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Abstract We study the buckling of a one fiber composite whose matrix stiffness is slightly dependent
on the compressive force. We show that the equilibrium curves of the system exhibit a limit load
when the induced stiffness parameter gets bigger than a threshold. This limit load increases when
the stiffness parameter is increasing and it is related to a possible localized path in the post-buckling
domain. Such a change in the maximum load may be very desirable from a structural stand point.
c⃝ 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1306101]
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Important engineering applications, such as rail-
way tracks lying on a soil base, thin metal strips at-
tached to a softer substrate, or structures floating on
fluids, require accurate modeling of a layer bonded to
a substrate-foundation. Study in Ref. 1 and more re-
cently researches in Refs. 2 and 3 have shown that a
beam theory model for the layer and a Winkler-type
springs model for the foundation are accurate enough
to correctly describe the layer-substrate system. The
restoring force provided by the springs may depend lin-
early or nonlinearly on the local displacement. Many
analytical or numerical analyses considered the mechan-
ical response of a straight elastica attached to a linear
foundation.4–6 In addition, the mechanical behavior of
a beam, initially straight or curved, lying on a nonlin-
ear elastic foundation, has been the subject of many
studies.7–16 An important point to notice is that the
equilibrium curves may exhibit in this case a limit point,
i.e., a maximum load, and a bifurcation point in the
post-buckling path, related to a localized mode.

In the present paper, we use a beam on founda-
tion model to analyze the static equilibrium of a one
fiber composite suffering a compressive stress. The in-
troduction of an initial curvature in the line of the beam
models the case of a slightly misaligned fiber in the
direction of compression. A restoring force, function
of the compressive load, takes into account the depen-
dence of the matrix stiffness with the overall compres-
sion. Such a dependence has received very little at-
tention since the work done by Waas17 who studied the
initial post-buckling of a curved fiber on a cubic founda-
tion. Using an asymptotic expansion of the equilibrium
equation about the critical load, Waas showed that the
compression-induced stiffness affects the buckling and
post-buckling behavior of the fiber.

This letter paper aims to extend these results to the
case of a bi-linear foundation whose stiffness is affinely
dependent on the compressive force. Of particular in-
terest, we will focus on the existence and the evolution
of a limit point (i.e., saddle-node) in the bifurcation di-
agram of the system.

a)Corresponding author. Email: romain.g.lagrange@gmail.com.

We consider a fiber (as shown in Fig. 1) with length
L, bending stiffness EI, subjected to a compressive
force P at both ends. The fiber has an initial imperfec-

tion shape Ŵ = τ̂ sin (πX/L), with τ̂ being the ampli-
tude and X being the longitudinal coordinate.
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Fig. 1. Sketch of a one fiber composite undergoing a com-

pressive load P . The fiber has an initial imperfection Ŵ and
its lateral displacement is W . The matrix restoring force per
unit length P̄ is a function of the compressive load and the
lateral deflection.

The fiber and matrix are assumed to be well bonded
at their interface and remain that way during deforma-
tion. Thus, interfacial slip, fiber/matrix debonding, or
matrix micro-cracking is not considered. The support-
ing matrix is modeled as a Winkler type foundation
providing a lateral restoring force per unit length P̄ ,
function of the compressive load P and the lateral de-
flection W

P̄ (W ) =


−W (K +ΣP ) , |W | < Γ,

−Γ (K +ΣP ) , W > Γ,

Γ (K +ΣP ) , W < −Γ.

(1)

In the above expression, K +ΣP is the stiffness of the
supporting matrix and Γ its mobilization (also named
the yield point). Compression-induced hardening (soft-
ening) corresponds to Σ > 0 (Σ < 0).

We note Lc = (EI/K)
1/4

a characteristic length of
the problem, and define the non-dimensional quantities

l =
L

Lc
, x =

X

Lc
, w =

W

Γ
,

ŵ =
Ŵ

Γ
, τ =

τ̂

Γ
, σ = ΣLc

2, λ =
PLc

2

EI
, (2)

as respectively the dimensionless fiber length, longitu-
dinal coordinate, lateral deflection, imperfection shape,
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Fig. 2. Equilibrium paths of a one fiber composite. A cross indicates the critical buckling load λc = 2/ (1− σ). The fiber
length is l = π.
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Fig. 3. Limit load λm of a fiber composite vs. (a) the matrix stiffness parameter σ, and (b) the initial imperfection size τ .
The fiber length is l = π.
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imperfection size, stiffness parameter, compressive load.
The restoring force may be recast in a convenient com-
putational form as

p̄ (w) = −w − (sgn (w)− w)H (|w| − 1) , (3)

where sgn denotes the sign function and H is the Heav-
iside function, defined as H (|w| − 1) = 0 if |w| < 1 and
H (|w| − 1) = 1 if |w| > 1.

Assuming that λ and p̄ are conservative, the deflec-
tion equation is derived using an energy formulation.
Strains are assumed to be small compared to unity. The
centroidal line is inextensible and cross sections remain
normal to this line (i.e., Euler–Bernoulli assumption).
The imperfection is assumed to be small so that non-
linearities in ŵ or ŵ′ are dropped in the formulation
of the potential energy. Under these assumptions, the
potential energy with low-order geometrically nonlinear
terms is7

V =

∫ l

0

[
1

2
w′′2 − λ

(
1

2
w′2 + ŵ′w′

)
−∫ w

0

p (t) dt

]
dx, (4)

where a prime means d/dx. In Eq. (4), 1/2w′′2 is the

bending energy, λ(1/2w′2 + ŵ′w′) the work done by the
compressive force λ and

∫ w

0
p̄ (t) dt the elastic founda-

tion energy. Note that Eq. (4) is written in terms of the
displacement field w measured from the initial configu-
ration, but an equivalent formulation may be derived11

introducing the vertical coordinate y = ŵ+w of the cen-
troidal line. Here, we use Eq. (4) because the restoring
force p̄ is more easily expressed in terms of the displace-
ment field w than in terms of the vertical position y.

Equilibrium states are critical values of V . Assum-
ing a simply supported fiber (i.e. kinematic boundary
conditions are w (0) = 0 and w (l) = 0), variations of
Eq. (4) for an arbitrary kinematically admissible virtual
displacement δw leads to the Euler–Lagrange equation
(also named the stationary Swift–Hohenberg equation)

w′′′′ + λ (w′′ + ŵ′′)− (1 + σλ) p̄ (w) = 0 (5)

along with static boundary conditions w′′(0) = w′′(l) =
0.

This equation is nonlinear because of the restoring
force and is highly sensitive to the parameters. Conse-
quently it is illusory to depict the behavior of the system
over a wide range of parameters. The imperfection size
τ = τ̂ /Γ is kept of order O(1) so that τ̂ and the ma-
trix mobilization Γ are of the same order, which is typi-
cally less than the millimeter. Bigger values for τ would
correspond to intentionally misaligned fiber in the di-
rection of compression, what is out of consideration in
the present article. The stiffness parameter σ is kept
of order o(1), based on the idea that the compression-
induced stiffness |Σ|P remains small compared to the
linear stiffness K, for any compressive load P .

Equation (5) is solved using the MATLAB’s routine
bvp4c (this boundary value solver uses a finite differ-
ence method that executes a collocation formula, see

Ref. 18. Equilibrium paths are traced out in the plane
(max (w) , λ) by gradually incrementing λ.

For a perfect fiber (τ = ŵ = 0), w = 0 satisfies
Eq. (5), for any σ. This solution is stable up to a point of
bifurcation from which a new path emanates. This path
is horizontal in the linear domain of the restoring force
and decreases to an horizontal asymptote in the plastic
domain. The point of bifurcation is classically deter-
mined by linearizing the equilibrium equation (5) about
w = 0 and looking for sinusoidal solutions sin (nπx/l),
n being an integer. It is found that sinusoidal solutions
may arise for λn = [1 + (nπ/l)4]/[(nπ/l)2 − σ], leading
to a critical buckling load λc = λ1 = 2/ (1− σ) for l = π

and σ < 3/5.
Results for an imperfect fiber are plotted in

Figs. 2(b)–2(d), showing two types of equilibrium paths.
For small σ (high τ), the equilibrium paths are in-

creasing and they tend to an horizontal asymptote when
max (w) → ∞.

For high σ (small τ), the equilibrium paths are in-
creasing at first (pre-buckling domain), then they hit
a maximum (limit point), and eventually they decrease
(post-buckling domain) to the previous cited asymptote
when max (w) → ∞.

Moreover, when decreasing (increasing) the stiffness
parameter σ (the imperfection size τ), the equilibrium
paths flatten out, leading to a progressive drop in the
maximum force λm and a gradual increase in the maxi-
mum displacement. The variations for λm are confirmed
in Fig. 3. For σ (τ) smaller (larger) than a critical value
σc (τc), there is no more limit point in the bifurcation
diagram. Iterating over σ and τ the procedure for plot-
ting an equilibrium path, tracking the limit point at
each step, results in the σc vs. τ plot shown in Fig. 4.
From this figure it appears an affine dependence of σc

on τ

σc = f (l) τ − g (l) , (6)

with f and g two scaling functions of l.
Finally, deflective patterns are shown in Fig. 5,

along with their Fourier spectrums. It is observed that
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Fig. 4. Critical matrix stiffness parameter σc vs. imper-
fection size τ , leading to the existence of a limit point in
the equilibrium curves of a one fiber composite. The fiber
length is l = π.
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Fig. 5. (a) Equilibrium path for σ = 0.1, τ = 0.8, l = 7. S1, S2, S3 and S4 are some equilibrium states for λ = 2, λ = 4,
λ = 3 and λ = 2. Cross indicates a point of bifurcation. (b) Deflective patterns of the equilibrium states S1 (short dashed
dot line), S2 (long dashed dot line), S3 (short dashed line) and S4 (long dashed line). Dotted curves show post-buckling
patterns for equilibrium states between S3 and S4. (c) Spectrum of the equilibrium state S1. (d) Spectrum of the equilibrium
state S4.

a pre-buckling state has a fundamental harmonic along
the first buckling mode, other harmonics being negli-
gible. Consequently, the deflective pattern of a pre-
buckling state is an amplification of the initial curva-
ture. This feature holds in the initial post-buckling do-
main, up to a subcritical point of bifurcation from which
a localized path emanates (path containing s3 and s4 in
Fig. 5(a)). An equilibrium state lying on this path ex-
hibits a deflection that is no longer an amplification of
the initial curvature, but a combination of various har-
monics whose spectrum amplitudes are increasing in the
far post-buckling domain.

In terms of stability, near a subcritical bifurcation,
periodic responses require more energy to trigger and
hence will not appear in physical test. On the contrary,
the stability of the localized responses depends on the
loading condition. As stated in Ref. 19, localized modes
are generally unstable under dead loading (i.e., experi-
ments in which the compressive force is the controlled
parameter) and stable under rigid loading (i.e., exper-

iments in which the displacement is the controlled pa-
rameter).

This paper considers the matrix stiffness effects on
the buckling behavior of an imperfect fiber in a material
composite. The imperfection has been introduced as
an initial curvature and the matrix stiffness taken as
compressive dependent.

The compression-induced stiffness and the imper-
fection size play antagonistic roles in the buckling re-
sponse of the fiber. Hardening (respectively softening)
leads to an increase (respectively decrease) of the limit
load. On the contrary, an increase (respectively de-
crease) of the imperfection size leads to a decrease (re-
spectively increase) of the limit load. Such a limit load
does not exist any more for a critical stiffness σc de-
pendent on the imperfection size and the fiber length.
Note that these features are in agreement with the the-
oretical predictions of Ref. 17, carried out for a cubic
foundation.

Finally, the gradual decrease of the limit point with



061001-5 Compression-induced stiffness in the buckling Theor. Appl. Mech. Lett. 3, 061001 (2013)

the compression-induced stiffness could explain the pro-
gressive transition to final failure that occurs in a com-
posite material.20

The present paper has to be considered as a pre-
liminary study, focusing mainly on the existence and
the variations of a limit point with the foundation stiff-
ness parameter and the initial curvature. Future works
should determine the influence of these two parameters
on the post-buckling domain, in particular on the ex-
istence and the behavior of a bifurcation point leading
to a localization, as depicted in Fig. 5. Taking into
account the higher-order geometrically nonlinearities in
the potential energy, we aim to explore the far post-
buckling domain through the path-following and bifur-
cation analysis software MANLAB.21

The author acknowledges Dr. Alban Sauret for his in-

sightful comments on this paper.
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