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Abstract

The Non-Compensatory Sorting model aims at assigning alternatives evaluated on multiple criteria to
one of the predefined ordered categories. Computing parameters of the Non-Compensatory Sorting model
compatible to a set of reference assignments is computationally demanding. To overcome this problem,
two formulations based on Boolean satisfiability have recently been proposed to learn the parameters of
the Non-Compensatory Sorting model from perfect preference information, i.e. when the set of reference
assignments can be completely represented in the model. In this paper, two popular variants of the
Non-Compensatory Sorting model are considered, the Non-Compensatory Sorting model with a unique
profile and the Non-Compensatory Sorting model with a unique set of sufficient coalitions. For each
variant, we start by extending the formulation based on a separation principle to the multiple category
case. Moreover, we extend the two formulations to handle inconsistency in the preference information
using the Maximum satisfiability problem language. A computational study is proposed to compare the
efficiency of both formulations to learn the two Non-Compensatory Sorting models (with a unique profile
and with a unique set of sufficient coalitions) from noiseless and noisy preference information.

Keywords— Multiple criteria analysis, Non-Compensatory Sorting, Preference Learning, SAT/MaxSAT

Introduction
Multiple Criteria Decision Analysis (MCDA) aims at developing decision-support models explicitly based on the
construction of a set of criteria reflecting the relevant aspects of the decision-making problem. These n criteria
(N = {1, 2, . . . , n} with n ≥ 2) evaluate a set of alternatives A = {a, b, c, ...} under consideration with respect to
different viewpoints. The MCDA literature considers different problem statements to formulate real-world decision
problems; [45] distinguishes three problem statements: choice, sorting and ranking. As opposed to choice and ranking
problem formulations which are comparative in nature, sorting formulates the decision problem in terms of the
assignment of alternatives to one of the predefined ordered categories C1, C2, ...Cp, where C1 (Cp, resp.) is the worst
(the best, resp.) category. The assignment of an alternative to the appropriate category relies on its intrinsic value, and
not on its comparison with other alternatives.

In this paper, we are interested in a specific sorting procedure: the Non-Compensatory Sorting (NCS) model
[11, 12], which corresponds to a generalization and formal description of the Electre Tri procedure [21]. One of its
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†Université de Technologie de Compiègne, CNRS, Heudiasyc, France
‡Corresponding author

1
© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0377221721006858
Manuscript_1851ee85abd4135104493b9a1ef2de25

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0377221721006858
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0377221721006858


specificity is to account for the alternative evaluations in an ordinal perspective avoiding compensation and enables to
deal meaningfully with qualitative data.

We consider a decision aiding process in which two participants are involved to model a sorting problem using
NCS: a decision maker (DM) looking for a recommendation and an analyst to support the DM in the search for this
recommendation. Thus, the role of the analyst is to interact with the DM in order to help her to elaborate her preferences
which are generally not fully predefined at the beginning of the decision process. The DM expresses preferences from
which a specific NCS model is inferred. More specifically, the information supplied by the DM in order to specify
the NCS sorting model are assignment examples (alternatives that should be assigned to a category). It should be
highlighted that the construction of the learning set and the NCS model often results from a sequence of interactions
between the DM and the analyst rather than in a one-step interaction.

In this perspective, the inverse Non-Compensatory Sorting problem (Inv-NCS, see section 3.1) takes as input a
set of assignment examples, and computes (whenever it exists) an NCS sorting model which is consistent with this
preference information. In other words, Inv-NCS learns the NCS parameters that perfectly match a set of desired
outputs (assignment examples). Solving Inv-NCS problem is computationally difficult and have been proved to
be NP-hard [6]. Mixed-integer linear formulations [35, 56] and heuristic resolution approaches [52, 51] have been
proposed for Inv-NCS.

Recently, [5] proposed a SAT formulation of this problem which proves to be computationally more efficient than
previous approaches. In this paper, we report a second SAT formulation for Inv-NCS [6] described in the context of two
categories. We extend this second formulation to the multiple category case and perform numerical tests to compare the
performance of these two SAT formulations. Nevertheless, in the SAT problem, it is assumed that the set of assignment
examples is fully compatible with NCS. Therefore, we are interested in extending both SAT formulations to handle
inconsistency in preference information which is often the case in real-world decision problems.

Indeed, in actual case studies, preference expressed by DMs are often inconsistent, due to the multiplicity of DMs,
the fact that their preferences are not necessarily predefined and can evolve during the elicitation process. Handling
inconsistencies when considering a set of preference statements on a set of multicriteria alternatives has been already
tackled in the literature through mathematical programming (see, e.g. [41]) or the analysis of reciprocal preference
relations (see, e.g. [26]). In this work, we consider handling inconsistency with MaxSAT language, where a SAT
formulation is complemented with an implicit objective function, so that the number of satisfied clauses is maximal,
allowing to best satisfy an unsatisfiable instance and consequently to best restore the assignment examples set.

The paper is organized as follows. In the first section, we propose an analysis of the recent literature on multicriteria
sorting methods. Section 2 presents the NCS model. Inv-NCS, the problem of learning the parameters of NCS from
assignment examples is defined in Section 3. In Section 4, we present the two SAT formulations for Inv-NCS. In
Section 5, we extend SAT formulations with MaxSAT language, and Section 6 describes the empirical test design, the
experimental results and a discussion. A final section groups conclusions and avenues for further research.

The main contributions of the paper concern the extension of the separation-based SAT formulation to the case of
more than two categories (the end of section 4), the extension of the SAT formulations to MaxSAT to account for noisy
input (Section 5), and empirical results providing insights on how our methods behave on actual data sets (Section 6).
However, we also provide a comprehensive description of the NCS models (Section 2), so as to provide a self-contained
text, as well as a brief survey of the recent literature concerning the elicitation of MCDA sorting models (Section 1).

1 Recent Literature on Multiple Criteria Sorting Methods
Many multicriteria sorting models have been proposed in the literature (see [17] for an overview). These multicriteria
sorting models can be distinguished according to the way they model preferences: (i) the ones that model preferences
using a multi-attribute value function (e.g., [16], [39], [33], [15], [47]), (ii) the ones that model preferences using
outranking relations (e.g., [44], [43], [32],[20], [2]), and (iii) those which represent preferences using if-then rules
(e.g., [24], [10], [31] [46]). Recently [30] proposed a method which corresponds to a hybridization of value-based and
rule-based approaches.

Learning preference models from preference data to faithfully represent the DM’s judgment has been considered
since several decades in the literature. In the context of MCDA, a well-known example of such an approach is the UTA
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method proposed in [27] in the case of an additive multicriteria value model. Learning an Electre Tri model (the initial
multicriteria sorting procedure from which NCS was formalized, see [44]) from assignment examples was initially
formulated using non-linear programming in [42].

A significant number of authors did focus on the robustness of sorting results. Some approaches are based on
robust ordinal regression, e.g. [25], while some others focus on a stochastic approach, e.g. [54]. Another concern
which emerged from the literature on sorting methods concerns the ability to explain the result to the decision maker in
order to reinforce her trust (see [34], [4], [6]).

Since one decade, the literature on outranking-based sorting has widely expanded: based on the Electre Tri method
[44], new sorting methods have been proposed defining categories using one or several limit profiles (see [19], [20]),
one or several central profiles (see [1], [32], [2]). In parallel, several theoretical and axiomatic works have contributed
to a better understanding of these methods (see [11, 12], [13]).

An additional significant advance in the literature concerns the new proposals in incremental elicitation of sorting
methods (see [8, 9], [29]). These works propose a strategy to iteratively select questions to be asked to the decision
maker in order to limit the number of questions.

Several new sorting methods allow to cope with possible interaction between criteria (see e.g. [36], [18]). The
possibility to represent preferences in a hierarchical structure of criteria has also been considered (see [3]). Some
authors also consider non monotone preferences in sorting methods (see [38], [40], [37]). These features enable sorting
methods to account for more flexible preferences.

Another important trend in the sorting literature concerns the cross-fertilization between the field of MCDA sorting
and preference learning ([23]). These two communities have now a common conference DA2PL (from Decision
Analysis to Preference Learning) which takes place every second year since 2012. Among preference learning related
work, one can cite [48], [38], [36], [37], [18], [46]. It should be noted that in this perspective, medical applications
have been a fruitful application domain (see e.g [55] , [49], [53]).

Coming back specifically to outranking-based sorting, previous works have proposed approaches to learn the
parameters of an MR-Sort model (specific case of an NCS model in which the set of sufficient coalitions of criteria are
defined using additive weights) based on a learning set. This MIP formulation minimizes the 0/1 loss, i.e. searches for a
model that is compatible with as many examples as possible. Such MIP based exact approach has been extended to NCS
2-additive models ([51]). However, experimental results showed that such MIP approach becomes computationally
prohibitive with a large number of assignment (learning an MR-Sort model with 100 alternatives, 5 criteria and 3
categories involve a MIP with 1100 binary variables, and the computing time exceeds 100 seconds).

To cope with the computational burden, a heuristic approach has been proposed to learn an MR-Sort model from
assignment examples by [48, 52] which can handle large datasets, but losing optimality guaranty. More recently [5]
defined a Boolean satisfiability formulation of Inv-NCS, which keeps optimality guarantee while enabling computations
even for real-size datasets. In this paper, we continue and extend this work.

2 Non-Compensatory Sorting models
This section is devoted to the presentation of the Non-Compensatory Sorting model, introduced in [11, 12].

2.1 Basic notations
Multicriteria sorting aims at assigning alternatives to one of the predefined ordered categories C1 ≺ . . . ≺ Cp. All
alternatives in a set A are evaluated on n criteria, N = {1, 2, . . . , n}; hence, an alternative a ∈ A is characterized by
its evaluation vector (a1, . . . , an), with ai ∈ Xi denoting its evaluation on criterion i. Each criterion is equipped with a
weak preference relation %i defined on Xi. We assume, without loss of generality, that the preference on each criterion
increases with the evaluation (the greater, the better). We denote by X =

∏
i∈N Xi the cartesian product of evaluation

scales.
We recall the definitions of an upset and the upper closure of a subset w.r.t. a binary relation:

Definition 2.1. (Upset and upper closure). Let A be a set and R a binary relation on A. An upset of (A,R) is a
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subset B ⊆ A such that ∀a ∈ A, ∀b ∈ B, aRb⇒ a ∈ B. The upper closure of a subset of (A,R) is the smallest upset
of (A,R) containing it: ∀B ⊆ A, clRA(B) := {a ∈ A : ∃b ∈ B aRb}

2.2 Sorting into two categories
In the Non-Compensatory Sorting model (NCS), the boundaries between categories are defined by limiting profiles.
Therefore, a single profile corresponds to the case where alternatives are sorted between two ordered categories that we
label as GOOD and BAD. A pair of parameters describe a specific sorting procedure:

• a limiting profile b ≡ 〈bi〉i∈N that defines, according to each criterion i ∈ N , an upper set Ai ⊂ Xi of approved
values at least as good as bi (and, by contrast, a lower set X \ Ai ⊂ Xi of disapproved values strictly worse than
bi), and

• a set T of sufficient coalitions of criteria, which satisfies monotonicity with respect to inclusion.

These notions are combined into the following assignment rule:

∀x ∈ X, x ∈ GOOD ⇐⇒ {i ∈ N : xi %i bi} ∈ T

An alternative is considered as GOOD if, and only if, it is better than the limiting profile b according to a sufficient
coalition of criteria.

2.3 Sorting into multiple categories
With p categories, the parameter space is extended accordingly, with approved sets 〈Aki 〉i∈N , k∈[2..p] defined by a set of
limiting profiles 〈bki 〉i∈N , k∈[2..p] and sufficient coalitions 〈T k〉k∈[2..p] declined per boundary.

The ordering of the categories {C1 ≺ . . . ≺ Cp} translates into a nesting of the sufficient coalitions: ∀k ∈ [2..p],
T k is an upset of (2N ,⊆) and T 2 ⊇ · · · ⊇ T p, and also a nesting of the approved sets: ∀i ∈ N ,∀k ∈ [2..p], Aki is an
upset of (Xi,-i) and A2

i ⊇ · · · ⊇ A
p
i .

These tuples of parameters are augmented on both ends with trivial values: T 1 = P(N ), T p+1 = ∅, and ∀i ∈ N ,
A1
i = X, Ap+1

i = ∅. With ω = (〈 Aki 〉i∈N , k∈[2..p], 〈 T k 〉k∈[2..p]), [12] defines the sorting function NCSω from X to
{C1 ≺ . . . ≺ Cp} with the Non-Compensatory Sorting rule:

NCSω(x) = Ck ⇔

{
{i ∈ N : x ∈ Aki } ∈ T k

and {i ∈ N : x ∈ Ak+1
i } /∈ T k+1

(1)

Note that [11, 12] define a broader class of sorting method which includes vetoes which makes it possible for
a single criterion to forbid the assignment to a class. Throughout this paper, we only consider NCS without veto;
therefore, we should formally write NCS without veto all along with the paper. However, to facilitate the reading, we
choose to write NCS even if we consider NCS models without a veto.

2.4 An illustrative example
A journalist prepares a car review for a forthcoming issue. She considers a number of popular car models and wants to
sort them to present a sample of cars “selected for you by the editorial board” to the readers. This selection is based on
four criteria: cost (e), acceleration (time, in seconds, to reach 100 km/h from full stop – lower is better), braking power
and road holding, both measured on a qualitative scale ranging from 1 (lowest performance) to 4 (best performance).
The performances of the six models are described in Table 1.
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model cost acceleration braking road holding
m1 16 973e 29.0 sec. 2.66 2.5
m2 18 342e 30.7 sec. 2.33 3
m3 15 335e 30.2 sec. 2 2.5
m4 18 971e 28.0 sec. 2.33 2
m5 17 537e 28.3 sec. 2.33 2.75
m6 15 131e 29.7 sec. 1.66 1.75

Table 1: Performance table.

In order to assign these models to a category among C1? (average) ≺ C2? (good) ≺ C3? (excellent), the journalist
considers an NCS model:

• The attributes of each model are sorted between average (?/ �), good (??/ � ) and excellent (? ? ?/ � ) by
comparison to the profiles given in Table 2. The resulting labeling of the six alternatives according to each
criterion is depicted in Figure 1 and Table 3.

profile cost acceleration braking road holding
b1? 17 250e 30.0 sec. 2.2 1.9
b2? 15 500e 28.8 sec. 2.5 2.6

Table 2: Limiting profiles.

Figure 1: Representation of performances w.r.t. category limits.

• These appreciations are then aggregated by the following rule: an alternative is categorized good or excellent if
it is good or excellent on cost or acceleration, and good or excellent on braking or road holding. It is categorized
excellent if it is excellent on cost or acceleration, and excellent on braking or road holding. Being excellent on
some criterion does not really help to be considered good overall, as expected from a Non-Compensatory model.
Sufficient coalitions are represented on Figure 2. Finally, the model yields the assignments presented in Table 4.
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model cost acceleration braking road holding
m1 ?? ?? ? ? ? ??
m2 ? ? ?? ? ? ?
m3 ? ? ? ? ? ??
m4 ? ? ? ? ?? ??
m5 ? ? ? ? ?? ? ? ?
m6 ? ? ? ?? ? ?

Table 3: Categorization of performances.

Alternatives m1 m2 m3 m4 m5 m6

Assignment ?? ? ?? ?? ? ? ? ?

Table 4: Alternative assignments.

Figure 2: Sufficient (green/thick-bordered) and insufficient (red/thin-bordered) coalitions of criteria. Arrows denote coalition
strength.

2.5 Variants of the NCS Model
In this section, we mention a number of variants of the Non-Compensatory Sorting model that can be found in the
literature. Note that [11, 12] define the NCS class of sorting method, which includes the possibility of vetoes. In
this paper, we only consider NCS without veto, but it should be highlighted that the broader class of NCS model
can include vetoes, as depicted in Figure 3. Among NCS models without veto, there exist variants corresponding to
simplifications of the model, with additional assumptions that restrict the parameters—limiting profiles and sufficient
coalitions—either explicitly or implicitly.
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The set of preference parameters – all the pairs (〈A〉, 〈T 〉) can be considered too wide and too unwieldy for
practical use in the context of a decision aiding process. Therefore, following [12], one may consider to explicitly
restrict either the sequence of limiting profiles, or the sequence of sufficient coalitions:

• UC-NCS: Non-Compensatory Sorting with a unique set of sufficient coalitions: T 2 = · · · = T p;

• UB-NCS: Non-Compensatory Sorting with a unique limiting profile b2 = · · · = bp or, equivalently, ∀i ∈
N , A2

i = · · · = Api .

It worth to be noted that an NCS model which is in UC-NCS and UB-NCS simultaneously corresponds necessarily
to a model with two categories (cf. the intersection colored in blue in Figure 3).

Another simplifying assumption consists in representing sufficient coalitions additively in an analogy to a voting
setting: each criterion i ∈ N is assigned with a voting power wi ≥ 0 so that a given coalition of criteria B ⊆ N is
deemed sufficient if, and only if, its combined voting power

∑
i∈B wi is greater than a given qualification threshold λ.

∃λ, 〈wi〉i∈N ∈ [0, 1] : ∀B ⊆ N , B ∈ T ⇐⇒
∑
i∈B

wi ≥ λ. (2)

With this rule, the sufficient coalitions are represented in a compact form which is more amenable to linear programming.
This additive version of UC-NCS is frequently called MR-Sort (for majority rule sorting) in the literature (see, e.g.
[35]).

A more general way to describe possible interactions between criteria coalitions is to represent these coalitions
using a capacity µ : 2N 7→ [0, 1], with µ(∅) = 0, µ(N ) = 1, and µ(B) ≥ µ(A), for all A ⊆ B ⊆ N . The
Möbius transform allows to express a capacity µ in another form: µ(A) =

∑
B⊆Am(B),∀A ⊆ N with m(B) =∑

C⊆B(−1)|B|−|C|µ(C). The valuem(B) can be interpreted as the weight that is allocated toB as a whole. A capacity
can be defined directly by its Möbius transform also called Möbius interaction. A Möbius interaction or Möbius mass
m is a set function m : 2N 7→ [−1, 1] satisfying the hereafter conditions which guarantee that µ is monotone (see
[14]): ∑

j∈K⊆J∪{j}

m(K) ≥ 0,∀j ∈ N , ∀J ⊆ N \ {j} and
∑
K⊆N

m(K) = 1.

Using such representation, it is possible to consider 2-additive (k-additive, resp.) capacities for which all the
interactions involving more than 2 (k, resp.) criteria are equal to zero. 2-additive and k-additive MR-Sort (2-additive
and k-additive UC-NCS) are represented in Figure 3 (although not depicted, it is also possible to consider k-additive
UB-NCS).
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Figure 3: Variants of the NCS model.

3 Learning an NCS model from data
For a given decision situation, assuming the NCS model is relevant to structure the decision maker’s preferences,
what should be the parameters’ values to fully specify the NCS model that corresponds to the decision-maker (DM)
viewpoint? An option would be to simply ask the decision-maker to describe, to her best knowledge, the limit profiles
between categories and to enumerate the minimal sufficient coalitions. To get this information as quickly and reliably
as possible, an analyst could make good use of the model-based elicitation strategy described in [7], as it permits to
obtain these parameters by asking the decision-maker to only provide holistic preference judgment – should some
(fictitious) alternative be assigned to some category – and build the shortest questionnaire.

We opt for a more indirect setup, close to a machine learning paradigm [23], where a set of reference assignments
is given and assumed to describe the decision-maker’s point of view, and the aim is to extend these assignments with an
NCS model. In this context, we usually refer to an assignment as a function mapping a subset of reference alternatives
X? ⊂ X to the ordered set of categories C1 ≺ · · · ≺ Cp. These reference alternatives highlight values of interest on
each criterion i ∈ N , X?i =

⋃
x∈X?{xi}. We refer to the problem of finding suitable preference parameters specifying

a Non-Compensatory sorting model by Inv-NCS.

3.1 NCS and Inv-NCS
Instances. An instance of the Inv-NCS problem is a sextuple (N ,X, 〈 %i 〉i∈N , X?, {C1 ≺ . . . ≺ Cp}, α) where:

• N is a set of criteria;

• X is a set of alternatives;

• 〈 %i 〉i∈N ∈ X2 are preferences on criterion i, i ∈ N , %i⊂ X2 is a total pre-ordering of alternatives according
to this criterion;

• X? ⊂ X is a finite set of reference alternatives;

• {C1 ≺ . . . ≺ Cp} is a finite set of categories totally ordered by exigence. We denoteC�k (resp. C�k, C�k, C≺k)
the category interval {Ck ≺ · · · ≺ Cp} (resp. {Ck+1 ≺ · · · ≺ Cp}, {C1 ≺ . . . Ck}, {C1 ≺ · · · ≺ Ck−1});
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• α : X? → {C1 ≺ . . . ≺ Cp} is an assignment of the reference alternatives to the categories. Therefore, ‘α−1’
is the associated inverse function i.e. for a given category Ch, α−1(Ch) = {x ∈ X? : x ∈ Ch}. For any
comparison operator ∆ ∈ {�,�,≺,�}, we also denote α−1(C∆h) := {x ∈ X? : x ∈ Ck, Ck∆ Ch}.

When referring to an instance, we often shorten this sextuple as ‘α’.

Parameters. Given a context, a parameter ω of the NCS model is a couple (〈 Aki 〉i∈N , k∈[2..p], 〈 T k 〉k∈[2..p]),
where the sufficient coalitions satisfy: ∀k ∈ [2..p], T k is an upset of (2N ,⊆), and T 2 ⊇ · · · ⊇ T p; and the approved
sets satisfy ∀i ∈ N , ∀k ∈ [2..p], Aki is an upset of (Xi,-i) and A2

i ⊇ · · · ⊇ A
p
i .

Sorting rule. Given a parameter ω = (〈 Aki 〉i∈N , k∈[2..p], 〈 T k 〉k∈[2..p]), augmented with trivial values T 1 :=

P(N ), T p+1 := ∅, ∀i ∈ N , A2
i = X, Ap+1

i = ∅, NCSω is the function from X to {C1 ≺ . . . ≺ Cp} satisfying:

NCSω(x) = Ck ⇔

{
∀k′ ≤ k, {i ∈ N : x ∈ Ak′i } ∈ T k

′
and

∀k′ > k, {i ∈ N : x ∈ Ak′i } /∈ T k
′
.

(3)

This rule can be equivalently written as follows:

NCSω(x) ∈ C�k ⇔ {i ∈ N : x ∈ Aki } ∈ T k. (4)

Solutions. Given a context, a solution of the instance α of the Inv-NCS problem is a parameter ω of the NCS model
such that ∀x ∈ X?, α(x) = NCSω(x).

3.2 Literature related to Inv-NCS
Learning preference models from preference data to faithfully represent the DM judgment has been considered since
several decades in the literature. In the context of MCDA, a well-known example of such an approach is the UTA
method proposed in [27] in the case of an additive multicriteria value model. Learning an Electre Tri model (the initial
multicriteria sorting procedure from which NCS was formalized, see [44]) from assignment examples was initially
formulated using non-linear programming in [42]. A mixed-integer linear formulation was proposed by [35] to learn an
additive majority rule sorting model (MR-Sort: additive NCS without veto) from a dataset; however, these approaches
were not able to handle datasets corresponding to real-world problems. Recently, [28] proposed an enriched framework
to elicit and Electre Tri B model and analyze its results.

To cope with the computational burden, a heuristic approach has been proposed to learn an MR-Sort model from
assignment examples by [48, 52] which can handle large datasets, but losing optimality guaranty. More recently [5]
defined a Boolean satisfiability formulation of Inv-NCS, which keeps optimality guarantee while enabling computations
even for real-size datasets. In this paper, we continue and extend this work.

4 Boolean Satisfiability formulations for the Inv-NCS problem
This section is devoted to the presentation of two formulations of the inverse Non-Compensatory Sorting problem, first
described respectively in [5] and [6], in the framework of Boolean satisfiability. They reduce the problem of finding
the parameters of an NCS model faithfully reproducing a given assignment of alternatives to categories to the SAT
problem of finding an assignment of Boolean variables that verify a given propositional formula written in conjunctive
normal form1.

1For the convenience of EJOR readers, who might be more accustomed to the formalism of Mathematical Programming,
we treat SAT as the tiny subset of MP where the variables are restricted to the {0, 1} domain, the objective function is null,
and the constraints are limited to linear forms of the type

∑
i∈C+

j
xi +

∑
i∈C−

j
(1 − xi) ≥ 1, corresponding to the clause∨

i∈C+
j
xi ∨

∨
i∈C−

j
¬xi.
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The two formulas stem from different representation strategies. One, detailed in section 4.1 and introduced in
[5], establishes a bijection between the parameter space of the NCS model and the valuations of the propositional
variables, and therefore introduces a number of variables that is exponential in the number of criteria. The other is
detailed in section 4.3 and was introduced in [6]. It leverages a powerful representation theorem, detailed in section 4.2,
that allows keeping implicit the set of coalitions, by introducing the notion of pairwise separation, formulated using
pairs of alternatives given in the assignment.

Appendix A complements this section by providing previously unpublished formulations for the case where there
are more than two categories, including the variants with a unique profile or a unique set of sufficient coalitions
described in Section 2.5.

4.1 A SAT formulation for Inv-NCS based on coalitions
This section describes and extends a SAT formulation for Inv-NCS initially given in [5]. We provide here an informal
presentation of the approach; formal justification can be found in [5]. The formulation ΦC

α yielded by the encoding
presented in this section is based on an explicit representation of the parameter space of the Non-Compensatory Sorting
model—each the pairs are composed of a sequence of approved sets and a sequence of sufficient coalitions.

The explicit representation requires involving two families of binary variables. The first family defines the approved
sets according to the set of criteria such that for a given alternative, level and criterion, the associated variable equals 1
if and only if the alternative is approved at the considered level according to the considered criterion. The second family
of binary variables uniquely specifies the set of sufficient coalitions for each level i.e. given a coalition of criteria, the
associated variable equals 1 if and only if the coalition is sufficient. The SAT formulation based on coalitions aims at
learning both NCS parameters (〈 Aki 〉i∈N , k∈[2..p], 〈 T k 〉k∈[2..p]) from a set of assignment examples, thus, two types
of clauses are considered. The first type of clauses defines these parameters and reproduces the structural conditions
i.e.: the monotony of scales, approved sets and sufficient coalitions sets are ordered by inclusion and for each level the
corresponding set sufficient coalitions is monotone by inclusion. The second type of clauses ensures the restoration of
the assignment examples.

Variables. The Boolean function ΦC
α operates on two types of variables:

• ‘a’ variables, indexed by a criterion i ∈ N , an exigence level k ∈ [2..p] and a reference value x ∈ X?, represent
the approved sets Aki , with the following semantic: ai,k,x = 1⇔ x ∈ Aki i.e. x is approved at level k
according to i;

• ‘t’ variables, indexed by a coalition of criteria B ⊆ N and an exigence level k ∈ [2..p], represent the sufficient
coalitions T k, with the following semantic: tB,k = 1⇔ B ∈ T k i.e. the coalition B is sufficient at level k;

Clauses. For a boolean function written in conjunctive normal form, the clauses are constraints that must be satisfied
simultaneously by any antecedent of 1. The formulation ΦC

α is built using six types of clauses:

• Clauses φC1
α ensure that each approved set Aki is an upset of (X?,-i): if for a criterion i and an exigence value

k, the value x is approved, then any value x′ %i x must also be approved.

• Clauses φC2
α ensure that approved sets are ordered by a set inclusion according to their exigence level: if an

alternative x is approved at exigence level k according to the criterion i, it should also be approved at exigence
level k′ < k.

• Clauses φC3
α ensure that each set of sufficient coalitions T is an upset for inclusion: if a coalition B is deemed

sufficient at exigence level k, then a stronger coalition B′ ⊃ B should also be deemed sufficient at this level.

• Clauses φC4
α ensure that a set of sufficient coalitions are ordered by inclusion according to their exigence level:

if a coalition B is deemed insufficient at exigence level k, it should also be at any level k′ > k.
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• Clauses φC5
α ensure that each alternative is not approved by a sufficient coalition of criteria at an exigence level

above the one corresponding to its assigned category.

• Clauses φC6
α ensure that each alternative is approved by a sufficient coalition of criteria at an exigence level

corresponding to its assignment.

Definition 4.1. Given an instance of Inv-NCS with an assignment α : X? → {C1 ≺ . . . ≺ Cp}, the boolean function
ΦC
α with variables 〈ai,k,x〉i∈N , k∈[2..p], x∈X? and 〈tB,k〉B⊆N , k∈[2..p], is defined as the conjunction of clauses:

ΦC
α = φC1

α ∧ φC2
α ∧ φC3

α ∧ φC4
α ∧ φC5

α ∧ φC6
α

φC1
α =

∧
i∈N , k∈[2..p]

∧
x′ %i x ∈X? (ai,k,x′ ∨ ¬ai,k,x)

φC2
α =

∧
i∈N , k < k′∈[2..p], x∈X? (ai,k,x ∨ ¬ai,k′,x)

φC3
α =

∧
B ⊂B′ ⊆N , k∈[2..p] (tB′,k ∨ ¬tB,k)

φC4
α =

∧
B⊆N , k < k′∈[2..p] (tB,k ∨ ¬tB,k′)

φC5
α =

∧
B⊆N , k∈[2..p]

∧
x∈α−1(Ck−1) (

∨
i∈B ¬ai,k,x ∨ ¬tB,k)

φC6
α =

∧
B⊆N , k∈[2..p]

∧
x∈α−1(Ck) (

∨
i∈B ai,k,x ∨ tN\B,k)

Written as such, clauses of ΦC
α are highly redundant, possibly threatening computational efficiency2. Instead, it is

sufficient to consider clauses where ordered elements in a pair are adjacent to each other.

Model variants. As discussed in Section 2.5, the NCS model has many variants. ΦC
α can easily be modified to

account for two popular restrictions of the model:

• UB-NCS (Unique profiles): Drop the index k concerning the exigence level for the ‘a’ variables, ignore the
conjunction over exigence levels for clauses φC1

α , and ignore clauses φC2
α altogether;

• UC-NCS (Unique set of sufficient coalitions): Drop the index k concerning the exigence level for the ‘t’
variables, ignore the conjunction over exigence levels for clauses φC3

α and ignore clauses, φC4
α altogether.

4.2 A characterization based on pairwise separation
4.2.1 The case of two categories

The problem of finding simultaneously the sets of accepted values of the criteria and the sets of sufficient coalitions has
been considered computationally difficult from the onset. In this light, the assumption of an additive representation
of sufficient coalitions with the majority rule can be considered as a convenient way to keep the search somewhat
tractable3. Indeed, when the accepted values are known, finding the parameters (the voting power of each criterion and
the qualification threshold) of a suitable majority rule becomes a mere linear program with continuous variables and
can be solved in polynomial time. It is possible to represent the NCS model with two categories in the MAVT paradigm,
using full-fledged |N |-ary capacities, but the corresponding linear program requires 2|N | variables. This approach is
deceptively difficult, though, and we shall see that, from the viewpoint of Computer Theory, Inv-NCS is actually not
more difficult than its restriction to additive coalitions. This result comes from a simple series of observations. In the
following, we suppose given a set of reference alternatives X?, an assignment α : X? → { GOOD , BAD }, and a tuple
of accepted values 〈Ai〉 ∈ P(X)|N | such that, for each point of view i ∈ N , Ai is an upset of (X,%i).

2Even though SAT solvers often perform better on reasonably overconstrained problems.
3This assumption might also have some relevance w.r.t. intelligibility and parsimony.
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Observably sufficient and insufficient coalitions. Consider the sets of coalitions defined by

S〈Ai〉(α) := cl⊇P(N )

(⋃
g∈α−1( GOOD )

{
{i ∈ N : g ∈ Ai}

})
, (6)

F〈Ai〉(α) := cl⊆P(N )

(⋃
b∈α−1( BAD )

{
{i ∈ N : b ∈ Ai}

})
. (7)

Any coalition in S〈Ai〉(α) is a superset of the set of criteria according to which some GOOD alternative is accepted, and
should, therefore, be accepted. Thus, S〈Ai〉(α) is a lower bound of the set of sufficient coalitions for any solution of Inv-
NCS. Conversely, any coalition in F〈Ai〉(α) is a subset of the set of criteria according to which some BAD alternative
is accepted, and should, therefore, be rejected. Thus, P(N ) \ F〈Ai〉(α) is an upper bound of the set of sufficient
coalitions for any solution of Inv-NCS.

Characterization of solutions of Inv-NCS. The parameter (〈Ai〉, T ) is a solution of the instance α of Inv-NCS
if and only if:

S〈Ai〉(α) ⊆ T ⊆ P(N ) \ F〈Ai〉(α) (8)

Remarkably, this equation allows to characterize the positive instances of Inv-NCS without referring to the set of
sufficient of coalitions of a solution, solely by checking if the sets T〈Ai〉(α) and F〈Ai〉(α) are disjoint. This leads to the
following elegant and efficient characterization, based on the notion of pairwise separation.

Theorem 4.1. An assignment α of alternatives to categories can be represented in the Non-Compensatory Sorting
model if, and only if, there is a tuple 〈Ai〉 ∈ P(X)|N | such that:

1. (Upset): for each point of view i ∈ N , Ai is an upset of (X,%i); and

2. (Pairwise separation): for each pair of alternatives (g, b) ∈ α−1( GOOD )× α−1( BAD ), there is at least one
point of view i ∈ N such that g ∈ Ai and b /∈ Ai.

This theorem provides a polynomial certificate for the positive instances of the Inv-NCS problem, thus proving its
membership of the NP complexity class as a corollary. Proofs of Theorem 4.1, and of the NP-hardness of Inv-NCS can
be found in [6]. The extension of this characterization to any number of categories is straightforward and is presented
in the following section and Appendix A.

4.2.2 The case of more than two categories

The case where there are p > 2 categories {C1 ≺ . . . ≺ Cp} requires a few adaptations of the formulation. It relies
mostly on the fact that an NCS model with p categories is, informally, the combination of p − 1 NCS models with
two categories whose parameters satisfy the nesting conditions on the sufficient coalitions of criteria and the accepted
values.

Given an assignment α and an exigence level k ∈ [2..p], we define the set of alternatives assigned to categories
better than and including Ck denoted C�k and the set of alternatives assigned to categories worse than Ck denoted
C≺k as:

C�k =
⋃

h∈[k..p]

Ch; C≺k =
⋃

h∈[2..k−1]

Ch

We extend equations (6) and (7) so that, at a given exigence level k, observably sufficient coalitions account for
“good” alternatives in C�k and observably insufficient coalitions account for “bad” alternatives in C≺k.

Definition 4.2. (Observed sufficient and insufficient coalitions given approved sets). Given an assignment α : X? →
{C1 ≺ . . . ≺ Cp}, approved sets 〈 Aki 〉i∈N , k∈[2..p] such that Aki is an upset of (Xi,-i) and A2

i ⊇ · · · ⊇ A
p
i , we

note, for any exigence level k ∈ [2..p]:

Sk〈Ak
i 〉

(α) = Cl⊇P(N )(
⋃

g∈α−1(C�k)

{i ∈ N : g ∈ Ai})

Fk〈Ak
i 〉

(α) = Cl⊆P(N )(
⋃

b∈α−1(C≺k)

{i ∈ N : b ∈ Ai})
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By construction: each set S2
〈Ak

i 〉
(α) is an upset for inclusion; the sets 〈Sk〈Ak

i 〉
(α)〉 are nested (i.e. S2

〈Ak
i 〉

(α) ⊆
· · · ⊆ Sp〈Ak

i 〉
(α)); each set Fk〈Ak

i 〉
(α) is a lower set for inclusion; and the sets 〈Fk〈Ak

i 〉
(α)〉 are nested (i.e. Fp〈Ak

i 〉
(α) ⊆

· · · ⊆ F2
〈Ak

i 〉
(α)). Additionally, having disjoint observed sufficient and insufficient coalitions at every exigence level,

i.e. ∀k ∈ [2..p] Sk〈Ak
i 〉

(α) ∩ Fk〈Ak
i 〉

(α) = ∅ is a necessary and sufficient condition for the existence of nested sets of

coalitions 〈 T k 〉k∈[2..p] such that ∀k ∈ [2..p],Sk〈Ak
i 〉

(α) ⊆ T k ⊆ P(N )\Fk〈Ak
i 〉

(α).

Theorem 4.2. (Pairwise formulation of the Non-Compensatory Sorting model). An assignment α : X? → {C1 ≺ . . . ≺
Cp} can be represented in the Non-Compensatory Sorting model if, and only if, there are tuples 〈 Aki 〉i∈N , k∈[2..p]

such that:

1. (Upset): for each criterion i ∈ N and for each exigence level k ∈ [2..p], 〈 Aki 〉 is an upset of (Xi,-i); and

2. (Nesting): the approved sets are nested according to their exigence level, i.e. for each criterion i ∈ N ,
A2
i ⊆ · · · ⊆ A

p
i (according to a given point of view, an alternative approved at some exigence level k is also

approved at any lower exigence level level); and

3. (Pairwise separation): for any two exigence levels k ≤ k′, for each pair of alternatives (g, b) ∈ α−1(Ck
′
) ×

α−1(Ck−1) , there is at least one point of view i ∈ N such that g ∈ Ak′i and b /∈ Aki .

Proof : [(1, 2, 3) ⇒ (NCS)]. Given a set of approved sets 〈 Aki 〉i∈N , k∈[2..p] such that for each exigence level
k ∈ [2..p], Aki is an upset of (Xi,-i) satisfying conditions 1, 2 and 3, we consider the sets of coalitions Sk〈Ak

i 〉
(α)

and Fk〈Ak
i 〉

(α) for each exigence level k ∈ [2..p]. According to the the remark just above, α can be represented in the

NCS model iff Sk〈Ak
i 〉

(α) ∩ Fk〈Ak
i 〉

(α) = ∅,∀k ∈ [2..p]. Suppose this intersection is not empty for a given k ∈ [2..p],

and let B ∈ Sk〈Ak
i 〉

(α) ∩ Fk〈Ak
i 〉

(α). By definition of Sk〈Ak
i 〉

(α), there is an exigence level h ∈ [k..p] and an alternative

g ∈ α−1(Ch) such that {i ∈ N : g ∈ Ahi } ⊆ B. By definition of Fk〈Ak
i 〉

(α), there is an exigence level h′ ∈ [2..k] and

an alternative b ∈ α−1(Ch−1) such that B ⊆ {i ∈ N : b ∈ Ah′i }. Consequently, there is no criterion i ∈ N according
to which g ∈ Ahi and b /∈ Ah′i , contradicting condition 3. Hence, Sk〈Ak

i 〉
(α) ∩ Fk〈Ak

i 〉
(α) = ∅.

[¬(1, 2, 3) ⇒ ¬ (NCS)]. It is obvious that condition 1 and condition 2 are essential to learn an NCS model with
nested satisfactory values (enforced by condition 2) and nested sufficient coalitions sets (by construction). Suppose
now that condition 1 and condition 2 are satisfied and let k ∈ [2..p], k′ ∈ [k..p] a pair of exigence levels and
(g, b) a pair of alternatives such that g ∈ α−1(Ck

′
), b ∈ α−1(Ck−1) and [(k, k′), (b, g)] falsifies condition 3 i.e.{

i ∈ N : g ∈ Aki
}
⊆
{
i ∈ N : b ∈ Ak′i

}
. As g ∈ α−1(Ck

′
), the coalition of criteria

{
i ∈ N : g ∈ Ak′i

}
is observ-

ably sufficient at level k′. As b ∈ α−1(Ck−1), the coalition of criteria
{
i ∈ N : b ∈ Aki

}
is observably insufficient at

level k, and even more so at level k′ ≥ k. Hence the intersection Sk′〈Ak
i 〉

(α) ∩ Fk′〈Ak
i 〉

(α) is nonempty, and α cannot be
represented in NCS.

4.3 A SAT formulation for Inv-NCS based on pairwise separation conditions
The Boolean satisfiability formulation for learning a NCS model presented in this section, denoted ΦP

α , was initially
described in [6] but only focusing on the case with two categories C1 ≡ BAD ≺ C2 ≡ GOOD . We extend this
formulation to the multiple categories case to learn NCS, UB-NCS and UC-NCS.

4.3.1 Learning NCS in the case of two categories

The SAT formulation based on pairwise separation initially given in [6] corresponds to the SAT encoding of both
conditions of the Theorem 4.1. First condition which ensures the monotony of scales is represented by a single family
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of clauses and operates on the same variables as the SAT formulation based on coalitions. In the second condition,
additional binary variables are defined in order to represent the separation between the alternatives. A unique family of
logical clauses represent the separation concept of the theorem and additional clauses and binary variables are required
in order to express this representation in SAT language.

Encoding. Similarly to the formulation ΦC
α described in Section 4.1, the formulation ΦP

α operates on two types of
variables:

• ‘a’ variables, representing the approved sets, with the exact same semantics as their counterpart in ΦC
α , i.e.

ai,x =

{
1, if x ∈ Ai i.e. x is approved according to i;
0, else.

• auxiliary ‘s’ variables, indexed by a criterion i ∈ N , an alternative g assigned to GOOD and an alternative b
assigned to BAD , assessing if the alternative g is positively separated from b according to the criterion i, i.e.

si,g,b =

{
1, if g ∈ Ai and b /∈ Ai;
0, else.

ΦP
α is the conjunction of four types of clauses: φP1

α ensuring each Ai is an upset, φP2
α ensuring [si,g,b = 1]⇒ [g ∈

Ai], φP3
α ensuring [si,g,b = 1] ⇒ [b /∈ Ai], and φP4

α ensuring each pair (g, b) is positively separated according to at
least one criterion.

Definition 4.3. Given an instance of Inv-NCS with two categories and an assignment α : X? → { BAD ≺ GOOD },
we define the Boolean function ΦP

α with variables 〈ai,x〉i∈N , x∈X? and
〈si,g,b〉i∈N , g∈α−1( GOOD ), b∈α−1( BAD ), as the conjunction of clauses:

φP
α = φP1

α ∧ φP2
α ∧ φP3

α ∧ φP4
α

φP1
α =

∧
i∈N

∧
x′%ix∈X? (ai,x′ ∨ ¬ai,x)

φP2
α =

∧
i∈N , g∈α−1( GOOD ), b∈α−1( BAD ) (¬si,g,b ∨ ¬ai,b)

φP3
α =

∧
i∈N , g∈α−1( GOOD ), b∈α−1( BAD ) (¬si,g,b ∨ ai,g)

φP4
α =

∧
g∈α−1( GOOD ), b∈α−1( BAD ) (

∨
i∈N si,g,b)

The formulation is compact: O(|N |.|X|2) variables, O(|N |.|X|2) binary clauses and O(|X|2) |N |-ary clauses,
whereas the number of ’t’ variables in the first formulation increases exponentially with the number of criteria.

Should φP
α be satisfiable, the set T of sufficient coalitions is not uniquely identified by the values of ’a’ and ’s’

variables of one of its models. Indeed, if 〈ai,x〉, 〈si,g,b〉 is an antecedent of 1 by φP
α, then the parameter ω = (〈Ai〉, T )

with accepted sets defined by Ai = {x ∈ X : ai,x = 1} and any upset T of (P(N ),⊆) of sufficient coalitions
containing the upset S〈Ai〉(α) and disjoint from the lower set F〈Ai〉(α) is a solution of this instance. Therefore, among
the sets of sufficient coalitions compatible with the values of ’a’ and ’s’ variables, we can identify two specific ones,
Tmax and Tmin. We will also denote by Trand, a randomly chosen compatible set of sufficient coalitions.

4.3.2 Learning NCS with more than two categories

When there are more than two categories, the sets of variables and clauses need to be extended in order to characterize
the NCS model.
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• ‘a’ variables are also indexed by an exigence level k ∈ [2..p], i.e.

ai,k,x =

{
1, if x ∈ Aki i.e. x is approved according to i at exigence level k;

0, else.

• ‘s’ variables are also indexed by a pair of exigence levels (k, k′) ∈ [2..p]2, k ≤ k′, with g ∈ α−1(Ck
′
), b ∈

α−1(Ck−1), so that

si,k,k′g,b =

{
1, if g ∈ Ak′i and b /∈ Aki ;
0, else.

These additional indices do not refer to new variables, but allow to tie the s variables representing pairwise
separation to the a variables representing acceptance at the proper exigence level.

As it was introduced in [6], in the second formulation we learn the nested approved sets 〈 Aki 〉i∈N , k∈[2..p] with which
we identify the nested sets of sufficient coalitions 〈Sk〈Ai〉(α)〉 and insufficient coalitions 〈Fk〈Ai〉(α)〉. Approved sets
are constrained so that the intersection between the sets of observably sufficient and insufficient coalitions is empty.
Leveraging Theorem 4.2, this ensures that the reference assignments are fully restored.

Definition 4.4. Given an instance of Inv-NCS with an assignment α : X? → {C1 ≺ . . . ≺ Cp}, we define the Boolean
function ΦP’

α with variables 〈ai,k,x〉i∈N , k∈{2..p},x∈X? and
〈si,k,k′,g,b〉i∈N , k∈{2..p}, k′∈{k..p}, g∈α(Ck′ ), b∈α(Ck−1), as the conjunction of clauses:

ΦP’
α = φP

′1 ∧ φP ′2 ∧ φP ′3 ∧ φP ′4 ∧ φP ′5

φP
′1

α =
∧
i∈N , k∈[2..p]

∧
x′%ix∈X? (ai,k,x′ ∨ ¬ai,k,x)

φP
′2

α =
∧
i∈N , k < k′∈[2..p], x∈X? (ai,k,x ∨ ¬ai,k′,x)

φP
′3

α =
∧
i∈N , k∈[2..p], k′∈[k..p]

∧
g∈α−1(Ck′ ), b∈α−1(Ck−1) (¬si,k,k′,g,b ∨ ¬ai,k,b)

φP
′4

α =
∧
i∈N , k∈[2..p], k′∈[k..p]

∧
g∈α−1(Ck′ ), b∈α−1(Ck−1) (¬si,k,k′,g,b ∨ ai,k′,g)

φP
′5

α =
∧
k∈[2..p], k′∈[k..p]

∧
g∈α−1(Ck′ ), b∈α−1(Ck−1) (

∨
i∈N si,k,k′,g,b)

The remarks made about an efficient implementation of ΦC
α are still valid: many clauses are redundant in φP

′1
α and

φP
′2

α and can safely be ignored. The remark concerning the non-uniqueness of T in the case of two categories also
applies for more than two categories to T k which are not uniquely defined by ΦP’

α .

Corollary 4.1. Given a context, an assignment α : X? → {C1 ≺ . . . ≺ Cp} can be represented in the Non-
Compensatory Sorting model if, and only if ΦP’

α,NCS is satisfiable.

A specific analysis of how to extend Definition 4.3 to more than two categories when learning a UB-NCS or a
UB-NCS model is detailed in Appendix A.

5 MaxSAT relaxations for Inv-NCS
The previous section introduced mathematical and computational tools addressing the decision problem: can a given
assignment be represented in the Non-Compensatory Sorting model (or one of its variants)? This set of tools has
an important theoretical significance, and can also serve as a base for practical applications–see e.g. [6] for an
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application in an accountability setting, where the representation theorem (Theorem 4.1) is leveraged to provide
procedural regularity certificates with good properties in terms of computational hardness and privacy preservation, or
jurisprudential explanations, should the outcome of the sorting process be contested. Nevertheless, this approach is not
suited to the problem of learning a suitable NCS model from real data, because it does not tolerate the presence of
noise in the data. There are numerous reasons for the input data not to reflect perfectly the model, e.g.: imperfections
in the assessment of performance according to some point of view; mistaken assignment of an alternative to a category;
or simply the oversimplification of reality represented by the model.

In this section, we address this issue by providing a relaxation of the decision formulations: instead of finding a
NCS model restoring all examples of the learning set (or, probably, die trying), we try to find the model that restores
the most. This approach is similar to the empirical risk minimization approach that is central in Machine Learning for
supervised classification problems, using the 0-1 loss. While it is a common practice in ML to use a convex surrogate
of the 0-1 loss to immensely speed up the learning process, we embrace the computationally much more demanding
exact approach, because we believe the benefits are high in terms of accountability–we are absolutely sure no one can
challenge the output model on the basis of a better restoration of the learning set–while the computational cost can be
kept low enough–because the number of criteria and of learning examples are often low in typical applications, and
because we propose a computationally efficient approach.

We formulate the relaxed optimization problem of finding the subset of learning examples (reference alternatives
together with their assignment) correctly restored of maximum cardinality with a soft constraint approach, using the
language of weighted MaxSAT. This framework, derived from the SAT framework, is based on a conjunction of clauses∧
ci where each clause ci is given a non-negative weight wi, and maximizes the total weight of the satisfied clauses.

In order to translate exactly our problem in this language, we leverage two basic techniques: we introduce switch
variables ‘z’ allowing to precisely monitor the soft clauses we are ready to see violated, as opposed to hard clauses that
remain mandatory; and we use big-stepped tuples of weights w1, . . . , wk with w1 � · · · � wk allowing to specify
lexicographically ordered goals in an additive framework.

5.1 A MaxSAT relaxation for Inv-NCS based on coalitions
This section elaborates on the SAT formulation introduced in Section 4.1. The MaxSAT extension of the formulation
obtained when following a strategy based on the explicit representation of coalitions of criteria is based on the
specification of the reference alternative to relax in order to remove conflicts in the clauses. For this purpose, we define
the following additional binary variables:

• ‘z’ variables, indexed by an alternative x, represent the set of alternatives properly classified by the inferred
model, with the following semantic: zx = 1⇔ α−1(x) = NCSω(x) i.e. the alternative x
is properly classified

These variables are introduced in some clauses to serve as switches:

• For any exigence level k ∈ [2..p], let B ⊆ N a coalition of criteria, and x an alternative assigned to Ck−1 by α.
If zk = 1 and B ⊆

{
i ∈ N : x ∈ Aki

}
then tB,k = 0. This leads to the following conjunction of clauses:

φC̃5
α =

∧
B⊆N , k∈[2..p]

∧
x∈α−1(Ck−1) (

∨
i∈B ¬ai,k,x ∨ ¬tB,k ∨ ¬zx)

• For any exigence level k ∈ [2..p], let B ⊆ N a coalition of criteria, and x an alternative assigned to Ck by α. If
zk = 1 and B ⊆

{
i ∈ N : x ∈ Aki

}
then tN\B,k = 0. This leads to the following conjunction of clauses:

φC̃6
α =

∧
B⊆N , k∈[2..p]

∧
x∈α−1(Ck) (

∨
i∈B ai,k,x ∨ tN\B,k ∨ ¬zx)

The objective in the MaxSAT formulation is to maximize the portion of alternatives properly classified, this is the
subject of the following soft clause:

φgoalα =
∧
x∈X∗ zx (10)
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The MaxSAT extension of the first formulation is the conjunction of the first four clauses of the SAT formulation
given in definition 4.1 and clauses φC̃5

α , φC̃6
α and φgoalα .

Clauses composing the conjunctions φC1
α , φC2

α , φC3
α , φC4

α , φC̃5
α and φC̃6

α are hard, associated to the weight wmax,
and we associate to φgoalα the weight w1 such that wmax > |X?|w1.

Model variants. Same modifications as in the SAT formulation are required to learn UB-NCS and UC-NCS models
with noisy preference information:

• UB-NCS (Unique profiles): Drop the index k concerning the exigence level for the ‘a’ variables, ignore the
conjunction over exigence levels for clauses φC1

α , and ignore clauses φC2
α altogether;

• UC-NCS (Unique set of sufficient coalitions): Drop the index k concerning the exigence level for the ‘t’
variables, ignore the conjunction over exigence levels for clauses φC3

α and ignore clauses φC4
α altogether.

5.2 A MaxSAT relaxation for Inv-NCS based on pairwise separation conditions
This section elaborates on the SAT formulation introduced in Section 4.3, following a representation strategy based on
the pairwise separation of alternatives.

In the case of two categories, switch variables ‘z’ have the same indexation and semantics as in the previous section.
They are introduced in the clauses representing the pairwise separation constraints:

φP̃4
α =

∧
g∈α−1( GOOD ), b∈α−1( BAD )(

∨
i∈N si,g,b ∨ ¬zb ∨ ¬zg)

They also appear in the clause φgoalα (see Eq. 10) formulating our objective of restoring as many learning examples as
we can.

The weighted MaxSAT relaxation of the SAT formulation obtained following the representation strategy based on
pairwise separation of alternatives, in the case of two categories, is the conjunction of clauses φP1

α ∧ φP2
α ∧ φP3

α ∧ φP̃4
α ,

where each clause is hard and receives the weight wmax, and of the clause φgoalα with weight w1 such that wmax >
|X?|w1.

The generalizations of this MaxSAT formulation to the case with multiple categories, including adaptations geared
towards learning UB-NCS and UC-NCS variants of the Non-Compensatory Sorting model, are provided in Appendix
B.

6 Computational study
In this section, we present an empirical study that evaluates the intrinsic and comparative performances of the
approaches presented in Section 4 and 5. There are eight of them, depicted on Fig. 4 and specified by three binary
parameters:

• the Non-Compensatory Sorting model of preference sought, either with a unique boundary profile (subscript
UP), or with a unique set of sufficient coalitions (subscript UC);

• the representation strategy adopted, based either on the explicit representation of the coalitions of criteria
(superscript C) or on the pairwise separation of alternatives (superscript P); and

• the problem description, either deciding whether an instance can be represented in the model (D) with a SAT
solver, or optimizing the ability of the model to represent the assignment (O) with a MaxSAT solver.
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Figure 4: The eight approaches considered.

Note that the performances of DC
UC for learning UC (Section 4.1) have already been proved to be superior to MIP

approaches by [5].

6.1 Experimental design
The experimental plan consists of generating random instances of the Inv-NCS problem, applying one of the eight
approaches described above, and measuring several performance indicators. We detail the instance generator, the
implementation of the approaches and the indicators in the following sections.

6.1.1 Instance generation

Each instance consists of a set of alternatives X∗ (described by tuples of evaluations on a set of criteria N ), a set
of categories C1 ≺ . . . ≺ Cp, and the assignment of the former to the latter. We set the number of categories p to
three. The set of alternatives is governed by two parameters –the number of criteria |N | and the number of reference
alternatives |X?| – that we consider exogenous and we try to assess their respective influence on the performance
indicators. Note that this design is similar to a supervised classification context, where |X?| and |N | are respectively
the number of rows and columns of the dataset. Instances are sampled uniformly from the cube [0, 1]|N |: we have
considered the least favourable case where all the criteria take continuous values.

The assignment of alternatives to categories depends on the type of model sought and the problem description. In
order to ensure that preference data represents a real decision problem, we use a decision model to generate it, and, in
particular, a model compatible to the Non-Compensatory stance we are postulating:

• In the case of UC-NCS, we use an MR-Sort model for generating the learning set, a model that particularizes UC

by postulating the set of sufficient coalitions has an additive structure (see Section 2). It is randomly generated
using the following procedure: a set of limit profiles 〈b〉 is generated by uniformly sampling p− 1 numbers in
the interval [0,1] and sorting them in ascending order, for all criteria; the voting powers 〈w〉 are generated by
sampling |N | − 1 numbers in the interval [0,1], sorted and used as the cumulative sum of weights; the majority
threshold λ is sampled with uniform probability in the interval [0.5,1].

• In the case of UB-NCS we use a model with a unique profile and nested sets of sufficient coalitions of criteria at
each exigence level, each with an additive structure, i.e., weights attached to criteria and and a majority threshold.
It is randomly generated using the following procedure: a single profile b is generated by uniformly sampling a
tuple in [0, 1]N ; the voting weights 〈w〉 are generated by sampling |N | − 1 numbers in the interval [0,1], sorted
and used as the cumulative sum of weights; the majority thresholds 〈λ〉 are then randomly chosen by sampling
p− 1 numbers with uniform probability in the interval [0.5,1] and sorting them in ascending order.
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Once the ground truth model is generated, which is by design compatible to the hypothesis class we are working with,
we consider two ways of assigning alternatives to categories, depending on the problem formulation we are considering.

• For decision approaches, we directly assign the alternatives to categories according to the ground truth. Therefore,
these approaches should always succeed in finding the parameters of a model extending the reference assignment.

• For optimization approaches, we introduce a proportion µ of assignment errors in the learning set. The
assignment of a subset of reference alternatives is randomly replaced, with uniform probability, by the successor
or predecessor category compared to the ground truth assignment.

6.1.2 Solving the instances

This experimental study is run on a laptop with Windows 10 (64 bit) equipped with an Intel(R) Xeon(R) CPU E5-1620
v4 @3.5GHz and 32 GB of RAM.

For decision approaches, we translate the assignment into a Boolean satisfaction problem, described by sets of
variables and clauses, for both representation strategies and both preference models, as described in Section 4. The SAT
instances are written in a file in DIMACS format, and passed to a command line SAT solver - CryptoMiniSat 5.0.1.

For optimization approaches, we translate the assignment into a Boolean satisfaction problem, described by sets
of variables and clauses and an objective function, for both representation strategies and both preference models, as
described in Section 5. The MaxSAT instances are passed to a command line MaxSAT solver QmaxSAT in the required
format.

When using the representation strategy based on the explicit representation of the set of coalitions of criteria, each
solution of the SAT/MaxSAT problem found by the solver can directly be interpreted in terms of parameters of an
NCS model (either of the UB or the UC subtype). This is not exactly the case with the representation strategy based on
pairwise separation of alternatives: the SAT/MaxSAT solution explicitly describes the approved sets of value on each
criterion and at each exigence level (i.e. the boundary profiles), but the sets of sufficient coalitions are left implicit,
and are solely described in terms of an upper and a lower bound . In the context of this experimental study, we are
interested in resolute and precise decision models – hence it is necessary to complete this irresolute (or imprecise)
strategy with a second strategy for picking a specific (nesting of) upset(s) of sufficient coalition inside the band of
possible sets. We consider three such post-processing strategies: i) T = Tmin, systematically returning the lower
bound, ii) T = Trand , returning a random nesting of upsets satisfying the constraints; and iii) T = Tmax, returning
systematically the upper bound.

6.1.3 Performance indicators

The performance indicators of interest are the computing time, the restoration rate (the proportion of the learning set
correctly represented by the output model), and the generalization index measuring the alignment between the output
model with the ground truth.

So as to monitor the learning process, we control the level of noise in the input data through the parameter µ, and
we measure the proportion of reference assignments that are correctly restored by the learning process. This restoration
rate should be equal to one in the case of approaches addressing the decision problem (as there is no noise), and at
least equal to 1− µ for approaches addressing the optimization problem.

The computing performance is measured in practice, by solving actual instances of the problem and reporting the
computation time required by the solver.

In order to appreciate how “close” a computed model to the ground truth from which the assignment examples
were generated, and thus to monitor potential overfitting, we proceed as follows: we sample a large set of n profiles in
X = [0, 1]N and compute the assignment of these profiles according to the original and computed models. On this
basis, we compute the generalization index: the proportion of “correct” assignments, i.e. profiles which are assigned to
the same category by the ground truth and the inferred model.
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6.2 Model retrieval with decision approaches
In this section, we study the behavior of the decision approaches, when fed with synthetic data matching the hypothesis
(i.e. either coming from a specific UB or UC NCS model). More particularly, we monitor the restoration rate
(which is expected to reach 100%), the computation time and the generalization index when applying each strategy
(and, concerning the one based on the pairwise separation of alternatives, of three specific post-processing strategies
concerning the choice of the nested sufficient coalitions), i.e. for the approaches DC

UB , DC
UC , DP

UB and DP
UC , as

functions of the number of reference alternatives |X?| and the number of criteria |N |.
We explore a specific subset of the parameter space: we consider a baseline configuration, with 3 categories, 9

criteria and 128 reference alternatives, and we consider the configurations deviating from the baseline on a single
parameter – either |X?| = 128 and |N | ∈ {3, 5, 7, 11}, or |X∗| ∈ {32, 64, 256, 512, 1024} and |N | = 9. For each
configuration and for both models UC and UB , we sample 50 instances, then solve each of them according to both
strategies.

6.2.1 Restoration rate

As expected, the restoration rate, for every model and strategy, is uniformly equal to one.

6.2.2 Computing time

For each NCS model (UB and UC), for each strategy under scrutiny (coalition based, and pairwise separation based),
and for the set of considered parameters governing the input, the computation time ranges from below the tenth of a
second to some dozens of minutes. Table 5 (respectively Table 6) depicts the distribution of the computation time for
the baseline situation (128 reference assignments, 9 criteria and 3 categories) of implementing each strategy to learn a
UB model (resp. a UC model). In this configuration, the strategy based on coalitions (DC) is slightly faster than the
one based on pairwise separation (DP ) when learning a UB model and three times faster when learning a UC model.
The distribution of the computing time of each formulation is very tight around its center.

DCUB DPUB

Max 0.169s 0.293s
2nd quartile 0.141s 0.184s

Median 0.126s 0.148s
1st quartile 0.118s 0.111s

Min 0.108s 0.06s

Table 5: Computation time in the baseline configuration
(128 ref. alternatives, 9 crit., 3 categ.) to learn a UB model.

DCUC DPUC

Max 0.161s 0.584s
2nd quartile 0.139s 0.389s

Median 0.131s 0.337s
1st quartile 0.123s 0.256s

Min 0.104s 0.097s

Table 6: Computation time in the baseline configuration
(128 ref. alternatives, 9 crit., 3 categ.) to learn a UC model.

In order to assess the influence of the parameters governing the size and complexity of the input, we explore
situations differing from the baseline on a single parameter:

• The number of reference assignments |X?|: Figures 5 and 6 indicate that the distribution of the computing time
for both strategies and for both UB and UC models remains tightly grouped around its central value. It also
shows that this value steadily increases with the number of reference assignments. For both strategies, the
log-log plots are all consistent with a linear dependency between log t and log |X?|, indicating the soundness of
power law t ∝ |X?|β . The observed slopes are consistent with βC = 1 (i.e. t ∝ |X?|) for the representation
strategy based on coalitions, and βP = 2 (i.e t ∝ |X?|2) for the representation strategy based on the pairwise
separation of alternatives.
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Figure 5: Computation time by number of ref. assign-
ments (9 crit., 3 categ.) to learn a UB model.

16 32 64 128 256 512

 Number of reference assignments

10 1

100

101

102

 C
om
pu
ta
ti
on
 t
im
e 
(s
) 
- 
Lo

ga
ri
th
m
ic
 s
ca

le C
UC formulation

P
UC formulation

Figure 6: Computation time by number of ref. assign-
ments (9 crit., 3 categ.) to learn a UC model.

• The number of criteria |N |: Figures 7 and 8 indicate for each NCS variants, the distribution of the computing
time for both strategies. It can be observed that these series remain tightly grouped around their central value and
this value steadily increases with the number of criteria. These observations are consistent with the hypotheses
t ∝ |N | for the representation strategy based on the pairwise separation of alternatives, and t ∝ 2|N | for the
strategy based on coalitions of criteria.
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Figure 7: Computation time by number of criteria (128
ref. assignments and 3 categ.) to learn a UB model.
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Figure 8: Computation time by number of criteria (128
ref. assignments and 3 categ.) to learn a UC model.

6.2.3 Results on the ability of the inferred model to restore the original one

When applied to learn both NCS variants (UB and UC), the strategy based on pairwise separation returns an acceptable
nesting of upset of sufficient coalitions, defined by lower and upper bounds. This strategy needs to be completed
by a post-processing phase dedicated to pinpoint a single nesting of upsets. While this phase has no bearing on the
restoration rate, and takes negligible time, it has a measurable impact on the generalization index.

To identify the upset that best restores the simulated sorting model (1−UB and MR-Sort), we study the three
following post-processing strategies: T = Tmin, T = Trand and T = Tmax. T-Student tests (α = 5%) show that for
UB and UC the generalization index when T = Tmin is always at least as good as the other two variants regardless the
number of criteria, alternatives (and even categories for p ∈ {2, 3, 4, 5}); see for instance the baseline configuration
Table 7. Consequently, for ease of presentation, we only plot results concerning the post-processing strategy T = Tmin.
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DCUB DPUB

T = Tmin T = Trand T = Tmax
Max 96.4% 98% 97% 97%
2nd quartile 92.3% 91.4% 89% 89%
Median 89% 90% 85.7% 85.7%
1st quartile 83.4% 86.6% 80.8% 80.8%
Min 75.4% 79.8% 73% 73%

Table 7: Generalization index for both SAT formulations in the baseline configuration (128 reference assignments, 9 criteria and 3
categories) to learn a UB model.

The first two columns of Table 7 depicts the distribution of the proportion of correct assignments (as compared
to the ground truth) for the baseline situation (128 reference assignments, 9 criteria and 3 categories). T-Student test
(α = 5%) shows that the difference between the two distributions is not significant.

Figures 9 and 10 represent the variations of the alignment of the models yielded by both formulations with the
ground truth with respect to the problem settings when learning a UB model (respectively UC model) and applying
each strategy. The experimental results display a tendency towards a degradation of this alignment as the number of
criteria increases. Conversely, as expected, increasing the number of reference assignments noticeably enhances the
generalization index, up to 100%. The implementations of both strategies seem to behave in a similar manner with
respect to the variations of these parameters.
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Figure 9: Generalization index by number of reference assign-
ments (9 criteria and 3 categories) to learn a UB model.
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Figure 10: Generalization index by number of criteria (128
reference assignments and 3 categories) to learn a UB model.

6.3 Tolerance for error with optimization approaches
In this section, we study the behavior of the optimization approaches, when fed with synthetic data that deviate from
the model hypothesis (i.e. either coming from a specific UB or UC NCS model) in a controlled manner, through the
incorporation of a proportion µ of noise. More particularly, we monitor the restoration rate (which is expected to reach
at least 1− µ), the computation time and the generalization index, when applying each strategy, i.e. for approaches
OC
UB , OC

UC , OP
UB and OP

UC , as functions of the number of reference alternatives |X?|, the number of criteria |N |, and
the noise rate µ.

In this paper, the notion of noise on the learning set is defined as a misclassification of an alternative, i.e., an
error from the decision maker in the choice of the category. More precisely, the assignment of a subset of reference
alternatives is randomly replaced, with uniform probability, by the successor or predecessor category compared to the
ground truth assignment. This is the way we have implemented the noise in our experiment 4.

4Note that there exist alternative ways to consider noisy expression of preferences. On of these is to consider that the errors in
the learning set is related to the values/performances of alternatives in the learning set. Such noise is indeed relevant in applications
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We explore a specific subset of the parameter space: we consider a baseline configuration, with 3 categories, 5
criteria, 128 reference alternatives and 10% noise rate, and we consider the configurations deviating from the baseline
on a single parameter – |X?| = 128, |N | ∈ {3, 7, 9, 11} and µ = 0.1; or |X∗| ∈ {32, 64, 256}, |N | = 5 and µ = 0.1;
or |X?| = 128, |N | = 5 and µ ∈ {.05, .15, .2}. For each configuration and for both models UC and UB , we sample 50
instances, then solve each of them according to both strategies.

6.3.1 Restoration rate

Plotting the restoration rate allows to monitor the learning process. The experimental results show that, when learning
a given subtype of NCS model (either UB or UC), the models learned by implementing both strategies (either based on
coalition or pairwise separation) reproduce the same portion of the learning set and at least (1− µ) ∗ |X∗| assignment
examples. This is some experimental evidence of the validity of the MaxSAT formulations stemming from both
representation strategy.

The results display a tendency towards a degradation of the restoration rate distribution as the number of alternatives
or the noise rate increases. Conversely, increasing the number of criteria noticeably enhances the restoration rate.

• The number of reference assignments |X?|: when the number of learning points (Figures 11 for UB and 12 for
UC), we observe a convergence of the restoration rate towards its lower bound (1− µ) ∗ |X∗|% (in this case
0.9): when the learning set is small, the computed model is flexible enough to reproduce almost all the learning
set despite the errors; however, when the size of the learning set is large, as the computed model is more specific,
the proportion of alternatives in the learning set whose assignment is not reproduced by the inferred model
corresponds to the proportion of errors introduced in the learning set. Note however that alternatives in the
learning set that are excluded when inferring the model do not necessarily correspond to the errors introduced in
the learning set. However, the proportion of alternatives excluded when inferring the model is at most equal to
the proportion of introduced errors. Also, it should be noted that the distribution of the restoration rate becomes
more and more tightly grouped around its central value.
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Figure 11: Restoration rate by number of reference
assignments (5 criteria, 3 categories and 10% noise) to
learn a UB model.
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Figure 12: Restoration rate by number of reference
assignments (5 criteria, 3 categories and 10% noise) to
learn a UC model.

• The number of criteria |N |: Figures 13 (for UB) and 14 (for UC) show the variation of the restoration rate
according to the number of criteria. Increasing the number of criteria makes the problem more flexible, and
consequently noticeably enhances the restoration rate with a convergence towards 100%

where the learning set correspond to historical data in which performances of examples can be erroneous.
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Figure 13: Restoration rate by number of criteria (128
reference assignments, 3 categories and 10% noise) to
learn a UB model.
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Figure 14: Restoration rate by number of criteria (128
reference assignments, 3 categories and 10% noise) to
learn a UC model.

• The noise rate µ: Figures 15 and 16 indicate that the restoration rate decreases linearly with the noise rate.
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Figure 15: Restoration rate by noise rate (128 reference
assignments, 5 criteria and 3 categories) to learn a UB

model.
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Figure 16: Restoration rate by noise rate (128 reference
assignments, 5 criteria and 3 categories) to learn a UC

model.

6.3.2 Computing Time

Tables 8 and 9 show the distribution of the computation time in the baseline configuration (128 reference assignments,
5 criteria, 3 categories and 10 % noise) to learn both NCS models (UB and UC). When dealing with our baseline,
applying the strategy based on the explicit representation of coalitions is 20 times faster than applying the strategy
based on pairwise separation of alternatives, while this advantage was only threefold for the decision approaches (see
e.g. Figures 7 and 8): the relaxation from SAT to MaxSAT seems to favor the strategy based on coalitions.

We investigate the influence of the parameters describing the instance.
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OCUB OPUB

Max 0.337s 8.690s
2nd quartile 0.272s 5.492s

Median 0.222s 4.132s
1st quartile 0.176s 3.228s

Min 0.113s 1.195s

Table 8: Computation time to learn a UB model in the
baseline config. (128 ref. alt., 5 crit., 3 categ. and 10%
noise).

OCUC OPUC

Max 0.996s 18.121s
2nd quartile 0.554s 11.7s

Median 0.352s 8.161s
1st quartile 0.242s 5.323s

Min 0.131s 1.582s

Table 9: Computation time to learn a UC model in the
baseline config.(128 ref. alt., 5 crit., 3 categ. and 10%
noise).

• The number of reference assignments X∗: Figures 17 and 18 indicate that the distribution of the computing time
for the two MaxSAT-formulations and for both UB and UC models remains tightly grouped around its central
value. It also shows that this value steadily increases with the number of reference assignments, consistently
with the power laws found in Section 6.2.2, i.e. t ∝ |X?| for the representation strategy based on coalitions of
criteria, and t ∝ |X?|2 for the representation strategy based on the pairwise separation of alternatives.
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Figure 17: Computation time by number of reference
assignments (5 criteria, 3 categories, 10% noise) to
learn a UB model.
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Figure 18: Computation time by number of reference
assignments (5 criteria, 3 categories, 10% noise) to
learn a UC model.

• The number of criteria |N |: Figures 19 and 20 indicates that the distribution of the computing time, when
applying both strategies and learning both models UC and UB , remains tightly grouped around its central value.
These results remain consistent to the models proposed in Section 6.2.2: t ∝ |N | for the representation strategy
based on the pairwise separation of alternatives, t ∝ 2|N | for the representation strategy based on coalitions of
criteria.
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Figure 19: Computation time by number of criteria (128
reference assignments, 3 categories and 10% noise) to
learn a UB model.
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Figure 20: Computation time by number of criteria (128
reference assignments, 3 categories and 10% noise) to
learn a UC model.

• The noise rate µ: The distribution of the computation time for both MaxSAT formulations remains tightly
grouped around its central value, and log t increases linearly (with a low slope) with the noise rate (Figures 21
and 22).

5% 10% 15% 20%

 Noise rate

10−1

100

101

102

103

104

 C
om

pu
ta
ti
on

 t
im

e 
(s
) 
- 
Lo

ga
ri
th
m
ic
 s
ca

le C
UB formulation

P
UB formulation

Figure 21: Computation time by noise rate (128 refer-
ence assignments, 5 criteria and 3 categories) to learn a
UB model.
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Figure 22: Computation time by noise rate (128 refer-
ence assignments, 5 criteria and 3 categories) to learn a
UC model.

.

6.3.3 Results on the ability of the inferred model to restore the original one

The observations made in Section 7, concerning the irresoluteness of the approaches implementing the representation
strategy based on pairwise separation, remain valid when considering MaxSAT relaxations. Adopting the same
notations as the SAT formulations, T-Student tests show that for both models UB and UC the generalization index
when T = Tmin is always at least as good as the other two variants regardless of the number of criteria, alternatives,
categories and the noise rate (see for instance the baseline configuration Table 10). The rule of thumb proposed
in Section 7 remains valid when transposed to optimization approaches implemented via a MaxSAT solver – the
post-processing strategy T = Tmin yields the best results, and is the only one represented on the subsequent figures.
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OCUB OPUB

T = Tmin T = Trand T = Tmax
Max 97.7% 99.2% 98.8% 98.8%
2nd quartile 95.6% 96.5% 95.9% 95.9%
Median 94.4% 95.4% 94.6% 94.5%
1st quartile 92.2% 93.5% 92.4% 92.6%
Min 87.7% 90% 88.2% 88%

Table 10: Generalization index in the baseline configuration (128 reference assignments, 5 criteria, 3 categories and 10% noise)
when learning a UB model, for both representation strategies and three post-processing strategies.

The first two columns of Table 10 depicts the distribution of the generalization index for both MaxSAT formulations
for the baseline situation (128 reference assignments, 5 criteria, 3 categories and 10% noise) for learning a UB model
(respectively a UC model). For both models, the two distributions are almost the same with a slight difference on the
median.
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Figure 23: Generalization index by number of reference
assignments (5 criteria, 3 categories and 10% noise) to
learn a UB model.
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Figure 24: Generalization index by number of criteria (128
reference assignments, 3 categories and 10% noise) to learn
a UB model.
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Figure 25: Generalization index by number of categories
(128 reference assignments, 5 criteria and 10% noise) to
learn a UB model.
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Figure 26: Generalization index by noise rate (128 refer-
ence assignments, 5 criteria and 3 categories) to learn a
UB model.

Figures 23, 24, 25 and 26 present the variations of the alignment of the computed UB models (respectively UC

models) yielded by both MaxSAT formulations with the ground truth. For both NCS variants, the experimental results
display a tendency towards a degradation of this alignment as the number of criteria or the number of categories increases.
Conversely, as expected, increasing the number of reference assignments noticeably enhances the generalization index.
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The two formulations seem to behave in a similar manner with respect to the modification of these parameters. And
finally, the generalization rate decreases linearly with the noise rate.

6.4 Discussion
In this section, we discuss the influence of input parameters (number of criteria, and the size of the learning set) on the
computing time, the ability to restore learning sets, and to generalize of both representation strategies (the one based on
explicit representation of coalitions, and the one based on pairwise separation of alternatives). The discussion focuses
on both problem descriptions: decision (SAT) and optimization (MaxSAT) for learning both variants of NCS (UB and
UC). The results obtained provides (i) the empirical confirmation of results which were expected, and (ii) insights for
an analyst who wishes to use the proposed learning algorithms in an decision-aiding case study.

6.4.1 Empirical confirmation of expected results

Computation time:
On the one hand, for each NCS variants (UB and UC) and for both SAT and MaxSAT problem descriptions,

the number of reference assignments impacts linearly the computation time of the coalitions-based representation
strategy, and quadratically the computation time of the pairwise separation representation). On the other hand, the
coalitions-based representation strategy depends exponentially on the number of criteria, and this dependence remains
linear for the separation-based representation.
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Figure 27: Computation time of SAT problems by num-
ber of reference assignments and number of criteria (3
categories) to learn a UB model
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Figure 28: Computation time of MaxSAT problems by
number of reference assignments and number of criteria (3
categories and 10% noise) to learn a UB model

For a fixed number of criteria, when increasing the number of reference assignments, the coalition-based represen-
tation becomes faster than the separation-based representation (as the size of the learning set impacts the computing
time linearly for the coalition-based representation, and quadratically for the separation-based representation).

Conversely, for a fixed number of reference assignments, when increasing the number criteria, the separation-based
representation becomes faster than the coalition-based representation (as the number of criteria impacts the computing
time exponentially for the coalition-based representation, and linearly for the separation-based representation).
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Figure 29: Computation time of SAT problems by num-
ber of reference assignments and number of criteria (3
categories) to learn a UC model
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Figure 30: Computation time of MaxSAT problems by
number of reference assignments and number of criteria (3
categories and 10% noise) to learn a UC model

These two effects leads to distinguish configurations (depending on the number of criteria, and size of the learning
set) in which either of two representation (coalition-based or separation-based) is faster. For a decision problem with
3 categories (and 10% noise for MaxSAT instances), Figures 27 and 28 (Figures 29 and 30, respectively) depicts
which of the two representation (coalition-based or separation-based) is faster to learn UB model (UC model, respec-
tively) depending on the number of alternatives and number of criteria (both for SAT and MaxSAT). These Figures
offer insights to choose the appropriate representation according to the number of criteria and the number of alternatives.

Ability to restore the learning set:
As expected, all SAT instances (without noise) are able to fully restore the learning sets; this result is an experimen-

tal validation of the theoretical work developed in Section 4. Moreover, when learning a model from noisy learning
sets (MaxSAT extension), we were able to infer NCS models with a restoration rate over 1− x, where x denotes the
noise level in the learning set.

Ability to generalize:
In terms of generalization (the alignment between the output model with the ground truth), for both UB and UC

models, coalition-based and separation-based strategies behave in analogously:

• an increase of the size of the learning set induces an improvement of the generalization index; such improvement
occurs whatever the noise level (up to 20%). This means that it seems always possible to “capture the ground
truth” with a sufficiently large learning set,

• an increase in the reference set noise level require a larger learning set to keep the same generalization level.
This implies that the “quality” of the learning set, have a significant impact on the required size of this learning
set.

6.4.2 Insights for the decision analyst

An interesting aspect of the empirical results lies in the possibility to derive insights on how to put the proposed
learning algorithms in practice in an decision-aiding case study.

Defining the size of the learning set for a given number of criteria:
An important question for a decision analyst concerns the number of assignment examples to collect in order to

accurately capture the DM’s preferences. Our experiments provide figures to answer such questions. In a decision
problem involving 3 categories and 5 criteria, if the analyst wishes to obtain an UB model with target level of 90% for
the generalization index, and postulates a error rate of 10% in the set of assignment examples, Figure 23 informs us
that the size of the learning set should be in the interval [64, 128].
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Choosing the fastest formulation depending on the number of criteria and size of the learning set:
Another relevant question concerns which of the coalition-based or separation-based representation provides the

lowest computing time for a given size of learning set (and number of criteria).
For a given number of criteria and for learning a UB model, Figures 27 and 28 depict the approximate thresholds

in terms of number of reference assignments from which the coalition-based representation becomes faster than the
separation-based one. In the case where the preference information is perfect and for less than ∼50 examples, the
separation-based representation is faster than the coalition-based representation, and the generalization is equivalent for
both representations. For MaxSAT instances, for more than ∼50 examples and less than ∼11 criteria, the coalition-
based representation formulation is faster than the separation-based one. However, for a number of criteria exceeding
∼13 or for less than ∼50 reference assignments, the separation-based representation is faster. For all configurations,
the separation-based representation generalizes better.

For a given number of criteria and for learning a UC model, Figures 29 and 30 depict the approximate thresholds
in terms of number of reference assignments from which the coalition-based representation becomes faster than the
separation-based one. In the case where the preference information is noiseless and for more than ∼14 criteria or for
less than ∼64 reference assignments, the separation-based representation is more efficient than the coalition-based one
in terms of the computation time and the generalization index.

7 Conclusion
In this paper, we consider the multiple criteria Non-Compensatory Sorting model and its variants with a unique profile
(UB) and a unique set of sufficient coalitions (UC). Learning this model has already been addressed by the literature,
and solved by the resolution of a MIP [35] or via a specific heuristic [50] [51]. Recently, two SAT representations
(coalition-based, and separation-based) have been proposed to learn such a model from perfect preference information
and already proved to be superior to other approaches, see [6]. The separation-based representation was originally
described in [6] but only focusing on the case with two categories. We consider in this work the generalization
of this formulation to the multiple categories case for learning NCS and its variant UB-NCS and UC-NCS. The
separation-based representation is more compact than the coalition-based one as it handles explicitly a set of sufficient
coalitions that lies in the power set of the criteria. In order to handle the inconsistency in preference information, we
extend the two SAT problems using MaxSAT language. Thus, for each variant of NCS, we proposed two MaxSAT
programs to compute the model’s parameters from noisy preference information.

The separation-based representation proposed for learning UB and UC models is at least as good as the coalition-
based one in terms of generalization and for both types of preference information (perfect and not-so-perfect prefer-
ences). Computation time of the two representations evolves depending on the number of reference alternatives and the
number of criteria; the separation-based representation performs better when the number of criteria increases, while it
is not the case when the number of reference alternatives increases. Increasing the number of categories penalizes the
separation-based representation proposed for learning UB model, since the number of clauses depends quadratically on
the number of categories.

However, for real world decision problems, assuming that the number of reference assignments is ∼100 examples,
we can consider two types of applications: an application that involves a large number of criteria (|N | >∼ 12) and
therefore the separation-based representation seems better as it is faster and generalizes better than the first one, and an
application that involves a limited number of criteria (|N | <∼ 10), in this case, the coalition-based representation is
slightly faster and generalizes less than the separation-based one.

Finally, our work shows that, when learning MCDA models from preference information, SAT and MaxSAT
languages can be relevant and efficient. This is specifically the case for ordinal MCDA aggregation procedures based
on pairwise comparison of alternatives (so called outranking methods, see [22]). We believe that our work opens
avenue for further research to develop new algorithms to learn outranking models from preference statements using
SAT/MaxSAT language.
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[42] V. Mousseau and R. Słowiński, ‘Inferring an ELECTRE TRI model from assignment examples’, Journal of
global optimization, 12(2), 157–174, (1998).

[43] P. Perny, ‘Multicriteria filtering methods based on concordance and non-discordance principles’, Annals of
Operations Research, 80, 137–165, (1998).

[44] B. Roy, ‘The outranking approach and the foundations of Electre methods’, Theory and Decision, 31(1), 49–73,
(1991).

[45] B. Roy, Multicriteria Methodology for Decision Aiding, Kluwer Academic, Dordrecht, 1996.

[46] C. Rudin and S. Ertekin, ‘Learning customized and optimized lists of rules with mathematical programming’,
Mathematical Programming Computation, 10, 659–702, (2018).

[47] Y. Siskos, E. Grigoroudis, and N. Matsatsinis, ‘UTA Methods’, in Multiple Criteria Decision Analysis, eds.,
S. Greco, M. Ehrgott, and J. Figueira, International Series in OR/MS, 315–362, Springer, (2016).

[48] O. Sobrie, Learning preferences with multiple-criteria models, Ph.D. dissertation, Université de Mons (Faculté
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Appendices
A SAT formulations for NCS variants with more than 2 categories

A.1 Learning a UB-NCS Model
When trying to fit a UB-NCS model, neither a variables nor s variables are indexed by exigence level; s variables are
indexed by a criterion i and a pair of alternatives g, b ∈ X? such that g is preferred to b, i.e. α(g) � α(b).

The propositional formula obtained by following the representation strategy based on the pairwise separation of
alternatives is particularly simple and elegant.

Definition A.1. Given an instance of Inv-NCS with an assignment α : X? → {C1 ≺ . . . ≺ Cp}, we define the boolean
function ΦP’B

α with variables 〈ai,x〉i∈N , k∈[2..p],x∈X? and 〈si,g,b〉i∈N , α(g)�α(b) , as the conjunction of clauses:

ΦP’B
α,UB-NCS = φP

′B1
α ∧ φP ′B3

α ∧ φP ′B4
α ∧ φP ′B5

α

φP
′B1

α =
∧
i∈N

∧
x′%ix∈X? (ai,x′ ∨ ¬ai,x)

φP
′B3

α =
∧
i∈N

∧
α(g)�α(b) (¬si,g,b ∨ ¬ai,b)

φP
′B4

α =
∧
i∈N

∧
α(g)�α(b) (¬si,g,b ∨ ai,g)

φP
′B5

α =
∧
α(g)�α(b) (

∨
i∈N si,g,b)

Corollary A.1. Given a contex, an assignment α : X? → {C1 ≺ . . . ≺ Cp} can be represented in the Non-
Compensatory sorting model with unique profile if, and only if ΦP’B

α is satisfiable.

This condition is obviously necessary. It is sufficient because the sets of observably sufficient and insufficient
coalitions are nested by construction, even in the case A2

i = · · · = Api .

A.2 Learning a UC-NCS Model
We describe here the generalization of the pairwise separation formulation ΦP

α (see Definition 4.3) to the multiple
category case for fitting a UC-NCS (Unique set of sufficient coalitions) model. Given a nesting of approved sets
〈Ahi 〉, this unique set of sufficient coalitions satisfies all the constraints put by the observed sufficient and insufficient
coalitions of criteria at every exigence level. This observation yields the following lower and upper bounds:

S〈Ak
i 〉

(α) = Cl⊇P(N )(
⋃

k∈[2..p]

⋃
g∈α−1(C�k)

{
i ∈ N : g ∈ Aki

}
)

F〈Ak
i 〉

(α) = Cl⊆P(N )(
⋃

k∈[2..p]

⋃
b∈α−1(C≺k)

{
i ∈ N : b ∈ Aki

}
)
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In turn, this entails a modification of the third condition (pairwise separation) of the representation theorem
(Theorem 4.2):

3C. (pairwise separation for a unique set of sufficient coalitions) for each exigence levels k ∈ [2..p] and k′ ∈ [2..p],
for each pair of alternatives (g, b) ∈ (X∗)2 such that g ∈ α−1(C�k

′
) and b ∈ α−1(C≺k), there is at least one

point of view i ∈ N such that g ∈ Ak′i and b /∈ Aki .

We translate this modified representation theorem into a SAT formulation equisatisfiable with Inv-UB-NCS, using
variables a indexed by a criterion, an exigence level and a reference alternative, as well as variables s indexed by a
criterion, a pair of exigence levels, and a pair of alternatives.

Definition A.2. Given an instance of Inv-NCS with an assignment α : X? → {C1 ≺ . . . ≺ Cp}, we define the boolean
function ΦP’C

α with variables 〈ai,k,x〉i∈N , k∈{2..p},x∈X? and
〈si,k,k′,g,b〉i∈N , k∈{2..p}, k′∈{2..p}, g∈ C�k′ , b/∈ C�k , as the conjunction of clauses:

ΦP’C
α = φP

′1 ∧ φP ′2 ∧ φP ′C3 ∧ φP ′C4 ∧ φP ′C5

φP
′C3

α =
∧
i∈N , k∈[2..p], k′∈[2..p]

∧
g∈α−1(C�k′ ), b∈α−1(C≺k) (¬si,k,k′,g,b ∨ ¬ai,k,b)

φP
′C4

α =
∧
i∈N , k∈[2..p], k′∈[2..p]

∧
g∈α−1(C�k′ ),b∈α−1(C≺k) (¬si,k,k′,g,b ∨ ai,k′,g)

φP
′C5

α =
∧
k∈[2..p], k′∈[2..p]

∧
g∈α−1(C�k′ ), b∈α−1(C≺k) (

∨
i∈N si,k,k′,g,b)

Formulations of φP
′1

α and φP
′2

α can be found in Def. 4.4.

Corollary A.2. Given a context, an assignment α : X? → {C1 ≺ . . . ≺ Cp} can be represented in the Non-
Compensatory sorting model with a unique set of sufficient coalitions if, and only if ΦP’C

α is satisfiable.

B MaxSAT relaxations based on pairwise separation conditions for
more than two categories

We provide here extensions of the MaxSAT formulation presented in Section 5.2, to the case with multiple categories.
They rely on the fact that an NCS model with p categories is informally the combination of p− 1 NCS models with
two categories whose parameters satisfy the nesting conditions on coalitions and satisfactory values. The maximization
of the restoration in the second formulation is equivalent to the simultaneous maximization of the restoration in the
sub-problems with two categories. On top of the ‘z’ variables encoding the correct restoration of a reference alternative,
we introduce intermediate switches:

• ‘y’ variables, indexed by an alternative x ∈ X? and an exigence level k ∈ [2..p], encode the proper restoration
of alternative x by the 2-categories NCS model with GOOD = C�k and BAD = C≺k.

These variables are logically tied to the ‘z’ variables by the following conjunction of hard clauses:

φP̃
′yz

α =
∧
x ∈X?

∧
k∈[2..p]

(yk,x ∨ ¬zx)

While the objective in the MaxSAT formulation is to maximize the number of properly classified alternatives, this
goal is reached by the simultaneous maximization of the restoration rate in each sub-problem with two categories,
leading to the introduction of a number of sub-goals:

φsubgoalsα =
∧

k∈[2..p]

∧
x ∈X?

yk,x

The soft clause φgoalα is given weight w1, and each one of the clause appearing in the conjunction φsubgoalsα is given
weight w2, while the hard clauses are given weight wmax. These weights are chosen so that wmax � w1 � w2, and
more precisely : (p− 1) |X?|w2 < w1; and |X?|w1 < wmax.

The hard clauses differ according to the target model.
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B.1 Learning an NCS model

Use the following conjunction of hard clauses: φP
′1

α ∧ φP ′2α ∧ φP̃ ′3α ∧ φP̃ ′4α ∧ φP̃ ′5α ∧ φP̃
′yz

α .

φP̃
′3

α =
∧
i∈N , 2≤k≤k′≤p

∧
g∈α−1(C�k′ ), b∈α−1(C≺k) (¬si,k,k′,g,b ∨ ¬ai,k,b)

φP̃
′4

α =
∧
i∈N , 2≤k≤k′≤p

∧
g∈α−1(C�k′ ),b∈α−1(C≺k) (¬si,k,k′,g,b ∨ ai,k′,g)

φP̃
′5

α =
∧
k∈[2..p],2≤k≤k′≤p

∧
g∈α−1(C�k′ ), b∈α−1(C≺k) (

∨
i∈N si,k,k′,g,b ∨ ¬yk,b ∨ ¬yk′,g)

Note that the conjunction φP̃ ′3α (resp. φP̃ ′4α ) subsumes the conjunction φP
′3

α (resp. φP
′4

α ) introduced in Def. 4.4, but
that, together with the constraints φP

′2
α , is equivalent to it. While this redundancy is not needed in the SAT formulation,

it helps formulate the subgoals of the MaxSAT formulation.

B.2 Learning a UC-NCS model

Use the following conjunction of hard clauses: φP
′1

α ∧ φP ′2α ∧ φP ′C3
α ∧ φP̃ ′C4

α ∧ φP̃ ′C5
α ∧ φP̃

′yz
α .

Formulas φP
′1

α and φP
′2

α are introduced in Def. 4.4, φP
′C3

α and φP
′C4

α are introduced in Def A.2, and

φP̃
′C5

α =
∧
k∈[2..p], k′∈[2..p]

∧
g∈α−1(C�k′ ), b∈α−1(C≺k)

(∨
i∈N si,k,k′,g,b ∨ ¬yk,b ∨ ¬yk′,g

)
.

B.3 Learning a UB-NCS model
As it is the case when addressing the decision problem, the UB-NCS model can be learned with a MaxSAT formulation
which is very close to the one used in the case of two categories, without using any ‘y’ variables. Use the following
conjunction of hard clauses (each one with weight wmax): φP

′B1
α ∧ φP ′B3

α ∧ φP ′B4
α ∧ φP̃ ′B5

α , together with the soft
clause φgoalα with weight w1 < wmax/|X?|. Formulas φP

′B1
α , φP

′B3
α and φP

′B4
α can be found in Def. A.1, and

φP̃
′B5

α =
∧
α(g)�α(b)

(∨
i∈N si,g,b¬zb ∨ ¬zg

)
.
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