Latency-Aware Strategies for Deploying Data Stream Processing Applications on Large Cloud-Edge Infrastructure - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Cloud Computing Année : 2021

Latency-Aware Strategies for Deploying Data Stream Processing Applications on Large Cloud-Edge Infrastructure

Résumé

Internet of Things (IoT) applications often require the processing of data streams generated by devices dispersed over a large geographical area. Traditionally, these data streams are forwarded to a distant cloud for processing, thus resulting in high application end-to-end latency. Recent work explores the combination of resources located in clouds and at the edges of the Internet, called cloud-edge infrastructure, for deploying Data Stream Processing (DSP) applications. Most previous work, however, fails to scale to very large IoT settings. This paper introduces deployment strategies for the placement of DSP applications on to cloud-edge infrastructure. The strategies split an application graph into regions and consider regions with stringent time requirements for edge placement. The proposed Aggregate End-to-End Latency Strategy with Region Patterns and Latency Awareness (AELS+RP+LA) decreases the number of evaluated resources when computing an operator’s placement by considering the communication overhead across computing resources. Simulation results show that, unlike the state-of-the-art, AELS+RP+LA scales to environments with more than 100k resources with negligible impact on the application end-to-end latency.
Fichier principal
Vignette du fichier
config-scalability.pdf (914 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03347555 , version 1 (17-09-2021)

Identifiants

Citer

Alexandre da Silva Veith, Marcos Dias de Assuncao, Laurent Lefèvre. Latency-Aware Strategies for Deploying Data Stream Processing Applications on Large Cloud-Edge Infrastructure. IEEE Transactions on Cloud Computing, 2021, pp.1-12. ⟨10.1109/TCC.2021.3097879⟩. ⟨hal-03347555⟩
78 Consultations
302 Téléchargements

Altmetric

Partager

More