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Abstract In this paper, we consider an imperfect finite beam lying on a nonlinear
foundation, whose dimensionless stiffness is reduced from 1 to k as the beam
deflection increases. Periodic equilibrium solutions are found analytically and are
in good agreement with a numerical resolution, suggesting that localized buckling
does not appear for a finite beam. The equilibrium paths may exhibit a limit point
whose existence is related to the imperfection size and the stiffness parameter k
through an explicit condition. The limit point decreases with the imperfection size
while it increases with the stiffness parameter. We show that the decay/growth
rate is sensitive to the restoring force model. The analytical results on the limit
load may be of particular interest for engineers in structural mechanics.
c⃝ 2014 The Chinese Society of Theoretical and Applied Mechanics. [doi:10.1063/2.1403101]
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An elastic beam on a foundation is a model that can be found in a broad range of applications:
railway tracks, buried pipelines, sandwich panels, coated solids in material, network beams, float-
ing structures, etc. The usual way to model the interaction between the beam and the foundation
is to replace the latter with a set of independent springs whose restoring force is a linear1–8 or a
nonlinear9–19 function of the local deflection of the beam. In both cases, the nonlinear effects,
from the beam’s deformation and/or from the restoring force, play a crucial role in the buckling
and the post-buckling behaviors. In particular, for a softening nonlinear foundation, the equilib-
rium curves of the beam may exhibit a maximum load (i.e., limit point) at which the structure
loses its stability. Small imperfections, arising from various sources, usually have an appreciable
effect on this maximum load. The papers on deterministic imperfection sensitivity include those
of Refs. 4, 5, 11, 15, 20–24 and extensive references for the stochastic imperfection sensitivity are
compiled in Ref. 25. As a general rule, the maximum load at which the beam becomes unstable
diminishes with increasing imperfection size. Considering a finite beam on a bi-linear/exponential
foundation, Ref. 24 has shown the existence of a critical imperfection size A0c. For A0 < A0c, the
maximum load diminishes with the imperfection size, from the critical buckling load predicted
by the classical linear analysis10 for A0 = 0 to the Euler load for A0 = A0c. In this case, the decay
rate is sensitive to the restoring force model. For A0 > A0c, the maximum load is the Euler load
(i.e., buckling load of a beam with no foundation).

In the present paper we aim to extend these results to two restoring force models with more
general softening behaviors. We derive an analytical expression for A0c and study the evolution
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of the maximum load with the imperfection size and the stiffness reduction.
We consider the effects of a compressive load P on a beam of length L, with bending stiffness

EI, lying on a foundation that provides a restoring force per unit length P (Fig. 1). The beam
and the foundation are assumed to be well bonded at their interface and remain bonded during
deformation. Thus, interfacial slip or debonding is not considered. The mobilization of the foun-
dation (also named the yield point) is noted ∆ , its linear stiffness K0 and its nonlinear stiffness K.
In its initial configuration, the beam has an imperfect shape W0 = A0 sin(πX/L), where A0 is the
imperfection size and X is the longitudinal coordinate.

We introduce the characteristic length Lc = (EI/K0)
1/4 and the non-dimensional quantities

l = L/Lc, x=X/Lc, w=W/∆ , w0 =W0/∆ , a0 =A0/∆ , λ =PLc
2/(EI), k=K/K0, pk =P/(K0∆)

as the dimensionless beam length, longitudinal coordinate, lateral deflection (measured from the
initial configuration), imperfection shape, imperfection size, compressive load, stiffness ratio,
restoring force respectively.

Two models for the restoring force pk are considered in this letter (Fig. 2). The first one is

pk (w) =−w− (1− k)(sgn(w)−w)H (|w|−1) , (1)

where sgn denotes the sign function and H is the Heaviside function, defined as H (|w|−1) = 0
for |w|< 1 and 1 for |w|> 1. This bi-linear restoring force refers to a foundation whose stiffness
is instantaneously reduced from 1 to k 6 1 for w > 1. The particular case k = 1 corresponds to a
linear foundation. The particular case of k = 0 has been considered in Ref. 24. Here, we extend
the study to k 6 1, which leads to more general results.
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Fig. 1. Sketch of a beam on a nonlinear foun-
dation. The beam has an imperfect shape W0 and
its lateral displacement is W . The compressive
force is P and the restoring force per unit length
is −P.
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Fig. 2. Dimensionless restoring force pk. The
stiffness ratio is k 6 1.

To reflect the experimental tests on railway tracks performed in Ref. 26, also reported in
Refs. 27 and 28, which showed that the lateral friction force acting on a track is a smooth function
of the lateral displacement, we introduce a hyperbolic profile defined as

pk (w) =−kw− (1− k) tanh(w), (2)

which is a regularization of the bi-linear model as they share the same asymptotic behaviors.
We assume that λ and pk are conservative forces, then strains are small compared to unity and
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the kinematics of the beam is given by the classical Euler–Bernoulli assumption. The imperfection
is also assumed to be small so that terms with higher powers of w0 or its derivatives are neglected
in the expression of the potential energy. Under these assumptions, the potential energy V with
low-order geometrically nonlinear terms is10

V =
∫ l

0

[
w′′2/2−λ

(
w′2/2+w′

0w′)−∫ w

0
pk (t) dt

]
dx, (3)

where a prime denotes differentiation with respect to x. The first term in the integral is the elastic
bending energy, the second is the work done by the load λ , and the last term is the energy stored
in the elastic foundation.

The equilibrium states are given by the critical values of V . Assuming a simply supported
beam, the boundary conditions are w(0) = w(l) = 0. Variations of Eq. (3) for an arbitrary kine-
matically admissible virtual displacement δw yields the weak formulation of the equilibrium prob-
lem∫ l

0

[
w′′′′+λ

(
w′′+w′′

0
)
− pk (w)

]
δwdx = 0, (4)

which is equivalent to the stationary Swift–Hohenberg equation

w′′′′+λ
(
w′′+w′′

0
)
− pk (w) = 0, (5)

along with static boundary conditions w′′ (0) = w′′ (l) = 0.

This boundary value problem is nonlinear because of the restoring force and its solutions are
highly sensitive to the length l, as shown in Ref. 4. Therefore, it is unrealistic to describe the
behavior of the system over a large range of variation for l. As done in Ref. 24, this study is
restricted to a finite length beam where l <

√
2π. For such values of l, a classical linear analysis10

shows that the first buckling mode is the most unstable one and appears for λc = λe +λ−1
e , where

λe = (π/l)2 is the Euler load.

To solve Eq. (4) we apply a Galerkin method with a trigonometric test function w of amplitude
y, w = ysin(πx/l), assuming that the deflection has the same shape as the first buckling mode and
the initial imperfection. For more details about the principle of the method, the reader is referred
to Ref. 24, where the procedure has already been used. In that paper, this method has been shown
to be reliable in the prediction of the equilibrium paths of the system, for k = 0. We shall see in
the present paper that it is actually reliable for any k 6 1, thereby extending the results of Ref. 24.

The insertion of δw = δysin(πx/l) in Eq. (4) yields∫ l

0
sin(πx/l)

[
w′′′′+λ

(
w′′+w′′

0
)
− pk (w)

]
dx = 0. (6)

Splitting the restoring force in a linear and a nonlinear term N (w) leads to pk (w) = −w −
(1− k)N (w). With this decomposition and w = ysin(πx/l), Eq. (6) can be rewritten as

λk = [λc y+(1− k)Q(y)/λe]/(a0 + y), (7)
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where the subscript k denotes the dependance of λ on the parameter k. The function Q takes into
account the nonlinear behavior of the restoring force and is given by

Q(y) = (2/l)
∫ l

0
sin(πx/l)N (ysin(πx/l))dx. (8)

For the restoring force models (1) and (2), Q is negative and decreases monotonically to the
asymptote −y+4/π for y → +∞. Thus λk is maximum for k = 1 (linear foundation) and has an
horizontal asymptote λ ∞

k = λe + kλ−1
e for y →+∞.

Equilibrium paths predicted by Eq. (7) are traced out in the plane (y = max(w) ,λ ) by grad-
ually incrementing y and evaluating λk, k and a0 being fixed. Predictions are compared with
a numerical solution of Eq. (5), using MATLAB’s boundary value solver bvp4c (this is a finite
difference code that implements a collocation formula, details of which can be found in Ref. 29).

The equilibrium paths predicted by the Galerkin method and the numerical solution are shown
in Fig. 3. A perfect agreement in the predictions is found for both restoring force models (the
relative error between the two methods being less than 0.1%). Since the Galerkin method was
initiated with a test function having the same shape as the imperfection, we conclude that the
deflection is just an amplification of the initial curvature. In other words, in the range l <

√
2π, no

localized buckling is observed for a beam on a bi-linear or hyperbolic foundation. This behavior
has also been reported in Ref. 4 for a linear foundation, showing a tendency toward localization
when increasing the beam length.
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Fig. 3. Equilibrium paths of a finite length beam on a nonlinear foundation. Markers: numerical predictions.
Lines: Galerkin solution. Rhombus: bi-linear restoring force model. Square: hyperbolic model. On each
subfigure, the equilibrium paths are plotted (from top to bottom) for a0 = 0, a0 = 0.0238, a0 = 0.595, and
a0 = 1.19, as shown in (d). The length of the beam is l = 3.
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As expected, the equilibrium paths traced out for the hyperbolic restoring force are below
those traced out for the bi-linear force, the hyperbolic profile modeling a softer foundation than
the bi-linear one. However, the choice of the restoring force has little influence on the shape of
the equilibrium paths.

For small a0, the equilibrium paths first increase to a maximum λm that is smaller (or equals
to in the case of a0 = 0) than the buckling load λc. Then, the paths asymptotically decrease to λ ∞

k .
In the case of a0 = 0, k = 1, they remain equal to λc. For high a0, the equilibrium paths increase
monotonically to the asymptote λ ∞

k 6 λc. The asymptotic value λ ∞
k = λc is reached for a0 = 0

and k = 1.
Note that for k < −λ 2

e , λ ∞
k is negative, so that equilibrium states with λ < 0 are predicted

(Fig. 3(a)). Physically, for k < −λ 2
e , the restoring force pk may become negative so that springs

are compressed, pushing up the beam. In this situation, the restoring force has a destabilizing
effect on the beam. To counteract this effect, a tensile force λ < 0 has to be applied.

The evolution of λm versus a0 is shown in Fig. 4. A gradual drop in the maximum load
admissible by the structure from λc to λ ∞

k is observed when increasing a0 (resp. decreasing k).
This gradual drop is highly sensitive to the restoring force model. A log scale applied on Fig. 4
shows that, for small imperfection sizes, the decay rate does not depend on k. λm −λc scales as
−a0 for the bi-linear model and as −a2/3

0 for the hyperbolic model.
For a0 larger than a critical value a0c, the equilibrium paths do not have a limit point anymore.

Actually, a path with no limit point may be seen as a path with a limit point at
(
∞,λ ∞

k

)
. Thereby,

a0c may be obtained from Eq. (7) by enforcing y → ∞ in dλk/dy = 0. Both restoring force models
leads to

a0c = (4/π)(1− k)/(λ 2
e + k), (9)

whose dimensional equivalent form is A0c = (4/π)[(K0 −K)∆(π4EI/L4 +K)−1].
The critical imperfection size predicted by Ref. 24 is therefore recovered in the particular

case K = 0, showing that A0c only depends on the limiting plateau K0 ∆ of the restoring force.30

Finally, since a0 is larger than 0, Eq. (9) shows that if k is less than −λ 2
e then the equilibrium

paths always have a limit point with λ ∞
k < λm < λc.

In this paper, we considered the buckling of an imperfect finite beam on a bi-linear/hyperbolic
foundation. The imperfection has been introduced as an initial curvature of size a0 and the foun-
dation stiffness ratio as a parameter k 6 1, extending the result of Ref. 24 derived for k = 0.
Equilibrium paths of the beam have been predicted using a Galerkin method initiated with a sin-
gle trigonometric function which has the same shape as the imperfection. Predictions compare
well with a numerical solution and lead to the conclusion that only periodic buckling can arise
for a finite beam on a bi-linear/hyperbolic foundation, as also observed in Ref. 4 for an linear
foundation.

We have shown the existence of a critical imperfection size a0c = 4(1− k)
[
π
(
λ 2

e + k
)]−1,

independent of the restoring force model. (1) For a0 < a0c, the maximum load diminishes with
increasing imperfection size, from λc = λe+λ−1

e for a0 = 0 to λe+kλ−1
e for a0 = a0c, λe = (π/l)2

being the Euler load. The decay rate has been shown to be sensitive to the restoring force model.
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In the limit of small a0, (λm −λc) scales as to −a0 for the bi-linear model and (λm −λc) scales
as to −a2/3

0 for the hyperbolic model. (2) For a0 > a0c, the maximum load simply corresponds to
λe + kλ−1

e .
Finally, we have shown that for k < −λ 2

e an imperfect finite beam on a bi-linear/hyperbolic
foundation can support a compressive load larger than λ ∞

k , and smaller than λc, whatever the
imperfection size is. This feature is highly interesting for an engineer since a0 is usually hard to
evaluate. The main results from this study are summarized in Fig. 5.
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Fig. 5. Diagram of existence of a limit point
for an imperfect finite beam on a bi-linear/hype-
rbolic foundation. k is the stiffness ratio of the
foundation and a0 the imperfection size. λe =
(π/l)2 is the Euler load, λc = λe+λ−1

e and λ ∞
k =

λe + kλ−1
e .

In the present paper, a bi-linear restoring force model for the foundation has been used but
plasticity effects that would emerge from loading/unloading cycles have not been considered.
Future works will have to highlight the way those effects could modify the maximum load that
the beam can support. A basic model would consist of considering a permanent deflection as an
imperfection whose size would grow up after each cycle. In that case, from the present study, it
is expected a decrease of the maximum load after each cycle, at least as long as the accumulated
deflection remains smaller than a threshold equivalent to a0c.

The author acknowledges Dr. M. Brojan for introducing to him the hyperbolic restoring force model and

Dr. Alban Sauret and Dr. Jay Miller for their insightful comments on this paper.
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