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Abstract
Communicating Sequential Process (CSP) is nowadays a pop-
ular concurrency model in which threads/processes commu-
nicate by exchanging data through channels. Channels help
in orchestrating concurrent processes but do not solve per-
se data races. To prevent data races in the channel model,
many programming languages rely on type systems to ex-
press ownership and behavioural restrictions such as im-
mutability. However, dynamically-typed languages require
run-timemechanisms because of the lack of type information
at compile-time.

In this paper, we propose to augment channels with four
different permission transfer semantics. We explore two
mechanisms to implement such permission transfers at run
time: write barriers and partial-read barriers. To validate our
approach we implemented a channel framework in Pharo,
and we extended it with different permission transfer seman-
tics. We report on performance measurements of both (a)
the transfer overhead on a single object and on a graph of
objects, and (b) the per-object access overhead incurred by
ownership checks. This work stands as a cornerstone of fu-
ture work on adaptive optimizations for permission transfer
channels.

CCS Concepts: • Software and its engineering → Run-
time environments.

Keywords: Concurrency, Channels, Ownership, Permission
Transfer, Dynamic Language.

1 Introduction
Communicating Sequential Process (CSP) is nowadays a pop-
ular concurrency model in which threads/processes commu-
nicate by exchanging data through channels [14]. Channels
help in orchestrating concurrent processes but do not solve

per-se data races [10]. A data race is a non-deterministic ac-
cess by at least two processes1 to the same memory location
or data and at least one process is modifying the content of
this data. Those situations lead to incorrect values being pro-
cessed. To avoid data races, the data needs to be accessible
by a unique process during a write operation (See Section 2).
To prevent data races in the channel model, several pro-

gramming languages implement an ownership transfer model
where an object has a unique owner at any point in time.
In this model, the owner ensures that operations are syn-
chronised to avoid concurrent accesses and ownership-
transfer happens when an object is sent through a chan-
nel. Most of the existing channel implementations rely on
object copies to express ownership on separated memory
inspired by the Go language [16, 23, 26, 29, 32]. Channel
implementations on shared memory involve type systems
to express ownership and behavioural restrictions such as
immutability [20, 27, 28, 30], hence they are not suitable for
dynamically-typed languages. Instead, dynamically-typed
languages require run-time mechanisms because there is not
much information available at compile time.

In this paper, we analyze channel-based permission trans-
fers for dynamically-typed languages. Based on our analy-
sis of existing work, we identify and refine four different
permission transfer semantics: copy value, full-permissions
transfer, exclusive-write permission transfer and read-only
permission transfer. We argue that our classification in only
four different semantics captures all mechanisms that we
encounter in analyzed languages and related work. We leave
outside the scope of this paper how such semantics combine.
We evaluate these semantics by implementing a channel

framework in Pharo (See Section 3). We extended this frame-
work with our different permission transfer semantics (See
Section 4). Then, we report on our experiments using differ-
ent mechanisms to implement such permission transfers at

1In this paper, we use the term process to designate a concurrent execution
being it a full process or a lighter one (a.k.a thread).
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run time: object copy, write barriers, and partial-read barri-
ers (See Section 5). Our measurements confirm that making
copies are linear-time in the number of bytes copied – Using
a partial-read barrier is seven times slower for data transfer
and using a write barrier slows down data access up to 6%.

The contributions of this paper are:

• An analysis of existing permission transfer semantics
in concurrent scenarios.

• A categorization of permission transfer semantics into
four families, eliminating redundant and inconsistent
semantics.

• A framework to experiment with permission transfer
semantics.

• An evaluation of the implementation of each of the
identified families.

2 Problem: Efficient and Correct Object
Graph Transfer in Dynamically-Typed
Languages

2.1 Context: Pharo’s Concurrency Model
The Pharo programming language implements concurrency
with so-called processes: lightweight green-threads sched-
uled by the virtual machine. The process scheduler sched-
ules processes given their priority. Processes are cooperative
amongst the same priority and preemptive amongst differ-
ent priorities. That is, a process can yield to give priority
to another process in the same priority, and a process is
suspended as soon as a higher priority process is ready [8].
Process switches happen on a timely basis but only at safe
execution points: message sends and back jumps.

2.2 Object Graph Transfer by Example
To introduce the problems of object graph transfer, let’s
consider the example illustrated in Figure 1. The example
presents two processes and many objects shared between
them. In this example, one process has a reference to the
Alice object, and the other process a reference to the Bob
object. Alice has a car, which contains a disc, a key and some
gas, and Bob has no reference to it: Bob cannot read, write
or send messages to any of these objects.
If at some point during execution Bob needs to use the

car we need to send a reference to the car from Alice to Bob,
for example, by executing bob car: alice car, leading to the
situation in Figure 2. As soon as Bob has a reference to the
car, he obtains complete access to it i.e., reading, writing, and
sending messages to it and all objects reachable from the car.

Handling how objects are shared in a concurrent environ-
ment needs special attention. Such a model, in which object
sharing relies on just sharing references, i.e., an unrestricted
sharing policy, introduces potential data-races. Indeed, if
both Alice and Bob have regular references to the car, both

bobalice

car

key

gasdisc

Process 1 Process 2

Process 1

Objecta Object reference

Process ownership

Figure 1. Alice communicates the car object to Bob.

bob car: alice car.

bobalice

car

key

gasdisc

Process 1 Process 2

Process 1

Objecta Object reference

Process ownership

Figure 2.Alice communicates the car object to Bob but Alice
also has a reference on the key.

may access and modify the entire object graph at the same
time producing conflicting side effects.
Even if we take care of revoking Alice’s reference to the

car (e.g., nilling it), there is still a possibility of data-races
when there are shared objects, as it happens in the example
with the key object which is directly referenced by Alice
and also reachable by Bob from the car. Likewise, if the key
has a reference to the car, the car is still reachable by Alice
through the key.
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2.3 Challenges of Object Graph Transfer
From the example above, we observe that sharing objects in
a concurrent environment presents the following challenges:

Permission Transfer. Unrestricted object reference
transfers provide full permissions to the referee on the re-
ferred object. To solve this problem we need to control the
permissions on shared objects and how those permissions
are granted and revoked. As shown in the example above,
references give different types of permissions such as read,
write, and execution (in the form of message sends). In ad-
dition, we need to define a permission model that allows a
proper scoping of the sharing.

Object Graph Delimitation. Objects do not exist in iso-
lation but in complex object graphs. When sharing an object,
implicit access to its reachable object graph is granted too.
We need to control how objects shared between the different
graphs behave and how permissions are granted and revoked
on an entire object graph. In our example, it would be de-
sirable to grant Bob access permissions to the car without
access permissions to the key.
In other words, we need a sharing model preventing

shared objects by construction or a model in which we can
delimit within an object graph how access is transferred.
These models may be left as pure developer responsibility
or provide (semi-)automatic ways to do such a delimitation.

Permission Check. Transferring object (and graph) per-
missions may incur serious performance overheads either
when the permissions are transferred or when the objects
are accessed. For example, solutions that copy the object
graph pay the cost of allocating and copy memory at the
moment of the transfer. Solutions using instrumentation to
check object access will have an impact on overall perfor-
mance. An optimal solution will minimize both data transfer
overhead and data access overheads.

3 Canal: An Extensible Channel
Framework

In this section, we present an overview of our channel frame-
work to experiment with different permission transfer se-
mantics. We decided to use channels as a permission transfer
mechanism because they allow a clear delimitation between
the sender and the receiver processes while making object
sharing explicit. Processes that receive objects from a chan-
nel gain some permissions on those objects and processes
that sent them may lose some permissions on them. We also
describe our per-process ownership model to control write
permission on shared objects and thus prevent data races.

Figure 3. Overview of Object Transfer Through a Channel.

3.1 Extensible Channels and Hooks
Figure 3 depicts the general view of using a channel to trans-
fer an object (the car object on the figure) between two pro-
cesses. We distinguish two kind of roles a process can take
regarding a channel: the sender process and the receiver pro-
cess. A sender process sends object references into a channel
when it does not use this object anymore or wants to share it
with other processes. A receiver process acquires references
to objects to process them by receiving a reference from a
channel.

Channel overview. A channel is a shared data structure
between processes that allows one to exchange references.
Our channels are first class objects. Channels are unidirec-
tional and can be shared between multiple senders and mul-
tiple receivers. Channels are in shared memory, any process
having a reference of a channel is able to use it.Channel is the
base class of the Channel hierarchy. To guarantee atomicity
they are implemented using thread-safe atomic FIFO queues
that allow one to transfer any type of objects. The public API
is minimalistic with only new, send: and receive: messages.
The send: and receive: messages are the ones responsible for
the permission transfer and are the hooks to define tailored
channel subclasses. The general API is composed of three
main messages:

Channel creation. Creating a channel consists only in
sending the new message to a specific Channel subclass. It
is an extension point for specific initialisations.

Channel send. Sending an object consists in sending the
message send: with the desired object as argument. To de-
fine channels with specific semantics, the send: message is
redefined. The send operation is non-blocking. First specific
policies are applied to the object such as revoking write
permission then the object is enqueued in the channel.
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Channel receive. Receiving an object from a channel con-
sists in sending the receive message to a channel. This mes-
sage is blocking for the receiver process in the case the chan-
nel queue is empty. We chose to make them blocking in
this case because when sending a receive message a process
expects an object to be returned. Returning nil or an unex-
pected object only defers possible cause of bugs. When an
object is dequeued, its permission is updated according to
the receiver process.

3.2 Channel Transfer By Example
TheChannel abstract class is the base class of our framework.
It implements the exchange of object references using a
unique atomic thread-safe queue. Listing 1 shows the Pharo
code of the send: and receive methods of this class. Those
methods need to be redefined to add the permission transfer.

Channel>>send: anObject

queue nextPut: anObject

Channel>>receive

| result |

[ | keepWaiting |

keepWaiting := false.

self isClosed

ifTrue: [ChannelClosedException signal].

result := queue

nextIfNone: [ keepWaiting := true ].

keepWaiting ] whileTrue: [ queue waitForNewItems ].

↑ result

Listing 1. Definition of send: and receive methods of the
Channel base class.

Listing 2 shows a Ping Pong example where two processes
exchange a ping and a pong object through two channels.
The sender process first creates a new channel (line 1) to
send a Ping object and another channel (line 2) to receive
a Pong object. A receiver process is created using the fork
message (line 6) sent to a block (lexical closure syntactically
delimited by square brackets). This receiver process waits
until it receives an object from the channel (line 7) and then
sends a Pong object into the channel (line 6). The sender
process sends a Ping object (line 8) and then waits until it
receives Pong object (line 10).

1 pingChannel := ExampleChannel new.

2 pongChannel := ExampleChannel new.

3 "receiver process"

4
5 [ objectReceived := pingChannel receive.

6 pongChannel send: Pong new ] fork.

7
8 pingChannel send: Ping new.

9
10 pongChannel receive.

Listing 2. Usage Example of a Channel.

This example uses a Channel subclass that does not re-
define send: and receive methods but it would be mostly
unchanged using more specialized channels. In the follow-
ing section, we will extend this minimal model to build spe-
cific channels by subclassing the Channel class. By carefully
choosing specialized channels, the developer prevents data
races on the transferred objects.

3.3 Per-Process Ownership Model
To avoid data races, concurrency models typically impose
a unique writer process at any time for a single object [10].
Ownership models, using message passing, achieve this by
attaching a unique owner to all objects. These models may
be too restrictive because they prevent non-owner processes
to access an object.
In our framework, each object has a unique owner pro-

cess stored in its instance variable named owner. An object’s
owner is the only process that has the write permission on
this object. Initially, the process that creates an object is its
owner. Changing the ownership of an object only requires
assigning another process in its owner instance variable. An
attempt to write to an object from a process that doesn’t own
an object results in an error. Our ownership model allows
multiple read-only references on an object while still guaran-
teeing the uniqueness of the writer. The process scheduler of
Pharo ensures that a read operation does not happen during
a write operation.

In the following section we will show how our framework
models permission transfer at the level of channels.

4 Permission Transfer Channels
In this section, we first report on our identification of four
relevant permission transfer semantics. Then, each following
subsection describes a Pharo implementation of each of these
semantics by extending our Channel framework presented
in Section 3.

4.1 Identifying Permission Transfer Semantics
A Canal channel transfers references to objects along with
permissions to those objects. We distinguish three kinds of
permissions: write, read, and execute (sending a message). As
we explain in what follows, not all combinations of permis-
sions are meaningful, hence it is not necessary to implement
them. For example, a channel where both the receiver and
the sender processes lose all permissions would result in
the object being unusable. To constrain the field of what is
possible, we followed two rules:

Write Implies Read Rule. Write permissions imply
read permissions, read permissions imply execution
permissions. The first part of this rule means that to
write the fields of an object we require the permission
to read the fields of that object. The second part of this
rule implies that to read the field of an object, we need



Analyzing Permission Transfer Channels for Dynamically Typed Languages

Permissions Transfer Sender Process (SP) Receiver Process (RP)
Pre-send: Post-send: Post-receive

(1) Copy value (from process with ownership) Aw ,r Aw ,r A′
w ,r

(2) Copy value A−,r A−,r A′
w ,r

(3) Full transfer (from process with ownership) Aw ,r ∅ Aw ,r
(4) Full transfer A−,r A−,r ∅

(5) Exclusive Write (from process with ownership) Aw ,r A−,r Aw ,r
(6) Exclusive Write A−,r A−,r ∅

(7) Read-only (from process with ownership) Aw ,r Aw ,r A−,r
(8) Read-only A−,r A−,r A−,r

A=Object, A’=Object A copy, W = write, R = read, ∅ = no references, - = not permitted.

Table 1. Four permission transfer semantics based on the evolution of the sender and receiver processes’ permissions on the
transferred object A. The letters W and R represent respectively the write and read permissions of a process on A. Having a ’_’
instead of a permission means that a process does not have this permission on the object. ∅ means that a process does not hold
a reference on the object because it never had it or lost it. A’ is a copy of object A.

to be able to send it a message. This last part arises
from the fact that object fields (instance variables) are
encapsulated in Pharo and can only be accessed by the
object itself.

Conservation of Permissions Rule. The set of per-
missions owned by the sender before the transfer must
be equals to the set of permissions owned together by
the sender and the receiver after the transfer. A first
corollary of this rule is that a process cannot grant a
permission that it did not have beforehand thus permis-
sions cannot be forged on an object. A second corollary
of this rule is that overall permissions over an object
cannot be lost, preventing strange situations where an
object reference exists but cannot be accessed by any
other object.

Given these two rules we identified four permission trans-
fer semantics (See Table 1) in languages based on the evo-
lution of permissions of the sender and receiver processes
before and after the transfer. Since message sending to an
object is never restricted in our semantics, we omit the execu-
tion permission from the rest of the paper. Note that writing
to an object is sending a message but we do not prevent from
sending the message and instead throw an error.
Table 1 reads as follow. A group of two rows represent a

permission transfer semantics. The first row of the group rep-
resents a permission transfer when the sender process has
the ownership of the transferred object. The second row of
the group represents a transfer when the sender process does
not have ownership of the transferred object. The first col-
umn is the name of the semantics. The second column shows
the permissions the sender has before sending an object. The
third column shows the permissions the sender has after

sending an object. The last column shows the permissions
the receiver has after receiving an object.

Taking as example the full transfer semantics represented
by the third and forth row. The first column confirms that
we are looking at the full transfer semantics.

Reading the third row. In the second column, Aw ,r means
that the sender process will send an object A and has write
(ownership) and read permissions on this object. In the third
column, ∅ means that the sender process, after sending A,
lost all references on A and all permissions on A. In the last
column, Aw ,r means that the receiver process received a
reference on object A and have all permissions on A.

Reading the forth row. In the second column, A−,r means
that the sender process will send an object A and has only
read permission on this object (no ownership). In the third
column, A−,r means that the sender process, after sending
A, kept a read-only reference on A. In the last column, ∅
means that the receiver process never received a reference
on object A (in this case because we aborted the transfer).
In the following subsections, we present more in details

these four permission transfer semantics: copy value, full
ownership, exclusive write and read-only.

4.2 Copy Value Graph Transfer (CVGT)
A Copy Value Graph Transfer channel corresponds to the
first and second rows of Table 1. When sending an object A
through this channel, the sender process keeps a reference
to A and sends a copy of object A graph to the receiver called
A’. The receiver process has all permissions on A’.

While, in a first thought, it seems to break the conservation
of permission rule, it does not. The sender process keeps
exactly the same permission over object A and the receiver
cannot access A (the original object).
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During a transfer, the sender process makes the object A’
a copy of A Copying object does not keep invariants such as
read-only so the sender process has the unique reference on
A’ with all permissions. After a transfer, the sender process
loses this unique reference to A’ hence loses all permissions
on it. The receiver process gains all permissions A’. This
semantics is also found in the solutions of CSP models [15]
and inspired Go channels [1].
One way to achieve this behaviour is by implementing a

deep-copy of the object graph reachable from the sent object.
To implement this, we redefine the method send: to insert in
the channel a deep-copy of the object at send-time.
CopyValueGraphTransferChannel>>send: anObject

| copiedObject |

copiedObject := anObject deepCopy.

copiedObject graphOwner: nil.

super send: copiedObject

Listing 3. Redefinition of send: for Copy Value Graph Trans-
fer Channel.

We redefine the method receive to set the receiver as the
new owner of each object copies inside the object graph,
thanks to the method graphOwner:. Thus, the receiver pro-
cess gains write permission on all objects of the graph.

CopyValueGraphTransferChannel>>receive

| receivedObject |

receivedObject := super receive.

receivedObject beWritableObject.

receivedObject graphOwner: Processor activeProcess.

receivedObject beReadOnlyObject.

↑ receivedObject

Listing 4. Redefinition of receive for Copy Value Graph
Transfer Channel

A CopyValueGraphTransferChannel guarantees that two
reads or two writes cannot happen concurrently on the same
object because two separate copies of the graph exist at the
same time. Moreover, a deep-copy does not produce shared
objects but this channel suffers the duplication problem: we
can modify the two copies independently.

4.3 Full Ownership Graph Transfer (FOGT)
A Full Ownership Graph Transfer channel corresponds to
the third and forth rows of table 1. The thirs row represents
the case when the sender process has ownership of object
A. After a transfer, the sender process loses all references
on A thus all permissions are represented by ∅. The receiver
process gains all permissions.
This behaviour respects the conversation of permissions

rule since the sender permissions become the receiver per-
missions. If the sender process does not own object A as
in the forth row then the channel throws an error and the
transfer does not happen. The receiver has no references on
object A. This behaviour also complies with the conservation
of permissions rule since the permission did not change. This

semantics is also found in the solutions of Rust channel [22]
or Kilim [27].

This behaviour is achieved by revoking recursively all ref-
erences in the object graph. Listing 5 shows the Pharo code
of the redefined send: method for this channel. We imple-
mented this channel using Pharo’s atomic object reference
swapping (i.e., become: is used in the graphBecome:method).
Using pointer-swapping, all original references to the sent
object are replaced by references to the argument object.
After pointer-swapping, the channel object is the only one
that has a reference to the object to send.
FullOwnershipObjectTransferChannel>>send: anObject

| objectToSend |

"Create placeholer object"

Processor activeProcess = anObjectOwner

ifTrue:[ anObject graphOwner: nil ]

ifFalse: [ self error: 'Cannot full transfer

an object not owned ' ].

objectToSend := Object new.

"Swap references"

anObject graphBecome: objectToSend.

"At this point , objectToSend has

the sole reference to the sent object"

queue nextPut: objectToSend

Listing 5. Redefinition of send: for Full Ownership Object
Transfer Channel.

Later on, when a process calls receive and consumes the
reference from the channel, it will get the unique reference to
that object. Moreover, the new owner of the object graph is
assigned to the receiver process as shown by the redefinition
of the receive method in Listing 6.

CopyValueGraphTransferChannel>>receive

| receivedObject |

receivedObject owner ifNil:["gain ownership"

receivedObject := super receive.

receivedObject beWritableObject.

receivedObject graphOwner: Processor activeProcess.

receivedObject beReadOnlyObject.

]

↑ receivedObject

Listing 6. Redefinition of receive for Full Ownership Object
Transfer Channel.

4.4 Exclusive Write Object Transfer (EWOT)
An Exclusive Write Object Transfer channel corresponds to
the fifth and sixth rows of Table 1. In the sixth row the sender
process starts with all permissions on object A. During the
transfer, the sender process loses the write permission but
keeps at least one reference on object A. The receiver process
gains all permissions over object A. The receiver process ends
up being the only one with write permissions.

This behaviour complies with the conservation of permis-
sion rules because the permissions of the sender before the
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transfer are the permissions of the receiver after the transfer.
If a process does not possess the write permission on object
A as in the sisth row then the channel throws an error and
the transfer does not happen. It allows us to comply with
the conservation of permissions rule. One way to achieve
this behaviour is to instrument all writes to object fields and
check if the writing is being done from the owner process.
This semantics is also found in Haskell or Clojure channel
implementation with persistent data [24].
Our current implementation makes use of pre-existing

per-object low-overhead write barriers [2] in Pharo.
Listing 7 shows the code of the send:method for the EWOT

Channel. Before adding the transferred object into the chan-
nel queue, its owner is reset (set to nil) thus preventing any
further write access by the sender.

ExclusiveWriteObjectTransferChannel>>send: anObject

Processor activeProcess = anObject owner

ifTrue: [ anObject owner: nil.

queue nextPut: objectToSend ]

ifFalse: [ self error: 'Trying to send

a not owned object ' ]

Listing 7. Redefinition of send: for Exclusive Write Object
Transfer Channel.

In its receive method (See Listing 8), the channel sets the
owner of the object to the current process before returning
it.

ExclusiveWriteObjectTransferChannel>>receive

| receivedObject |

receivedObject := super receive.

receivedObject beWritableObject.

receivedObject owner: Processor activeProcess.

receivedObject beReadOnlyObject.

↑ receivedObject

Listing 8. Redefinition of receive for Exclusive Object Trans-
fer Channel.

It is important to note that thanks to the Pharo’s concur-
rency model (See Section 2.1), writes are atomic thus a read
cannot occur while a process is writing on the shared object
such as modifying its owner. Also note, the write permission
granting is on a per object basis and not directly the whole
object graph. It allows one to manually delimit the granting
of the write permission on the object graph.

4.5 Read-only Object Transfer (ROOT)
A Read-Only Object Transfer channel corresponds to the
penultimate and ultimate rows of Table 1. In both rows, the
sender process is keeping the same permissions it had over
object A. The receiver process gains a reference on object A
and has only the read permission.

This behaviour complies with the conservation of permis-
sions rules because the sender process does not change and
the receiver process has only the read permission.

We implemented it with the samewrite barrier mechanism
used in the exclusive write object transfer (EWOT) except
that the object ownership remains unmodified. Since the
object’s owner does not change the receiver process is only
able to read the object. Note that the sender may or may not
have write permissions on the object.
In Listing 9, a person object is created and its owner is

manually set to nil. This removes the write permission of the
sender process on this object. Nevertheless, the sender is still
able to send the object through a read-only object transfer
channel. In this example, the receiver process does not gain
the write permission but only the read permission on the
object.

channel := ReadOnlyObjectTransferChannel new.

objectToTransfer := Person new.

"Change the ownership"

objectToTransfer owner: nil.

objectToTransfer name: 'Alice '. "Raise an exception"

"receiver process"

[ objectReceived := channel receive.

objectReceived name: 'Bob'. "Raise an exception"

] fork.

channel send: objectToTransfer.

Listing 9. Usage Example of a Read-Only Object Transfer
Channel.

4.6 Channel limits: transactionality and
inconsistent reads

Table 2 summarizes the different semantics and characteris-
tics of all channel semantics.

The EWOT channel granting the read permission to other
processes induces inconsistent read. Back to the car example,
let’s say bob owns the car. Alice reads the title of the disc
and process it. Now, Bob changes the disc and Alice reads
the number of track of the disc. Alice will read the number
of track of the new disc.
Inconsistent reads also occurs with the CVGT channel.

Alice gives the car to Bob expecting that Bob does an action
with the car. Since Bob has a copy, Alice cannot see the action
effect. A new synchronisation is necessary to avoid incon-
sistent reads. A callback re-transferring the copied object
back, or a merging approach is then necessary for the sender
process to access the modified object once the receiver is
done.
We believe this issue is proper to transactional systems,

and is orthogonal to the permission transfer that channels
allow.
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Property CVGT FOGT EWOT ROOT

Transfered permissions Full Copy Exclusive Write Read-only
Granularity Graph Graph Object Object
Sender Read Inconsistent Reads Revoked Allowed Allowed
Sender Write Inconsistent Writes Revoked Revoked Allowed

Table 2. Summary of the Permission Transfer Channel’s Properties.

5 Comparing the different Channels
Concurrency mechanisms target first correctness to avoid
inconsistencies and then performance. Most of the time, im-
plementations are a trade-off between correctness and per-
formance [12]. In this section, we compare the performance
of our different channels. In our case, solutions using copy
or pointer-swapping suffer an overhead during the object
transfer via a channel meanwhile solutions based on the
write barrier do not. In contrast, solutions based on the write
barrier suffer from overhead on object access meanwhile the
others do not.
In this section, we report on our results benchmarking

different scenarios. The Pharo bench message measures the
number of times a message is sent per second. The time taken
to send a message is inversely proportional to the result of
the bench message. In other words, the higher the result
of the bench message is, the faster it is. Each channel of
each scenario is benched 100 times. A box summarizes 100
benchmarks on a channel. The first and third quartile form
the box, the lowest and maximum value form the whiskers.
We run all measurements on the same computer with a 2.4
GHz Intel Core i5 quadcore processor and 16 Gio 2133 MHz
LPDDR3 ram with all other applications closed.

5.1 Scenario 1: Single Object Transfer Speed
In this scenario, we measure the cost of transferring only
one object with our different channels. To achieve this, we
reuse a modified version of our Pong example (See Listing 2)
with the different channels. The transferred object has 3
instance variables: its owner process, a name and a potential
collection of friends not initialized for this scenario.
channel := OwnershipGraphTransferPartialReadBarrier

Channel new.

objectToTransfer := OwnedPerson new name: 'Alice '.

[objectReceived := channel receive.

channel send: objectReceived

] fork.

channel send: biggerObjectToTransfer.

channel receive

Listing 10. Code example for benchmarks.

Figure 4 shows that Copy Value Graph Transfer chan-
nel (red) is on par with the Exclusive Write Object Transfer
channel (green). Copying a small object is almost as fast as
sending a reference through a channel. Both are around 10%
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Figure 4. Result of data transfer speed for simple objects.
The more times per second it is executed the fastest it is.
CVGT = Copy Value Graph Transfer (red).
FOGT = Full Ownership Graph Transfer (blue).
EWOT = Exclusive Write Object Transfer (green).
ROOT = Read-Only Object Transfer (purple).

slower than the Read-Only Object Transfer channel (purple).
The ROOT channel does not transfer ownership so it does
not have to update the ownership status and does not need
a graph traversal. It explains the better performance of this
channel in transfer speed. The Full Ownership Graph Trans-
fer channel is 8 times slower than the other ones. Pointer-
swapping is slower than a field update for ownership transfer
and also slower than copying small objects. The conclusion
is that except for the Full Ownership Graph Transfer channel
implementation using pointer-swapping, they are all in the
same order.

5.2 Scenario 2: Object Graph Transfer Speed
In this scenario, wemeasure the cost of transferring an object
but for different size of object graphs. The code is similar to
scenario 5.1 but the transferred object now references a list
of friends in its variable objectToTransfer. In this scenario,
we use three different sizes for the friends list. The EWOT
channel and ROOT channel operate the transfer at an object
granularity and not on a graph granularity. To be fair in the
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Figure 5. Data transfer speed result for object graphs of
different sizes. It is on number of times executed per seconds,
the higher the value is, the fastest the implmentation is.
CVGT = Copy Value Graph Transfer (red).
FOGT = Full Ownership Graph Transfer (blue).
EWOT = Exclusive Write Object Transfer (green).

comparison, we adapted the EWOT channel to a graph gran-
ularity i.e., we recursively apply a write barrier to all objects
in the transferred graph. We omitted the ROOT channel in
this comparison because transferring an object reference
already gives access to the graph. There is no modification
on this channel, hence the result is the one from the previous
scenario 5.1.

Figure 5 shows that the Copy Value Graph Transfer chan-
nel linear-time in the size of the object graph. It is already
2 times slower by adding two friends in the object graph
compared to no friends. It becomes slower than the Full
Ownership Graph Transfer after adding five friends. The
Full Ownership Object Graph Transfer based on the become:
message and the adapted Exclusive Write Transfer channel
does not vary much for this sample. Since they all perform
the same graph traversal, we conclude that the creation of
new objects is expensive. For the FOGT channel, it is quite
surprising to repeat a seemingly costly operation and to not
degrade performance. An alternative that we did not explore,
is pointer-swapping all the objects in the object graph at
once. Indeed, the become operation is based on a primitive
that performs the pointer-swapping from elements inside an
array to elements from another array. In the become’s case,
both arrays contain one element each, the two objects to
swap. The alternative solution is then to collect all the object
graphs inside an array and to swap with an array of filler
objects by using directly the primitive. An inspection of the
implementation of this primitive is necessary to potentially
understand our result.
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Figure 6. In blue, the non-instrumented accesses. In red, the
accesses instrumented with the write barrier

5.3 Scenario 3: Single Object Access Speed
In this scenario we measure the cost of accessing an ob-
ject with the write barrier compared to accessing without
it. Channels using copy or become are not penalized on
data access, thus measuring accessing without the barrier is
equivalent.

Figure 6 shows that accessing an object field with the write
barrier is in average 6% slower than a regular access. For the
transfer of an object graph of size 1768, it needs 7000 accesses
to the object to have a bigger overhead than doing a copy of
the object. For an object graph of size 2312, it requires more
than 18000 accesses to the object to have a bigger overhead
than doing a copy of the object. In conclusion, channels
based on copy lose performance on data transfer depending
on the size of the object graph to transfer. Those channels
are more suitable for programs heavily accessing objects
and doing few object transfers. Channel based on a write
barrier lose performance on data access. Those channels are
more suitable for programs exchanging a lot of objects and
performing few accesses. Finally, channels based on a partial-
read barrier mechanism are more appropriate for programs
both transferring and accessing a lot of objects.

5.4 Discussion
Mechanism comparison in languages. Other lan-

guages having potentially more efficient write barriers do not
change the conclusion brought by our results. Those write
barriers will still introduce an overhead on object access. It
will only change at what point accessing object becomes
more expensive than copying or vice versa. In the same way,
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others language having potential better copying algorithms
will still introduce an overhead on object transfer.

Partial-read barrier in the form of the become message
does not relate as much in other languages. The logic behind
the become message is hidden in the virtual machine sup-
porting the Pharo language and an inspection of this latter
could give us a better understanding.

Memory usage. We did not measure the memory con-
sumption induced by our different channels. Nevertheless,
our write barrier is implemented by marking and check-
ing an unused bit in the header of the objects. Therefore,
the memory size of the objects is not affected at all. In con-
trast, the partial-read barrier leaves a placeholder object and
copying duplicates the object, which both increase memory
usage. Some techniques, such as persistent data, diminish
the number of copies but do not completely eliminate them.
In constrained memory environments still offering concur-
rency, a programmer should opt for channels using the write
barrier.

6 Related Work
6.1 Permission and ownership
Capabilities as presented by Mark Miller [21] is an associa-
tion between an object reference and the access permissions
on this object. It can be a proxy or a handle on this associ-
ation directly exchanged by processes. Capabilities evolve
only by restricting further the permissions and not necessar-
ily during a capability transfer. In our model, we exchange
direct references and permissions evolve during the transfer.
Object ownership was originally introduced to control

the effects of object aliasing in the context of Flexible Alias
Protection. It was first embodied as a type system with own-
ership types [4]. Gordon et al. [11] provides ownership for
dynamically-typed language for encapsulation. The owner-
ship is by object and forms ownership trees. It encapsulates
the object graph but does not handle which process is able to
use this object graph. The ownership model proposed is also
restrictive, the owner has all permissions while the others
have none. Other models exist with more relaxed permission
models such as the one proposed by Wernli et all [31]. In our
model, permission is also more fine-grained granting also
write or read permission.

6.2 Message passing
Message passing is present in languages focusing on dis-
tributed computing such as Erlang, Go, Scala. Singularity
OS [9] also focuses on message passing between their iso-
lated process. Pipelines, the Communicating Sequential Pro-
cess (CSP) model [14], and the actor model [13] are message
passing models where processes synchronize by passing
messages. In Go [1], when one process finishes processing
a datum, it signals it. Processes wait their turn to access a
datum and consume it. This is achieved with FIFO queues

Permissions Transfer CVGT FOGT EWOT ROOT

Rust X ✓ X X
Kilim X ✓ X X

Erlang X X X ✓

Go ✓ X X X
C++ ✓ X X X
Java ✓ X X X
Javascript ✓ X X X
Kotlin ✓ X X X
Lua ✓ X X X

Clojure X X ✓ X
Haskell ✓ X ✓ X

Pony ✓ ✓ ✓ ✓

✓= the language offers a channel with the semantics, X =
the language does not offer a channel with this semantics

Table 3. Channels permission transfer semantics offered in
other languages.

called channels for CSP [15], pipe for pipeline or mailboxes
for actors. Programatically, the advantages are that the com-
munication is easy for developers to reason about as a mean
of synchronisation. Nevertheless, it usually requires to copy
the whole graph of data to be referenced. This is not trivial
to handle [19] since the graph may be large and in the worst
case, can be the whole application data. The notion of per-
mission is not explicit with those queues but their semantics
is comparable to our Copy Value Graph Transfer channel.

6.3 Shared memory
In a shared memory model, processes share some parts or all
of their memory among them. Writing concurrent programs
with shared memory is difficult and error prone [17] due to
data races. Nowadays, each programming language provides
its own ownership transfer model to support concurrency.
We categorize them in two categories: the run-time and
compile-time checking approaches.

Run-time checking approaches. Older languages
mostly rely on run-time checking approaches. Many models
exist such as the thread/mutex model [7] and the Software
Transactional Memory(STM) [25] model. The most known
is the mutex model in which data access is controlled by a
mutex. A process has the right to access the data only if it
was able to lock the mutex hence gaining ownership of the
data. While it solves data races issues other problems appear
such as dead or live locks [33]. Acquiring the mutex is an
implicit ownership transfer and write permission gain. This
semantics is similar to our semantics of Exclusive Write
Object Transfer channel except the transfer is explicit in our
channel.
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Some CSP models coupled with shared memory exist but
they only allow exchanging immutable or frozen data [18].
At run time those properties are checked when accessing the
data. If the property is broken they return a run-time excep-
tion [30]. Note that only the data transferred is immutable
and data referenced by this one are still freely mutable. For
example, in the case of a frozen array only the array is im-
mutable but all the elements inside are mutable, it is the
developer responsibility to froze all the elements inside the
array when needed. This semantics is similar to our Read-
Only Object Transfer channel except in those models the
write permission is completly lost whereas in our model a
process retains the write permission.
Checking during execution induces an overhead specifi-

cally on frequently accessed data. The STM model with the
use of persistent data aims to reduce the number of checks.
A persistent data structure [24] is a data structure that pre-
serves one or multiple previous versions of itself when it
is modified. Here one process writes on the to-be-modified
version meanwhile other processes read on a preserved ver-
sion. The check is delayed when the modified version needs
to become the preserved version. Instead of having many
little checks during execution, there is only one big check.
Processes accessing the data only to read are then not pe-
nalized. With all those solutions an overhead still exists at
least when writing onto the data but the data transfer cost
is close to non-existant. The semantics is the one of our Ex-
clusive Write Object Transfer channel in the fact that only
one process has the write permission but has the side-effect
of the Copy Value object Graph Transfer channel where
inconsistent reads happen.

Compile-time checking approaches. The idea for type
annotation in the objective of sharing [3] data has only be
demonstrated in some recent languages such as Rust, Pony
and Project Midori. To synchronize between processes, Rust
offers a CSP with channels but with shared memory [22]. It
guarantees the uniqueness of a reference to a datum with
a static analysis during compilation with a borrow-checker.
The owner of this unique reference is simply the owner of
the data. Rust channels are Full Ownership Object Transfer
channels. Pony offers an actor model, it is one of the few
actor model with shared memory. Pony [5] guarantees the
uniqueness of the writer with a static analysis during compi-
lation with type annotations. Contrary to Rust, it is possible
to have multiple references to a datum but with different
capabilities. If there is already a reference with the write
capabilities all further reference will not have this capability
for the lifetime of the first reference with the write capability.
Pony type annotations allow one to express the same transfer
semantics than our channels. While compile-time checking
does not suffer from overhead or bigger memory usage at
run time, it imposes a discipline on the developer to produce
code in accordance with the permission rules [6]. However

this technique is possible for statically typed language, it
is not an easy feat for dynamically typed language where
the control flow graph depends on the type of the receiver.
They are a starting point to enhance the performance of our
channels.
Table 3 summarizes the semantics tied to object transfer

through channels in other languages. This list of languages
is not exhaustive. Some languages are not represented be-
cause we could not determine exactly in which category they
belong such as C# and Ruby. Rust and Kilim both offer FOGT
semantics thanks to compile-time checks. Even though Er-
lang effectively copy messages, they only allow the sharing
of immutable data thus having the same semantics as ROOT.
Other languages that we did not list (notably functional ones)
take this approach. Most of the languages with CVGT se-
mantics follow the Go trend. They deep-copy the data to
send. Note that the notion of pointer exists in some of those
languages and sending a pointer is not restricted causing
data races. Clojure and Haskell propose channels coupled
with STM or persistent data that allow one writer and many
readers. This is the EWOT semantics. Finally, Pony with its
type system allows for a fine grain of permission transfer
and offers each of the semantics.

7 Conclusion
We showed that sharing an object between processes is not
only sharing an object but sharing all the graph of object
reachable from this object as root. In a concurrent environ-
ment with shared memory, this object graph will be subject
to data races. To avoid this issue, we need to control process
permissions on shared object graphs while keeping good
performance. Channels set a proper framework to exper-
iment with permission transmission because of the clear
delimitation between the processes send objects and the
ones that acquire them. We propose an extensible channel-
based permission transfer framework for experimentation,
and designed four kinds of permission transfer.

We compared the performance of our transfer permission
channels. On one hand, permissions transfer using pointer
swapping is constantly 7 to 8 times slower than the baseline.
Using a deep copy is linearly slower depending on the size of
the object graph to transfer. On the other hand, using a write
barrier introduces an overhead of up to 6 % on all object field
writes but it does not penalize object field reads.

As future work, we want to allow the combination of chan-
nels. In another future work, we aim to improve performance.
Some optimizations already exists with static analysis such
as escape analysis. For dynamically-typed languages such an
analysis is only possible after a number of interpretation of
the program. With this analysis, clear delimitations of which
part of the object graph are really used appear. Then, only for
those objects are copied or the write barrier is activated. Fur-
thermore, we would like to explore type annotation similar
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to Rust or Pony and their implication for dynamically-typed
languages.
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