque M̃
(0)

for the coupling as Murphy (1982) is altogether questionable,

the pressure torques M (1) and M̃
(1)

beeing of the same order. This also means that the

pressures at order ε inside and outside the boundary layer must be derived explicitely.

As shown in paragraph 3.4, the main contribution of the viscous destabilization comes

from the torque M (1).
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3.2. Flows at leading order and order ε

In principle, a direct integration of the N.-S. equations could lead to the expression of

the flow at order ε in bulk. However, to avoid such a tedious pathway, it can be seen that

both flows at leading order and at order ε satisfy the same inviscid N.-S. equations in

bulk (if we forget the forcing term). This suggests seeking v(1) by expanding the radial

and lengthwise wavenumbers δi = δ(0)

i + εδ(1)

i and ki = k(0)

i + εk(1)

i in a global field vout

of the same shape as the inviscid solution v(0) .

As we’ll see further, this is not sufficient to satisfy the boundary conditions at order

ε on top and bottom walls. The solution is to complete the ε-expanded flow by an addi-

tional flow “parallel” to v(0) (same shape, same wave numbers δ(0)

i and k(0)

i , but different

amplitudes a+

i of the Kelvin modes). Note that doing this is equivalent to expanding the

amplitude in the flow vout. This extra flow does not disturb the boundary condition on

the lateral wall but permits the normal velocity at order ε to equal the Ekman pumping

on the top and bottom wall.

Consequently the flow in the bulk vout can be written

vout = v(0) + ε

∞∑

i=1

[
a+

i v
(0)

i + a(0)

i

(
δ(1)

i

∂v(0)

i

∂δi
+ k(1)

i

∂v(0)

i

∂ki

)]
ei(ωt+ϕ) +O(ε2), (3.2)

where all the partial derivatives are considered at (δ(0)

i , k(0)

i ). The amplitudes a(0)

i are still

unknown at this stage.

The shape of the velocity-pressure field is fixed by the previous equation in which the

unknown quantities δ(1)

i and k(1)

i must be determined in order to satisfy the boundary

conditions at order ε. In practice, the normal component of the velocity at order ε in bulk

must equal the Ekman pumping at the wall, which results from the non homogeneity of

the corrective viscous flow in the boundary layer (see e.g. Waleffe (1989)).

Leading order

We shall not revert to the resolution of the inviscid flow v(0) given in §2.2. At this stage,

the amplitudes a(0)

i are fixed by the inviscid boundary condition of tangential velocity at

the walls. The classical derivation of the corrective viscous flow ṽ(0) is given in appendix C.

Order ε

The expressions of the normal Ekman components u⊥i ei(ωt+ϕ) (on the lateral wall) and

w⊥i ei(ωt+ϕ) (on the top and bottom walls) arising from the ith Kelvin mode are also given

in appendix C. The boundary condition at order ε applied to the flow given by (3.2) for

a unique Kelvin mode

a(0)

i δ(1)

i

∂u(0)

i

∂δi
= u⊥i at r = 1 (3.3)

leads to the expression of δ(1)

i (see again appendix C for details)

δ(1)

i =
1 − i√

2ω
δ(0)

i . (3.4)
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Once the expression of δ(1)

i has been established, the correction to the lenghtwise wavenum-

ber k(1)

i is fixed by the constituting relation (2.10) (which is also valid at order ε) and can

not be freely choosen to satisfy the boundary conditions at order ε on top and bottom

walls. Indeed, as the global field vout is a solution of the inviscid N.-S. equation, the

quantities δ(0)

i + εδ(1)

i and k(0)

i + εk(1)

i are connected by the constituting relation

[δ(0)

i + εδ(1)

i ]2 =
4 − ω2

ω2
[k(0)

i + εk(1)

i ]2, (3.5)

which involves

δ(1)

i

2
=

4 − ω2

ω2
k(1)

i

2
. (3.6)

Due to this lack of available “degree of freedom”, the introduction of the extra flows

a+

i v
(0)

i turns to be indispensable in order to properly compensate the Ekman pumping

on top and bottom walls.

So, at the top and bottom walls, we have

a(0)

i

[
δ(1)

i

∂w(0)

i

∂δi
+ k(1)

i

∂w(0)

i

∂ki

]
+ a+

i w
(0)

i = w⊥i for z = ±h. (3.7)

The calculation of the amplitudes a+

i of the Kelvin modes in the additional flow is ex-

haustively presented in appendix D. Thus, the boundary conditions at every wall are

satisfied, and we finally get the pressure related to the flow in the bulk at order ε

p(1) =

∞∑

i=1

a(0)

i

[
δ(1)

i

∂p(0)

i

∂δi
+ k(1)

i

∂p(0)

i

∂ki

]
ei(ωt+ϕ) +

∞∑

i=1

a+

i p
(0)

i ei(ωt+ϕ). (3.8)

The pressure p̃(1) in the boundary layer can be directly obtained by integrating the

systems of equations (C 1a) and (C 1b) given in appendix C. The expression of p̃(1) is

given in appendix E.

3.3. Coupled dynamics

The new equation of coupling takes the following form

−s+ σ = κ [m(0) + ε(m̃(0) +m(1) + m̃(1))] . (3.9)

The expressions of the complex torques m(1), m̃(1) and m̃(0) are collated in appendix E.

As specified above, these torques result from the integration of p(1), p̃(1) and the viscous

stress related to ũ(0) respectively.

Following again Stewartson (inviscid coupling), each torque can be replaced by its

Laurent’s expansion. In this case, expansions are truncated after the last diverging term.

For instance, the torques m̃(0) and m̃(1) which only contain poles of order 1, can be written

m̃(0) =
D̃(0)

R

s− s0

+ i
D̃(0)

I

s− s0

, (3.10a)

m̃(1) =
D̃(1)

R

s− s0

+ i
D̃(1)

I

s− s0

. (3.10b)

Expressions of the real quantities D̃(0)

R , D̃(0)

I , D̃(1)

R and D̃(1)

I are collated in appendix E.
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(i, n) ωi,n
eD(0)

R
eD(0)

I
eD(1)

R
eD(1)

I C(1)
R C(1)

I D(1)
R D(1)

I

(1, 1) 0.6047 -1.6326 1.3488 5.0075 5.0075 0.2676 1.2304 -4.7988 -1.6445

(1, 2) 1.4961 -0.7388 1.3982 0.0616 0.0616 0.01 -0.1489 1.0049 3.4896

(2, 1) 0.3026 -0.1572 0.1166 1.4323 1.4323 0.0368 0.1481 -1.6148 -1.1687

(2, 2) 0.8922 -0.0497 0.1944 0.0227 0.0277 0.0005 0.0031 0.1867 0.5526

Table 1. Coefficients of Laurent’s expansion of the torques at order ε evaluated at the first two

resonances modes of the first two Kelvin modes i = 1 and i = 2, for a cylinder of aspect ratio

h = 1.65.

As for the torque m(1), which contains poles of order 1 and 2, it can be written in the

form

m(1) =

[
C(1)

R

(s− s0)2
+

D(1)

R

s− s0

]
+ i

[
C(1)

I

(s− s0)2
+

D(1)

I

s− s0

]
. (3.11)

Expressions of the real quantities C (1)

R , C(1)

I are also given in appendix E. Tedious ex-

pressions of the real quantities D(1)

R and D(1)

I are not given exhaustively in the paper,

but their values for the first two resonances of the Kelvin modes i = 1 and i = 2 for a

cylinder of aspect ratio h = 1.65 are given in table 1.

At order ε, equation (3.9) is equivalent to

−s+ σ = κ

[
D(0) + ε (DR + iDI)

s− [s0 + ε(sR + i sI)]

]
, (3.12)

where

DR = D̃(0)

R
+ D̃(1)

R
+D(1)

R
, (3.13a)

DI = D̃(0)

I
+ D̃(1)

I
+D(1)

I
, (3.13b)

sR = C(1)

R
/D(0), (3.13c)

sI = C(1)

I
/D(0). (3.13d)

3.4. Comparison with Wedemeyer’s approach

Equation (3.12) makes the connection with Wedemeyer’s theory. Indeed, Wedemeyer’s

characteristic equation of coupling (given for example in Whiting (1981)) is formally

almost identical to (3.12) where DR and DI are set to zero. The difference comes from

the important fact that Wedemeyer’s method only takes into account the effects linked to

the Ekman pumping, namely the quantities sR and sI in (3.12). The viscous shear torque

m̃(0), the pressure torque m̃(1) are not considered in Wedemeyer’s approach. Thus, if the

contribution ε(DR+iDI) is small compared to D(0), Wedemeyer’s and the present theory

are very close to each other, as shown in Fig. 4(a). They are completely superimposed

if this quantity is neglected. When not negligible with respect to D(0), the quantity

ε(DR + iDI) is responsible for a possible asymmetry of the viscous tails.

Fig. 4(b) plots the inviscid coupling coefficient D(0) as a function of the aspect ratio h,
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Figure 4. (a) Comparison of the present theory (solid line) with Wedemeyer’s (dashed line)

for the case II presented in the numerical section. Wedemeyer’s and uncomplete present theory

(obtained by taking DR, DI = 0) are superimposed. (b) D(0) plotted as a function of the aspect

ratio h for the first (solid line) and second (dashed line) of the first Kelvin mode. For the first

(resp. second) resonance, D(0) = 0 at h = 0.995 (resp. h = 2.985).

for the first and second resonance of the first Kelvin mode, namely ω1,1 and ω1,2. For each

resonance, D(0) cancels out at a given aspect ratio (h = 0.995 for the first resonance and

h = 2.985 for the second resonance). For such aspect ratios, the respective weights of D(0)

and ε(DR+iDI) are inverted and Wedemeyer’s theory is no longer suitable. Moreover, in

a really close vicinity of these singular values, Laurent’s expansions are not strictly valid

either and must be taken one order further. Such a marginal treatment will be presented

in a forthcoming communication. Note that most of the experimental studies for full

cavities without an internal rod (see e.g. D’Amico (1977, 1981) and Whiting (1981))

have been performed for h = 1 and h = 3.

4. Numerical study

In this section, we present numerical studies performed in order to check the validity of

the theoretical results reported in the previous section. The first part adresses the general

features of the fluid dynamics code that is used in this study. In this part, the numerical

coupling between the N.-S. equations and the container dynamics is briefly presented.

The second part deals with the numerical results. We first present results related to

the hydrodynamic flow in a forced regime (for which the kinematics of the container are

fixed). Numerical results for the fluid-structure coupled dynamics are detailed afterwards.

Numerical studies in forced and coupled regimes are made for a cavity of fixed aspect

ratio h = 1.65 (heigth H = 0.33 m and radius Rc = 0.1 m). Ω is equal to 2π rad s−1 and

the viscosity is varied to change the Reynolds number. The lengthwise inertia A is varied

to change the fluid/solid inertia ratio. We focus on the first resonance of the first mode

(ω1,1 = 0.605) for which the criterion of applicability can be written in the simpler form√
κ/ε < 1, the rest of the right member of (2.21) being of order 1 in this case.
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4.1. Numerical schemes and parameters

4.1.1. Hydrodynamics

N.-S. equations (2.1a) and (2.1b) are solved by means of an augmented Lagrangian

method (Fortin (1982), Vincent (2000)). Equations of motion for the fluid are discretized

with a finite volumes method on fixed staggered orthogonal cylindrical grids of type

Maker And Cells (Harlow (1965)). To discretize the differential form (2.1a), a second

order Euler scheme is used for the time derivative. The viscous and augmented Lagrangian

terms are discretized thanks to a second order centered scheme. The resulting linear

systems are solved using a Bi-CGSTAB II iterative method (van der Vorst (1992)),

preconditioned under a Modified and Incomplete LU algorithm. A fully implicit order

two integration scheme is used to perform time integration. A space and time convergence

analysis guarantees the quality of the results. An example of numerical velocity field is

presented in Fig. 5.

4.1.2. Fluid-structure coupling

In the numerical calculations, the Navier-Stokes equations (2.1) are solved without any

simplification. Calculation of complementary inertial terms shown in (2.1a) requires the

evaluation of Ω, the cartesian coordinates of which are Ωxφ , Ωyφ , and Ωzφ , in the reference

frame Rφ. The rotation vector is obtained by numerical integration of the equations of

motion for the solid. As the latter undergoes the hydrodynamic torque only, the evolution

of its angular momentum takes the following form

Ω̇xφ = (1 − C/A) ΩyφΩzφ +Mxφ/A, (4.1a)

Ω̇yφ = (C/A− 1) ΩzφΩxφ +Myφ/A, (4.1b)

Ω̇zφ = Mzφ/C. (4.1c)

The coupled problem is thus ruled by the equations (2.1) and (4.1). The coupling between

the N.-S. equations and the equations of motion of the solid is performed thanks to a

time splitting method : at the current time step, the N.-S. equations are solved using

the coordinates of Ω obtained at the previous step. The hydrodynamic torque M is

computed by numerical integration of pressure and shear stress evaluated at the walls of

the container. An Adams-Bashforth integration method of order four is used to perform

the time integration of equations (4.1). This integration allows the update of Ω and

complementary acceleration terms in equation (2.1a) for the next step and so on.

4.2. Numerical results and comparison with theory

4.2.1. Convergence analysis and forced regime

The purpose of the studies in a forced regime is firstly to make a time and space

convergence analysis, secondly to compare the amplitudes of the torque M (1) with the

theoretical prediction. It is in fact known that this quantity rules the process of destabi-

lization far from the hydrodynamic resonance.

Only the space convergence analysis performed for a Reynolds number Re = 12566

is presented, that is for the following fluid parameters ρ = 103 kg m−3 and µ = 0.005
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(a) (b)

xθ xθ

yθ yθ

Figure 5. Axial component of the real velocity field on a horizontal plane located at zφ = 0 in

forced regime. Numerical values of the legend are given in m s−1. The velocity field presented

above corresponds to the following physical parameters : Ω = 2π rad s−1, Ω2 = 3.016 rad s−1,

R = 0.1 m, H = 0.33 m, µ = 5 10−3 Pa s and ρ = 103 kg m−3. The dimensionless frequency,

the Reynolds number and the non linear parameter are respectively ω = 0.520, Re = 12566 and

ε = 1.6 10−3. (a) Numerical field given at time T = 40 s. The transient stage is almost finished

and lateral boundary layers are visible. (b) Analytical inviscid solution.

Pa s. The precession velocity choosen to make the analysis is Ω2 = 1.508 rad s−1. The

corresponding dimensionless forcing frequency ω = 0.520 is located far from the resonance

ω1,1 = 0.605. As the main point of interest (regarding stability) is the component of

the hydrodynamic torque Myθ , This quantity is used as the performance parameter in

convergence analysis. Initially, the system is supposed to be in rigid rotation around the

z0 axis (θ = 0). At T = 0, the system is instantaneously tilted towards a fixed coning

angle θ = 0.1◦ and the flow slowly relaxes to a stationary state in the reference frame

Rθ. To accurately take account of viscous effects, the boundary layers are meshed with

cells of exponentially increasing size. A constant radial size is used to mesh the bulk.

The characteristics of each mesh are given below in the form number of radial divisions

× number of azimutal division × number of lengthwise divisions (number of cells in the

boundary layers). The four main grids used in the convergence study at Re = 12566 are

the following : 62 × 80 × 132 (8), 50 × 64 × 104 (8), 40 × 50 × 82 (6), 32 × 40 × 64 (5).

When meshing, the characteristic size (2ν/Ω)1/2 is considered to be representative of

the boundary layer thickness, which is not entirely relevant since there are two different

characteristic lengths for the top and bottom boundary layers (see expressions (C 8)).

Besides, the number of cells in the boudary layer may appear insufficient to accurately

capture the corrective flow but the comparison of analytic and numerical shear stresses

shows a good agreement even with only five cells in the thickness. For this sole study, a

time step of 2 10−3 s is used. Nevertheless, as the calculations are very time consuming,

the stationary state has to be estimated before the extinction of the transient stage. To
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Figure 6. Convergence study in forced regime. (a) Space convergence : yθ-component of the

hydrodynamic torque (after stabilization) as a function of the number of cells. (b) Time conver-

gence : yθ-component of the hydrodynamic torque (after stabilization) as a function of the time

step. Richardson’s extrapolation is plotted in solid line. Numerical values are plotted in solid

circles.

do so, we exploit the fact that the behaviour of the perturbed state is an exponentially

damped sinus superimposed on a linear component. A convergence curve in space is

presented in Fig. 6(a) in log-lin coordinates. The fit used to make the extrapolation to

the smallest time steps is obtained by a Richardson’s method.

In the time convergence analysis, the mesh 50×64×104(8) is selected and the same set

of physical parameters as in the space convergence analysis presented above are used. A

first computation is performed with a rough time step of 4 10−3 s until a nearly stationary

regime in Rθ is reached. Then, a computation is made with smaller time steps until new

converged values are obtained and so on. A time convergence curve is presented in Fig.

6(b) in lin-log coordinates. A power law is used for the extrapolation to the smallest time

steps.

The conclusions related to the time and space convergence analysis are as follows : for

low viscosities (µ = 0.001 Pa s) a grid 50 × 64 × 104 (8) is adopted ; for intermediate

(µ = 0.005 Pa s) and high viscosities (µ = 0.01 Pa s), a coarser 50 × 64 × 64 (6) grid is

used. All studies are performed with a time step of 10−3 s, which seems to be a good

compromise between precision and CPU calculation time.

The hydrodynamic torque at order ε must now be adressed. Numerical experiments

enable to make the distinction between pressure and shear contributions to the hydrody-

namic torque. These contributions are noted M press and M visc respectively. The config-

uration chosen (meshing and physical parameters) is the same as that used for the time

convergence study. The yθ-component of the pressure torque as a function of the forcing

frequency ω is presented in Fig. 7(a) and both components of the shear torque are pre-

sented in Fig. 7(b). The forcing pulsation ω lies in the range [0.4, 0.8] which corresponds

to the domain explored in the free coupling study (§4.2.2). Agreement between numerics

and theory is good for the xθ-components of the viscous torques. In the yθ-direction, the
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Figure 7. Hydrodynamic torque at order ε. (a) yθ-component of the numerical pressure torque

(closed circle). Component of the theoretical torque fM
(1)

+M (1) in the yθ-direction is plotted in

solid line. (b) Components of the numerical shear torque in the xθ-direction (open circles) and

yθ-direction (closed circles). Corresponding theoretical components fM (0)
xθ

and fM (0)
yθ

are plotted

in dashed and solid lines respectiveley. Mesh and physical parameters are the same as in the

time convergence study (see text).

case A (kg m2) ρ (kg m−3) µ (Pa s) Re κ
√

κ/ε

I 5 1500 10−3 94247 3.0 10−3 16.8

II 10 1000 5.0 10−3 12566 9.36 10−4 3.40

III 100 1000 10−2 6280 10−4 0.79

Table 2. Physical parameters for each case. κ and Re are given for information.

discrepancies for both pressure and viscous torques are greater on the right side of the

resonance than on the left. This observation remains unexplained for the moment.

4.2.2. Coupled regime

Three numerical experiments (noted I, II, III) located in the corrected inertial regime

are presented below. Initial conditions are the same as in the forced regime but the coning

angle is free to evolve under the influence of the hydrodynamic torque. As stated in the

first lines of the section, the geometry of the container and the value of Ω = 2π rad s−1

is the same for every case. The parameters varying from a case to another are collated in

table 2. The ratio
√
κ/ε, which is supposed to be greater than 1 for the present theory to

be usable, is given in the last column. We notice that the third case stands at the edge

of the domain of applicability of the present theory.

The configuration I is located in the inertial field since
√
κ/ε � 1. In principle, the

growth rate of the coning angle Im(s) (plotted as a function of ω in Fig. 9, 10 and 11)

should have been obtained from numerical calculations by a simple estimation of the
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Figure 8. Coning angle (in degrees) as a function of the real time T for case I. (a) Outside

the inviscid unstable domain, initial flow relaxes through damped oscillations. The solid line

corresponds to σ = 0.56. The fitting curve is plotted in dashed line. (b) Non oscillating relaxation

of the transcient stage. For σ = 0.40 (solid line), the evolution of the coning angle is exponential

from 0.1◦ to about 5◦ and the growth rate can be evaluated without further interpretation. For

σ = 0.3 (dashed line) the evolution is not straightforwardly exponential.

quantity d ln[θ(T )]/dT in the very first seconds of destabilization. Unfortunately, the

transient stage evolves through either oscillating or non oscillating decay, as illustrated

in Fig. 8. Decaying oscillations correspond to situations in which the viscous effects are

predominant (outside the inviscid unstable regime). In this case, estimation of the growth

rate is given by assuming that the shape of ln[θ(T )] results from the superposition of a

linear term and an exponentially damped cosine. Such an identification process provides

an accurate value of the growth rate Im(s). As we leave the viscously dominated region

to enter the inviscid unstable domain, the identification of any possible linear regime

proves to be difficult. The value chosen for Im(s) is given by the the slope of ln[θ(T )]

averaged over the period [T = 10 s, T = 20 s]. Uncertainty on the growth rate is then

given by the minimum and maximum values of the slope encountered on the same interval

of time. As we move closer to the region for which Im(s) plotted as a function of σ is

the stiffest (see Fig. 9(a)), a characteristic linear evolution can be clearly identified as

shown in Fig. 8(b). For large coning angles (θ ∼ 5◦), temporal evolution of ln[θ(T )] is no

longer linear. This kind of behaviour, which could be the indirect signature of non linear

phenomena such as Lagrange’s triadic instability (Lagrange (2008)), has been observed

in Karpov’s experimental data (Karpov (1965)). In Fig. 9(a), the agreement between

numerical and theoretical growth rates is good. The bell-shaped curve corresponding to

the present theory is fairly close to the numerical data. As for the quantity max[Im(s)],

the decay as well as the shift in σ observed for the numerical results (in comparison with

the inviscid case) are properly calculated. Moreover, the viscous broadening observed

on the numerical results outside the inviscid unstable domain of σ (i.e. the appearance

of right and left viscous tails on the stability curve) is well predicted. However a zoom
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Figure 9. Stability curve for case I - κ = 3.0 10−3, Re = 94247. (a) The present viscous theory

is plotted in solid line. The dashed line corresponds to the inviscid Stewartson’s theory. The

numerical results are plotted in closed circles. (b) Details of the stability curve in the domain

where the viscous effects are predominant.
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Figure 10. Stability curve - case II, κ = 9.36 10−4, Re = 12566. (a) The viscous theory (equation

(3.12)) is plotted in solid line. The dashed line corresponds to Stewartson’s inviscid theory. The

dot-dashed line has been obtained by solving directly the third order characteristic equation

(3.9). The numerical results are plotted in solid circles. (b) Detailed vues of the stability curve

in the domains where the viscous effects are predominant. On these views the dotted curve

has been obtained by selecting only the shear torque em(0) in the derivation of the theoretical

stability curve.

performed on the right (resp. left) viscous tail of the stability curve (Fig. 9(b)) highlights

a slight but systematic underestimation (resp. overestimation) of the numerical growth

rate. As shown below, this tendency is also noticeable for cases II and III.

The configuration II is also located in the inertial regime since
√
κ/ε = 3.4. Most of

the comments related to the first case are still valid. The stability curves are presented in
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Figure 11. Stability curve - case III, κ = 10−4, Re = 6280. (a) The present viscous theory

(equation (3.12)) is plotted in solid line. The viscous effects lead to a decrease and a shift of

the maximum growth rate compared to the inviscid theory (dashed line). The numerical results

are plotted in closed circles. (b) rescaled view of (a) that points out the difference between the

amplitudes of inviscid and viscous theories.

view 10(a) : as in the previous case, the agreement between the present theory and the

numerical results is satisfactory. The physically acceptable solutions of the third order

polynomial equation (3.9) are also plotted in Fig. 10(a). The comparison of the latter

with the solutions of the second order polynomial equation (3.12) illustrates the order of

magnitude of the error made by approximating (3.9) by (3.12). As shown in Fig. 10(a), the

third order equation does not permit a precise determination of the shift of max[Im(s)]

since ε-expansions no longer hold in the vicinity of the hydrodynamic resonance. In Fig.

10(a), the identification of max[Im(s)] (and the corresponding σ) becomes possible due

to the “smoothing” of the approximate form (3.12). This means that the value of the

resonant inertial ratio (given by s0 + εsR) must be considered cautiously. The situation

is different in configuration I, for which both approaches give almost the same results.

In Fig. 9(a), the corresponding curves would be superimposed. Note that the value of

max[Im(s)] is slightly underestimated by 3-4%.

In Fig. 10(b), the dotted curve has been obtained by selecting only the viscous shear

torque m̃(0) for the calculation of the stability curve. The destabilization effects obtained

outside the inviscid unstable domain are one order of magnitude smaller than the effects

obtained by numerical calculation. This latter observation stresses the fact that, insofar

as the dimensionless torque m(1) is predominant in the destabilization process, taking

account only of the viscous torque m̃(0) does not lead to a reasonable value of the growth

rate.

The third configuration, noted III, corresponds to an intermediate situation, between

the corrected inertial regime and the saturated viscous regime (
√
κ/ε = 0.79). The results

for case III are collated in Fig. 11. Altough this last case is located at the edge of the

domain of validity of our theoretical results, the agreement between theory and numerics

remains quite good. The maximum value of the growth rate is reasonably captured : the
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theoretical and numerical growth rates agree within 10%. However, some discrepancies

are more pronounced than in cases I and II. For instance, the shift of the maximum value

of the growth rate is underestimated by a factor of 2. This shortcoming is also slightly

visible in Fig. 10(a) and can be explained as follow : on coming closer to the viscous regime

(
√
κ/ε→ 1), the estimation of the resonance shift deteriorates, since the hydrodynamics

are ruled by Gans’ approach in a wider domain. In the right-hand viscous tail of the

stability curve, the growth rate is overestimated of about 20-40% in the considered range

of σ, depending on the distance from the resonance. Once again, this tendency, although

it is less obvious, can be observed for case I and II. Fig. 10(b) illustrates the amplitude

drop, which is about one order of magnitude, when taking account of the viscous effects.

5. Discussion and conclusion

The problem of a completely fluid-filled gyroscope, in the particular case of a simple

cylindrical cavity, has been addressed. The whole work is valid at small coning angles,

where the non linear effects are negligible. The Reynolds number is supposed to be

high enough to allow for the boundary layer corrections. Moreover, the hydrodynamic

resonance of interest is supposed to be sufficiently distant from any other resonance. This

condition is satisfied as far as the Reynolds number is not too high, the threshold being

fixed by Gans’ criterion of viability δ(0)

i < Re1/7.

Firstly, Milne-Stewartson’s theory has been rewritten in a more convenient set of ref-

erence frames. By comparing the width of the inviscid unstable domain provided by

Stewartson’s approach to the width of the saturated viscous regime of the hydrodynamic

flow studied by Gans (1970), a criterion is proposed for the present theory to be relevant.

The corrected inertial regime, which corresponds to high values of κ, is treated theoreti-

cally and numerically. It has been shown that a direct calculation of the flows at order ε

(inside and outside the boundary layer) enabled the evaluation of the destabilizing pres-

sure torques M̃
(1)

and M (1). In the vicinity of the resonant frequency, the latter behaves

as a pole of order 2 (which is the leading term of its Laurent’s expansion). It has also

been shown that, when neglecting every other corrections other than the pole of order 2

in M (1), the growth rate of the coning angle obtained plotted as a function of the inertia

ratio σ is exactly superimposed on Wedemeyer’s result. This finding highlights the fact

that the viscously induced destabilization principally originates from the flow at order ε

in bulk (namely the flow in volume corresponding to the Ekman pumping), rather than

from the viscous shear at walls. In most cases, the latter only intervenes as a correction

that eventually induces a slight asymmetry on the plots of Im(s) vs. σ. The marginal

situations in which the viscous shear torque becomes predominant are not treated in the

present article.

Numerical calculations were performed for a cylindrical cavity of aspect ratio h =

1.65. We focused on the first resonance of the first mode (i = 1, n = 1) for which

the criterion of regime separation can be written in the simplified form
√
κ > ε. We

explored a relatively wide range of physical parameters, since for the three numerical

cases treated, the ratio
√
κ/ε varies from 0.79 to 16.8. Use of numerical studies avoids
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certain experimental problems as bearing frictions and aerodynamic torques. Theoretical

prediction and numerical calculations of the maximum growth rate agree to within 5-10%

depending on the case. As expected, agreement between numerics and theory deteriorates

as the ratio
√
κ/ε diminishes. The main problem concerns the restitution of the shift of

max[Im(s)] compared to the inviscid Stewartson’s value. For
√
κ/ε close to 1, this quantity

is underestimated by a factor of almost two. This discrepancy is to be attributed to the

irrelevance of the present theory in a very close vicinity of the resonance.

One restriction on the applicability of the present theory is that the resonance consid-

ered must not be close to the value ω = 1. In this case, the value of the inviscid quantity

D(0) becomes very small and the constant term in the Laurent’s expansion of m(0) can no

longer be omitted. In other words, for a given aspect ratio h, the resonances for whichD(0)

is close to zero cannot be treated by the present theory and require certain refinements.

The treatment of such singular resonances is still incompleted and will be presented in

a forthcoming communication. Most of the experimental work has been performed in a

close vicinity of singular resonances. For instance, D’Amico’s experiments presented in

Whiting’s paper (Whiting (1981)) are made at the second resonance of the first mode,

which is singular for the considered aspect ratio h ∼ 3. We expect that a better under-

standing of such marginal situations could lead to improvements in the interpretation of

several experimental results already published.

Appendix A. Laurent’s expansion of the inviscid torque

Let us consider the expression (2.15) of m(0). The leading term in Laurent’s expansion

of the latter is obtained by seaking the leading term in Laurent’s expansion of a(0)

i , the

term in brackets beeing considered at ω = ω0.

Laurent’s ω-expansion of a(0)

i truncated after the first (and only) diverging term is

a(0)

i ' a(0)

i

ω0 − ω
, (A 1)

where

a(0)

i =
4ω2

0

(ω0 − 2)(k(0)

i

2
+ 1)k(0)

i J1(δ
(0)

i )h sin(k(0)

i h) dk(0)

i /dω
. (A 2)

In (A 2), the wavenumbers δ(0)

i , k(0)

i and the derivative dk(0)

i /dω are considered at ω = ω0,

with

dk(0)

i

dω
=

ω0

k(0)

i (4 − ω2
0
)

[
δ(0)

i

2
+ k(0)

i

2
+ δ(0)

i ω0

dδ(0)

i

dω

]
(A 3)

and

dδ(0)

i

dω
= − δ(0)

i J ′
1(δ

(0)

i )

(ω0 + 2)J ′
1
(δ(0)

i ) + ω0δ
(0)

i J ′′
1
(δ(0)

i )
. (A 4)

Coming back to the Laurent’s expansion of m(0), and knowing that cos(k(0)

i h) = 0 at

ω = ω0, we finally get

m(0) ' D(0)

ω0 − ω
, (A 5)
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with

D(0) = 2πa(0)

i [J2(δ
(0)

i )/δ(0)

i − J1(δ
(0)

i )/k(0)

i

2
] (A 6)

=
8πω2

0 [J2(δ
(0)

i )/δ(0)

i − J1(δ
(0)

i )/k(0)

i

2
]

(ω0 − 2)(k(0)

i

2
+ 1)k(0)

i J1(δ
(0)

i )h dk(0)

i /dω
. (A 7)

Appendix B. Width of the Gans’ window - Viscous and forcing

parameters

From Meunier (2008), Gans’ solvability condition yields to the following equation for

the (viscously saturated) amplitude A of a Kelvin mode forced close to its resonance

(µ+ εν)A = if

(
1 − εA

a(0)

i

)
. (B 1)

In equation (B 1), expressions of the viscous and forcing parameters µ, ν and f calculated

by Meunier (2008) are

µ = − π

N
J2

1
(δ(0)

i )
{
αi[2h− sin(k(0)

i h)/k(0)

i ]

+2βi sin2(k(0)

i h)[(δ(0)

i
2 − 1)ω2

0
+ 4]/(δ(0)

i ω)2
}
, (B 2)

ν = δ(0)

i

2
+ k(0)

i

2
, (B 3)

and

f =
4π

N

ω0 + 2

ω0

sin(k(0)

i h)J1(δ
(0)

i )/δ(0)

i
2
, (B 4)

where

αi =
1 + i√

2

(δ(0)

i

2 − 1)ω2
0

+ 4

(4 − ω2
0
)ω3/2

, (B 5)

βi =
1 − i

2
√

2
δ(0)

i

2
[

1

(2 − ω0)3/2
+

i

(2 + ω0)3/2

]
(B 6)

and

N = πJ2
1 (δ(0)

i )[2h+ sin(k(0)

i h)/k(0)

i ]
ω2

0 (ω0 + 2δ2i − 2) − 4ω0 + 8

ω2
0 (4 − ω2

0 )2
. (B 7)

From (B 1), the real part the viscously saturated amplitude can be calcultated and one

gets

Re(A) = f
εf/a(0)

i + µ′′

(εf/a(0)

i + µ′′)2 + (µ′ + εν)2
. (B 8)

This quantity is supposed to become equal to the inviscid amplitude a(0)

i as ω goes away

from the resonant frequency ω0. Thus, from (B 8), it appears that A can be considered as

equal to a(0)

i provided that the second term of the denominator is small compared to the

first one. By using the Laurent’s expansion (A 1) of a(0)

i given in appendix A, we finally

obtain an order of magnitude for the width ∆ω for the Gans’ window

∆ω ∼ ε a(0)f−1max[|µ|, εν]. (B 9)
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Appendix C. Corrections to the inviscid wavenumbers

C.1. Rescaled N.-S. equations

Corrective flow at order 1 on the lateral wall obtained by performing viscous rescaling

r̃ = (1 − r)/ε in the complete linear N.-S. equations (2.1a). Equivalent rescaling for the

top wall is z̃ = (h− z)/ε. This couple of transformations leads to the following systems

lateral wall





−2ṽ (0) =
∂p̃ (1)

∂r̃

∂ṽ (0)

∂t
− ∂2ṽ (0)

∂2r̃
= 0

∂w̃ (0)

∂t
− ∂2w̃ (0)

∂2r̃
= 0

∂ũ (1)

∂r̃
=
∂ṽ (0)

∂ζ
+
∂w̃ (0)

∂z

upper wall





∂ũ (0)

∂t
− ∂2ũ (0)

∂z̃2
− 2ṽ (0) = 0

∂ṽ (0)

∂t
− ∂2ṽ (0)

∂z̃2
+ 2ũ (0) = 0

∂p̃ (1)

∂z
= 0

∂w̃ (1)

∂z̃
=
∂ũ (0)

∂r
+
ũ (0)

r
+

1

r

∂ṽ (0)

∂ζ

(C 1a,b)

C.2. Corrective flow at order 1 (boundary layer)

Normal corrective velocity ũ(0) and pressure p̃(0) are zero. The two tangential components

of ṽ(0), obtained from system (C 1a), are given by

ṽ (0) = −
∞∑

i=1

a(0)

i v(0)

i (1, z) eκl er e i(ωt+ϕ), (C 2a)

w̃ (0) = i

[
∞∑

i=1

a(0)

i w(0)

i (1, z) − 2

]
e κl er e i(ωt+ϕ), (C 2b)

where

κl =
1 + i√

2

√
ω. (C 3)

Integration of the rescaled continuity equation at order 1 provides the Ekman pumping

component at the lateral wall (which is of order ε)

u⊥ =

∞∑

i=1

a(0)

i u⊥i e i(ωt+ϕ), (C 4)

where

u⊥i = −1 + i√
2

1

ω3/2(4 − ω2)
J1(δ

(0)

i )
[
ω2(δ(0)

i
2 − 1) + 4

]
sin(k(0)

i z). (C 5)

Corresponding expressions to (C 2) for the upper wall come from the integration of the

system (C 1b). In this case

ũ (0) =
i

2

∞∑

i=1

a(0)

i

[
S+

i (r)e κs ez +D+

i (r)e κd ez
]
e i(ωt+ϕ), (C 6a)

ṽ (0) =
1

2

∞∑

i=1

a(0)

i

[
S+

i (r)e κs ez −D+

i (r)e κd ez
]
e i(ωt+ϕ), (C 6b)

where

S+

i (r) = u(0)

i (r, h) − v(0)

i (r, h) , D+

i (r) = u(0)

i (r, h) + v(0)

i (r, h) (C 7)
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and

κs = − (1 + i)

√
2 + ω

2
and κd = − (1 − i)

√
2 − ω

2
(C 8a,b)

Likewise, integration of the rescaled continuity equation at order 1 provides the Ekman

pumping component at the upper wall

w⊥ =

∞∑

i=1

a(0)

i w⊥i e i(ωt+ϕ), (C 9)

with

w⊥i = −1 + i

2
√

2
δ(0)

i

2
J1(δ

(0)

i r)

[
1

(2 + ω)3/2
− i

(2 − ω)3/2

]
(C 10)

C.3. Boundary condition at order ε on the lateral wall

The flow at order ε coming from ε-expansion of the wave numbers in the inviscid flow

(term in brackets in (3.2)) is supposed to compensate the Ekman pumping given by (C 4)

and (C 5). Use of Kelvin’s relation of dispersion enables a simplification of the derivatives

of the normal velocity at r = 1

∂u(0)

i

∂δi
= − i

4− ω2
[2J ′

1(δ
(0)

i ) + ω[δ(0)

i − (1/δ(0)

i )]J1(δ
(0)

i )] sin(k(0)

i z), (C 11a)

∂u(0)

i

∂ki
= 0. (C 11b)

The condition (3.3) then leads to the expression (3.4) of δ(1)

i . Given the constitutive

relation (3.6), the correction to the lengthwise wavenumber can be written

k(1)

i =
1 − i√

2

√
ω

4 − ω2
δ(0)

i . (C 12)

Appendix D. Amplitude of the additional flow

The amplitude a(0)

i is determined by means of the boundary condition (3.7) at z = +h.

Using the derivatives of w(0)

i with respect to δi and ki at r = 1, and replacing in (3.7)

each term by its expression, we obtain

i
∑

i

a(0)

i

1

ω

[
δ(1)

i k(0)

i rJ ′
1(δ

(0)

i r) cos(k(0)

i h) + k(1)

i J1(δ
(0)

i r)[cos(k(0)

i h) − k(0)

i h sin(k(0)

i h)]
]

+ i
∑

i

a+

i

k(0)

i J1(δ
(0)

i r)

ω
cos(k(0)

i h) =

+
1 + i

2
√

2

∑

i

a(0)

i δ(0)

i

2
J(δ(0)

i r) sin(k(0)

i h)

[
1

(2 + ω)3/2
− i

(2 − ω)3/2

]
(D 1)

In order to derive the expression of the a+

i , one has to express the quantity rJ ′
1
(δ(0)

i r) as

a function of the J1(δ
(0)

i r). The Dini’s expansion of rJ ′
1(δ

(0)

i r) can be obtained by means

of the formula in Watson’s book (Watson (1952), pages 580 and 581), giving

rJ ′
1(δ

(0)

i r) = 2

∞∑

m=1

δ(0)
m

2 Sim

(δ(0)
m

2 − 1) [J1(δ
(0)

i )]2 + δ(0)
m

2
[J ′

1(δ
(0)

i )]2
J1(δ

(0)

i r), (D 2)
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where

Sim =

∫ 1

0

u2J ′
1(δ

(0)

m u) J1(δ
(0)

i u) du. (D 3)

The integrated expression of Sim is as follows

Sim =
1

δ(0)

i

2 J0(δ
(0)

i )J1(δ
(0)

i ) − 1

2δ(0)

i

J2
0 (δ(0)

i ) for i = m, (D 4)

Sim =
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δ(0)
m

δ(0)

i J1(δ
(0)

i )J0(δ
(0)
m ) − δ(0)

m J0(δ
(0)

i )J1(δ
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δ(0)
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2 − δ(0)
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1

δ(0)
m

2 − δ(0)

i
2

{
δ(0)

i J0(δ
(0)
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2δ(0)

i

δ(0)
m

2 − δ(0)

i

2 [δ(0)

i J1(δ
(0)
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(0)
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m J0(δ
(0)

i )J1(δ
(0)
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+ δ(0)

m J1(δ
(0)
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(0)

m )

}
for i 6= m (D 5)

A linear identification in (D 1) leads to the expression of a+

i

a+

i = − 1 − i√
2

{
δ(0)

i

k(0)

i

a(0)

i

(
ω

4 − ω2

)1/2

+
2δ(0)

i
2 ∑

m a(0)
m k(0)

m δ(0)
m cos(k(0)

m h)Smi

ω1/2k(0)

i cos(k(0)

i h)[(δ(0)

i

2 − 1) [J1(δ
(0)

i )]2 + δ(0)

i

2
[J ′

1(δ
(0)

i )]2]

}

+
1 − i√

2
a(0)

i δ(0)

i tan(k(0)

i h)

{
(2 − ω)1/2

2(2 + ω)
+ h

[
ω

4 − ω2

]1/2
}

− 1 + i

2
√

2
a(0)

i δ(0)

i tan(k(0)

i h)
(2 + ω)1/2

(2 − ω)
(D 6)

Appendix E. Expressions of the corrective complex torques

E.1. Expression of m̃(0)

The viscous shear complex torque results from the integration of the shear constraint on

the lateral wall, giving

m̃(0) = −π
√

2ω(1 + i)

{
∞∑

i=1

a(0)

i

[
2δ(0)

i J ′
1(δ

(0)

i ) + ωJ1(δ
(0)

i )

4 − ω2

sin(k(0)

i h) − k(0)

i h cos(k(0)

i h)

k(0)

i

2

+
J1(δ

(0)

i )

ω
sin(k(0)

i h)

]
+ 2h

}

+π
√

2h(1 − i)
1

(2 − ω)1/2
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i=1

a(0)

i sin(k(0)

i h)J1(δ
(0)

i ) (E 1)
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At the resonant frequency ω0, coefficients of Laurent’s expansion (3.10a) of m̃(0) are

D̃(0)

R
= π

√
2

4ω2
0

(ω0 − 2)(k(0)

i

2
+ 1)k(0)

i J1(δ
(0)
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hJ1(δ
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[
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1
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(0)
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0
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i
2 +

J1(δ
(0)

i )

ω0

] }
(E 2)

D̃(0)

I
= −π

√
2

4ω2
0

(ω0 − 2)(k(0)

i

2
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i J1(δ
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[
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J1(δ
(0)

i )

ω0

] }
(E 3)

In the previous expressions, δ(0)

i , k(0)

i and the derivative dk(0)

i /dω are considered at ω = ω0.

E.2. Expression of m̃(1)

Corrected pressure at order 1 in the lateral boundary layer results from the integration

of the first equation of the system (C 1a).

p̃(1) = − 2√
ω

1 − i√
2

∞∑

i=1

a(0)

i

2δ(0)

i J ′
1
(δ(0)

i ) + ωJ1(δ
(0)

i )

4 − ω2
sin(k(0)

i z)eκerei(ωt+φ). (E 4)

The equivalent quantity for the upper wall is zero. Integration of the previous expression

leads to the complex torque m̃(1)

m̃(1) =
2
√

2√
ω
π(1 + i)

∞∑

i=1
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i

2δ(0)
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i h)] (E 5)

At the resonant frequency ω0, the associated coefficients in Laurent’s expansion (3.10b)

of m̃(1) are

D̃(1)

R
=

2
√

2π√
ω0

4ω2
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(ω0 − 2)(k(0)

i

2
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2 (E 6)

and

D̃(1)

I
= D̃(1)

R
(E 7)

In the previous expressions, δ(0)

i , k(0)

i and the derivative dk(0)

i /dω are considered at ω = ω0.
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E.3. Expression of m(1)

m(1) = −π
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with

ci = − 2δ(0)

i

2 ∑
m a(0)

m k(0)
m δ(0)

m cos(k(0)
m h)Smi

ω1/2k(0)

i cos(k(0)

i h)[(δ(0)

i

2 − 1) [J1(δ
(0)

i )]2 + δ(0)

i

2
[J ′

1
(δ(0)

i )]2]

−a(0)

i

δ(0)

i

k(0)

i

(
ω

4 − ω2

)1/2

, (E 9)

di = a(0)
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i tan(k(0)
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and ei = a(0)

i δ(0)

i tan(k(0)

i h)
1
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(2 − ω)
(E 11)

The coefficients of poles of order 2 in Laurent’s expansion (3.11) of m(1) are given by
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As usually δ(0)

i , k(0)

i and the derivative dk(0)

i /dω are considered at the resonant frequency

ω = ω0. The coefficients D(1)

R and D(1)

I of the pole of order 1 in m(1) Laurent’s expansion

are not given as their expressions are too lengthy. They can be easily obtained by using

a formal calculation software.
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