
HAL Id: hal-03347572
https://hal.science/hal-03347572v1

Submitted on 17 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Precessional instability of a fluid cylinder
Romain Lagrange, Patrice Meunier, François Nadal, Christophe Eloy

To cite this version:
Romain Lagrange, Patrice Meunier, François Nadal, Christophe Eloy. Precessional instability of a
fluid cylinder. Journal of Fluid Mechanics, 2011, 666, pp.104-145. �10.1017/S0022112010004040�.
�hal-03347572�

https://hal.science/hal-03347572v1
https://hal.archives-ouvertes.fr


Under consideration for publication in J. Fluid Mech. 1

Precessional instability of a �uid cylinder
By ROMAIN LAGRANGE1, PATRICE MEUNIER1,
FRANÇOIS NADAL2, AND CHRISTOPHE ELOY1

1IRPHE, CNRS, Aix�Marseille Université, 49 rue Joliot�Curie, 13013 Marseille, France
2Commissariat à l'Energie Atomique, CESTA, 33114 le Barp, France

(Received 25 mai 2010)

In this paper, the instability of a �uid inside a precessing cylinder is addressed theore-
tically and experimentally. The precessional motion forces Kelvin modes in the cylinder
which can become resonant for given precessional frequencies and cylinder aspect ratios.
When the Reynolds number is large enough, these forced resonant Kelvin modes even-
tually become unstable. A linear stability analysis based on a triadic resonance between
a forced Kelvin mode and two additional free Kelvin modes is carried out. This ana-
lysis allows to predict the spatial structure of the instability and its threshold. These
predictions are compared to the vorticity �eld measured by Particle Image Velocimetry
with an excellent agreement. When the Reynolds number is further increased, nonlinear
e�ects appear. A weakly nonlinear theory is developed semi-empirically by introducing
a geostrophic mode which is triggered by the nonlinear interaction of a free Kelvin mode
with itself in the presence of viscosity. Amplitude equations are obtained coupling the
forced Kelvin mode, the two free Kelvin modes and the geostrophic mode. They show
that the instability saturates to a �xed point just above threshold. Increasing the Rey-
nolds number leads to a transition from a steady saturated regime to an intermittent
�ow in good agreement with experiments. Surprisingly, this weakly nonlinear model still
gives a correct estimate of the mean �ow inside the cylinder even far from the threshold
when the �ow is turbulent.

1. Introduction
The goal of this paper is to explain the onset of turbulence observed in a precessing

cylinder completely �lled by a �uid.
The motion of precession is obtained when an object is in rotation around an axis which

is itself rotating around a second axis. The knowledge of the �ow forced by a precessional
motion is of critical importance in several domains. In aeronautics (see Stewartson 1958;
Gans 1984; Garg et al. 1986; Agrawal 1993; Bao & Pascal 1997; Lambelin et al. 2009), the
presence of a �uid (such as a propellant liquid) inside a �ying object (spacecraft, rocket,
satellite...) can have dangerous consequences on the stability of this object. Indeed the
presence of a weak precessing angle, due to a non-axisymmetry of the object, can lead to
a large amplitude of the contained �ow when it is resonant. This �ow can in turn create
a torque on the �ying object which destabilizes the precessing angle and thus lead to the
deviation of its trajectory. A good understanding of the behavior of such a �uid�structure
coupled system requires a precise knowledge of the hydrodynamics of the contained �uid.

In external geophysics, atmospheric vortices such as hurricanes or tornadoes are also
subject to precessional forcing. Indeed, their axes rotate with the earth rotation around
the polar axis. The �uid is thus in precession with an angle α equal to the co-latitude.
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This is exactly the kind of �ow which is studied in this paper. Usually, the precession
of atmospheric vortices is neglected and only Coriolis e�ects are taken into account.
However, the question remains whether precession has a signi�cative e�ect on the cyclone
dynamics and notably on its stability.

This problem is also relevant to internal geophysics. Indeed, the Earth precession in-
duces a forcing on its liquid core and thus generates a strong turbulent �ow. Because
the Earth core is made of a conductive �uid (melt iron) such a �ow could be responsible
for the geodynamo e�ect which generates the Earth magnetic �eld, (see Malkus 1968;
Kerswell 1996; Tilgner 2005, 2007; Wu & Roberts 2008, 2009). However, other e�ects
such as convection, boundary layers, elliptic or tidal instability have also been proposed
to explain the source of energy for the geodynamo.

The dynamics of a �uid inside a precessing spheroidal cavity was �rst studied by Poin-
caré (1910). He showed that the �ow is a solid body rotation around an axis of rotation
which is undetermined in the absence of viscosity. By introducing the viscosity in a
thin boundary layer (Ekman layer), Busse (1968) determined this axis of rotation and
the amplitude of the rotation. He also determined the critical latitudes where occurs a
breakdown of the Ekman layer. This breakdown gives rise to strong shear zones in the
bulk of the �ow. These shear zones can be axisymmetric and are thus very well visuali-
zed in experiments (see Malkus 1968; Vanyo et al. 1995; Noir 2000). Noir et al. (2003)
numerically showed that they are due to nonlinear interactions in the Ekman layer. This
breakdown of the �ow also excites inertial waves which propagate along characteristic
surfaces at a speci�c angle. They were predicted asymptotically by Kerswell (1995), stu-
died numerically by Hollerbach & Kerswell (1995); Tilgner (1999a,b); Noir et al. (2001b)
and observed experimentally by Noir et al. (2001a). Finally, when the precession rate is
su�ciently large, Malkus (1968) and Vanyo et al. (1995) observed that the �ow is uns-
table and rapidly degenerates into a turbulent state. However, it is still unclear whether
this turbulent �ow is due to a local instability in the Ekman layer or in the shear zones
or if it results from a global instability such as a triadic resonance (Lorenzani & Tilgner
2001; Kerswell 1993).

The presence of inertial waves in a precessing spheroid is simply due to the presence
of the Coriolis force linked to the global rotation of the �uid. In a cylindrical geometry,
inertial waves are also present and interfere in order to construct global modes of the �uid
�ow, known as Kelvin modes (Kelvin 1880). These modes are neutral in the absence of
viscosity, with a frequency smaller than twice the angular velocity of the �uid (Sa�man
1992). By taking into account viscous boundary layers on the walls of the cylinder Kudlick
(1966) and Greenspan (1968) have extended the invscid theory to predict the viscous
decay rates of a Kelvin mode. They were experimentally con�rmed by McEwan (1970)
and Kobine (1995) and numerically by Kerswell & Barenghi (1995).

The precession can excite the Kelvin modes if they have the same frequency as the
precession. This was �rst shown experimentally by McEwan (1970) who used a tilted
top end rotating at a di�erent angular velocity than the cylinder, in order to model the
forcing by precession. He observed through Kalliroscope visualisations that the �ow be-
comes resonant at the frequencies of the Kelvin modes with the correct wavelength. This
was further con�rmed experimentally by Manasseh (1992) and Kobine (1995) for a real
precessing cylinder. The amplitude of these modes can be predicted theoretically outside
of their resonances by a simple linear and inviscid theory. However, at the resonance, vis-
cous e�ects have to be added in order to predict the amplitude saturation. Gans (1970b)
showed that this amplitude scales as the square root of the Reynolds number when
viscous e�ects are taken into account because of Ekman pumping inside the boundary
layers. Meunier et al. (2008) have extended this result by adding the e�ect of nonlinear
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interactions of the Kelvin modes, which leads to the appearance of a geostrophic motion
inside the cylinder.

McEwan (1970) and later Manasseh (1992) also showed that the �ow is highly unstable
in the vicinity of a resonant frequency. Indeed, after persisting in an apparently laminar
form, they observed that the �ow becomes unstable and degenerates abruptly into a
�ne-scale disordered state. They called this transition to turbulence the phenomenon of
"resonant collapse" because it was associated with an amplitude decrease of the resonant
Kelvin mode. This breakdown behavior was also observed by Thompson (1970) who
studied the case of a partly �lled and tilted cylinder. By performing experiments in a
precessing cylinder, Manasseh (1992) catalogued di�erent breakdown regimes by a letter
scheme (A�G), where Type A breakdown results in the generation of turbulence with the
smallest scales. McEwan (1970), Thompson (1970) and Manasseh (1992) also observed
that for a precise range of parameters the unstable �ow can relaminarize after breakdown
leading to a cycle of breakdowns and relaminarizations. Because their experiments did
not give any informations on global �uid velocities, the physical mechanism leading to
breakdown was unclear. Mahalov (1993) showed theoretically that the precessing �ow
inside an in�nite cylinder is unstable and that the instability mechanism is triggered by
a triadic resonance between the vertical shear created by the precession force and two free
Kelvin modes. However, this mechanism does not explain why the �ow is more unstable
at the resonance of a forced Kelvin mode. Recently, Lagrange et al. (2008) showed that
the unstable �ow indeed exhibits two free Kelvin modes which satisfy the conditions for
a triadic resonance with the resonant forced Kelvin mode and not with the vertical shear.
This mechanism will be used in this paper to carry out a linear stability analysis.

The mechanism of triadic resonance has been extensively studied to explain the ellip-
tical instability (Moore & Sa�man 1975; Tsai & Widnall 1976) as an interaction between
the ellipticity of the vortex and two free Kelvin modes. The growth rate of this insta-
bility was later calculated analytically using local theories by Bayly (1986) and Wale�e
(1990). Theoretical predictions have been widely validated numerically (Mason & Kers-
well 1999) and experimentally (Eloy et al. 2000, 2003). Such a triadic resonance occurs
when the di�erence in the wavenumbers and frequencies between the two free Kelvin
modes is equal to the wavenumber and frequency of the elliptical forcing (see the review
by Kerswell 2002). Such a mechanism can be generalized to the destabilization of a Kel-
vin mode by the interaction of three Kelvin modes, as proposed by Mason & Kerswell
(1999) and Kerswell (1999) to explain the secondary instability of the elliptic instability.
In this paper, we will use exactly the same procedure, except that the Kelvin mode is
now forced by precession instead of being forced by an elliptic instability.

The paper is organized as follows. Section 2 presents the problem of a precessing cy-
linder and the experimental setup. Section 3 is dedicated to the base �ow. The governing
equations are derived and the classical linear and inviscid theory is recalled. Viscous ef-
fects are also added in order to calculate the base �ow inside a resonant cylinder. A linear
stability analysis based upon a mechanism of triadic resonance between Kelvin modes is
developed in � 4. The results (growth rate,stability diagram...) are discussed and compa-
red with experiments in � 5. Section 6 is dedicated to a weakly nonlinear theory taking
into account the in�uence of a geostrophic mode. This theory is also compared to experi-
mental results. Conclusions and discussion in the more general context of rotating �ows
are �nally given in � 7.
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Figure 1. Sketch of the experimental setup. A cylinder of radius Rc and height H rotates
around its axis at the angular velocity Ω1. It is mounted on a platform which rotates at the
angular velocity Ω2. The angle between the two axes of rotation is the precessing angle θ. A
camera �xed above the cylinder in the platform frame is used to perform PIV measurements
in the luminous plane of a horizontal laser sheet. Polar coordinates (R, ϕ, Z) are de�ned in the
cylinder rotating frame.

2. Presentation of the problem and experimental setup
An experimental setup has been built to study the �ow inside a precessing cylinder.

This experimental setup is sketched in �gure 1 and described brie�y in the following.
Readers should refer to Meunier et al. (2008) for an extensive description.

A right cylinder of height H and radius Rc �lled with water rotates at the angular
velocity Ω1 around its axis and is mounted on a platform which rotates at the angular
velocity Ω2. Each axis having its own driving motor, these angular velocities can be varied
independently. The angular velocity Ω1 can be increased up to 60 rad s−1 and is measured
with an accuracy of 0.1%. The angular velocity of the platform Ω2 can only be varied
from 0.1 to 6 rad s−1 and is measured with an accuracy of 0.2% when the precession
frequency is larger than 0.2 rad s−1. Two di�erent cylinders with the same aspect ratio
h = H/Rc = 1.62± 0.3% but di�erent dimensions (H = 2.72 cm and H = 7.50 cm) are
used. Because the Reynolds number depends on Rc, these two cylinders allow to vary
the Reynolds number over a large range [1000, 50000].
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The cylinder axis is tilted relative to the axis of the platform with an angle θ, which

can be increased up to 15◦ and which is determined with an absolute accuracy of ±0.1◦.
A release device mounted on the platform and controlled externally allows to tilt the
cylinder during the motion of the platform. The release device is composed of an elec-
tromagnet designed to keep the cylinder in a vertical position during the spin�up phase.
Once the electromagnet is turned o�, a drawback spring pulls the cylinder into its tilted
position.

PIV measurements have been performed by seeding the �ow with small re�ecting
polycrystalline particles (Optimage Ltd.) of mean diameter 50µm and density 1000 ±
20 kgm−3. They are illuminated with a light sheet of thickness 2 mm created by a
yttrium aluminum garner (YAG) pulsed laser. An external cylindrical lens is used to
provide this laser sheet which is �xed relative to the laboratory frame. However, because
the precessing angle θ is small, the laser sheet can be considered normal to the cylinder
axis at �rst order. The height z of the laser sheet can be varied along the height of
the cylinder. In our experiments we have chosen z = 0 (midheight of the cylinder) and
z = h/4. These two positions allow to measure a maximum transverse velocity for the
Kelvin modes observed in our experiments.

The images of particles are recorded by a PIV camera (Kodak Megaplus ES 1.0, 1008×
1018 pixels) mounted on the rotating platform and aligned with the axis of the cylinder.
The time interval between two successive images is relatively large (from 2 ms to 50 ms)
such that the cylinder rotates of approximately 20 degrees between the two images. This
creates large displacements of the particles at the periphery of the cylinder (150 pixels),
but the two images are rotated around the center of the cylinder in order to remove
the solid body rotation of the particles. The PIV thus gives directly the velocity �eld
in the cylinder reference frame. This procedure allows to measure very small velocities
down to 1% of the velocity of the cylinder wall. Such measurements would not have been
possible without the image rotation. The pairs of images are then treated by a cross-
correlation algorithm detailed in Meunier & Leweke (2003) which gives velocity �elds
with 60 × 60 vectors. The power is brought up to the platform by a rotating collector
through the vertical axis to supply the camera, the cylinder motor, the electro-magnet
and the acquisition computer.

For the acquisition of a PIV �eld we proceed as follows. The cylinder is �rst kept vertical
and rotates at Ω1. The platform rotates at Ω2. Once the spin�up stage is completed (i.e
the �ow is in solid body rotation), the cylinder is tilted in precession and a �rst acquisition
of 85 PIV �elds is launched. This �rst acquisition allows the study of the transient stage
of the instability, i.e. the growth of the Kelvin modes. A second PIV acquisition of 85
PIV �elds is started when the transient stage is completed ; usually 10 minutes later.
This second acquisition allows the study of the permanent stage.

Some visualizations were also performed by using Kalliroscope particles which are
known to reveal the structure of the �ow in a rotating �uid (see McEwan 1970; Manasseh
1992). The tank is illuminated from the side with a vertical luminous sheet created by a
5 Watts Argon laser going through a cylindrical lens. A very slight shearing motion in
any section of the cylinder is su�cient to align the Kalliroscope particles, thus changing
the light intensity seen by an observer. This provides an extremely sensitive indicator of
relative �uid motion. This method does not give any quantitative results but is a quick
and e�cient way to determine the wavelength of the base �ow or to see if the �ow is
stable or unstable.
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3. Base �ow

In this section we give the governing equations for a precessing �ow and we derive the
classical solution which is valid before the appearance of the instability. This solution is
linear and inviscid when the �ow is non-resonant, but viscous e�ects have to be taken
into account when one Kelvin mode is resonant. This solution will be used as a base �ow
for the linear stability analysis carried out in � 4.

3.1. Formulation
A cylinder with radius Rc and height H is completely �lled of a �uid with density ρ and

kinematic viscosity ν. As shown in �gure 1, the cylinder rotates around its own axis (O′, k̂)
at the constant angular frequency Ω1. The cylinder is mounted on a platform rotating
at the constant angular frequency Ω2 around an axis ẑ. There is an angle θ between the
two axes of rotation creating a precessing motion of the cylinder. The rotation vector
of the cylinder in the laboratory reference frame is given by Ω = Ω1 k̂ + Ω2 ẑ and is
time-dependent because k̂ rotates around ẑ.

To have simple boundary conditions, it is easier to solve the problem in the cylinder
frame of reference (O′, �̂, �̂, k̂), (O′ being the center of mass of the cylinder) in which
the radius vector R is de�ned by its cylindrical coordinates (R, ϕ, Z) (see Fig. 1). In this
reference frame, the Navier�Stokes equations satis�ed by the velocity �eld U and the
pressure �eld P for an incompressible �uid are
∂ U
∂ T

+ (U ·∇)U + 2Ω×U + Ω× (Ω×R) +
dΩ
dT

×R + ΓO′ = −1
ρ
∇P + ν∆U, (3.1a)

∇ ·U = 0, (3.1b)
with the viscous boundary condition U = 0 on the cylinder walls.

In equation (3.1a), the �rst two terms are the usual inertial terms, the third and fourth
term are the Coriolis and centrifugal accelerations, and the �fth term is the acceleration of
the rotation vector. The last left-hand side term is potential and refers to the acceleration
of the centroid O′ of the cylinder. The two right-hand side terms of (3.1a) are the usual
pressure and viscous terms.

By using Rc and Ω−1 = (Ω1 + Ω2 cos θ)−1 as characteristic length and time, the
Navier�Stokes equations for the dimensionless velocity �eld u(r, t) become

∂ u
∂ t

+ 2 k̂× u + ∇p = −2Ro ωr cos(ωt + ϕ) k̂

+ u× (∇× u)− 2Ro δ × u +
∆u
Re , (3.2a)

∇ · u = 0, (3.2b)
with

ω =
Ω1

Ω
, Ro =

Ω2 sin θ

Ω
, Re =

ΩR2
c

ν
, δ = cos(ωt) �̂− sin(ωt) �̂. (3.3a�d)

In this dimensionless form, h = H/Rc is the aspect ratio of the cylinder. The dimension-
less pressure �eld p(r, t) includes all the potential terms (see Meunier et al. 2008, for the
detail of p). The boundary condition of the velocity �eld is

u = 0 at the walls (r = 1 or z = ±h/2). (3.4)

The Navier�Stokes equations (3.2 a, b) with the boundary condition (3.4) govern the
�ow inside a precessing cylinder. This set of equations has been obtained without any
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approximation and is thus valid for any value of the experimental parameters. As it
appears from these equations, the problem is entirely governed by four dimensionless
parameters. The amplitude of the forcing term is called a Rossby number Ro because
it represents the ratio between the vorticity of the �ow and the solid body rotation Ω.
The dimensionless frequency ω of the forcing term �xes the frequency of the Kelvin
modes which are excited. The cylinder aspect ratio h selects the structure of the Kelvin
modes, and the Reynolds number Re quanti�es the viscous damping. In the following
we will limit ourselves to the case of asymptotically small Rossby number Ro and large
Reynolds number Re. This assumption is coherent with atmospherical and geophysical
observations. It is also the relevant limit for a stable �ow or at the onset of instability.

In the following the four-component and complex vector associated to the velocity-
pressure �eld (u, p) will be noted v, such that (u, p) = v + v̄ with v̄ the complex
conjugate of v. Using this formulation the Navier�Stokes equations (3.2 a, b) rewrite

(
∂

∂t
I +M

)
v + c.c. = Ro F0ei(ωt+ϕ) + N(v,v) + Ro (D ei(ωt+ϕ) + c.c.)v

+
Lv
Re + c.c., (3.5)

where the operators D, I, L, M, the forcing vector F0 and the bilinear function N are
de�ned in Appendix A. The symbol c.c. stands for the complex conjugate.

3.2. Non-resonant cylinder
In order to solve (3.5), an asymptotically small Rossby number Ro and a large Reynolds

number Re are assumed. In this limit v is O(Ro) and the Navier�Stokes equation (3.5)
at order O(Ro) becomes

(
∂

∂t
I +M

)
v = Ro F0ei(ωt+ϕ). (3.6)

The no-slip boundary condition (3.4) becomes at this order a condition of no outward
�ow

u · n = 0 at the walls (r = 1 or z = ±h/2), (3.7)
where n is an unitary vector normal to the wall.

The set of equations (3.6) and (3.7) is a linear system whose second term repre-
sents the forcing due to precession. This system admits a particular solution vpart. =(
0, 0, Ro i r ei(ωt+ϕ), 0

)
which is a shear along the cylinder axis. Because it does not sa-

tisfy the boundary condition (3.7) at z = ±h/2, it must be completed with a solution of
the homogeneous equation (i.e. equation (3.6) without forcing term). Due to time and
azimuthal dependence of the forcing and particular solution, the homogeneous solution
can be written a sum of Kelvin modes of azimuthal wavenumber m = 1 and angular fre-
quency ω (see Greenspan 1968). Gathering the particular solution and the Kelvin modes
yields the solution of (3.6) and (3.7)

v = vpart. +
∞∑

i=1

εiv1,ω,ki , (3.8)

where v1,ω,ki is a Kelvin mode of azimuthal wavenumber m = 1, frequency ω and axial
wavenumber ki. Its structure is composed of two travelling waves of opposite wavenumber
±ki in order to form a stationary wave and match the parity of the forcing

v1,ω,ki = u1,ω,ki (r) ei(ωt+ϕ+kiz) − u1,ω,−ki (r) ei(ωt+ϕ−kiz). (3.9)
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The vector um,ω,ki

is found by solving the homogeneous equation and is given in Ap-
pendix A. The boundary condition in r = 1 imposes that the axial wavenumber ki is the
positive root of the constitutive relation

δ2
i =

4− ω2
i

ω2
i

k2
i , (3.10)

where the radial wavenumber δi is solution of Kelvin's dispersion relation D(1, ω, δi) = 0
with

D (m, ω, δ) = ωδJ
′
m (δr) + 2mJm (δr) . (3.11)

This condition ensures that v vanishes at r = 1. In equation (3.11) Jm (x) is the Bessel
function of the �rst kind and J

′
m (x) its x�derivative. For a given azimuthal wavenumber

and for a given frequency ω such that −2 < ω < 2, the dispersion relation (3.11) admits
an in�nite and countable number of real roots δi numbered in ascending order. The i-th
roots corresponds to the i-th Kelvin mode.

A PIV measurement of the �rst Kelvin mode (i = 1) is shown in �gure 2(a). It
represents the axial and instantaneous vorticity �eld ζ. This mode is characterized by
two counter rotating vortices which induce a velocity along the y-axis (tilted axis). In
the general case, the i-th Kelvin mode contains 2i vortices.

The amplitude εi of each Kelvin mode is real and can be calculated by imposing a
vanishing velocity at z = ±h/2. For this purpose, the z-velocity of the particular solution
vpart. is decomposed on the set of Bessel functions which characterize the z-component
of the Kelvin modes. It leads to the inviscid and nonlinear amplitude εi = Ro ai of the
Kelvin modes, where ai is given in (A 8) of Appendix A. The linear forced response
as a function of the forcing frequency ω is plotted in �gure 2(b) for the �rst Kelvin
mode. It shows a series of divergences corresponding to the natural frequencies ωi,n of
the cylinder (the notation ωi,n stands for the n-th resonance of the i-th Kelvin mode).
These resonances occur when the z-velocity of the Kelvin mode vanishes, i.e. when the
wavenumber ki of the Kelvin mode is equal to (2n − 1)π/h with n the number of the
resonance.

It can be demonstrated (Kudlick 1966) that there is always a Kelvin mode arbitrarily
close to a resonance for any forcing frequency ω. It is thus necessary to add viscous e�ects
in order to predict the saturation of the Kelvin mode amplitude εi at a resonance. These
results are recalled in the next section.

3.3. Resonant cylinder
To predict the saturation of the amplitude at a resonant frequency it is necessary to

include the viscous e�ects (Gans 1970b) and/or the nonlinear e�ects (Meunier et al.
2008). In the present paper, the amplitude is always saturated by viscous e�ects be-
cause |Re1/2Ro2/3| ¿ 1. In other words, the instability appears before nonlinearities be-
come signi�cant in the base �ow. Moreover, because volume viscous e�ects are O((m2 +
δ2
i )Re−1) = O(Re−1) and surface viscous e�ects are O(Re−1/2) volume viscous e�ects
will be neglected for the saturation of the resonant Kelvin mode amplitude. As shown
by Gans (1970b), the resonant Kelvin mode of amplitude εi generates a secondary �ow
at order O(εiRe−1/2) in the core of the cylinder due to Ekman pumping in the viscous
boundary layers. The correct scaling is obtained when this secondary �ow is of the order
of the forcing amplitude Ro. This gives a mode amplitude εi = O(RoRe1/2) which is
Re1/2 larger than the �ow in the non-resonant case. Applying a solvability condition on
the secondary �ow allows to calculate analytically the amplitude of the resonant Kelvin
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Figure 2. (a) Axial vorticity �eld ζ of the �rst Kelvin mode measured by PIV at its �rst
resonance (ω = 1.18), in the absence of instability. (b) Amplitude of the �rst Kelvin mode as
a function of ω. The solid line corresponds to the linear and inviscid theory given by equation
(A 8) and the dashed line to the viscous theory given by equation (3.12). The point is the value
of |ε1| for ω = 1.18 at the exact resonance. h = 1.62, Re ≈ 3500 and Ro = −0.0031.

mode close, and at the resonance (Meunier et al. 2008) :

εi =
ifRo

s

Re1/2 + i f
ai

, (3.12)

where the linear forcing parameter f is real and given in Appendix A. The surface viscous
parameter s is a complex number with a positive real part and is given in Appendix
B. The term 1/ai represents the detuning damping of the forced Kelvin mode if the
frequency ratio ω is not exactly equal to a resonance frequency. This viscous amplitude
is represented as a dashed line on �gure 2(b) for Re = 3500. It is close to the inviscid
amplitude εi = Ro ai (solid line) far from the resonance and saturates at the resonance
(i.e. when ai = ∞) at a �nite value εi = fRo Re1/2/s represented by a point. It can be
noted that the mode amplitude is maximum when the detuning of the forcing frequency
compensates exactly the viscous detuning, i.e. f/ai = −Re−1/2Im(s) and not at the
exact resonance.

At resonance, the base �ow is an order Re1/2 larger than far from the resonance and
may thus be subject to stronger instabilities. In the following, the forcing frequency ω will
be assumed to be a natural frequency of the cylinder such that the base �ow is composed
of a predominant Kelvin mode v1,ω,ki with an amplitude εi given by (3.12). For the sake
of clarity the index i will be dropped such that the amplitude of the resonant Kelvin
mode is noted ε instead of εi. Its axial wavenumber is simply noted k and its radial
wavenumber δ. We also assume that |RoRe1/2| ¿ 1 such that ε is a small parameter.
This assumption allows to carry out an asymptotic and linear stability analysis of the
base �ow described here.

4. Linear stability analysis
As described in the literature (see Manasseh 1996; Kobine 1996), when the Reynolds

number or the Rossby number is increased above a certain threshold (which depends on h
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and ω), the �ow inside the cylinder becomes unstable. PIV measurements in two di�erent
sections of the cylinder have revealed the three-dimensional structure of this instability
(see Lagrange et al. 2008). It is composed of two free Kelvin modes whose wavenumbers
and frequencies respect the conditions for a triadic resonance with the forced Kelvin
mode, in a similar manner as for the elliptical instability (see Malkus 1989; Eloy et al.
2000; Kerswell 2002). In this paper, a linear stability analysis based on such a mechanism
is presented. It allows to predict the structure of the instability, its growth rate, and the
stability threshold.

4.1. Governing equations for the perturbation
To perform a stability analysis, a perturbation de�ned by its four component and

complex velocity-pressure �eld ṽ is added to the base �ow. The total �ow v in the
precessing cylinder is thus the sum of the resonant base �ow v1,ω,k (given by (3.9)),
whose amplitude ε is given by (3.12), the perturbation ṽ and some lower order terms :
the particular solution vpart. and the non-resonant Kelvin modes v1,ω,ki

v = εv1,ω,k + ṽ + vpart. +
∑

i

εiv1,ω,ki . (4.1)

We recall that the dominant term εv1,ω,k is of order RoRe1/2. The other terms of the
base �ow (vpart. and

∑
εiv1,ω,ki) are of order Ro.

Substituting this decomposition (4.1) into (3.5) yields the equation satis�ed by the
perturbation ṽ :

(
∂

∂ t
I +M

)
ṽ + c.c. = N (ṽ, εv1,ω,k) + N (εv1,ω,k, ṽ) +

1
ReLṽ + o.t. + c.c. (4.2)

We recall that I,M, N and L are operators given in Appendix A. The left-hand side term
of equation (4.2) is the linear unsteady term of the homogeneous equation. The �rst and
second right-hand side terms represent the nonlinear interaction between the resonant
Kelvin mode and the perturbation. They are of order O(RoRe1/2 ṽ). The third term is
the classical viscous term for the perturbation. It is of order O(Re−1 ṽ). The notation
o.t. stands for `other terms' and includes the nonlinear interaction of the four-component
vector vpart. +

∑
εiv1,ω,ki + ṽ with itself and the term Ro (D ei(ωt+ϕ) + c.c.)v. In these

terms, the leading order is O(Ro ṽ), which is negligible compared to the nonlinear terms
of order O(RoRe1/2 ṽ) explicited in (4.2). Terms of order O(ReRo2) and O(ṽ2) are also
neglected in this linear analysis. Note that the forcing term Ro F0ei(ωt+ϕ) from (3.5) does
not appear in equation (4.2) because it has been cancelled out by the unsteady term of
the particular solution.

The �ow is assumed to satisfy a no-slip boundary condition

ṽ = 0 at the walls (r = 1 or z = ±h/2). (4.3)

The equation (4.2) and the boundary condition (4.3) describe the evolution of the linear
perturbation ṽ in the limit of small amplitudes ε.

In order to solve the system of equations (4.2-4.3) the four-component velocity-pressure
�eld ṽ is expanded in powers of ε as follows

ṽ = v(0) + εv(1) + O
(
ε2

)
. (4.4)

The equation for the growth rate of the instability is obtained by substituting the above
expansion (4.4) into the Navier�Stokes equation (4.2) and examining its two �rst orders.
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Note that in this study we will consider the critical scaling Re−1/2 = O(ε) such that
boundary viscous e�ects are of the same order as N (ṽ, εv1,ω,k) and N (εv1,ω,k, ṽ).

4.2. Description of the free Kelvin modes
At order 0, equation (4.2) is the homogeneous equation

(
∂

∂ t
I +M

)
v(0) = 0. (4.5)

Because viscous e�ects are of order Re−1/2 (boundary viscous e�ects) or Re−1 (volume
viscous e�ects), an inviscid boundary condition is assumed at this order

v(0) · n = 0 at the walls (r = 1 or z = ±h/2). (4.6)
The resolution of the set of equations (4.5-4.6) is classical and its solution is a linear
combination of free Kelvin modes. Each free Kelvin mode vj is composed of two travelling
waves of opposite wavenumber kj in order to satisfy the boundary condition (4.6) at the
top and bottom of the cylinder

vj = umj ,ωj ,kj (r) ei(ωjt+mjϕ+kjz) ± umj ,ωj ,−kj (r) ei(ωjt+mjϕ−kjz). (4.7)
We recall that the expression of the four-component vector umj ,ωj ,kj is given in Appendix
A. At this order the amplitude Aj of a free Kelvin mode is unde�ned but its azimuthal
wavenumber mj , its frequency ωj and its axial wavenumber kj are connected through
the dispersion relation D(mj , ωj , δj) = 0 given by equation (3.11) such that the radial
velocity vanishes at r = 1. In �gure 3 the �rst branches of the dispersion relation are
plotted for mj = 6 (solid line).

The condition of no normal �ow at the top and the bottom discretizes the vertical
wavenumber kj as a multiple of π/h. It also separates the free Kelvin modes into two
categories with di�erent parity, depending on the choice of sign between the two waves
of opposite wavenumber kj in (4.7). The plus sign allows to consider free Kelvin modes
whose axial velocity (resp. vorticity) is a sine (resp. cosine) function of z and the axial
wavenumber satis�es kj = (2n − 1)π/h with n an integer. The minus sign allows to
consider free Kelvin modes whose axial velocity (resp. vorticity) is a cosine (resp. sine)
function of z, with kj = 2nπ/h.

To examine the mechanism of triadic resonance, the perturbation v(0) will be assumed
to be, at leading order, a combination of two free Kelvin modes v1 and v2 with unknown
amplitudes A1 and A2

v(0) = A1v1 + A2v2, (4.8)
where the amplitudes are varying slowly with time such that time derivatives will appear
at next order.

4.3. In�uence of the Ekman layers
It can be noted that the dispersion relation and the determination of the structure of

the free Kelvin modes are obtained with an inviscid boundary condition on the cylinder
walls (equation (4.6)). This condition does not match the viscous boundary condition
given by equation (4.3). There will thus remain a wall parallel �ow at the leading order
for the free Kelvin modes. This problem can be solved by adding a viscous �ow, in a
viscous boundary layer of thickness O(Re−1/2) near the walls. However this resulting
viscous �ow has a component perpendicular to the walls, of order O(Re−1/2) called
Ekman pumping. This pumping is an exponential decreasing function inside the Ekman
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layers. Note that in our problem we have an Ekman pumping due to the lateral wall and
the top and bottom walls of the cylinder. The calculation of Ekman layers is classical.
An exhaustive description is given in Greenspan (1968). For the particular case of Kelvin
modes, the reader could refer to Kudlick (1966).

4.4. Triadic resonance
Experiments have demonstrated (see Lagrange et al. 2008) that the instability of a �uid

inside a precessing cylinder is due to a triadic resonance between the resonant Kelvin
mode εv1,ω,k and two free Kelvin modes v1 and v2. These three modes can be coupled by
the nonlinear terms N (ṽ, εv1,ω,k) and N (εv1,ω,k, ṽ) in equation (4.2) when their Fourier
components are chosen appropriately. The nonlinear interaction between the �rst mode
v1 and the forced mode v1,ω,k has a Fourier component ei(ω1t+m1ϕ±k1z)ei(ωt+ϕ±kz). This
term has a Fourier component ei(ω2t+m2ϕ±k2z) identical to that of the second mode v2

only when the frequencies and wavenumbers satisfy the resonance condition
m2 −m1 = 1, (4.9a)

ω2 − ω1 = ω, (4.9b)
|k2 − k1| = k. (4.9c)

If these conditions are satis�ed, the nonlinear interaction between v2 and the forced mode
v1,ω,k has also the same Fourier component as v1. It can be noted that the last equation
of this system o�ers two possibilities which are k2 − k1 = k and k1 − k2 = k. However, in
all our calculations the �rst case has always been the most unstable one.

The �rst condition imposes that the two free Kelvin modes have azimuthal wavenum-
bers separated by one. This is di�erent from the elliptic instability where they should
be separated by 2 (Kerswell 2002). This comes from the fact that, here, the forcing
term has an azimuthal wavenumber m = 1, unlike the ellipticity which has an azimuthal
wavenumber m = 2.

To �nd Kelvin modes satisfying the resonance condition, we plot on the same graph
the dispersion relation of the second mode v2 and the dispersion relation of the �rst mode
v1 translated by k along the abscissae and by ω along the ordinate. An example is shown
in Fig. 3 for m2 = 6 and m1 = 5. At each crossing point between the dispersion relation
of mode 1 (dashed lines) and mode 2 (solid line) the conditions of resonance are ful�lled.
Since there is an in�nite number of branches for each mode and an in�nity of possible
azimuthal wavenumber m2, there is a triple-in�nite number of resonances. We will label
these resonant combinations (m2, l1, l2), where l1 (resp. l2) is the branch number of the
dispersion relation for the �rst mode (resp. second mode). As an example, the lowest
order resonant combination (m2 = 6, l1 = 1, l2 = 1) is marked by a circle on Fig. 3. This
combination will be found to be the most unstable and it will be extensively studied and
compared to the experiments. It can be noted that the study can be restricted to free
Kelvin modes with mj ≥ 0 because the dispersion relation (3.11) satis�es the following
symmetry D(mj , ωj , δj) = −D(−mj , −ωj , δj).

An additional condition arises because the free Kelvin modes must have a zero normal
velocity at the top and the bottom, which quanti�es the wavenumbers kj as multiples of
π/h. It is the case in Fig. 3 where the resonant combination (6, 1, 1) is located on a dash-
dotted line (k2 = 2π/h). This case of exact resonance only appears for speci�c aspect
ratios (here h = 1.62) which allow an intersection between the three lines. The principal
aspect ratios h allowing exact resonances are listed in Table 1 (resp. Table 2) for the
combinations (m2, 1, 1) (resp. (m2, 2, 2)) when the �rst Kelvin mode is excited at its �rst
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Figure 3. Dispersion relations of the free Kelvin modes (h = 1.62, ω = 1.18). Solid lines (resp.
dashed lines) correspond to the �rst �ve branches of the dispersion relation of the free Kelvin
modes with an azimuthal wavenumber m2 = 6 (resp. m1 = 5). The dotted line represents the
dispersion relation of the forced Kelvin mode (m = 1), which is used to translate the dispersion
relations of the �rst mode horizontally by k = π/h and vertically by ω = 1.18. Resonant free
Kelvin modes correspond to a crossing point for the case k2− k1 = k. Vertical dash-dotted lines
indicate the discretisation of the axial wavenumber k2 = nπ/h for which the free Kelvin mode
`�ts' inside the cylinder.

resonance and where k1 = π/h. Most of the resonances are obtained for small aspect ratios
(for which the resonance frequency is large) and large azimuthal wavenumbers. Note that
there does not exist any exactly resonant combinations (m2, 1, 1) (resp. (m2, 2, 2)) with
m2 ≤ 5 (resp. m2 ≤ 3). This is why the instabilities observed in the experiments usually
have high azimuthal wavenumbers. Finally, it can be noted that since the forced Kelvin
mode is resonant, its axial wavenumber k is an odd multiple of π/h. Thus equation (4.9c)
implies that the two free Kelvin modes have di�erent parities with respect to z (i.e. free
Kelvin modes with a di�erent sign in equation (4.7)). By contrast, at the anti-resonance
of the forced Kelvin mode, the axial wavenumber k is an even multiple of π/h. Thus the
two free Kelvin modes have the same parities with respect to z. In this condition it can
be shown that a mechanism of triadic resonance between Kelvin modes can not lead to
the instability.

Most of the time a combination (m2, l1, l2) is not exactly resonant (see Manasseh 1996)
because the crossing point is not on a dash-dotted line (i.e. kj 6= nπ/h, with n an integer).
The free Kelvin modes thus do not satisfy the boundary condition (4.6) at the top and
bottom of the cylinder and should not be considered. However, the problem can still
be solved by introducing small detuning parameters ∆k1 and ∆k2which measure the
distance between the wavenumber k1 (or k2) and the closest nπ/h :

∆kj = min
n∈N∗

(∣∣∣nπ

h
− kj

∣∣∣
)
sgn

(
n

π

h
− kj

)
. (4.10)

In �gure 3 these detunings correspond to the relative distance between a crossing point
and the closer vertical dash-dotted line. These detunings will only modify the problem
at order ε if they are of order O(ε). Note that, as long as ω is a resonant frequency, the
detuning parameters satisfy ∆k1 = ∆k2.
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h 10.8 3.60 1.62 1.09 0.886 0.758
ω1,1 0.1639 0.5501 1.181 1.503 1.636 1.718
m2 7 6 6 7 8 9

n1n2 1.16 1.07 4.11 15.4 34.4 64.5
|RoRe|crit 5.41 7.14 7.11 8.60 10.4 12.4

h 0.669 0.601 0.547 0.504 0.467 0.436
ω1,1 1.772 1.811 1.841 1.863 1.881 1.895
m2 10 11 12 13 14 15

n1n2 108 170 253 358 496 666
|RoRe|crit 14.5 16.8 19.2 21.7 24.3 27.1

Table 1. Theoretical results considering the (m2, 1, 1) combinations with k2 = 2π/h and
k1 = k = π/h. The combination is exactly resonant only for a speci�c aspect ratio h (given
in the �rst row) at its associated frequency ω1,1 (given in the second row) and for an azimuthal
wavenumber of the second mode m2 (given in the third row). The fourth row gives the value of
n1n2 which is the square of the inviscid growth rate. The last row gives the stability threshold
without volume viscous e�ects and is calculated with equation (4.21).

h 9.57 1.13 0.880 0.744 0.651 0.581
ω1,1 0.1867 1.477 1.640 1.727 1.783 1.822
m2 4 4 5 6 7 8

n1n2 3.15× 10−3 8.42 30.4 71.0 138 242
|RoRe|crit 106 10.5 11.2 12.5 14.0 15.8

h 0.527 0.484 0.448 0.417 0.391 0.368 0.348
ω1,1 1.851 1.873 1.890 1.904 1.915 1.924 1.932
m2 9 10 11 12 13 14 15

n1n2 24.3 36.6 52.9 74.4 101 134 174
|RoRe|crit 17.6 19.6 21.7 23.9 26.2 28.6 31.0

Table 2. Theoretical results considering the (m2, 2, 2) combinations with k2 = 2π/h and
k1 = k = π/h.

4.5. Amplitude Equations
As mentioned previously, at leading order the perturbation ṽ is a combination of two

free Kelvin modes with unknown amplitudes. We now assume that A1 and A2 vary slowly
with time such that ∂Aj/∂t is of order ε. We will consider that this combination is not
exactly resonant and that detuning e�ects ∆kj are also of order ε. This `critical scaling'
allows to extend the theory in the presence of detuning e�ects (with this scaling detuning
terms are of same order as destabilising terms). For larger detuning e�ects, the �ow is
no longer unstable.

At order ε equation (4.2) becomes

ε

(
∂

∂ t
I +M

)
v(1) + c.c. =

(
− ∂

∂ t
I + i∆kjM∆

)
v(0) + N (v(0), εv1,ω,k)

+ N (εv1,ω,k,v(0)) +
Lv(0)

Re + c.c. (4.11)

In equation (4.11) the left-hand side term is the linear operator applied to the solution
at order ε. The �rst right-hand side term is composed by the slow unsteady part of
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the perturbation of order 0 and by its detuning term. The operator M∆ is de�ned in
Appendix B and is obtained via a Taylor expansion of the Fourier component ei∆kjz

of the free Kelvin modes. The second and third right hand side term represent the
nonlinear interaction between the resonant Kelvin mode and the two free Kelvin modes.
These terms represent the mechanism of triadic resonance. The last term of this equation
is the volume viscous term. It should not appear at this order but at order ε2 since
ε = O

(
Re−1/2

)
. However we have decided to take it into account in the analysis because

its importance in saturating the growth rate of the instability has been shown in several
papers (Kerswell & Barenghi 1995; Eloy et al. 2003; Racz & Scott 2007).

The perturbation v(1) can be decomposed as

v(1) =
2∑

j=1

v(1)
j =

2∑

j=1

(
u+

j ei(ωjt+mjϕ+kjz) ± u−j ei(ωjt+mjϕ−kjz)
)
. (4.12)

where the sign is chosen such that each component j has the same parity as the corres-
ponding free Kelvin mode (a plus sign if there is a plus in (4.7)). In this case the left-hand
side term in equation (4.11) has the same parity than the right-hand side terms.

Inserting the expression (4.12) for v(1) and the expression (4.8) for v(0) in (4.11) gives
an equation for vj. A solvability condition is then obtained by forming the scalar product
de�ned by (A 10) of v1 (resp. v2) with this equation. It yields two coupled amplitude
equations for A1 and A2

∂A1

∂t
= εn1A2 − 1

Re1/2
s1A1 − 1

Re v1A1 − iq1∆k1A1, (4.13a)

∂A2

∂t
= εn2A1 − 1

Re1/2
s2A2 − 1

Re v2A2 − iq2∆k2A2. (4.13b)

The terms ∂Aj/∂t come from the scalar product vj ¯ ∂
∂tIvj .

The terms n1 and n2 are real and represent the interaction, through the nonlinear term
of the Navier�Stokes equation, of a free Kelvin mode with the forced mode. These terms
come from the scalar product vj ¯ [N (v(0), εv1,ω,k) + N (εv1,ω,k,v(0))] + c.c. They are
given in Appendix B.

The coe�cients s1 and s2 represent the surface viscous damping of the two free Kelvin
modes due to Ekman boundary layers. They come from the rest of the scalar product
vj ¯

(
∂
∂ tI +M)

v(1) which almost vanishes because vj is in the kernel of the operator
∂
∂ tI +M. This rest corresponds to the pressure of the free Kelvin mode pj times the
normal velocity of v(1)

j integrated over the cylinder walls. This normal velocity is given by
the boundary condition (4.3) at order ε and is thus the opposite of the Ekman pumping
associated with the free Kelvin modes, as explained in section 4.3. This is why these terms
are proportional to Re−1/2. The coe�cients sj are complex numbers with a positive real
part and can be analytically calculated (see Appendix B and Kudlick 1966).

The coe�cients v1 and v2 are real and represent the volume viscous damping of the
two free Kelvin modes. They originate from the scalar product vj ¯ Lvj and can be
decomposed into two parts : one proportional to k2

j , another proportional to m2
j as

shown in Appendix B. The free Kelvin modes with a high azimuthal wavenumber are
thus strongly damped by volume viscous e�ects. Although these terms should appear at
higher order in the asymptotic expansion, they have be taken account here to allow for
the selection of modes with the largest wavelengths.

The real coe�cients q1 and q2 represent the damping of the two free Kelvin modes by
detuning e�ects. These terms originate from the scalar product vj ¯M∆vj . They can
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be analytically calculated and are given in Appendix B. These terms vanish when the
two free Kelvin modes are exactly resonant.

In the following, viscous and detuning e�ects are gathered in a single coe�cient

αj =
1

Re1/2
sj +

1
Re vj + iqj∆kj , (4.14)

corresponding to the linear decay term.
4.6. Growth rate of the instability

Assuming that the amplitudes A1 and A2 are growing exponentially (Aj ∼ eσt), the
equation for the complex growth rate σ is obtained by canceling the determinant of the
linear system (4.13)

(σ + α1) (σ + α2) = |ε|2 n1n2. (4.15)
This relation leads to an analytical expression for the complex growth rate. The temporal
growth rate σr of the instability is simply the real part of σ. The �ow is thus unstable
when σr is positive for a given resonant Kelvin mode combination. The growth rate is a
function of ε and Re only, or alternatively a function of Ro and Re.

For an exactly resonant combination (no detuning e�ect) and at in�nite Reynolds
number, the linear saturation terms αj vanish such that the growth rate is simply given
by σr = |ε| (n1n2)

1/2. As expected (based on similarities with the elliptic instability) it
is proportional to the amplitude |ε| of the forced Kelvin mode. The �ow is unstable if
the coe�cient n1n2 is positive, which is always true for Kelvin modes with dispersion
relations of opposite slopes. This can be shown by looking at the signs of n1 and n2

(see Appendix B) and con�rms the result by Fukumoto (2003) proved with energetic
methods. These coe�cients are given in Tables 1 and 2 for the principal exact resonances.
They increase drastically when the aspect ratio decreases. This comes from the fact that
the velocity of the base �ow increases and it does not mean that the precessing cylinder
is more unstable as it will be seen later.

When linear saturation terms are introduced (αj 6= 0), the growth rate of the instability
decreases. At in�nite Reynolds numbers only detuning e�ects play a role and the growth
rate thus takes the simple form

σr =
[
|ε|2 n1n2 − 1

4
(q1∆k1 − q2∆k2)

2

]1/2

. (4.16)

Detuning e�ects stabilize the �ow and their in�uence can be studied by varying the
aspect ratio. Such a variation allows to observe several combinations (m2, l1, l2) which
become exactly resonant (i.e. ∆kj = 0) for particular values of h, listed in Table 1 and 2.

For an exact resonance, detuning e�ects vanish and the instability is damped by viscous
e�ects only. An asymptotic expression can be obtained for large Reynolds numbers (when
Im(αj) ¿ ε(n1n2)

1/2)

σr = |ε| (n1n2)
1/2 − Re{s1 + s2}

2Re1/2
− v1 + v2

2Re , (4.17)

where the two damping terms are due to surface and volume viscous damping. These
viscous e�ects stabilize the �ow at low amplitude ε and thus allow to calculate the
threshold of the instability.

4.7. Instability threshold
Assuming that the real part of σ vanishes in (4.15) leads after some calculation to an

expression for the amplitude εcrit at which the instability appears. Since this amplitude
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Figure 4. Schematic of the stability diagram in the presence of viscous and detuning e�ects. The
solid line corresponds to the critical Rossby number at which the �ow becomes linearly unstable ;
it exhibits three di�erent scaling laws depending on the value of the Reynolds number compared
to the critical Reynolds numbers Re1 and Re2 given in (4.19) and (4.22). The non-linearly
saturated value εf of the amplitude of the base Kelvin mode is also shown. It corresponds to
the stationary solution of the non-linear system (6.3) and is calculated analytically in Appendix
D.

of the forced Kelvin mode is given by Eq. (3.12), we can thus determine the critical
Rossby number at which the instability appears

|Rocrit| = 1
|f |

{
αr

1α
r
2

n1n2

[
1 +

(
αi

1 − αi
2

αr
1 + αr

2

)2
]}1/2 ∣∣∣∣

s

Re1/2
+

if
ai

∣∣∣∣ , (4.18)

where αr
j and αi

j are respectively the real and imaginary parts of αj de�ned in (4.14).
We recall that f is the linear forcing parameter and s the surface viscous parameter of
the forced Kelvin mode, given in Appendix A and B. The coe�cient ai corresponds to
the inviscid amplitude of the forced Kelvin mode and is given in Appendix A. Note that
equation (4.18) is not valid if αr

1 + αr
2 = 0, which means that the inviscid threshold is not

the limit of the viscous threshold for large Re number. Di�erent scalings for the critical
Rossby number are obtained depending on the predominant damping e�ect in αj .

In the experiments, free Kelvin modes with fairly large azimuthal wavenumbers have
been observed. In this case, the volume viscous damping of order (m2

j + δ2
j )Re−1 can be

larger than surface viscous damping or order Re−1/2 if the Reynolds number is below a
critical value de�ned by

Re1 =
vr

1v
r
2

sr
1s

r
2

(
1 +

(
si
1 − si

2

)2

(sr
1 + sr

2)
2

)−1

. (4.19)

For Reynolds numbers between 1 and Re1, the critical Rossby number scales as Re−3/2,
as shown schematically in Fig. 4. A simple expression can be found in this regime

∣∣∣RoRe3/2
∣∣∣
crit

=
∣∣∣∣
s

f

∣∣∣∣
(

v1v2

n1n2

)1/2

. (4.20)

At intermediate Reynolds numbers (Re À Re1), surface viscous e�ects become do-
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minant. The critical Rossby number then scales as Re−1 (see Fig. 4) and leads to an
expression

|RoRe|crit =
∣∣∣∣
s

f

∣∣∣∣
{

sr
1s

r
2

n1n2

[
1 +

(
si
1 − si

2

sr
1 + sr

2

)2
]}1/2

. (4.21)

This regime is the most frequent in experiments and we thus give the values of the critical
|RoRe| for the principal resonances in Tables 1 and 2. The most unstable resonances
(given by the smallest Rossby numbers) are found for the large aspect ratios h, although
the inviscid growth rates (n1n2)

1/2 are larger at small h. This is due to the strong increase
of ε with h.

When the combination is not exactly resonant, detuning e�ects can also damp the
instability. They appear at high Reynolds numbers, when surface viscous terms become
smaller than detuning terms, i.e. for Re ¿ Re2 de�ned by

Re2 =
(sr

1 + sr
2)

2 +
(
si
1 − si

2

)2

(q1∆k1 − q2∆k2)
2 . (4.22)

In this regime, the critical Rossby number still depends on the Reynolds number since
the forced Kelvin mode scales as Re1/2. The critical Rossby number thus scales as Re−1

and leads to a simple expression
∣∣∣RoRe1/2

∣∣∣
crit

=
∣∣∣∣
s

f

∣∣∣∣
(sr

1s
r
2)

1/2

sr
1 + sr

2

|q1∆k1 − q2∆k2|
(n1n2)

1/2
. (4.23)

It can be noted that this expression is valid for Re asymptoting to in�nity and takes
into account the values of the viscous coe�cients sj . It is di�erent from the value that
would be obtained at in�nite Reynolds number by assuming σr = 0 in (4.16), but the
two theories give identical threshold when s1 = s2.

5. Discussion
In this section we discuss the general properties of the precessional instability as a

function of the dimensionless parameters Re, h and ω and we compare these predictions
to experimental results for a particular aspect ratio. We limit our study to the instabilities
driven by the �rst forced Kelvin mode.

5.1. Prediction of the unstable modes
In our previous paper (Lagrange et al. 2008), we have observed experimentally that

the unstable �ow exhibits two free Kelvin modes with azimuthal wavenumbers 5 and 6
at the �rst resonance of the �rst Kelvin mode (h = 1.62 and ω = 1.18). Their experi-
mental axial and instantaneous vorticity �elds are plotted in �gures 5(a) and 5(b). They
correspond exactly to the free Kelvin modes predicted theoretically for this aspect ratio.
Indeed, the resonant combination (6, 1, 1) is more unstable than any other combinations
(with di�erent azimuthal wavenumbers mj and branch numbers lj). The theoretical axial
vorticity �elds of the free Kelvin modes are shown in �gures 5(c) and 5(d) and look very
similar to the experimental �elds. They both have one ring of 10 (or 12) alternate vortices
meaning that they correspond to the �rst branch of the dispersion relations (l1 = l2 = 1)
for m1 = 5 and m2 = 6. Furthermore, the radial position of these vortices seems to be
well predicted : the maximum of the azimuthal average vorticity is located theoretically
at r = 0.80 and experimentally at r ≈ 0.83 for the second mode with m2 = 6. The agree-
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(a) (b)

(c) (d)
Figure 5. Experimental (a, b) and theoretical (c, d) axial and instantaneous vorticity �elds
of the free Kelvin modes m1 = 5 and m2 = 6. h = 1.62, ω = 1.18 and Ro = −0.0031. (a)
Re = 6000. (b) Re = 6500.

ment is not as good for the �rst mode with m1 = 5 (r = 0.70 theoretically compared to
r ≈ 0.57 experimentally) because of the presence of the forced Kelvin mode (m = 1).

To better compare the structure of the unstable modes we have plotted in �gure 6
the theoretical and the experimental averaged radial and azimuthal velocities of the free
Kelvin modes as a function of r. They have been obtained by taking the azimuthal and
the temporal average of the velocity �elds and they are given in arbitrary units. The
averaged radial velocity pro�les of the free Kelvin modes are very similar and look like
bell-shaped pro�les. Because the two free Kelvin modes satisfy a condition of no outward
�ow at r = 1, their averaged radial velocities vanishes at r = 1. The averaged azimuthal
velocity pro�les are more complicated. The averaged azimuthal velocity pro�le of the
free Kelvin mode m1 = 5 shows two extrema while for the mode m2 = 6, it shows one



20 R. Lagrange, P. Meunier, F. Nadal and C. Eloy

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r

R
ad

ia
l v

el
oc

ity

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

r

O
rt
h
o
ra
d
ia
l v
e
lo
ci
ty

(a) (b)
Figure 6. Averaged radial (a) and azimuthal (b) velocity pro�les of the free Kelvin modes
m1 = 5 (+, solid line), and m2 = 6 (◦, dashed line), in arbitrary units. Symbols represent
experimental data and lines are issued from the theory. h = 1.62, ω = 1.18, Re = 6000 for
m1 = 5 ; Re = 6500 for m2 = 6.

extremum. Experiments roughly con�rm these two di�erent averaged azimuthal velocity
pro�les.

Finally, theory also predicts that the free Kelvin mode m1 = 5 (resp. m2 = 6) has
an axial vorticity which is a sine (resp. cosine) function of the altitude z. This parity is
con�rmed by experiments since the free Kelvin mode m1 = 5 (resp. m2 = 6) has been
observed at z = 0 (resp. z = h/4).

These experimental observations con�rm the mode predicted by the linear stability
analysis and therefore validate the mechanism of triadic resonance proposed in this paper.

5.2. Prediction of the growth rate
In this section, we compare the theoretical growth rate σr, with the experimental

results. We restrict our analysis to the �rst resonance of the �rst Kelvin mode for h = 1.62,
such that there is no detuning e�ects.

Figure 7 represents the evolution of the growth rate as a function of the forcing. In
the inviscid case, the theory gives a constant value σr/|ε| = (n1n2)

1/2 represented by a
solid line. When surface viscous e�ects are added, it can be easily shown (dividing (4.15)
by |ε|2) that the rescaled growth rate σr/|ε| is a function of |ε|Re1/2 only. This is why
we have plotted the growth rate in these coordinates. This viscous prediction is plotted
as a dash-dotted line in Fig. 7. The growth rate increases with the forcing and tends
toward the inviscid growth rate at in�nite Reynolds number. It vanishes at a speci�c
value of |ε|Re1/2 = 0.843 corresponding to the critical Rossby number (given in Table 1).
This prediction is only valid for Reynolds numbers large compared to Re1. Below this
Reynolds number, volume viscous e�ects must be taken into account. The theoretical
prediction with all viscous terms is plotted as a dashed line for Re = 6000 and as a
dotted line for Re = 1000. They show the same trend but remain weaker.

Experimental measurements of the growth rate are also plotted as symbols on the
same graph. As expected, experimental measurements are below the growth rate with
surface viscous terms only. They are represented as �lled (resp. open) symbols when their
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Figure 7. Growth rate σr/|ε| of the precessional instability for h = 1.62 and ω = 1.18. The
inviscid prediction is represented by the horizontal solid line. The dash�dotted line is the vis-
cous prediction without volume viscous e�ects. The dashed line is the full viscous prediction for
Re = 6000. The dotted line is the viscous prediction for Re = 1000. Filled symbols (N) corres-
pond to experiments with 6000 < Re < 24400. Open symbols (4) correspond to experiments
with 1000 < Re < 6000. The error bars correspond to the standard deviation on the �tting
parameter.

Reynolds number is larger (resp. smaller) than the Reynolds number of the dashed line
(Re = 6000). The symbols always fall within the correct band of growth rate, which is
a good con�rmation of the theoretical calculation. A quantitative comparison indicates
that the measured growth rate is never farther than 50% from the theoretical prediction.

Experimentally, the growth rate was measured by an exponential �t of the amplitude
of the free Kelvin mode m1 = 5 at the onset of the instability. Note that the instability
can appear before the amplitude |ε| of the forced Kelvin mode has reached its stationary
value given by equation (3.12). So here |ε| corresponds to the measured amplitude of the
�rst Kelvin mode at the onset of instability and not the value given by (3.12).

5.3. Critical Rossby number as a function of Re
Figure 8 represents the critical Rossby number Rocrit as a function of Re when the �rst

Kelvin mode is forced at its �rst resonance. The prediction is issued from equation (4.18)
and is represented by a solid line which divides the (Re, Ro)-plane into a stable domain
and an unstable domain. Stable experiments are represented by circles and unstable
experiments are represented by black symbols. These experiments were done on a very
large range of precessing angle (0.25◦ to 10◦) and Reynolds number (103 to 5 × 104).
It is striking to see such an agreement between experiments and theory with no �tting
parameter in the theory. However, there are some slight discrepancies at high Rossby
numbers. They may come from non-linear e�ects in the base �ow which arise because
the amplitude of the forced Kelvin mode ε ∼ RoRe1/2 is no longer a small parameter.
Note also that the uncertainty is larger at small Rossby number because the precessing
angle (equal to 0.25◦) becomes comparable to the uncertainty of ±0.1◦.

Because the Reynolds number is varied over a large range (one decade), the experiments
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Figure 8. Stability diagram of the �ow inside a precessing cylinder for h = 1.62 and ω = 1.18.
The stable and unstable domain are separated by the solid line which corresponds to the predic-
tion (4.18). Open symbols (◦) represent stable experiments and �lled symbols represent unstable
experiments. Unstable experiments can be either stationary (¥), intermittent (N) or turbulent
(¨). The error bars come from the uncertainty in the measurement of the precessing angle. The
dashed line corresponds to the transition from a stationary to an intermittent �ow in the weakly
non-linear model.

allow to con�rm the scalings for the critical Rossby number. As was shown earlier, at
moderate Reynolds number, (Re ¿ Re1 = 3000) the Rossby number scales as Re−3/2.
At large Reynolds numbers (Re À Re1 = 3000, the Rossby number scales as Re−1.

5.4. Critical RoRe number as a function of h

Now that the theory has been validated experimentally by the two previous sections,
we use these predictions to study the general properties of the precessional instability
as the parameters h and/or ω are varied. In this section, the aspect ratio is varied over
a large range, from 0.2 to 10. However, the frequency ω always corresponds to the �rst
resonance of the �rst Kelvin mode ω1,1.

Figure 9 shows the evolution of the threshold as a function of h. Several bands of
instability corresponding to di�erent resonant Kelvin mode combinations (m2, 1, 1) are
observed. Each band reaches a minimum when the combination is exactly resonant, i.e.
when detuning e�ects vanish. The most unstable combination (i.e. minimum threshold)
is the (6, 1, 1) resonant combination for h = 1.62, studied experimentally in this paper.

We have seen in section 4.7 that, when volume viscous e�ects are neglected, the stability
threshold only depends on the product RoRe. This is why we have plotted the threshold as
|RoRe| in �gure 9, such that the prediction without volume viscous e�ects is independent
of the Reynolds number and plotted as a symbol for each exactly resonant combination.
The gap between the symbol the corresponding solid line indicate the in�uence of the
volume viscous e�ects at Re = 6500.

The combinations (2, 1, 1) and (3, 1, 1) are special because they are not close to an
exact resonance (which ensures a small detuning) although they are the most unstable
for small aspect ratios.
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Figure 9. Critical |RoRe| number of the most unstable modes as a function of h for the �rst
resonance of the �rst Kevlin mode (ω = ω1,1). Each solid line corresponds to the full theory at
Re = 6500 for a resonant combination (m2, 1, 1). Symbols correspond to the predictions without
detuning and without volume viscous e�ects (thus valid at any Reynolds number, see Table 1)
for the same combinations with m2 = 6 (◦,O), m2 = 7 (¤), m2 = 8 (×), m2 = 9 (•), m2 = 10
(+), m2 = 11 (∗), m2 = 12 (¦), m2 = 13 (M). The dashed line (resp. dotted line) corresponds to
a combination (3, 1, 1) (resp. (2, 1, 1)) which can not be exactly resonant.

Finally note that some resonant Kelvin mode combinations (m2, 2, 2) (not represented
in �gure 9) can be more unstable than the combinations (m1, 1, 1) represented in very
small intervals of aspect ratios when h < 1.

5.5. Critical Rossby number as a function of ω

In this section the aspect ratio and the Reynolds number are �xed and the frequency
ω is varied around the �rst resonance of the �rst Kelvin mode. Figure 10 represents the
critical Rossby number as a function of ω, for h = 1.62 and Re = 6500. Several bands
of instability corresponding to di�erent azimuthal wavenumbers m2 = 7 (dotted line),
m2 = 6 (solid line) and m2 = 5 (dashed line) are predicted. This is due to the change of ω
which allow to couple di�erent Kelvin modes (since ω2 − ω1 = ω). These predictions are
well con�rmed by PIV measurements which reveal the correct azimuthal wavenumber.
Moreover, the theoretical threshold is in very good agreement with experiments.

The most unstable combination is the (6, 1, 1) mode and is obtained close to ω =
1.18. This can be easily understood because this is where the amplitude ε of the forced
Kelvin mode is maximum (at its resonance). Around the resonance, the amplitude of the
forced Kelvin mode decreases as 1/(ω − ω1,1), which lead to weaker instabilities for the
combinations (5, 1, 1) and (7, 1, 1).

This proves that the easiest way to trigger an instability is to force the base �ow at
a resonance frequency. For example, here, a precessing angle of θ ≈ 0.5◦ is su�cient to
observe the (6, 1, 1) resonant Kelvin mode combination. Outside of the resonant frequency
it is necessary to have a minimum precessing angle of θ ≈ 7◦ (resp. θ ≈ 2◦) to observe the
(7, 1, 1) (resp. (5, 1, 1)) resonant Kelvin mode combination at the same Reynolds number.
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Figure 10. Critical Rossby number as a function of ω. Resonant Kelvin mode combinations
(7, 1, 1) (dotted line), (6, 1, 1) (solid line) and (5, 1, 1) (dashed line) are observed. Stable expe-
riments are represented by circles (◦) and unstable experiments by black symbols. PIV expe-
riments are represented by a black star (?) for the (7, 1, 1) combination, black triangles (N)
for the (6, 1, 1) combination and black squares (¥) for the (5, 1, 1) combination. Black circles
(•) correspond to unstable experiments visualized by using Kalliroscope particles. h = 1.62,
Re = 6500.

5.6. Critical Rossby number as a function of h and ω

In this section we study the general problem of the precessional instability at a given
Reynolds number when both the aspect ratio and the frequency are varied. We consider
only instabilities triggered by the �rst forced Kelvin mode. The critical Rossby number
in the plane (h, ω) is represented in �gure 11. It was obtained numerically by calculating
the analytical coe�cients of the amplitude equations (4.13) for various azimuthal wave-
numbers (m2 = 1 to 15) and for various branches (lj = 1 to 5) on a very �ne mesh of the
plane (h, ω). This calculation took about a month on a standard computer.

On this �gure, the most unstable regions correspond to the dark areas, i.e. where the
critical Rossby number is small. There are two unstable regions, which are located around
the resonances of the �rst Kelvin mode, represented by white dashed lines. As explained
in the previous section, this can be easily understood because the amplitude of the forced
Kelvin mode ε is maximum there.

The black thin lines separate di�erent resonant Kelvin mode combinations with azi-
muthal wavenumbers m2 = 5 to 8. It is surprising to see that each combination creates a
band which is almost parallel to the resonance curve. This explains why there are only a
few combinations which are resonant (here only 4 combinations) when varying the aspect
ratio. The combination (6, 1, 1) is the most unstable one because it is centered on the
resonance curve almost over the whole range of aspect ratios considered here. It is curious
to see that it is exactly resonant twice (for h = 1.62 and h = 3.6).

At higher Reynolds numbers, other combinations might become more unstable and
thus create other bands of instabilities in between these combinations. However, one can
have a rough idea of the stability diagram at any Reynolds number by simply assuming
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Figure 11. Critical Rossby number as a function of h and ω, by considering that the �rst
Kelvin mode is forced by precession. The resonant Kelvin mode combinations (5, 1, 1), (6, 1, 1),
(7, 1, 1), (8, 1, 1) are observed. The white dashed lines correspond to the �rst (lower left) and
second (upper right) resonance of the �rst Kelvin mode. Fig. 10 corresponds to the vertical
dashed line at h = 1.62. Re = 6500.

that the critical Rossby number is inversely proportional to the Reynolds number (as it
is the case when surface viscous terms are considered).

Note that the previous �gures correspond to the critical Rossby number along the
white dashed line (for Fig. 9) and along the black dashed line (for Fig. 10). Note also
that the combinations represented in �gure 11 always satisfy k2 − k1 = k (combinations
satisfying k1 − k2 = k are always more stable).

6. Weakly nonlinear theory
This section is devoted to the prediction of the instability saturation by nonlinear

e�ects. The analysis will be restricted to the most unstable case, i.e. the exact resonance
of the �rst Kelvin mode (h = 1.62, ω = 1.18).

6.1. Geostrophic �ow
Experiments have shown that the unstable Kelvin modes m1 = 5 and m2 = 6 men-

tioned previously give rise to a mode with a cylindrical symmetry which corresponds
to a stationary azimuthal velocity �eld. This geostrophic Kelvin mode appears at order
O

(
Aj

2Re−1/2
)
. It is due to the nonlinear interaction in the Ekman layers of the unstable

Kelvin modes with their respective viscous �ows (see Meunier et al. 2008). The role of
the geostrophic mode is essential in the weakly nonlinear analysis because it saturates
the amplitude of the resonant and the unstable Kelvin modes. Note that the nonlinear
interaction of a Kelvin modes with itself has also a saturating e�ect. However, in our
experiments, this saturating e�ect is less signi�cative than the saturation due to the
geostrophic mode.

Finding an analytical expression of the geostrophic �ow is a very complex problem.
To avoid this di�culty and to keep in the analysis the fewest number of mode possible,
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an empirical formulation has been used for the geostrophic mode based on experimental
measurements. For h = 1.62 and ω = 1.18 (i.e. �rst resonance of the �rst Kelvin mode)
experiments have shown that the free Kelvin modes m1 = 5 and m2 = 6 lead to a
geostrophic Kelvin mode whose pro�le is close to the pro�le of the free Kelvin mode

v0 = −J5 (d2r)uϕ, (6.1)
where uϕ is the orthoradial unit vector and J5 is the Bessel function of the �rst kind.
The parameter d2 is the second root of J5 (i.e. d2 = 12.339). We will assume that this
geostrophic mode is added to the perturbation with an amplitude A0.

6.2. Weakly nonlinear amplitude equations
Adding this geostrophic mode leads to a total �ow

v = εv1,ω,k + A1v1 + A2v2 + A0v0 + o.t. (6.2)
We recall that ε is the amplitude of the forced Kelvin mode v1,ω,k given by (3.9). Vectors
v1 and v2 are the two free Kelvin modes of the triadic resonance, whose amplitudes are
A1 and A2. These vectors are given by equation (4.7). The notation o.t. stands for 'other
terms' and includes the Ekman layer pumping �ows and the non-resonant Kelvin modes.

Inserting (6.2) into the Navier�Stokes equation (3.5) and forming the scalar product of
this equation with v1,ω,k, v1, v2 and v0, leads to the following weakly nonlinear amplitude
equations

∂ε

∂t
= ifRo − αε − iξA0ε + λA1A2, (6.3a)

∂A1

∂t
= εn1A2 − α1A1 − iξ1A0A1 − iσ1 |A1|2 A1, (6.3b)

∂A2

∂t
= εn2A1 − α2A2 − iξ2A0A2 − iσ2 |A2|2 A2, (6.3c)

∂A0

∂t
=

1

Re1/2

(
− 2

h
A0 + χ1 |A1|2 + χ2 |A2|2

)
. (6.3d)

The �rst equation (6.3a) governs the temporal evolution of the forced Kelvin mode am-
plitude ε. All the coe�cients of this equation can be calculated analytically. The �rst
right hand-side term is the forcing due to the precessional motion, with a linear forcing
parameter f given in Appendix A. The second term is due to the surface viscous dam-
ping of the amplitude of the forced Kelvin mode and is thus proportional to α = s/Re1/2

(s being given in Appendix B). The third term comes from the nonlinear interaction of
the forced Kelvin mode with the geostrophic mode. The parameter ξ can be calculated
knowing the radial pro�le of the geostrophic mode given by (6.1) (see Appendix C). The
last term is the saturating term due to the nonlinear interaction between the two free
Kelvin modes with a parameter λ given in Appendix C. In the absence of instability, the
amplitude ε grows and saturates due to viscous damping at a value ifRo/α.

Equations (6.3b) and (6.3c) represent the temporal evolutions of the free Kelvin mode
amplitudes A1 and A2. All the parameters of these equations can also be calculated
analytically. These equations are similar to the linear amplitude equations (4.13a) and
(4.13b) with nonlinear e�ects added. The �rst right hand-side term of these equations
represents the nonlinear interaction of the forced Kelvin mode with a free Kelvin mode (n1

and n2 are given in Appendix B). The surface, volume viscous and detuning parameters
are included in α1 and α2 given by equation (4.14). The third term of these equations
was not considered before and comes from the nonlinear interactions of the free Kelvin
modes with the geostrophic mode (parameters ξj are given in Appendix C). The last
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f s ξ λ
0.226 1.86− 0.42i 0.165 6.503

n1 s1 v1 ξ1 σ1 χ1

−1.672 1.61− 0.06i 87.16 −0.066 −83.784 10000
n2 s2 v2 ξ2 σ2 χ2

−2.456 1.81− 0.13i 102.68 −0.365 48.987 10000

Table 3. Numerical values for the parameters appearing in the nonlinear amplitude equations
(6.3). For these values, h = 1.62 and ω = 1.18 (�rst resonance of the �rst Kelvin mode). They
correspond to the (6, 1, 1) resonant combination for the case k2 − k1 = k.

term of equations (6.3b) and (6.3c) correspond to the interactions of a free Kevin mode
with itself (parameters σj are given in Appendix C).

Equation (6.3d) describes the evolution of the geostrophic Kelvin mode amplitude A0.
The �rst right hand-side term represents the surface viscous damping of the geostrophic
Kelvin mode. Note that for this mode volume viscous e�ects have been neglected relative
to surface viscous e�ects. The second and the third terms of this equation represent
the nonlinear interaction of each free Kelvin mode with its Ekman pumping �ow. The
parameters χ1 and χ2 are di�cult to calculate analytically. Because modes m1 = 5 and
m2 = 6 are similar we shall assume that χ1 and χ2 are equal. Their value will be adjusted
to �t the experimental data.

We thus have a system of four nonlinear amplitude equations with only one �tting
parameter χ1 = χ2. The numerical values of the parameters are given in Table 3. We will
analyse in the following the properties of this dynamical system and compare them to
experimental results.

6.3. Nonlinear evolution of the amplitudes
A numerical solution of the system (6.3) is shown in �gure 12(a). This �gure represents

the temporal evolution of the amplitude of the free Kelvin mode m1 = 5 for three
Reynolds numbers. This corresponds to the most unstable case of the �rst resonance
of the �rst Kelvin mode (h = 1.62, ω = 1.18), for which the numerical values of the
parameters are given in Table 3.

In the stable regime (Re = 3500, ◦), the amplitude of the �rst Kelvin mode A1 remains
equal to 0. The amplitudes of the second Kelvin mode A2 and the geostrophic mode A0

are equally null. However, the amplitude ε of the forced Kelvin mode grows and saturates
at the viscous value given by equation (3.12) with ai = ∞.

Just above the instability threshold (Re = 4500, solid line) the amplitude A1 grows
and then saturates at a given value. This unstable and stationary �ow thus exhibits a
�xed point that will be noted (εf , A1f , A2f , A0f). Numerically, the instability saturation
is found to be caused mainly by the nonlinear the term iξA0ε. In other words, the
geostrophic mode is responsible of the saturation because it reduces the amplitude of the
forced Kelvin mode.

At higher Reynolds number (Re = 6000, dashed line), the �ow is still unstable but
we also observe that the amplitudes are now oscillating, even in the permanent regime.
This means that the �xed point (εf , A1f , A2f , A0f) has become unstable and the �ow is
said to be unstable and intermittent. Such a �ow can be understood with the following
reasoning. First, the amplitudes A1 and A2 grow exponentially due to the terms εn1A2

and εn2A1 in equations (6.3b) and (6.3c). Then, the geostrophic mode is forced through
the coe�cients χ1 and χ2 appearing in equation (6.3d). This geostrophic mode grows
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(a) (b)
Figure 12. Amplitude of the free Kelvin mode m1 = 5 as a function of the dimensionless time
t showing the three di�erent regimes of the nonlinear evolution of the instability. (a) Numerical
simulation. (b) Experimental results. It is obtained at Re = 3500 (◦), Re = 4500 (solid line)
and Re = 6000 (dashed line). The frequency of acquisition f and the time delay ∆t between
PIV pairs are f = 0.2 Hz, ∆t = 50 ms (◦) ; f = 0.222 Hz, ∆t = 45 ms (solid line) ; f = 0.333
Hz, ∆t = 30 ms. h = 1.62, ω = 1.18, Ro = −0.0031.

slowly in time (since its characteristic time is of the order of hRe1/2), which creates a
delay to the saturation of the instability. This saturation is achieved by a decrease of ε
through the coe�cient ξ in equation (6.3a). As soon as the amplitude ε gets smaller than
the critical value for the onset of instability, the amplitudes of the free Kelvin modes
vanish quickly. It leads to a slow decrease of A0 and consequently to an increase of ε.
Then the instability can grow up again. This phenomenon being repetitive, amplitude
oscillations are observed in time. Our experiments have clearly shown that the amplitude
oscillations are due to the geostrophic term in equation (6.3a), which is delayed compared
to the amplitudes of the free Kelvin modes.

Figure 12(b) shows three experimental measurements of |A1| at the same Reynolds
numbers as in �gure 12(a). We �nd again the three di�erent regimes depending on the
Reynolds number : stable, unstable and stationary, unstable and intermittent. The tran-
sition from stable to unstable �ow is very well predicted theoretically, since it corresponds
to the linear threshold of the instability : it was plotted on the stability diagram of Fig. 8
in the last section. The transition from an unstable stationary �ow to an unstable inter-
mittent �ow is also in excellent agreement with the predictions. Indeed, this transition
has been plotted in Fig. 8 as a dashed line. It clearly separates the stationary experi-
ments (¤) from the intermittent experiments (N). This agreement validates the nonlinear
system (6.3).

However, the theory does not predict very well the quantitative value of the �xed point
A1f in the stationary case : the experimental value is twice larger than the theoretical
one. In a similar way, in the intermittent case, the amplitude of the oscillations are not
very well predicted by the theory. Nevertheless, the theoretical period of these oscillations
tth = 250 matches well the experimental one texp = 290.
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6.4. Fixed point

The system (6.3) admits two �xed points. The �rst one is trivial and corresponds
to A1f = A2f = A0f = 0 and εf given by equation (3.12) with ai = ∞. The second
one is obtained by looking for a solution of the system (6.3) which satis�es ∂ ε/∂ t =
∂ |Aj | /∂ t = ∂ A0/∂ t = 0. This solution can be obtained analytically and its complete
calculation is reported in Appendix C. In this section we only give asymptotical results
by considering that viscous and detuning e�ects or geostrophic and nonlinear e�ects are
dominant for the saturation of the instability.

Just above the threshold, the viscous and the detuning e�ects are stronger than geo-
strophic and nonlinear e�ects for the damping of the instability. Under this assumption,
the terms ξj and σj can be neglected in equations (6.3b) and (6.3c). However, the ampli-
tude of the forced Kelvin mode ε is still a�ected by the geostrophic and nonlinear term
ξεA0. Then, a simple expression for the �xed point εf can be obtained

εf =

[
αr

1α
r
2

n1n2

(
1 +

(
αi

1 − αi
2

)2

(αr
1 + αr

2)
2

)]1/2

. (6.4)

We recall that αr
j and αi

j are respectively the real and imaginary parts of the linear
saturating term αj given in equation (4.14).

As for the instability threshold, the linear saturation term can be either volume viscous
e�ects (Re ¿ Re1), surface viscous e�ects (Re1 ¿ Re ¿ Re2) or detuning e�ects (Re À
Re2). This leads to various scalings for the amplitude of the forced Kelvin mode εf at
the �xed point. These scalings are indicated on Fig. 4.

Far from the threshold, the geostrophic and the nonlinear e�ects are stronger than the
viscous and the detuning e�ects. Under this assumption, the terms αj can be neglected
in equations (6.3b) and (6.3c), which leads to a simple expression for the �xed point

εf =

[
(αr

1α
r
2)

1/2

|αr
1 + αr

2|

∣∣∣∣∣
Rof

(n1n2)
1/2

∣∣∣∣∣

∣∣∣∣∣
ξ̃1 − ξ̃2

ξ

∣∣∣∣∣

]1/2

. (6.5)

The de�nition of the parameters ξ̃j is given in Appendix C.
A simple expression for the �xed point A0f can also be obtained

A0f =


 |(αr

1 + αr
2)|

(αr
1α

r
2)

1/2

∣∣∣∣∣∣
Rof (n1n2)

1/2

ξ
(
ξ̃1 − ξ̃2

)
∣∣∣∣∣∣




1/2

. (6.6)

This �xed point does not depend on the Reynolds number : it is completely determined
by the nonlinear terms. From equations (6.5) and (6.6) we observe that εf and A0f scale
as ∼ Ro1/2. The transition between the two regimes is shown schematically in �gure 4
as a dashed line. It is simply found by equating (6.5) and (6.4) and leads again to three
di�erent scalings depending on the Reynolds number (see Fig. 4).

6.5. Fixed point and mean �ow
In this section we compare the theoretical �xed point with the experimental results.

The exact value of the �xed point A1,f can be calculated by solving numerically the
polynomial equation (D 10). It is plotted in Fig. 13(a) as a function of Ro for Re = 3664
(thick line). We observe that the instability is weakly subcritical because the �xed point
can exist for Rossby numbers slightly smaller than the linear threshold represented by
the �rst vertical dash-dotted line. However, we were not able to assess the nature of the
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Figure 13. Amplitude of the free Kelvin mode m1 = 5 as a function of Ro for Re = 3664 (a) and
as a function of RoRe without volume viscous e�ects (b). The �xed point calculated from the
weakly nonlinear theory is represented by a solid line in the unstable and stationary regime and
by a dashed line in the unstable and intermittent regime. Dotted lines represent the maximum
and the minimum of oscillations of A1. Dash�dotted lines represent the two thresholds. Squares
(¥) represent unstable and stationary experiments. Triangles (N) represent the mean value of
|A1| in the unstable and intermittent regime. Amplitude ranges indicate the maximum and
minimum values of A1. h = 1.62, ω = 1.18.

bifurcation experimentally because it would require to vary the precessing angle with an
accuracy of 0.01◦.

The second vertical dash-dotted line represents the transition from stationary to in-
termittent �ow, i.e. the destabilization of the �xed point. The dashed line is the value of
the unstable �xed point A1,f and the two dotted branches represent the maximum and
minimum values of |A1| obtained numerically, by integrating the nonlinear system. They
show that the bifurcation is supercritical.

Experimental time-averaged values of |A1| are also shown on this graph as symbols.
They are in rough agreement with the value of the �xed point. In the intermittent regime,
the amplitude ranges indicate the maximum and minimum of the oscillations of |A1|,
which are of the same order of the theoretical predictions.

For high Reynolds numbers (i.e. Re À Re1) volume viscous e�ects can be neglected
compared to surface viscous e�ects. Under this assumption (and in the absence of de-
tuning e�ects), it can be shown that Re1/4A1f only depends on ReRo by rescaling the
nonlinear equations. This is why we have plotted this quantity in Fig. 13(b) in order to
collapse all the experimental results on a single curve. The theoretical value of the �xed
point (shown as a line) increases and scales as Ro1/4 far from the threshold.

The mean amplitude < |A1| > found experimentally is also plotted on the same graph
and we observe that this mean amplitude is slightly overestimated by the �xed point A1f ,
especially at low ReRo. This may come from the e�ect of volume viscous terms which are
neglected in this theory. However, the scaling for the mean �ow is well predicted for high
ReRo numbers. This means that the mean �ow inside a precessing cylinder can be fairly
well predicted even for very high Reynolds number (up to Re ' 40, 000). It is surprising
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Figure 14. Amplitude of the forced Kelvin mode (a) and the geostrophic Kelvin mode (b) as
a function of RoRe (volume viscous e�ects were neglected). The viscous saturating amplitude
from equation (3.12) is represented by a dash�dotted line below the threshold (�rst vertical
dash�dotted line) and a dotted line above the threshold. The �xed point (solid or dashed line)
is compared to the experimental time averaged values 〈|ε|〉 (a) and 〈A0〉 (b). These values are
represented by circles (◦) (stable �ow), squares (¥) (unstable and stationary �ow) or triangles
(N) (unstable and intermittent �ow). h = 1.62, ω = 1.18.

to see that this weakly nonlinear model is still e�cient one decade above the threshold
of the instability, in a regime where the �ow is turbulent.

Figure 14(a) compares the �xed point εf with the experimental mean amplitude 〈|ε|〉
of the forced Kelvin mode. As above, neglecting the volume viscous terms implies that
Re1/2εf only depends on ReRo, which allow to collapse all the experimental results on
a single curve. Below the threshold (�rst dash�dotted line, |ReRo| < 7.11) the �ow is
stable such that εf is equal to the viscously saturated amplitude (3.12), which is plotted
as a thick dash�dotted line (extended by a dotted line above the threshold). Above
the threshold the �ow is unstable such that ε tends to the �xed point εf represented
by a solid line. This �xed point becomes unstable above the second dash�dotted line
(|ReRo| = 11.2), meaning that the �ow becomes intermittent. The �xed point is then
plotted as a dashed line and scales as εf ∼ Ro1/2 (independently of the Reynolds number).

By comparing the �xed point and the experiments one can observe that even if the
experimental values are underestimated at low ReRo, the discrepancy decreases at high
ReRo. Moreover, the scaling for the mean �ow is fairly well predicted. As explained
previously this good agreement is surprising because the �ow is turbulent at these high
Reynolds numbers.

Finally, Fig. 14(b) compares the �xed point A0f with the experimental mean amplitude
〈A0〉 of the geostrophic Kelvin mode. Once again, neglecting the volume viscous terms
allow to collapse all the results on a single curve Re1/2A0 as a function of ReRo. Below
the threshold (�rst dash�dotted line, |ReRo| < 7.11) the �ow is stable such that A0f = 0.
Above the threshold the �xed point (solid line) increases and becomes unstable above
the second dash�dotted line (dashed line). The �xed point scales as A0f ∼ Ro1/2 at
high Reynolds numbers. Even if the experimental values are strongly overestimated, the
scaling for the mean �ow is correctly predicted at high ReRo.
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We have shown in this section that a weakly nonlinear model is able to predict the

properties of the instability at the threshold but also the characteristics of the �ow at
high Reynolds number in a very turbulent regime.

7. Conclusion
In this paper the instability of a �uid inside a precessing cylinder has been theoretically

studied and compared with experiments.
Precession forces a Kelvin mode which is resonant for particular frequencies and thus

is dominant compared to the rest of the �ow. A linear stability analysis based on a
mechanism of triadic resonance between Kelvin modes has been carried out and allows
to obtain an analytical expression for the instability growth rate and threshold. We have
shown that it is damped by volume viscous e�ects at low Reynolds numbers and by
surface viscous e�ects due to Ekman layers at high Reynolds numbers. We have also
shown that when a Kelvin mode combination is not exactly resonant the growth rate of
the instability is also damped by detuning e�ects.

The structure of the unstable Kelvin modes, the growth rate of the instability and the
stability diagram are in excellent agreement with experimental results. We deduce from
this theory the general properties of the precessing instability for any aspect ratio and
precession frequency. Several bands of instabilities with di�erent azimuthal wavenumbers
are predicted, which are con�rmed experimentally. The instability always occur close to
a resonance of a forced Kelvin mode since the amplitude of the base �ow is larger than
far from a resonance.

A weakly nonlinear analysis has also been carried out by taking into account the inter-
actions between the two free Kelvin modes. The instability is saturated by the presence of
a geostrophic mode which lowers the amplitude of the forced Kelvin mode. This weakly
nonlinear model allows to predict the nature of the bifurcation and the properties of the
unstable saturated �ow just above the threshold. This model also predicts correctly the
presence of an intermittent �ow at higher Reynolds number. Finally, it is surprising to
see that this low order model gives correct estimates for the mean velocity inside the
cylinder at very high Reynolds numbers even when the �ow is turbulent.

The nonlinear model is essentially based on the fact that the nonlinear interaction of a
Kelvin mode with itself in the Ekman layers leads to the presence of a geostrophic mode.
However, this interaction vanishes in the inviscid case and viscous e�ects are needed in
order to predict the generation of the geostrophic mode. In this paper, this term was
adjusted to the experiments by a �tting parameter. A correct analysis of nonlinear and
viscous interaction of Kelvin modes would thus be highly useful in order to get analytical
expressions for the generation of geostrophic motion.

In the future, it would be interesting to see if this instability mechanism can be observed
in an ellipsoid, as predicted theoretically by Kerswell (1993). If it is the case, we expect
the scalings observed in Fig. 4 and Fig. 8 to be still valid although the quantitative
values will have to be calculated in a di�erent manner. This could highly improve the
comprehension of the �ow inside the outer core of the earth and thus shed light on the
geodynamo that takes place there.

It would also be interesting to see how these Kelvin modes interact with a magnetic
�eld if the liquid is conductor. Since the structure of the unstable �ow is here predicted
for any Reynolds number, a theoretical study of the growth of the magnetic �eld in such
a �ow is now possible. This could explain the results by Gans (1970a) who observed an
unstable magnetic �eld in a precessing cylinder full of liquid sodium.

Finally, the destabilization of a �uid-�lled gyroscope by precession has been extensively
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studied under the assumption that the �ow inside the gyroscope is stable and laminar.
These results can now be extended to the case of an unstable �uid cylinder owing to the
model presented in this paper.

We would like to thankWietze Herreman for very fruitful discussions, especially concer-
ning the weakly nonlinear theory. This study was carried out under CEA-CNRS contract
No. 012171.

Annexe A. Base �ow calculation
The operators appearing in the complex Navier�Stokes equation (3.5) are de�ned by

I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , (A 1)

D =




0 0 −i 0
0 0 1 0
i −1 0 0
0 0 0 0


 , (A 2)

L =




∆− 1
r2 − 2

r2
∂

∂ϕ 0 0
2
r2

∂
∂ϕ ∆− 1

r2 0 0
0 0 ∆ 0
0 0 0 0


 , (A 3)

where

∆ =
1
r

∂

∂r
+

∂2

∂r2
+

1
r2

∂2

∂ϕ2
+

∂2

∂z2
, (A 4)

and

M =




0 −2 0 ∂
∂r

2 0 0 1
r

∂
∂ϕ

0 0 0 ∂
∂z

∂
∂r + 1

r
1
r

∂
∂ϕ

∂
∂z 0


 . (A 5)

The vectors F0 and N(v1,v2) are de�ned by

F0 =




0
0

−rω
0


 , (A 6)

and

N (v1,v2) =
(

(v1 + v1)× (∇× v2)
0

)
. (A 7)

The linear and inviscid amplitude ai of the Kelvin modes v1,ωi,ki (r) inside a precessing
cylinder in the non�resonant case is

ai =
ω2

(ω − 2) (k2
i + 1) kiJ1 (δi) cos (kih/2)

. (A 8)
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The vector umi,ωi,ki

(r) of a Kelvin mode appearing in equation (3.9) is de�ned by

umi,ωi,ki (r) =




Umi,ωi,ki (r)
Vmi,ωi,ki

(r)
Wmi,ωi,ki (r)
Pmi,ωi,ki

(r)




=




−1
4−ω2

i

(
ωiδiJ

′
mi

(δir) + 2mi

r Jmi
(δir)

)

−i
4−ω2

i

(
2δiJ

′
mi

(δir) + ωimi

r Jmi (δir)
)

i ki

ωi
Jmi

(δir)
−iJmi (δir)




. (A 9)

We introduce the scalar product

X¯Y =
∫

V

(
XrYr + XϕYϕ + XzYz + XpYp

)
d3V , (A 10)

The forcing term f appearing in equation (3.12) is de�ned by

f =
1
i
v1,ω,k ¯ F0e

i(ωt+ϕ)

v1,ω,k ¯ Iv1,ω,k
. (A 11)

For a resonant Kelvin mode, a simple expression of f is

f =
(ω + 2) ω

(
4− ω2

)2

δ2hJ1 (δ) [ω2 (ω + 2δ2 − 2)− 4ω + 8]
. (A 12)

Annexe B. Linear stability analysis coe�cients
B.1. Nonlinear coe�cients

The nonlinear coe�cients n1 and n2 appearing in equation (4.13) are de�ned by

n1 =
v1 ¯ [N (v1,ω,k,v2) + N (v2,v1,ω,k)]

v1 ¯ Iv1

, (B 1a)

n2 =
v2 ¯ [N (v1,ω,k,v1) + N (v1,v1,ω,k)]

v2 ¯ Iv2

, (B 1b)

where the vectors v1,ω,k and vj are respectively given by equations (3.9) and (4.7). Note
that the de�nition of nj does not depend on the choice of the sign plus or minus in
equation (4.7).

By using the formula ∇×vK = 2
iω

∂
∂zvK for a Kelvin mode vK , a development of (B 1a)

and (B 1b) can be given as

n1 = −8πh
± k2

ω2
− k

ω

v1 ¯ Iv1

1∫

0

∣∣∣∣∣∣

Um,ω,±k Um1,ω1,k1 Um2,ω2,k2

Vm,ω,±k Vm1,ω1,k1 V m2,ω2,k2

Wm,ω,±k Wm1,ω1,k1 Wm2,ω2,k2

∣∣∣∣∣∣
rdr, (B 2)

and

n2 = 8πh
± k1

ω1
− k

ω

v2 ¯ Iv2

1∫

0

∣∣∣∣∣∣

Um,ω,±k Um1,ω1,k1 Um2,ω2,k2

Vm,ω,±k Vm1,ω1,k1 V m2,ω2,k2

Wm,ω,±k Wm1,ω1,k1 Wm2,ω2,k2

∣∣∣∣∣∣
rdr, (B 3)

where the operator |.| is the determinant.
The plus sign corresponds to the case k2 − k1 = k.
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The minus sign corresponds to the case k1 − k2 = k.
We recall that equations (B 2) and (B 3) are only valid for free Kelvin modes with di�erent
parities with respect to z, i.e. at (or close to) a resonance of the forced Kelvin mode.

B.2. Viscous coe�cients
The boundary viscous coe�cient sj appearing in equation (4.13) is de�ned by

sj

Re1/2
=

vj ¯
(

∂
∂tI +M)

v(1)
j

vj ¯ Ivj
, (B 4)

where v(1)
j is the vector appearing in equation (4.12). Integrating by part, we can show

that

vj ¯
(

∂

∂t
I +M

)
v(1)

j = −v(1)
j ¯

(
∂

∂t
I +M

)
vj

+
∫

surface

(
v⊥j · v(1)p

j + vp
j · v(1)⊥

j

)
dS, (B 5)

where ⊥ stands for the perpendicular component to the wall and the subscript p stands
for the pressure component. The �rst right-hand side term of this last equation equals
0 because vj is in the kernel of the operator

(
∂
∂tI +M)

. The �rst term in the surface
integral is also equal to 0 because v⊥j vanishes at the walls since it is a free Kelvin
mode. The second term inside the integral can be calculated because v(1)⊥

j is given by
the no-slip boundary condition at order ε, which means that it is the opposite of the
Ekman pumping (of order Re−1/2 ∼ ε) created by the Kelvin modes vj of order one.
The determination of the velocity in the boundary layer is classical. The reader could
refer to Greenspan (1968) or for the peculiar case of Kelvin modes to Kudlick (1966).
The viscous coe�cients can thus be calculated as

sj = 2
I
′r
j + I

′z
j

vj ¯ Ivj
, (B 6)

where

I
′r
j = 2πhPmj ,ωj ,kj (1)

[−i
Kj

(
mjVmj ,ωj ,kj (1) + kjWmj ,ωj ,kj (1)

)]
, (B 7)

and

I
′z
j =

√
2π (1− i)

ω2
j

(
J2

mj
(δj)

(2− ωj)
3/2

+
iJ2

mj
(δj)

(2 + ωj)
3/2

)
[(

δ2
j −m2

j

)
ω2

j + 4m2
j

]
, (B 8)

with

Kj =
( |ωj |

2

)1/2

(1 + i sgn(ωj)) . (B 9)

The same boundary viscous e�ects appear on the forced Kelvin mode v1,ω,k and can
be calculated in the same manner. If we note ṽ1,ω,k the Ekman pumping created by the
Kelvin mode v1,ω,k, the boundary viscous coe�cient s appearing in equation (3.12) is
given by

s

Re1/2
=

v1,ω,k ¯
(

∂
∂tI +M)

ṽ1,ω,k

v1,ω,k ¯ Iv1,ω,k
=

2

Re1/2

I
′r + I

′z

v1,ω,k ¯ Iv1,ω,k
, (B 10)
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where I

′r and I
′z are respectively given by I

′r
j and I

′z
j with mj = 1, ωj = ω and kj = k.

The volume viscous coe�cient vj appearing in equation (4.13) is de�ned by

vj = −vj ¯ Lvj

vj ¯ Ivj
= k2

j + δ2
j . (B 11)

B.3. Detuning coe�cients
The detuning coe�cient qj appearing in equation (4.13) is de�ned by

qj =
vj ¯M∆vj

vj ¯ Ivj
, (B 12)

with

M∆ =
1
ikj




0 0 0 0
0 0 0 0
0 0 0 ∂

∂z

0 0 ∂
∂z 0


 . (B 13)

The calculation gives

qj = −8πh
kj

ωj

1∫

0

J2
mj

(δjr) rdr

/
vj ¯ Ivj . (B 14)

Annexe C. Nonlinear calculation
The aim of this Appendix is to calculate the coe�cients σj , ξj and λ appearing in the

weakly nonlinear amplitude equations (6.3).

C.1. Coe�cients σj

The nonlinear interaction of a Kelvin mode vj with itself gives rise to a �ow v2j such
that

(
∂

∂t
I +M

)
v2j + c.c. = N (vj ,vj) + c.c. (C 1)

As shown by Wale�e (1989), v2j has two velocity components because vj is the sum of
two waves with opposite axial wavenumbers +kj and −kj . For a Kelvin mode (mj , ωj , kj)
these two components are of the form (2mj , 2kj , 0) and (0, 0, 2kj) and correspond to
the two vectors

v2kj = ±




0
a2kj cos (2kjz)

0
p2kj cos (2kjz)


 ,v2ωj = ±




imj

r a2ωj

− 1
2

da2ωj

dr
0

p2ωj


 , (C 2)

with

a2kj = 4
ikj

ωj

(
iVmj ,ωj ,kj Wmj ,ωj ,kj +

1
2kj

d

dr

(
Umj ,ωj ,kj Vmj ,ωj ,kj

))
, (C 3)

and

a2ωj = 4
δ2
j(

ω2
j − 4

)2

[
J2

mj
(δjr)− J2

mj
(δj) r2mj

]
. (C 4)
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For a free Kelvin mode with a minus (resp. plus) sign in its de�nition (4.7) the plus

(resp. minus) sign must be chosen in equation (C 2). The coe�cient σj in (6.3) is separated
into two parts. The �rst one comes from the nonlinear interaction of vj and v2kj

σ2kj
= vj ¯

[
N

(
v2kj

,vj

)
+ N

(
vj ,v2kj

+ c.c.
)]

. (C 5)
The calculation gives

σ2kj
= 8πh

1∫

0

(
2ikj a2kj Vmj ,ωj ,kj Wmj ,ωj ,kj + a2kj

d
(
Umj ,ωj ,kj

Vmj ,ωj ,kj

)

dr

)
rdr, (C 6)

with a2kj
given by equation (C 3).

The other term comes from the interaction of vj with v2ωj

σ2ωj = vj ¯N
(
v2ωje2i(ωjt+mjϕ),vj

)
. (C 7)

The calculation gives

σ2ωj = 8πh
ikj

ωj

1∫

0

(
da2ωj

dr
iUmj ,ωj ,kj Wmj ,ωj ,kj +

2mj a2ωj

r
Vmj ,ωj ,kj Wmj ,ωj ,kj

)
rdr.

(C 8)
The �nal coe�cient σj used in the weakly nonlinear amplitude equations (6.3) is

σj = −σ2kj + σ2ωj

ivj ¯ Ivj
. (C 9)

C.2. Coe�cients ξj

The coe�cients ξj of (6.3) describe the nonlinear interaction of the j-th free Kelvin
mode with the geostrophic mode

ξj = ivj ¯
[
N

(
1
2
v0,vj

)
+ N (vj ,v0)

]
/vj ¯ Ivj. (C 10)

We then obtain

ξj = 8iπh

1∫
0

(
2kj

ωj
v0Umj ,ωj ,kj Wmj ,ωj ,kj + 1

r
d
dr (rv0)Umj ,ωj ,kj Vmj ,ωj ,kj

)
rdr

vj ¯ Ivj
, (C 11)

where v0 is the orthoradial component of the geostrophic �ow given by (6.1). For the
forced Kelvin mode, vj ¯Ivj is replaced by v1,ω,k ¯Iv1,ω,k in (C 11) in order to obtain
the coe�cient ξ.

C.3. Coe�cient λ

The parameter λ describes the nonlinear interaction between the �rst and the second
free Kelvin mode. This parameter appears in equation (6.3a) and is given by

λ =
v1,ω,k ¯ [N (v1,v2) + N (v2,v1)]

v1,ω,k ¯ Iv1,ω,k
. (C 12)

We obtain
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λ = ±8πh
k2
ω2
− k1

ω1

v1,ω,k ¯ Iv1,ω,k

1∫

0

∣∣∣∣∣∣

Um,ω,±k Um1,ω1,k1 Um2,ω2,k2

Vm,ω,±k Vm1,ω1,k1 V m2,ω2,k2

Wm,ω,±k Wm1,ω1,k1 Wm2,ω2,k2

∣∣∣∣∣∣
rdr. (C 13)

The plus sign corresponds to the case k2 − k1 = k.
The minus sign corresponds to the case k1 − k2 = k.

Annexe D. Fixed point
To obtain a �xed point (εf , A1f , A2f , A0f) of the nonlinear amplitude equations (6.3),

we search a solution (ε, A1, A2, A0) such that ∂ε
∂t = ∂A0

∂t = 0 and Aj = A0
jeiω̃t with

∂A0
j

∂t = 0 and ω̃ real. Then, the �xed point satis�es the following system

ε (α + iξA0) = ifRo, (D 1a)

α1 + i
(
ω̃ + ξ1A0 + σ1

∣∣A0
1

∣∣2
)

= εn1

A0
2

A0
1

, (D 1b)

α2 + i
(
ω̃ + ξ2A0 + σ2

∣∣A0
2

∣∣2
)

= εn2

A0
1

A0
2

, (D 1c)

h

2

(
χ1

∣∣A0
1

∣∣2 + χ2

∣∣A0
2

∣∣2
)

= A0. (D 1d)

Here, we have neglected the term λA1A2 because it was very small in our case, but it
can be easily added and the system can be solved in the same manner. The product of
(D 1b) by (D 1c) is real such that the modulus of (D 1b) over (D 1c) equals the modulus
of the real part of (D 1b) over the real part of (D 1c). Thus it comes

∣∣∣∣
A0

1

A0
2

∣∣∣∣ =
∣∣∣∣
n2α

r
1

n1αr
2

∣∣∣∣
1/2

. (D 2)

Equation (D 1d) allows to obtain |A0
1 | and |A0

2f | as functions of A0

∣∣A0
1

∣∣ = A1f =
[

2 |n1α
r
2|

h (χ1 |n1αr
2|+ χ2 |n2αr

1|)
A0

]1/2

, (D 3)

∣∣A0
2

∣∣ = A2f =
[

2 |n2α
r
1|

h (χ1 |n1αr
2|+ χ2 |n2αr

1|)
A0

]1/2

. (D 4)

These two equations allow to replace σ1

∣∣A0
1

∣∣2 and σ2

∣∣A0
2

∣∣2 in equations (D 1b) and (D 1c)
as a function of A0. Thus (D 1) rewrites

ε (α + iξA0) = ifRo, (D 5a)

α1 + i
(
ω̃ + ξ̃1A0

)
= εn1

A0
2

A0
1

, (D 5b)

α2 + i
(
ω̃ + ξ̃2A0

)
= εn2

A0
1

A0
2

, (D 5c)

h

2

(
χ1

∣∣A0
1

∣∣2 + χ2

∣∣A0
2

∣∣2
)

= A0, (D 5d)
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with

ξ̃1 = ξ1 +
2σ1 |n1α

r
2|

h (χ1 |n1αr
2|+ χ2 |n2αr

1|)
, (D 6)

and
ξ̃2 = ξ2 +

2σ2 |n2α
r
1|

h (χ1 |n1αr
2|+ χ2 |n2αr

1|)
. (D 7)

The product of equations (D 5b) and (D 5c) gives a complex equation, whose imaginary
part gives the nonlinear frequency of the free Kelvin modes

ω̃ = −
Im

{(
α1 + iξ̃1A0

)(
α2 + iξ̃2A0

)}

αr
1 + αr

2

, (D 8)

and whose real part thus leads to
|ε| = εf

=

{
αr

1α
r
2

n1n2 (αr
1 + αr

2)
2

{
(αr

1 + αr
2)

2 +
[(

αi
1 − αi

2

)
+

(
ξ̃1 − ξ̃2

)
A0

]2
}}1/2

.

(D 9)
By equating (D 9) and the modulus of (D 5a) divided by (α + iξA0) we obtain an equation
of order 4 for A0

αr
1α

r
2

[
αr2 +

(
ξA0 + αi

)2
]

(αr
1 + αr

2)
2

{
(αr

1 + αr
2)

2 +
[(

αi
1 − αi

2

)
+

(
ξ̃1 − ξ̃2

)
A0

]2
}

−Ro2f2n1n2 = 0.

(D 10)
This equation has a unique real and positive solution which is A0f , except in the subcri-
tical regime, where it can have two positive roots. Note that if we take into account the
term λ in equation (6.3a), the equation for A0 becomes an equation of order 6 instead
of 4. Once A0f is known, εf can be determined via equation (D 9) and A1f and A2f by
equations (D 3) and (D 4).
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