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Rating transitions forecasting: a filtering approach
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Abstract

Analyzing the effect of business cycle on rating transitions has been a subject of great
interest these last fifteen years, particularly due to the increasing pressure coming from reg-
ulators for stress testing. In this paper, we consider that the dynamics of rating migrations,
in a pool of credit references, is governed by a common unobserved latent Markov chain. We
explain how the current state of the hidden factor, can be efficiently inferred from observa-
tions of rating histories. We then adapt the classical Baum-Welch algorithm to our setting
and show how to estimate the latent factor parameters. Once calibrated, we may reveal and
detect economic changes affecting the dynamics of rating migration, in real-time. The filter-
ing formula is then used to predict future transition probabilities according to the economic
cycle without using any external covariates. We propose two filtering frameworks: a discrete
and a continuous version. We demonstrate and compare the efficiency of both approaches on
fictive data and on a corporate credit rating database. The methods could also be applied to
retail credit loans. Finally, under a point process filtering framework, we extend the standard
discrete-time filtering formula to a more general setting, where the hidden process does not
need to be a Markov chain.

1 Introduction

Credit risk research has been on the rise over the last 20 years. In particular, the challenges
that arose from the previous financial crisis prompted researchers to develop credit risk valuation
models that take into account the evolution of the business cycle. The evolution of the banking
supervisor regulations and accounting rules follow this trend: official guidelines of IFRS 9 as [42]
recommend the use of point-in-time estimation of credit risk, i.e., the use of macro-economic fac-
tors in the credit risk assessment process. Moreover, the EBA guidelines [2] on LGD downturn,
require to identify economic downturn periods to adjust the initial LGD estimations. In addition,
EBA stress testing methodology described in [15] strongly relies on past economical scenarios.

A credit rating system evaluates the confidence in the ability of the borrower to comply with
the credit’s terms. A default probability is associated with each rating, which under Basel regula-
tions, impacts the amount of capital required for a credit (see [22]). Such ratings may be generated
by internal rating systems (IRB) or issued, by external rating agencies. After the assignment of
the initial credit rating, reviews are performed either periodically or based on market events. In
that way an entity’s rating may evolve through time according to its health and to the economic
cycle. Therefore, predicting the evolution of rating migrations is of primary importance for every
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financial institution. The migrations of a group of credit entities can be described by transition
matrices, defining the probabilities to move from one rating state to another in a given period
of time. Given recent evolution in banking supervisory and accounting rules, the challenge is to
explain changes in transition probabilities due to changes in the business cycle.

Factor-based migration models provide a nice framework for capturing migration sensitivities to
macro-economic changes. Models in this class allow transition probabilities to depend on dynamic
factors. Two main families of models are usually considered in the credit risk literature : the
“ordered Probit” (or structural approach) introduced by [46], popularized by [36] and studied for
credit ratings , e.g., in [3], [18], [24], [37] and the “multi-state latent factor intensity model” (or
intensity approach) studied, e.g., in [19], [29], [30] and [33]. This paper focuses on the second
approach.

In the basic reduced intensity form model, a credit event corresponds to the first jump time
of a Poisson process with a constant intensity. The reduced form approach has been widely stud-
ied in the credit risk literature, see, e.g., [14], [27]. Nevertheless [1], [20] and [26] provide evidences
that migration intensities vary over time. In their research, [26] and [32] show that the rating
transition probabilities depend on whether the bond entered its current rating by an upgrade or a
downgrade. [32] also notice that the probability to leave a rating category tends to decrease with
the time spent at that rating. Above all, [3], [37] give strong evidence that credit risk is consider-
ably affected by the macroeconomic conditions and differs across different economic regimes.

In both structural and intensity models, the factors may be considered observable or unobservable.
The second approach has emerged in response to criticisms made against the first. As [24] point
out, the risk in selecting covariates lies in excluding others which could be more relevant. [10]
provide an overview of usual modelling and estimation approaches and compare the estimation
and the predictive performance of each approach on real data. When the underlying factors are
unobservable, they adapt a method given in [24] to represent the considered factor migration
model as a linear Gaussian model, and apply a Kalman filter to predict the state of the underlying
latent factor. This approximation lies on the hypothesis that the data set is large enough to apply
asymptotic normality. This assumption may be too restrictive and may explain the poor quality
of predictions obtained by [10].

A natural alternative consists in directly filtering the hidden factor given rating transitions’ past
history. For a bond portfolio, the dynamics of rating migrations can mathematically be repre-
sented as a multivariate counting process, each component representing the cumulative number
of transitions from one rating category to another. Estimating the hidden factor dynamics by
only using observations of the counting process has already been considered in the credit risk
literature. For instance, [21] and [23] follow this approach for pricing derivatives under incomplete
information.

A realistic and standard setting assumes that the unobserved driving factor is given as a finite
state Markov chain and that the rating transition process follows a Hidden Markov model (HMM).
[6] and [16] respectively present a detailed analysis of continuous-time and discrete-time filtering
under special HMM assumptions. Hidden Markov Chain modeling (HMM) remains a popular
approach in credit risk analysis (see e.g., [9], [16], [17], [45]). The hidden process can have differ-
ent interpretations according to the assumptions made and the way to filter. In the credit rating
literature, [31] assume that the observed rating of a firm is a noisy observation of its true credit
rating, represented by a hidden Markov chain. They apply an Expectation Maximisation (EM)
algorithm for hidden Markov models under a discrete-time setting. They calibrate the filtering
formula applied to Markov chains, derived in [16], to infer from its rating evolution, the true credit
quality of a firm. [11] extend the parameter estimation via the EM algorithm to continuous-time
hidden Markov models. Similarly, they infer the true credit quality from rating observations but
also with credit spreads. In these studies, each firm has its own true rating process, therefore its
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rating dynamic is governed by its own hidden process. Then the dynamic of rating transition of
entities are governed by independent and identically distributed hidden Markov chains. Therefore,
rating observations are assumed to be independent and an aggregated calibration procedure can
be made. In the context of this paper, the hidden factor is interpreted as a systematic and common
factor, governing transitions of all firms. Among the studies which share the same interpretation,
[25], also use the classical Baum-Welch algorithm (introduced in [4]), for estimation of a two-state
hidden factor driving occurrence of defaults. They obtain estimates for the model parameters and
are able to reconstruct the most likely past sequence of the hidden factor. Their approach only
holds for an unique transition and is not suitable for providing online estimations of the hidden
factor state. In the same vein [13] and [39] identify two states, one of expansion and the other of
contraction. In particular, [39] use an extension of the Baum-Welch algorithm adapted to “regime
switching hidden Markov model” (RSMC) to forecast sovereign credit rating transitions. In a
different scope, they also assume that every rating processes are governed by independent and
identically distributed Markov chains.

The contributions of this paper are both theoretical and practical. We apply filtering frame-
work to credit migrations, and show how to infer the current state of the hidden factor from past
rating transitions. An EM algorithm is adapted to estimate the parameters involved. Contrary
to [11], [31], [39], we assume that the dynamics of rating migrations in a pool of credit references,
is governed by a common unobserved latent Markov chain, which aims to represent the economic
cycle. Therefore the realization of the unobservable factor is assumed to be common to every
firm whereas one hidden factor per bond is considered in [11], [31], [39]. We believe that our
approach which rather keeps the dependencies within the observations sample, is reliable and re-
alistic. Indeed, rating entities should be affected by the same realization of the economic factor.
This different consideration changes the way to calibrate and to filter: our filtering framework
uses the whole history of aggregated number of jumps. Once calibrated, we may reveal and detect
economic changes affecting the dynamics of rating migration, in real-time. By updating the fil-
tered factor, we are able to forecast rating transitions according to these economic changes. Our
approach may be considered as a new Point-in-time (PIT) rating transitions modeling which does
not use any macro-economic factors.
Behind every model mentioned, choosing a continuous or discrete approach is crucial and is a
matter of debate. This paper aims at participating to this debate by presenting different results:
we adapt filtering formulas, derived under special HMM assumptions in [6] and[16], to migration
ratings context, both in a continuous-time and discrete-time setting. In particular, we show how
to adapt the continuous-time filtering framework to handle discrete-time data and simultaneous
jumps. We assess and compare both approaches on a fictive data set and on a Moody’s ratings
history [01/2000-05/2021] of a diversified portfolio of 5030 corporate entities. Finally, to further
pursue the study, under a point process filtering framework, we derive a general discrete-time
filtering formula which extends the standard Markov case.

The paper is organised as follows. First, Section 2 presents the discrete-time filtering framework
adapted to credit rating migrations. Correspondingly, Section 3 describes the continuous-time
filtering version adapted to the same context. Section 4 illustrates and validates the two filtering
approaches on fictive data. Then, in Section 5, we compare the two filters on real data sets.
Finally, we present a general discrete-time point process filtering equation throughout Section 6,
where the Markov assumption is relaxed.

2 Discrete-time filtering for rating migrations

We aim to adapt the discrete-time filtering framework developed for hidden Markov chain in [16],
to the context of rating migrations. We consider that a common Markov chain governs the dy-
namics of all transitions. This hidden process may carry the systematic risk shared by rating
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transitions and might be interpreted as the economic factor. We first present the formula in the
context of a single pair of rating categories (a single transition from one given rating, to another).
Then we extend the approach to multiple rating transitions.

Let Γ ∈ N be a discrete time horizon. We work with the filtered probability space (Ω,A,F =
(Fn)n∈{0,...,Γ},P). Let Θ be a Markov chain with finite number of states in T = {1, . . . ,m}. Let FΘ

be the natural filtration of Θ, augmented with P−null sets. Let’s define, for h ∈ T, n ∈ {0, . . . ,Γ},
Ihn = 1[Θn=h], the indicator function of Θ on state h, at time n.
We consider the list of rating categories Ῡ = {1, . . . , p}. This space represents different credit risk
scores or ratings in descending order, p being the default state. For example, Standard and Poor’s
long-term investment ratings can be translated to AAA = 1, AA = 2, A = 3, BBB =4, . . . , D
(Default) = 10. In practice the number of credit entities monitored over time may vary, either
because some names are censored or simply because of missing data. This consideration is deeply
discussed in Section 5.1. We attribute the rating 0 to an entity in this case. Then, it is clear that
a transition involving the rating of censure 0, is assumed to be independent with the states of the
hidden factor. Then we call Υ = {0, . . . , p}, the completed list of ratings. Note that, with this
setting, the number of entities observed on Υ is constant over time and equal to Q. Let Zqn ∈ Υ,
be the random variable, describing the state of bond q, q ∈ {1, . . . , Q}, at time n ∈ {0, . . . ,Γ}
and let Zq = (Zqn)n∈{0,...,Γ} be the migration process that describes its evolution. The counting
process, which counts the total number of jumps of the entities, from rating i to r, (i, r) ∈ Υ2, is
denoted by N ir and is such that, ∀n ∈ {1, . . . ,Γ},

∆N ir
n =

∑
q≤Q

1[Zqn−1=i,Zqn=r].

Let FN be the natural filtration of N , augmented with P−null sets. For n ∈ {1, . . . ,Γ}, we
introduce for every process O, the notation

Ôn = E[On|FNn ].

In addition, let us denote by the process Y i representing the number of observed and active entities
that belong to rating i, which may jump to another one. It may evolve over time, according
to censorship, arrivals of new entities on the market with initial rating i, rating transitions or
bankruptcies. This process is assumed to be FN–predictable. In this framework, Θ aims to
represent the systematic risk factor. It is unique and governs dynamics of all rating transitions.
Furthermore, for the sake of tractability, it is assumed that Θ impacts entities with the same
rating in the same way. Consequently, we consider that entities with the same rating, are perfectly
indistinguishable. Under this exchangeable setting, to infer information on the underlying hidden
factor Θ, it is sufficient to observe the aggregated counting processes (∆N ir)i,r∈Υ and the processes
(Yi)i∈Υ. The number of jumps from i to r can not exceed the number of active entities. Then,
the support of ∆N ir

n is Jin = {0, . . . , Y in}. Let us define the support of ∆Nn, the product spaces
J⊗n =

∏p
i=1 Jin. We define the transition probabilities of Θ as

∀(s, h) ∈ T2, ∀n ∈ {1, . . . ,Γ}, Ksh = P(Θn = h|Θn−1 = s), Πh = P(Θ0 = h).
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2.1 Unique rating transition

In a first framework, we present a specific case of the general setting presented above. we consider
a unique transition from a rating called r0 ∈ Ῡ to another, called r1 ∈ Ῡ. N is reduced to
N = Nr0,r1 , the associated univariate counting process which counts the total number of jumps
of the entities, from rating r0 to r1, such that, ∀n ∈ {1, . . . ,Γ},

∆Nn =
∑
q≤Q

1[Zqn−1=r0,Z
q
n=r1].

Let FN be the natural filtration of N , augmented with P−null sets. For n ∈ {1, . . . ,Γ}, Yn
represents the number of active and observed entities with rating r0 at time n− 1, that may jump
to rating r1 at time n. We present here the recursive equation satisfied by Îhn = E[1[Θn=h]|FNn ].
We define, for any n ∈ {1, . . . ,Γ} and s ∈ T, the conditional transition probabilities as

Ls = P(Zqn = r1|Zqn−1 = r0,Θn−1 = s).

According to the previous notations, the number of jumps from r0 to r1 cannot exceed the number
of active entities. Then, the support of ∆Nn is Jn = {0, . . . , Yn}. Knowing that {Θn−1 = h, Yn =
yn}, we assume that the conditional distribution of the random variable ∆Nn is binomial with
parameters (yn, L

h). Similar settings can be found in [7] and [25].

Proposition 1. With these assumptions, the filtered process Îhn solves the following recursive equa-
tion. For n = 1, . . . ,Γ,

Îhn =
∑
j∈Jn

∑m
s=1K

sh(Ls)j(1− Ls)Yn−j Îsn−1∑m
s=1(Ls)j(1− Ls)Yn−j Îsn−1

1[∆Nn=j]. (1)

Proof. This formula can be derived from the general discrete-time filtering formula, presented
later in this paper, in Section 6. This approach is described in Remark 8. This formula can
also be derived from the filtering formula [16, Chapter 2-Theorem 4.3]. However, the filtering
formula must be applied to the context described above. We apply the formula to the counting
process ∆N , considered as an observable Markov chain with finite number of states, Jn at time
n ∈ {1, ..Γ}, and governed by the common hidden Markov chain Θn.

Remark 2. For the sake of interpretability, our setting assumes that the entities should be affected
by the same realisation of the economic factor. Therefore, our filtering framework uses the whole
history of aggregated number of jumps, keeping the dependencies within the observations sample.

In this framework, the hidden factor governs a unique transition. It might be more realistic
to assume that it affects all transitions. Then, we naturally extend the previous equation to a
multivariate setting.

2.2 Multiple Rating transitions

In this application, we extend the previous result by considering multiple rating transitions. We
present now the recursive equation satisfied by Îhn = E[1[Θn=h]|FNn ], where N = (N ir)ir∈Υ.
According to this setting, we define the conditional transition probabilities of (Zq)q as

For (i, r) ∈ Υ2, s ∈ T and ∀n ∈ {1, . . . ,Γ}, Ls,ir = P(Zqn = r|Zqn−1 = i,Θn−1 = s).

Note that if i = 0 or r = 0 then ∀s ∈ T, Ls,ir = P(Zqn = r|Zqn−1 = i). Indeed, the transitions
from or to the rating 0 are assumed to be independent of the hidden factor because censorship is
non-informative.
Since only one realisation of trajectory of Θ governs observed rating processes, the random vari-
ables {Zqn, q ≤ Q}, for n ∈ {1, . . . ,Γ}, are still not independent. Nevertheless, knowing the sate of
Θn, they are independent. Then, the conditional distribution of the multivariate random variable
∆N ir

n , knowing that {Θn−1 = s, Y in = yin}, is multinomial with parameters (yin, (L
s,ir)r).
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Proposition 3. With such assumptions, the filtered process Îhn is solution of the following recursive
equation

Îhn =
∑
δ∈J⊗n

∑
sK

sh
∏p
i,r=1(Ls,ir)δir Îsn−1∑

s

∏p
i,r=1(Ls,ir)δir Îsn−1

1[∆Nn=δ]. (2)

Proof. We leave the proof to the reader as it goes along the same lines as the proof of Proposi-
tion 1.

Once the hidden factor filtered state is obtained, it is then possible to predict the future migration
probabilities.

2.3 Transition probability prediction

We define for (i, r) ∈ Ῡ2, the process νir, which forecasts the transition probability from rating i
to rating r, for the next time step.

∀ (i, r) ∈ Ῡ2,∀n ∈ {1, . . . ,Γ} : νirn−1 = E
[
1[Zqn=r]|Z

q
n−1 = i,Fn−1

]
=
∑
h∈T

Lh,irIhn−1.

With the filtered current hidden factor, we can forecast the future transition probabilities

∀ (i, r) ∈ Ῡ2,∀n ∈ {1, . . . ,Γ} : ν̂irn−1 = E
[
1[Zqn=r]|Z

q
n−1 = i,FNn−1

]
=
∑
h∈T

Lh,ir Îhn−1. (3)

2.4 Calibration

In this section, we explain how to estimate model parameters involved in the filtering equation
(2). We apply the so-called Baum-Welch algorithm to our discrete-time framework.

2.4.1 A Baum-Welch algorithm adapted for a discrete framework

The proposed method is a maximisation expectation (EM) algorithm for hidden Markov chains
(HMM), adapted to the model. We can find studies on the classical model in [5], [40], [41] and
[44].
However the classical algorithm is not totally suitable for calibration of the discrete filtering equa-
tion (2). We highlight one inconsistency between the classical algorithm and our model. Rating
process trajectories of each entity must be independent whereas in our framework, they are de-
pendent through the common factor Θ.
The first step of the algorithm assigns initial values to the parameters we want to estimate. Then
the algorithm replaces the missing data (states of Θ) with Bayesian estimators using the observa-
tions and the current parameters estimated values.
The second one consists in improving a conditional likelihood. Better parameters are estimated.
Then these new estimates are used to repeat the first step. We iterate this process to converge to
a local maximum.
Let Z = (Zq)q≤Q be the multivariate rating process and we call for (n1, n2) ∈ {0, . . . ,Γ}2,
(Z)n∈{n1,...,n2} = Zn1|n2

, the rating trajectories between time n1 and n2. As the new rating
does not only depend on the economic cycle (state of Θ) but also on the previous rating, we apply
the Baum-Welch algorithm by considering that

∀n ∈ {1, . . . ,Γ}, P(Zn|Z0, . . . , Zn−1,Θ0, . . . ,Θn−1) = P(Zn|Zn−1,Θn−1).

Furthermore, as rating history of all entities are dependent on a same realization of Θ, we must
adapt our algorithm differently from [39] who considered that each rating process is governed by
its own and independent trajectory of Θ.
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2.4.2 Initialization

The calibration algorithm presented is based on iterative improvement of a likelihood. This ex-
pectation maximization algorithm (EM) (see [12]), as most of iterative maximisation algorithms,
might be trapped in a local maximum. Obtained parameters may not be relevant when the global
maximum is not found. This success is deeply dependant on the initialization. Several empirical
and analytical methods have been proposed to deal with this matter. In [34], transition probabil-
ities are initiated using empirical frequencies. They succeed to considerably reduce the number of
iterations to find their local maximum. By noticing that the transition matrices have strong diag-
onals, [39] initialized their model by adding small perturbations to identity matrix or to uniform
distributions. In our study we choose a third option which seems to be more reliable: we test a
high number of initial values (picked at random) in order to find the global maximum. In order to
guarantee almost surely convergence to the global maximum, initial values are chosen according
to a uniform distribution on the parameters space.

2.4.3 Bayesian estimators

This part only presents the main results of the algorithm. One can find more details of the
computations in Appendix A.
We define the forward probability as denote,

∀s ∈ T,∀n ∈ {1, . . . ,Γ} : αn(s) = P(Z0|n = z0|n,Θn−1 = s)

and the backward probability as

∀s ∈ T,∀n ∈ {1, . . . ,Γ− 1} : βn(s) = P(Zn+1|Γ = zn+1|Γ|Zn = zn,Θn−1 = s).

We use the following recursive formulas in order to compute the two previous probabilities

αn(s) =

m∑
l=1

αn−1(l)Kls
∏
i,r∈Υ

(Ls,ir)∆Nirn ,

βn(s) =
m∑
l=1

βn+1(l)Ksl
∏
i,r∈Υ

(Ll,ir)∆Nirn+1 .

For n ∈ {1, . . . ,Γ}, we introduce two random variables useful to describe Θ

un(h) = 1[Θn=h],

vn(s, h) = 1[Θn=h,Θn−1=s].

The forward and backward probabilities are helpful to compute the following Bayesian estimators

ǔn(h) = P(Θn = h|Z0|Γ = z0|Γ) =
βn+1(h)αn+1(h)

LΓ
,

and

v̌n(s, h) = P(Θn = h,Θn−1 = s|Z0|Γ = z0|Γ) =
βn+1(h)Kshαn(s)

∏
i,r∈Υ(Lh,ir)∆Nirn

LΓ
,

where LΓ is the likelihood of the whole sample,

LΓ = P(Z0|Γ = z0|Γ) =

m∑
j=1

αΓ(j).
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2.4.4 Parameters estimation

The maximization phase consists in finding better parameters than those of the previous iteration.
We call M (γ) = (Π(γ), L(γ),K(γ)), the parameters obtained at the iteration (γ).
The new parameters are deemed to improve the likelihood according to:

P(Z0|Γ = z0|Γ|M (γ+1)) ≥ P(Z0|Γ = z0|Γ|M (γ)).

To achieve that, we are looking for maximizing log
P(Z0|Γ=z0|Γ|M(γ+1))

P(Z0|Γ=z0|Γ|M(γ))
, which is equivalent to max-

imize

Q(M (γ),M (γ+1)) =
∑

θ∈{1,...,m}Γ
P(Θ0|Γ = θ, Z0|Γ = z0|Γ|M (γ)) logP(Θ0|Γ = θ, Z0|Γ = z0|Γ|M (γ+1)).

After optimization, we obtain the following estimators

Πh = ǔ0(h); Ls,ir =

∑Γ
n=1 ǔn−1(s)∆N ir

n∑Γ
n=1 ǔn−1(s)Y in

; Ksh =

∑Γ
n=1 v̌n(s, h)∑Γ
n=1 ǔn−1(s)

.

3 Continuous-time filtering for rating migrations

In this section, we explain how to apply continuous filtering framework to credit rating migrations.

3.1 Multiple Rating transitions

Let (Ω,A,F = (Ft)t∈[0,T ],P), be a filtered probability space satisfying the “usual conditions”
of right-continuity and completeness needed to justify all operations to be made. All stochastic
processes encountered are assumed to be adapted to the filtration F and integrable on [0, T ]. In
particular, we have A = FT . The time horizon T is supposed to be finite. In order to remain
realistic and to fix the terminology, a bond market containing a finite number of individual bonds
is considered. All bonds are affected by variable and random market conditions represented by
the same latent process Θ. The hidden factor driving process Θ is assumed to be a Markov chain
with finite number of states in T and with constant transition intensities krh, r 6= h and such that
krr = −

∑
l;l 6=r k

rl, so that, for small enough dt,

∀ r 6= h ∈ T2 : P(Θt+dt = h |Θt = r) ≈ krh dt. (4)

The initial distribution of Θ is defined as

∀h ∈ T : Πh = P(Θ0 = h).

Let us introduce the state indicator processes Ih, h ∈ T = {1, . . . ,m}, defined by

Iht = 1[Θt=h], h ∈ T.

A bond q of the sample is observed between the dates sq and uq, 0 ≤ sq ≤ uq ≤ T . We consider
that the bond q may evolve in the same credit rating categories space, Ῡ = {1, . . . , p}, than for
the discrete-time framework.
Let Y = {(i, j) ∈ Ῡ2, i 6= j}, be the space of possible migrations. Let Zqt ∈ Ῡ be the rating state
of bond q at time t and Zq = (Zqt )t∈[sq,uq ] be the rating process describing its evolution. The
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migration counting process associated with Zq, which counts the number of jumps of the entity q
from rating i to j, is denoted by Nq,ij and is such that, ∀t ∈ [sq, uq],

∆Nq,ij
t = 1[Zqt−=i,Zqt=j].

We introduce FN = (FNt )t∈[0,T ] the natural filtration of the multivariate counting process N =
(N ij)i,j∈Ῡ. We assume that two entities cannot jump at the same time, i.e, they do not have any

common jumps, i.e., ∀i, j, r, k ∈ Ῡ,∆N ij
t ∆Nrk

t = δirδjk∆N ij
t . We also assume that there is no

common jump with Θ. With the same notation provided in the discrete-time framework, all the
processes O filtered by FNt are written Ôt = E[Ot|FNt ].

In this study, we assume that (Zqt , t ∈ [0, T ])q are described within a factor migration model.
More specifically, knowing FΘ

T , the rating processes (Zq)q are assumed to be conditionally in-
dependent Markov chains with the same generator matrix. In reality the change of rating of a
bond may also induce the change of state of other bonds but this contagion effect is not con-
sidered in this paper. Moreover, the censorship mechanism governing (sq, uq) is assumed to be
non-informative and can therefore be considered deterministic and belonging to FN0 . Under this
exchangeable setting, to infer information on the underlying hidden factor Θ, it is sufficient to
observe the aggregated counting processes N ij , (i, j) ∈ Y, defined by

N ij
t =

∑
q; sq≤t<uq

Nq,ij
t .

and the exposure processes Y i, i ∈ Ῡ defined by

Y it =
∑

q; sq≤t<uq
1[Zqt−=i] .

Y it represents the number of observed entities with rating i at time t, which may jump. Note that
the exposure process Y i is left continuous. It increases by 1 when N ji jumps for any j 6= i, or
when a new bond enters the pool with rating i. It decreases by 1 when a bound jumps outside
rating i, i.e., whenever N ij jumps for j 6= i or when a bond expires with rating i.

This framework aims to determine the recursive equation satisfied by Îhn = E[1[Θn=h]|FNn ]. We

denote by (νijt )(i,j)∈Y the F intensity of N . We assume that the intensities (νij)(i,j)∈Y are gov-
erned by the finite state hidden Markov chain Θ. With these assumptions, the processes (Zq)q
are governed by their common intensity matrices (lh)h∈T, such as for small enough dt

P[Zqt+dt = j |Zqt = i,Θt = h] ≈ `h,ij dt. (5)

Then the counting processes N ij are governed by the F intensities

νijt = Y it
∑
r∈T

`r,ij Irt− .

As Y i is FN–predictable, the FN–intensity of N ij , may be written as

ν̂ijt− = Y it
∑
r∈T

`r,ij Îrt− . (6)

We present the multivariate filtering formula satisfied by the process (Iht )t∈[0,T ] in the following
proposition.

Proposition 4. With the previous assumptions, the unobserved indicator process filtered with rating
jumps satisfies the following recursive equation

dÎht =

m∑
r=1

krhÎrt−dt+
∑
i 6=j

(
lh,ij Îht−∑
r l
r,ij Îrt−

− Îht−

)(
dN ij

t − Y it
m∑
r=1

lr,ij Îrt−dt

)
(7)
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Proof. This result stems from the general continuous-time filtering theory developed in [6, Sec.IV.1].
Compared to the setting of [6], two adaptations are necessary. First, we deal here with an aggre-
gated multivariate process over the entire portfolio and secondly, we take censorship into account
though the processes of risk exposure Y i. For the sake of completeness, we provide in Appendix
B a self-consistent proof yielding a general explicit filtering formula with no simultaneous jumps.
Then, we provide in Appendix B.3, the adequate adaptations for the rating migration context to
obtain the filtering equation (7).

Usually, information on rating migrations are only available to public on a daily basis. For large
credit portfolios, it is then frequent to observe multiple transitions (of several entities) occurring at
the same day. In addition, clustering of rating migrations may also happen following the disclosure
of a major economic events. Then, the presented continuous-time filtering approach is not fully
compliant with migration data since it precludes simultaneous jumps between counting processes.
This has lead us to preprocess the data and adapt the calibration algorithm.

3.2 Adaptation of the continuous-time setting to discrete migration
data

This part aims to explain how to adapt continuous filtering to discrete rating migration frame-
work. We propose an adaptation of the calibration algorithm in order to be compliant with the
continuous filtering formula (7). Previous adaptations done for the discrete framework are still
required but are not sufficient: Baum-Welch algorithm is an estimation in discrete time which is
not compliant with the continuous version of the filter. Furthermore the continuous-time filtering
framework assumes the absence of simultaneous jumps.
For the first deviation, we propose to calibrate discrete-time parameters. Then it is necessary to
switch to continuous time dimension for filtering. The transition between probabilities to intensi-
ties turns out to be easy when the time interval chosen is small enough according to (4) and (5).
The second deviation is also essential. There is no common jumps among the rating processes.
However, ratings are not natural processes. Human decisions and algorithm appreciations are
reported at the same moment in a day. Therefore we have to deal with simultaneous daily ob-
servations. Our solution consists in considering a different time grid. Each day is cut into small
intervals and jumps are randomly spread on these time intervals. We insure to cut enough finely
to have a maximum of one jump per interval. This manipulation has two drawbacks. First, the
conditional independence between rating entities might be lost if the non-simultaneity of jumps is
enforced. Then, distributing simultaneous jumps on a finer time grid may ultimately modify the
original information.
The second effect is studied in a testing benchmark at Section 4.2.
Once the data have been modified, we adapt our calibration algorithm to respect continuous struc-
ture. To this end, we use a prior law of jumps which respects the constraint of no simultaneity
(that the number of observed jumps is only 0 or 1). The main idea consists on assuming that
one entity is randomly chosen to be allowed to jump. Then, the entity may jump according the
common migration matrices {(Lh,ij)h, (i, j) ∈ Ῡ}.

More details of this adaptation can be found in Appendix B.4.

4 Filtering on simulated data

The purpose of this section is to test and validate the continuous-time and discrete-time ver-
sions of the filter using simulated data: we build two rating migration databases from the two
underlying credit migration models: the discrete-time model (as described in Section 2) and
the continuous-time factor migration model (as described in Section 3). Since the structure
of the two models are different, different data sample are used for testing the two approaches.
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The inputs of the filtering models are the evolution of the number of transitions, described by
{∆N ir

n , n ∈ {1, . . . ,Γ}, i, r ∈ Υ}. Our testing framework aims to compare the filtered trajectory
of the hidden factor, (Θ̂n)n∈{1,...,Γ} and the real simulated one (Θn)n∈{1,...,Γ}. Then it compares
estimated point-in-time transition probabilities to real observed transition rates. The real observed
rate of a transition is the ratio between the number of observed jumps during a time interval and
the number of entities at the beginning of this time interval, susceptible to jump. Estimations of
transition probabilities are respectively given by {ν̂irn , n ∈ {1, . . . ,Γ}, i, r ∈ Υ}, in (3) for the
discrete-time setting and {ν̂irn dt, t ∈ [0, T ], (i, r) ∈ Y}, in (6) for the continuous-time setting. The
value of dt is chosen equal to 1

1000 , 1000 being the number of small intervals in which we have cut
each day (see Section 3.2). To calibrate the models, the EM algorithm of Section 2.4 is run 1000
times by sampling random initial values (see Section 2.4.2). We keep the solution, which provides
the highest likelihood estimation.

4.1 Discrete time filtering approach

To build the discrete-time database, we assume that the hidden factor is described by a finite
state space Markov chain with 7 states. We consider a given set of model parameters. Each
state of the hidden factor is associated with a specific rating migration matrix. We try to choose
matrices compliant with filtering: we must have sufficient variability among conditional transition
probabilities (Lh,ij)h, (i, j) ∈ {1, .., p}. We work with 3 ratings categories {A,B,C} and initialize
our sample with 1000 entities per rating. Then the hidden Markov chain is simulated on 300 time
steps. According to the hidden factor’s sample path, we simulate transitions using conditional
transition matrices. We use the first 200 time-steps to calibrate the model and the remainder to
test is.

We perform the calibration as described in Section 2.4. Parameters chosen for sampling the
model and estimated parameters are presented in Appendix C. The average difference is equal to
0,0014 (9,8% of average relative error on superior and inferior diagonals) for the rating transitions
{(Lh,ij)h, (i, j) ∈ {1, .., p}} and equal to 0,0159 (5,5% of average of relative error) for the hidden
factor’s transition probabilities {Krh, r, h ∈ T}. Despite the high dimentionality of the problem,
these indicators demonstrate that the estimation algorithm is able to recover the parameters.
Figure 1 shows the real trajectory and the filtered trajectory of the hidden factor computed on
the testing sample (of 100 time-steps).

Figure 1: Simulated and filtered trajectories of the hidden factor on the last 100 testing dates

We can notice that the filter is able to detect the changes of states. It faithfully follows the
real trajectory and respects the different phases and trends. However it does not exactly mimic
the true value, since the filtering formula is a weighted average of the state values. We can also
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observe a small delay in the estimation. The explanation is theoretical: it is caused by the effect
of delay in the filtering model: the impact of the hidden factor at time t − 1 is observable on
ratings at time t. Therefore, when the hidden factor at time t is filtered, the freshest observations
available at this time, is the rating jumps at time t which have been governed by the hidden factor
at time t − 1. Consequently we infer the current hidden factor state with information generated
by its previous value.
We can easily understand that the calibration plays a crucial role to make the filtering efficient. In
order to forecast in time, states need to be strongly linked at least to another state. Let’s imagine
a rare and very unstable state. Since it is hardly visited from other states, it will never influence
the direction of the filter and will be difficult to predict. Once the filter realizes that the hidden
factor jumps to this state, it is too late, the hidden factor has already returned to another state.
Finally, the filter is unable to capture rare events to unstable states. This remains acceptable since
our main purpose is to detect transitions to stable regimes. Visiting a state for a brief period of
time does not represent useful information for long term forecasting.
The following Figures 2, 3, 4, 5, 6, 7, represent real ratios of observed transitions with the predicted
transitions dynamics, obtained from (2) and (3), between the three considered rating categories
{A,B,C}.

12



Figure 2: Real and predicted ratios from A
to B

Figure 3: Real and predicted ratios from A
to C

Figure 4: Real and predicted ratios from B
to A

Figure 5: Real and predicted ratios from B
to C

Figure 6: Real and predicted ratios from C
to A

Figure 7: Real and predicted ratios from C
to B

The results are very encouraging. The filter provides good predictions of future jumps. The
predictions vary as a function of the regime cycle. Even when the real ratios sharply increase or
decrease, the prediction are immediately corrected.
Although, one of our previous intuitions is confirmed, the filtering approach can not capture
extreme variations since our approach forecasts an average of the rating transition probabilities.

4.2 Continuous framework

In order to validate the continuous-time filtering approach, we generate a data set using the
migration model described in Section 3. The simulated rating processes exhibit no simultaneous
jumps. We consider 3 rating categories and 1000 entities per class. We build a continuous Markov
chain with 5 states. Note that we reduce the number of states compared to the discrete-time
framework as the continuous framework is much more computationally demanding. Since the data
is fictive and specific to the continuous-time model, this choice has no impact on our validation
experiment. We directly applied the continuous-time filtering approach on the simulated data
set, which does not contain simultaneous jumps. Then, in order to challenge the relevance of the
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use of the continuous model on discrete data, we transform the data set. Jumps are aggregated
and randomly spread before filtering as described in Section 3.2. We apply the continuous-time
filtering approach and compare the two predicted ratios dynamics. This comparison highlights
the effect of the random re-distribution of jumps.
Figures 8 and 9 show the dynamics of the proportion of transitions predicted against the real
observed ratios from rating A to rating B, respectively without and with redistribution.

Figure 8: Real and predicted ratios from A to
B without redistribution of common jumps

Figure 9: Real and predicted ratios from A
to B with redistribution of common jumps

The predicted ratios dynamics in Figure 8, validate the use of the continuous-time filtering
approach: the predicted ratios follow the real trajectory of ratios.
By comparing with Figure 9, we deduce that spreading information (to avoid the simultaneity of
jumps) does not alter the predictions. Thanks to this comparison exercise, we can apply continuous
framework to real data without concern that the results are altered by this action.
Even if the data samples used are different, we can notice that the changes in both predicted ratios
dynamics are less brutal than in the discrete-time filtering framework applied in Section 4.1. The
continuous filter is updated with progressive information (due to the absence of simultaneous
jumps) and is more flexible than the discrete filter to anticipate regime changes. Assimilating
jumps one by one, seems to improve the quality of predictions. Nevertheless, the effect of delay is
still observable.

5 Application on real data

This section compares the results of our different models on a real rating database. We consider
two discrete-time versions of the filter (one univariate and one multivariate) and a continuous-time
multivariate alternative approach.

5.1 Data Description

Credit ratings are forward-looking opinions about the creditworthiness of an obligor with respect
to a specific financial obligation. We build a transitions rating database from Moody’s credit
rating disclosure. We only use aggregated data (number of transitions). The considered sample
contains 7791 days from January 2000 to May 2021. We study the evolution of Long Term ratings
of 5030 corporate entities during this period without sector consideration. For specific experi-
ments (analyses, validation, comparison), we consider the whole sample to calibrate the models.
For others, such as testing the predictive power of model, we proceed to a cross validation. We
choose a 5 states hidden factor for each experiment.
Moody’s rating system relates 21 ratings categories. Keeping this granularity means estimating
more than 420 transitions. Therefore, many studies ([17], [30]) reduce the number of rating cat-
egories. In the same way, we decide to aggregate the 22 ratings to 6 : A, Baa, Ba, B, C and W.
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An obligation is rated W when it has no rating. We will also rate W the entity whose rating is
not observed. This happens when the data is missing, censored or when it is not appeared yet.
There exists many ways to manage not rated status (W). It can be considered as bad information,
good information, no information for the credit or not considering them at all. According to [8],
only few (roughly 13 percent) of the migration to the not rated category are related to changes
in credit quality. This argument motivated [37] to use the last method, consisting in removing
from the sample all the entities that experiences a not rated status. But this approach is dubious
in regard of the loss of information. In this study, we will consider no rated status as censorship.
This is achieved by progressively eliminating companies whose rating is not known or withdrawn
and adding them when a new rating is provided.
A reference time-step is chosen for each experiment. The daily data are aggregated in order to
observe and to predict rating transitions on a larger time window.

5.2 Discrete-time filtering in sample

In order to observe and interpret the effect of the discrete-time framework on a real credit rating
database, we present in this section, the main results of a univariate and a multivariate filters,
calibrated on the whole period.

5.2.1 Univariate discrete-time filtering

In this part, we assume that each transition is governed by its own hidden factor. Under this as-
sumption, each transition evolves according to the evolution of its own latent factor, independently
from the others. This modeling is meaningful to integrate rating specificities in the predictions.
On the data set described above, we focus on a single transition: from rating B to C. We choose
this transition because it could be identified as “transition to default” and witness of crisis. This
will entail the use and calibration of the univariate form of the discrete-time filter (1).
A first step consists in calibrating the models with the past history of the involved transition.
The reference time step, at stake in every transition, is 30 days. We highlight the efficiency of
our approach without cross validation: all past transition history available (from January 2000 to
May 2021) is used to calibrate the model.
We obtain in Table 1, the calibrated 30 days transition matrix of the hidden factor Θ. Table 2
presents the conditional transition probabilities from rating B to C in each state.

Table 1: Θ’s transition matrix
Θ = 0 Θ = 1 Θ = 2 Θ = 3 Θ = 4

Θ = 0 0.90598 0.074109 0.018316 0 0.001595
Θ = 1 0.230415 0.715919 0.040626 0 0.013040
Θ = 2 0.000304 0.381375 0.540412 0.077909 0
Θ = 3 0 0 0.740452 0.259548 0
Θ = 4 0.491597 0 0 0.508403 0

Table 2: 30 days transition probabilities from B to C
Θ = 0 Θ = 1 Θ = 2 Θ = 3 Θ = 4

B → C 0.001814 0.0050001 0.0158818 0.0451715 0.085771

Table 1 highlights two stable states, 0 and 1 and an unstable and rare state, state 4. By
analysing Table 2, we notice a hierarchy of risk between the states of Θ. State 4 is clearly
identified as the riskiest state with a downgrade probability fifty time greater than in state 0,
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the most favourable state. State 3 is also a state of crisis which is more stable. State 2 can be
interpreted as an intermediate state between favourable and unfavourable situation. Consequently
we can expect that the economy often remains in a calm and favourable situation and experiences
sometimes brief transitions to stressed states when downgrade probability B to C increases a lot.
Figure 10 presents the filtered indicator function trajectories of the own hidden factor of the
transition B to C, {Îhn , n ∈ {0, . . . ,Γ}, h ∈ T}, without cross validation. Figure 11 shows the
dynamics of 30 days forecasted ratios from rating B to C, {ν̂BCn−1, n ∈ {1, . . . ,Γ}}, given in (3).

Figure 10: Filtered trajectories of the hidden
factor indicator functions

Figure 11: Real and predicted ratios for tran-
sition B to C

Figure 10 shows that the dominant state changes across time and highlights regime switching.
Our intuitions are confirmed, the filter is often close to favorable states 0 and 1. The dominant
state is sometimes, for a brief moment, state 2, an intermediate state, where the downgrade
probability from B to C increases. After periods when state 2 is dominant, the filter sometimes
indicates that a state of true crisis, state 3, becomes dominant. Transitions from periods where
state 0 or 1 are dominant to periods where state 4 is dominant may be sudden but remain rare.
Fortunately this state of extreme “crisis” is only dominant for very brief periods. By analyzing
Figure 11, it can be noted that the predicted ratios from B to C reflect the general trend of real
ratios with the same ”lag” effect observed than on fictive data. The filter is able to detect regimes
and transition phases but cannot capture brutal and short transitions. Finally the filter infers
that the economic cycle experiences long periods of favorable situations and brief transitions to
stress states.
Note that the hidden factor is specific to the involved transition. It may cover systematic risk but
also the risk which might be specific to the ratings at stake.
We now consider the multivariate case where the hidden factor is shared by several transitions.

5.2.2 Multivariate discrete-time filtering

Using multiple transitions to infer the hidden factor assumes that the later is shared by those tran-
sitions. This approach should bring more information to forecast the dynamics of these transitions
but presents several difficulties. The calibration algorithm finds centroids in the parameters space
which might be far from each other due to the high dimension of the parameters space. Conse-
quently the predicted number of transitions may be very different from the realized one. Further-
more rating transition events may not be sufficiently correlated. Indeed certain transitions are
weakly correlated and might bring noise. We must only consider the most correlated transitions
to extract the global factor dynamics. Therefore we decide to only focus on adjacent downgrade
transitions (the upper diagonal). Indeed empirical results from [10] show that the upgrades are
more subject to idiosyncratic shocks than downgrades. To remove the impact of the remaining
transitions on the model, we assign them the same probability for each state of the hidden factor:
we use the time-homogeneous intensity estimators to compute these probabilities (see, e.g., [10],
[14], [27], [30], [32]). Consequently we reduce the number of transitions to calibrate to four.
We achieve two experiments. First we consider a time step reference of 30 days. We calibrate on
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whole period of the data set to observe the behaviour of the multivariate model. Then, along a
second experiment, we will proceed to a cross validation to faithfully assess the predictive power of
the model. For this experiment which is computationally more expensive, we will choose a larger
time window, with a time step of 50 days.

For the first experiment, as in Section 5.2.1, we again consider 5 states for the hidden factor,
a time step of 30 days and we do not proceed to cross validation.
Table 3 gives the calibrated transition matrix of the hidden factor. Table 4 presents the conditional
downgrade probabilities for a time step of 30 days.

Table 3: Θ’s transition matrix
Θ = 0 Θ = 1 Θ = 2 Θ = 3 Θ = 4

Θ = 0 0.9499 0.0418 0.0010 0 0.0073
Θ = 1 0.1075 0.7661 0.1264 0 0
Θ = 2 0.0004 0.2685 0.6340 0.0503 0.0469
Θ = 3 0 0 0.5133 0.4867 0
Θ = 4 0 0 1 0 0

Table 4: Adjacent 30 days downgrade probabilities
Θ = 0 Θ = 1 Θ = 2 Θ = 3 Θ = 4

A→ Baa 0.00297589 0.00224944 0.00838262 0.00801885 0.0194804
Baa→ Ba 0.00125687 0.00146192 0.00492593 0.00985172 0.031583
Ba→ B 0.00326413 0.00633207 0.0150595 0.0282736 0.0228716
B → C 0.00189228 0.00492691 0.0128149 0.0641203 0.0114155

By analysing the tables, it is noteworthy that states 0 and 1 are stable states which induce
a “favourable” situation, where downgrade probabilities are quite low. States 3 and 4 can be
interpreted as a stressed economy, where downgrade probabilities are higher. Note that state 4
is totally unstable and transitory. The transition between favourable periods (state 0 and 1) and
stable stressed periods (state 3) is exclusively achieved through state 2.
Figure 12 shows the filtered trajectories of state probabilities according to (2). Figure 13 presents
the dynamics of the predicted ratio from rating B to C, within a multivariate framework, without
cross validation. We focus on transition B to C to compare with Section 5.2.1.

Figure 12: Filtered trajectories of hidden fac-
tor indicator functions

Figure 13: Real and predicted ratios for 30
days transition from B to C

Figure 12 brings us new information on the evolution of the predicted hidden state. Periods of
crisis when state 3 and 4 dominant, are pretty rare and brief. By analyzing Figure 13, we can first
notice that the multivariate framework is also a good predictor. The forecasted transition ratios
follow the trend of observed ratios and fit with different regimes. Comparing with the univariate
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case (see Figure 10), the multivariate model seems to be more sensitive to events: the multivariate
model better captures the crisis of sep-2000 compared to the univariate model. The forecasted
rating transition B to C is not only based on its own past evolution but also stem from the history
of others.

5.3 Comparison of the filters out of sample: annual recalibration

We use a cross-validation approach to assess the predictive power of the multivariate models both
in the continuous-time and discrete-time frameworks. To this end, we use data from 2000 to 2008
to perform a first calibration and to initialize our parameters. Then, from January 2008 to may
2021, we predict the dynamics of the 50 days transition rates. The model is re-calibrated every
year, integrating the new observations of the last year. Note that we changed the reference time
step to 50 days for a sake of computational speed.
Note also that since we re-calibrate the model yearly, parameters and states structure vary over
time.

5.3.1 Multivariate continuous-time filtering

In this section, we apply the continuous filtering framework, presented in Section 3 and its adap-
tations, described in Section 3.2, to real data. We choose a reference time step equal to 50 days.
The real and predicted 50 days rating transition ratios are presented in Figures 14, 15, 16 and 17.

Figure 14: Real and predicted ratios 50 days
transition from A to Baa

Figure 15: Real and predicted ratios 50 days
transition from Baa to Ba

Figure 16: Real and predicted ratios 50 days
transition from Ba to B

Figure 17: Real and predicted ratios 50 days
transition from B to C

5.3.2 Multivariate discrete-time filtering

Here, we apply the discrete-time filtering framework, presented in Section 2 to real data. The
model is applied on the same sample used for the continuous-time filtering approach, with annual
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recalibration as in Section 5.3.1. We keep a reference time step equal to 50 days. Figures 18, 19,
20, 21 compare the dynamics of predicted transition ratios to observed one.

Figure 18: Real and predicted 50 days-
transition ratios from A to Baa

Figure 19: Real and predicted 50 days-
transition ratios from Baa to Ba

Figure 20: Real and predicted 50 days-
transition ratios from Ba to B

Figure 21: Real and predicted 50 days-
transition ratios from B to C

5.3.3 Comparisons and analyses

The results looks almost similar in both approaches. The dynamics of predicted ratios follow the
trend of realized ratios. The forecasts also evolve when noteworthy crisis occurs. We notice that
transitions are more correlated during specific periods like crisis. Four crisis periods can be identi-
fied: a first small one around 2002, a moderated one in 2016 and two significant in 2008 and 2020.
These latter are clearly identified as the subprime crisis and the health crisis caused by the Covid
19. The two others, moderated, would be respectively the consequences of the dot-com bubble
in 2000 and the China stock market crash in June, 2015. During these periods the downgrades
probabilities increase.

Both models are able to detect the evolution of the economic cycle from observations of rating
migrations. The forecasts are adapted to the inferred economic state. During crisis periods, the
models are able to predict adapted and higher downgrade probabilities.

We can underline three advantages of the continuous-time version compared to the discrete-time
one.

• The effect of delay (or lag effect) is less significant than in the discrete-time framework.
By spreading simultaneous jumps in small time intervals, we make last information used for
filtering fresher than it actually is. This fictive operation, however, improves the predictions.

• We note that the discrete-time model struggles to capture brief and brutal variations. As we
observed in Section 4.2, continuous-time filtering approach has the advantage of assimilating
jumps one by one and of being more flexible and suitable to anticipate sudden transitions.
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Since information is spread and distributed in fictive intervals, the filter progressively assim-
ilates information and is therefore quicker to adapt its predictions.

Nevertheless we can see that this framework is not fully adapted to rating migrations. The discrete
version is easier and faster to compute: manipulations described in Section 3.2 increases consid-
erably the number of time intervals to consider, the complexity and remains laborious. Above all,
the discrete model is more consistent with the data and finally, provides predictions of a better
quality. The continuous approach deals with continuous-time Markov chains. Therefore it could
be improved by using an EM algorithm which estimates intensities directly. The effectiveness of
this method would rather be highlighted by filtering a continuous phenomenon, where observations
cannot occur simultaneously and exact occurrence dates are known. This intuition is confirmed
by the following experiment. We compute the R2 coefficient in the sample, to compare the fore-
casting power of the considered predictive models. We keep a reference time step of 50 days. We
respectively compare the R2 of the constant generator intensity model, the univariate models, and
the multivariate discrete models and the continuous model in Table 5.

Table 5: R2 in the sample
A → Baa Baa → Ba Ba → B B → C

Constant 0.463012 0.250668 0.483855 0.250514
Univ.Discrete 0.431184 0.346886 0.608684 0.22263515
Mult.Discrete 0.494395 0.479324 0.644975 0.367094

Mult.Continuous 0.2022 0.331062 0.49396 0.279736

We can directly notice that the multivariate discrete-time filter is the most accurate whatever
the transition. The R2 of the continuous filter is closed to discrete filter for transitions Baa to Ba
and B to C but is lower for the transitions A to Ba, even lower than the R2 from the constant
generator model. This phenomenons can be explained by the poorer calibration achieved for the
continuous-time filtering (for a sake of rapidity) and the inconsistency with the format of the data.
The adapted continuous-time version can be applied to rating transitions framework and provides
satisfactory predictions but can not reach the performance of the discrete-time version. Note that,
in the univariate case, each transition has its specific model.

6 General discrete-time version of the filter

We present in this section a general discrete version of the filter, where the hidden process does
not need to be a Markov chain.

6.1 Univariate Form

Let Γ ∈ N be the discrete time horizon. We work with the filtered probability space (Ω,A,F =
(Fn)n∈{0,...,Γ},P). Let N be a discrete-time F -adapted counting process starting from 0. Let FN

be the natural filtration of N , augmented with P−null sets. We write

∀ n ∈ {1, . . . ,Γ}, ∆Nn = Nn −Nn−1.

We denote by J, the support of the jumps of N (J = N for a Poisson process). The support could
vary over time but as this would not impact our results, it is assumed constant for the sake of
clearness. To account for the times when N does not jump, we assume that 0 ∈ J and we define
J̄ = J\{0} as the support of the true jumps. Let Θ be a square integrable F -adapted process such
that conditionally on the σ-field Fn−1, Θn and ∆Nn are independent. Let FΘ be the natural
filtration of Θ, augmented with P−null sets. Θ has a natural decomposition of the form

Θn = An +Mn ,
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where A is a F –predictable square integrable process and M is a square integrable F –martingale.
We define the filtration G = (Gn)n∈{0,...,Γ} by Gn = Fθn ∨ FNn−1. For n ∈ {1, . . . ,Γ}, we introduce

Ôn = E[On|FNn ], Õn−1 = E[On|Fn−1].

For n ∈ {1, . . . ,Γ} and j ∈ J, we define

εjn = 1[∆Nn=j], λ
j
n−1 = E[εjn|Fn−1], λ̂jn−1 = E[λjn−1|FNn−1] = E

[
E[εjn|Fn−1]|FNn−1

]
.

Note that, for all n, we have
∑
j∈J ε

j
n =

∑
j∈J λ

j
n =

∑
j∈J λ̂

j
n = 1. Under this setting, we present

a discrete time adaptation of the univariate filtering equation presented in [6].

Proposition 5. The filtered process Θ̂ satisfies the following equation

Θ̂n =
∑
j∈J

(̂Θ̃λj)n−1

λ̂jn−1

1[∆Nn=j], ∀n = 1, . . . ,Γ. (8)

The proof of Proposition 5 heavily relies on the following lemma.

Lemma 6. Let K be a square integrable and G-adapted process such that K̂ is a FN -martingale.
Then, K is solution of the following recursive equation

K̂n = K0 +

n∑
k=1

∑
j∈J

(̂K̃λj)k−1

λ̂jk−1

(εjk − λ̂
j
k−1), ∀n = 1, . . . ,Γ. (9)

Remark 7. If K is also a F -martingale then the previous equation also holds true with K̃ = K.

Proof (of Lemma 6). Let P be a square integrable FN–martingale. Then, there exists a measur-
able function g such that Pn = g(n,N0, ..Nn). It can equivalently be written Pn = h(n,∆N1, ..,∆Nn).
We can write

Pn =
∑
j∈J

h(n,∆N1, ..,∆Nn−1, j)ε
j
n.

Since P is a FN–martingale,

Pn − Pn−1 = Pn − E[Pn|FNn−1] =
∑
j∈J

h(n,∆N1, ..,∆Nn−1, j)(ε
j
n − λ̂

j
n−1).

Then, P has the following martingale representation

Pn = P0 +

n∑
k=1

∑
j∈J

Hj
k−1(εjk − λ̂

j
k−1),

with Hj
k−1 being FNk−1-measurable. Conversely, it is easy to check that a process written like that

is a FN–martingale.

Since ε0k = 1 −
∑
j∈J̄ ε

j
k and λ̂0

k = 1 −
∑
j∈J̄ λ̂

j
k, we can rewrite P with the following martin-

gale representation

Pn = P0 +

n∑
k=1

∑
j∈J̄

W j
k−1(εjk − λ̂

j
k−1), (10)

with W j
k−1 = Hj

k−1 −H0
k−1.

Let K be a square integrable G-adapted process such that K̂ is a FN–martingale. According
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to (10), we can write K̂n = ζ +
∑n
k=1

∑
j∈J̄W

j
k−1(εjk − λ̂

j
k−1), where the sequence (Wk)k is FN -

adapted. For any square integrable FN–adapted process X, we have E[(Kn − K̂n)Xn] = 0.

Choosing X to be a FN–martingale with the decomposition g+
∑n
k=1

∑
j∈J̄G

j
k−1(εjk− λ̂

j
k−1) with

(Gk)k FN -adapted, we obtain

E

Kn − ζ −
n∑
k=1

∑
j∈J̄

W j
k−1(εjk − λ̂

j
k−1)

g +

n∑
k=1

∑
j∈J̄

Gjk−1(εjk − λ̂
j
k−1)

 = 0.

Choosing Gjk−1 = 0 for all j ∈ J̄ leads to ζ = E[K̂n] = E[Kn] = K0.
With no loss of generality, we can consider that K0 = 0. By choosing g = 0 we obtain:

E

Kn

n∑
k=1

∑
j∈J̄

Gjk−1(εjk − λ̂
j
k−1)

− E

 ∑
j1,j2∈J̄

n∑
k1,k2≥1

W j1
k1−1(εj1k1

− λ̂j1k1−1)Gj2k2−1(εj2k2
− λ̂j2k2−1)

 = 0.

(11)

For k1 < k2,

E
[
E
[
W j1
k1−1(εj1k1

− λ̂j1k1−1)Gj2k2−1(εj2k2
− λ̂j2k2−1)|FNk2−1

]]
= 0

Noticing that E
[
Kn|FNk

]
= E

[
E
[
Kn|FNn

]
|FNk

]
= K̂k, we compute the term

Sn,k =E
[
KnG

j
k−1(εjk − λ̂

j
k−1)

]
= E

[
E
[
Kn|FNk

]
Gjk−1(εjk − λ̂

j
k−1)

]
=E

[
K̂kG

j
k−1(εjk − λ̂

j
k−1)

]
= E

[
KkG

j
k−1(εjk − λ̂

j
k−1)

]
.

Now, let us compute

E[Kk(εjk − λ̂
j
k−1)|FNk−1] =E[Kkε

j
k|F

N
k−1]− E[Kkλ̂

j
k−1|F

N
k−1]

=E
[
E[Kkε

j
k|Fk−1]|FNk−1

]
− K̂k−1λ̂

j
k−1.

Remember that K is G-measurable and that Gk = Fθk ∨ FNk−1. The conditional independence of
Θk and ∆Nk knowing Fk−1 yields the conditional independence of Kk and εk. Hence, we obtain

E
[
E[Kkε

j
k|Fk−1]|FNk−1

]
− K̂k−1λ̂

j
k−1 =E

[
E[Kk|Fk−1]E[εjk|Fk−1]|FNk−1

]
− K̂k−1λ̂

j
k−1

=(̂K̃λj)k−1 − K̂k−1λ̂
j
k−1.

From 11, we obtain

E

 n∑
k=1

∑
j∈J̄

Gjk−1

(̂K̃λj)k−1 − K̂k−1λ̂
j
k−1 − E

∑
i∈J̄

W i
k−1(εik − λ̂ik−1)(εjk − λ̂

j
k−1)|FNk−1

 = 0

As this holds true for any FN -adapted process (Gk)k, we can choose

Gjk−1 = (̂K̃λj)k−1 − K̂k−1λ̂
j
k−1 − E

∑
i∈J̄

W i
k−1(εik − λ̂ik−1)(εjk − λ̂

j
k−1)|FNk−1

 .
Then, we deduce the following system of linear equations,

∀ j ∈ J̄, k ∈ {1, . . . , n},
∑
i∈J̄

W i
k−1E

[
(εik − λ̂ik−1)(εjk − λ̂

j
k−1)|FNk−1

]
= (̂K̃λj)k−1−K̂k−1λ̂

j
k−1 a.s.

(12)
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Let c
(k−1)
j = (̂K̃λj)k−1 − K̂k−1λ̂

j
k−1. Note that

E
[
(εik − λ̂ik−1)(εjk − λ̂

j
k−1)|FNk−1

]
=

{
−λ̂ik−1λ̂

j
k−1 for i 6= j

λ̂jk−1(1− λ̂jk−1) for i = j

The equations in (12) can be written for all j ∈ J

λ̂jk−1(1− λ̂jk−1)W j
k−1 −

∑
i∈J̄
i 6=j

λ̂ik−1λ̂
j
k−1W

i
k−1 = c

(k−1)
j .

Then, we obtain for all j ∈ J

λ̂jk−1W
j
k−1 − λ̂

j
k−1

∑
i∈J̄

λ̂ik−1W
i
k−1 = c

(k−1)
j . (13)

By summing for j ∈ J̄, we deduce from (13),∑
j∈J̄

λ̂jk−1W
j
k−1 −

∑
j∈J̄

λ̂jk−1

∑
i∈J̄

λ̂ik−1W
i
k−1 =

∑
j∈J̄

c
(k−1)
j .

Then

λ̂0
k−1

∑
j∈J̄

λ̂jk−1W
j
k−1 =

∑
j∈J̄

c
(k−1)
j .

Inserting the expression of
∑
i∈J̄ λ̂

i
k−1W

i
k−1 in (13) gives

W j
k−1 =

c
(k−1)
j

λ̂jk−1

+

∑
i∈J̄ c

(k−1)
i

λ̂0
k−1

.

Then, we obtain

W j
k−1 =

1

λ̂jk−1

((̂K̃λj)k−1 − K̂k−1λ̂
j
k−1) +

1

λ̂0
k−1

∑
i∈J̄

((̂K̃λi)k−1 − K̂k−1λ̂
i
k−1).

Finally, by replacing
∑
j∈J̄ ε

j
k,
∑
j∈J̄ λ̂

j
k−1 by 1− ε0k and 1− λ̂0

k−1, we derive the general filtering
formula

K̂n =K0 +

n∑
k=1

∑
j∈J̄

 (̂K̃λj)k−1

λ̂jk−1

−
(̂K̃λ0)k−1

λ̂0
k−1

 (εjk − λ̂
j
k−1)

=K0 +

n∑
k=1

∑
j∈J

(̂K̃λj)k−1

λ̂jk−1

(εjk − λ̂
j
k−1),

This finishes the proof.

Proof (of Proposition 5). We define

an = An −An−1 = E[Θn|Fn−1]−Θn−1, (14)

Bn =

n∑
k=1

E[ak|FNk−1]
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Ln =

n∑
k=1

ak − E[ak|FNk−1].

Note that
Θn −Bn = Mn + Ln.

We know that M̂ is a FN–martingale and L̂ is clearly a FN–martingale too. Then, we can apply

Lemma 6 to Θ− B. Note that B is FN predictable, then B̃k−1 = Bk and so ̂̃Bλjk−1 = Bkλ̂
j
k−1.

Then,

Θ̂n − B̂n =Θ̂0 − B̂0 +

n∑
k=1

∑
j∈J

(
((Θ̃− B̃)λj)
∧

k−1

λ̂jk−1

)(εjk − λ̂
j
k−1)

=Θ̂0 − B̂0 +

n∑
k=1

∑
j∈J

(̂Θ̃λj)k−1

λ̂jk−1

(εjk − λ̂
j
k−1).

We compute Θ̂n − Θ̂n−1 = B̂n − B̂n−1 + f(λn−1, εn, Θ̃n−1) = E[an|FNn−1] + f(λn−1, εn, Θ̃n−1).

From (14), E[an|FNn−1] = E[Θn|FNn−1]− Θ̂n−1 and using that

f(λn−1, εn, Θ̃n−1) =
∑
j∈J

(̂Θ̃λj)n−1

λ̂jn−1

(εjn − λ̂
j
n−1) =

∑
j∈J

(̂Θ̃λj)n−1

λ̂jn−1

1[∆Nn=j] − E[Θn|FNn−1],

we deduce the final form of the filtering formula

Θ̂n =
∑
j∈J

(̂Θ̃λj)n−1

λ̂jn−1

1[∆Nn=j].

Note that, from (14), the previous formula can also be stated as

Θ̂n =
∑
j∈J

(
(̂aλj)n−1

λ̂jn−1

+
(̂Θλj)n−1

λ̂jn−1

)
1[∆Nn=j].

where (̂aλj)n−1 = E[anλ
j
n−1|FNn−1].

This formula can be extended to a multivariate setting.

Remark 8. Note that the filtering formula of Proposition 1 derives from this general equation.
Indeed, we have

E(1[∆Nn=j]|Fn−1) = E(1[∆Nn=j]|Nn−1,Θn−1, Yn),

and

P(∆Nn = j|Θn−1 = h, Yn = yn) =

(
yn
j

)
(Lh)j(1− Lh)yn−j .

Then we compute the following expressions

λ̂jn−1 = E
[
1[∆Nn=j]|FNn−1

]
=

m∑
h=1

(
Yn
j

)
(Lh)j(1− Lh)Yn−j Îhn−1,

(̂Ihλj)n−1 =

(
Yn
j

)
(Lh)j(1− Lh)Yn−j Îhn−1
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and

(̂Ĩhλj)n−1 = E
[
E[Ihn |Fn−1]E[1[∆Nn=j]|Fn−1]|FNn−1

]
= E

[
(

m∑
µ=1

KµhIµn−1)(

m∑
s=1

(
Yn
j

)
(Ls)j(1− Ls)Yn−jIsn−1)|FNn−1

]

=

m∑
s=1

Ksh

(
Yn
j

)
(Ls)j(1− Ls)Yn−j Îsn−1.

Finally using (8) we obtain the desired equation.

6.2 Multivariate form

Let Γ ∈ N be the discrete time horizon. We work with the filtered probability space (Ω,A,F =
(Fn)n∈{0,...,Γ},P) ,. Let N = (N1, . . . , Nρ) be a discrete-time multivariate counting process where
for i = 1, . . . , ρ, N i = (N i

n)n∈{0,...,Γ}, is a be a simple F -adapted counting processes starting from

0. Let FN be the natural filtration of N , augmented with P−null sets. We write

∀ i ∈ {1, . . . , ρ}, ∀ n ∈ {1, . . . ,Γ}, ∆N i
n = N i

n −N i
n−1.

We denote by Ji the support of the jumps of N i, for i = 1, . . . , ρ. The support may vary over
time but as this would not impact our results, it is assumed constant for the sake of clearness. To
account for the times when N i does not jump, we assume that 0 ∈ Ji and we define J̄i = Ji\{0} as
the support of the true jumps. Let us define the product spaces J⊗ =

∏ρ
i=1 Ji and J̄⊗ =

∏ρ
i=1 J̄i.

Let Θ be a square integrable F -adapted process such that conditionally on the σ-field Fn−1, Θn

and (∆N i
n)i=1,...,ρ are independent. Let FΘ be the natural filtration of Θ, augmented with P−null

sets. We define the filtration G = (Gn)n∈{0,...,Γ} by Gn = Fθn ∨ FNn−1.
We extend the previous setting to multivariate case,

∀δ ∈ J⊗, εδn = 1[∆Nn=δ] = 1[
⋂ρ
i=1 ∆Nin=δi], λ

δ
n−1 = E[εδn|Fn−1].

Proposition 9. The filtered process Θ̂ satisfies for all n = 1, . . . ,Γ,

Θ̂n =
∑
δ∈J⊗

(̂Θ̃λδ)n−1

λ̂δn−1

1[∆Nn=δ]. (15)

Proof. We leave the proof to the reader as it goes along the same lines as the proof of Prop. 5.

Remark 10. With adequate assumptions, this filtering formula could cover non Markovian case.
These considerations are left for future research.

7 Conclusion

In this paper, we adapt the filtering framework applied to Markov chains, to the context of rating
migrations, in both a discrete-time and a continuous-time setting. For both approaches, we assume
that rating transitions in a pool of obligors are driven by the same systematic hidden factor. The
two alternatives are studied and compared. We discussed calibration issues and compared the
predicted future rating transition probabilities on fictive and real data. Then, under a point
process filtering framework, we extend the discrete-time Markov chain filtering framework to a
more general filtering one, which may cover non Markovian behaviours.
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As illustrated in Sections 4 and 5, our methodology provides predictors adapted to the evolution
of the economical cycle. We believe that our approaches can be used for PIT-estimations of
transitions and detection of regimes. During crisis periods, our models are able to predict higher
downgrade probabilities. Compared to other PIT-estimation models, our approaches base their
predictions on the business cycle without concern of macro economic factors. From a practical
point of view, our approaches also have the advantage to be interpretable. Observing the risk
profile of each state and their filtered trajectories allows us to better understand the dynamics of
the economic cycle as well as its systematic effect on rating migrations.

However, both approaches cannot capture idiosyncratic information: indeed [43] found that
only 18% to 26% of global default risk variation is systematic while the reminder is idiosyncratic.
The share of systematic default risk is higher (39% to 51%) if industry-specific variation is counted
as systematic.
In addition, applying the continuous framework to discrete time data is tedious and presents a
risk of altering information and the quality of predictions. Since its complexity is much more im-
portant, the execution results of the continuous-time algorithm is very slow. Therefore, it suffers
from poorer calibration than the discrete-time version. Thanks to the adaptations presented in
Section 5.3, the continuous-time version is able to provide satisfactory predictions but can not
reach the performances of the discrete-time model. For these reasons, the discrete-time approach
turns out to be more adapted and efficient for the context of rating migrations.

Several improvements could be made to our framework. Both models could consider additional
idiosyncratic observable factors as in [30]. Moreover, the continuous-time framework could be
improved by using an EM algorithm which estimates continuous time parameters directly (as,
e.g., in [11], [35] and [38]). This algorithm will still have to deal with simultaneous jumps and
be computationally tractable. Furthermore, many studies show that rating migrations’ dynamics
first exhibit a non-Markovian behavior (migration data exhibit correlation among rating change
dates, known as “rating drift”, contagion effect, . . . ) that cannot be captured by our models.
The integration of these effects may represent a subject of reflection. Finally, the general derived
discrete-time filtering formula could be applied to the context of rating migrations, possibly driven
by non-Markovian hidden process. These considerations are left for future researches.
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A Calibration of the discrete Version

This part describes the derivation for the Baum-Welch algorithm adaptation presented in Section
2.4.
We compute ∀s ∈ {1, . . . ,m},∀n ∈ {1, . . . ,Γ}, the forward probability αn(s) = P(Z0|n = z0|n,Θn−1 =
s) and ∀s ∈ {1, . . . ,m},∀n ∈ {1, . . . ,Γ − 1}, the backward probability βn(s) = P(Zn+1|Γ =
zn+1|Γ|Zn = zn,Θn−1 = s).
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We derive ∀n ∈ {2, . . . ,Γ− 1} and ∀s ∈ {1, . . . ,m},

αn(s) = P(Z0|n = z0|n,Θn−1 = s) =

m∑
l=1

P(Z0|n = z0|n,Θn−1 = s,Θn−2 = l)

=

m∑
l=1

Q∏
d=1

P(Zdn = zdn|Z0|n−1 = z0|n−1,Θn−1 = s,Θn−2 = l)P(Z0|n−1 = z0|n−1,Θn−1 = s,Θn−2 = l)

=

m∑
l=1

Q∏
d=1

P(Zdn = zdn|Zn−1 = zn−1,Θn−1 = s)P(Θn−1 = s|Θn−2 = l, Z0|n−1 = z0|n−1)αn−1(l)

=

m∑
l=1

Q∏
d=1

P(Zdn = zdn|Zdn−1 = zdn−1,Θn−1 = s)P(Θn−1 = s|Θn−2 = l)αn−1(l)

=

m∑
l=1

αn−1(l)Kls

Q∏
d=1

Ls,z
d
n−1z

d
n =

m∑
l=1

αn−1(l)Kls
∏
i,r∈Υ

(Ls,ir)∆Nirn .

For n=1, we do not know the state of the individuals before the simulation. To tackle this issue,
we use the initial proportion of the ratings. We have

α1(s) = P(Z1 = z1,Θ0 = s)

=

Q∏
d=1

P(Zd1 = zd1 |Θ0 = s)Π(s)

=

Q∏
d=1

∑
j∈Υ

P(Zd1 = zd1 |Zd0 = j,Θ0 = s)P(Zd0 = j|Θ0 = s)Π(s)

=

Q∏
d=1

∑
jΥ

P(Zd1 = zd1 |Zd0 = j,Θ0 = s)P(Zd0 = j)Π(s)

=

Q∏
d=1

∑
j∈Υ

Ls,jz
d
1P(Zd0 = j)Π(s).

Similarly, we recursively derive the backward probability for all n ∈ {1, . . . ,Γ − 2} and s ∈
{1, . . . ,m},

βn(s) = P(Zn+1|Γ = zn+1|Γ|Θn−1 = s, Zn = zn)

=

m∑
l=1

P(Zn+1|Γ = zn+1|Γ,Θn = l|Θn−1 = s, Zn = zn)

=

m∑
l=1

P(Zn+2|Γ = zn+2|Γ|Θn = l, Zn+1 = zn+1, Zn = zn,Θn−1 = s)P(Zn+1 = zn+1,Θn = l|Θn−1 = s, Zn = zn)

=

m∑
l=1

P(Zn+2|Γ = zn+2|Γ|Θn = l, Zn+1 = zn+1)

Q∏
d=1

(P(Zdn+1 = zdn+1|Θn = l, Zdn = zdn))P(Θn = l|Θn−1 = s)

=

m∑
l=1

βn+1(l)Ksl

Q∏
d=1

Ll,z
d
nz
d
n+1 =

m∑
l=1

βn+1(l)Ksl
∏
i,r∈Υ

(Ll,ir)∆Nirn+1 .

For n = Γ− 1, we take ∀s ∈ {1, . . . ,m}, βΓ−1(s) = 1.
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Both estimators will be used to replace the missing data during the maximization phase. The
missing data describing the hidden factor are defined ∀h ∈ {1, . . . ,m},∀n ∈ {1, . . . ,Γ}, un(h) =
1[Θn=j], and vn(s, h) = 1[Θn=h,Θn−1=s]. We define the associated Bayesian estimators ǔn(h) =
P(Θn = h|Z0|Γ = z0|Γ), and v̌n(s, h) = P(Θn = h,Θn−1 = s|Z0|Γ = z0|Γ).
We derive expression of these Bayesian estimators with the forward and the backward probabilities
For all h ∈ {1, . . . ,m} and all n ∈ {1, . . . ,Γ− 2},

ǔn(h) = P(Θn = h|Z0|Γ = z0|Γ)

=
P(Zn+2|Γ = zn+2|Γ|Θn = h, Z0|n+1 = z0|n+1)αn+1(h)

P(Z0|Γ = z0|Γ)

=
P(Zn+2|Γ = zn+2|Γ|Θn = h, Zn+1 = zn+1)αn+1(h)

LΓ

=
βn+1(h)αn+1(h)

LΓ
.

With LΓ being the likelihood on the whole sample, LΓ = P(Z0|Γ = z0|Γ) =
∑
j αΓ(j).

v̌n(s, h) = P(Θn = h,Θn−1 = s|Z0|Γ = z0|Γ)

=
P(Θn = h, Zn+1|Γ = zn+1|Γ|Z0|n = z0|n,Θn−1 = s)αn(s)

LΓ

=
P(Zn+2|Γ = zn+2|Γ|Z0|n+1 = z0|n+1,Θn−1 = s,Θn = h)P(Θn = h, Zn+1 = zn+1|Z0|n = z0|n,Θn−1 = s)αn(s)

LΓ

=
P(Zn+2|Γ = zn+2|Γ|Zn+1 = zn+1,Θn = h)

∏Q
d=1(P(Zdn+1 = zdn+1|Θn = h, Zdn = zdn))P(Θn = h|Θn−1 = s)αn(s)

LΓ

=
βn+1(h)Kshαn(s)

∏Q
d=1 L

h,zdnz
d
n+1

LΓ
=
βn+1(h)Kshαn(s)

∏
i,r∈Υ(Lh,ir)∆Nirn

LΓ
.

Using the concavity of the log function, we establish a useful inequality for the next step of the
derivations. For two strictly positive sequences w and w′,

log

( ∑
i w
′
i∑

k wk

)
= log

(∑
i

wiw
′
i∑

k wkwi

)
≥
∑
i

wi∑
k wk

log(w′i)−
wi∑
k wk

log(wi)

=
1∑
k wk

(∑
i

(wi log(w′i)− wi log(wi))

)
.

The maximization step consists in finding better parameters than those of the previous iteration.
We call M (γ) = (Π(γ), L(γ),K(γ)), the parameters of the current iteration (γ).
We are seeking new parameters M (γ+1) = (Π(γ+1), L(γ+1),K(γ+1)).
Let consider the finite spaces Ξk = {1, . . . ,m}k, k ∈ {1, . . . ,Γ}. We call a possible trajectory of
Θ, θ, belonging to the finite space ΞΓ. Using wθ = P(Z = z,Θ = θ|M (γ)) and w′θ = P(Z =
z,Θ = θ|M (γ+1)) in the previous inequality and defining Q(M (γ),M (γ+1)) =

∑
θ∈ΞΓ

wθ log(w′θ)

and Q(M (γ),M (γ)) =
∑
θ∈ΞΓ

wθ log(wθ), we obtain

log

(∑
θ∈ΞΓ

w′θ∑
θ∈ΞΓ

wθ

)
= log

(
P(Z = z|M (s+1))

P(Z = z|M (γ))

)
≥ 1

P(Z = z|M (γ))
(Q(M (γ),M (γ+1))−Q(M (γ),M (γ))).
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This last inequality shows that we obtain P(Z = z|M (γ+1)) ≥ P(Z = z|M (γ)) by maximizing

Q(M (γ),M (γ+1)) =
∑
θ∈ΞΓ

P(Θ = θ, Z = z|M (γ)) logP(Θ = θ, Z = z|M (γ+1)).

We cut log(P(Z = z,Θ = θ|M (γ+1))) = log(P(Z = z|Θ = θ,M (γ+1))) + log(P(Θ = θ|M (γ+1))).
Since the processes (Zd)d are independent knowing the unobserved factor, we have

log(P(Z = z,Θ = θ|M (γ+1))) = log(P(θ0)) +

Γ∑
n=1

log(P(θn|θn−1)) +

Q∑
d=1

log(P(zd0|Γ|θ))

= log(P(θ0)) +

Γ∑
n=1

log(P(θn|θn−1)) +

Q∑
d=1

Γ∑
n=1

logP(zdn|zdn−1, θn−1).

So,

Q(M (γ),M (γ+1)) =
∑
θ∈ΞΓ

log(P(θ0))P(θ, z|M (γ)) +
∑
θ∈ΞΓ

Γ∑
n=1

log(P(θn|θn−1))P(θ, z|M (γ))

+
∑
θ∈ΞΓ

Q∑
d=1

Γ∑
n=1

logP(zdn|zdn−1, θn−1)P(θ, z|M (γ))

=
∑
θ\θ0
∈ΞΓ−1

m∑
h=1

log(P(Θ0 = h))P(Θ0 = h, θ \ θ0, z|M (γ))

+

Γ∑
n=1

∑
θ\(θn,θn−1)
∈ΞΓ−2

m∑
h,s=1

log(P(Θn = h|Θn−1 = s))P(θ \ (θn, θn−1),Θn = h,Θn−1 = s, z|M (γ))

+

Γ∑
n=1

∑
θ\θn−1

∈ΞΓ−1

m∑
s=1

Q∑
d=1

log(P(zdn|zdn−1,Θn−1 = s))P(θ \ θn−1,Θn−1 = s, z|M (γ))

=

m∑
h=1

log(P(Θ0 = h, z|M (γ)))Πh +

Γ∑
n=1

m∑
h,s=1

log(Ksh)P(Θn = h,Θn−1 = s, z|M (γ))

+

Q∑
d=1

Γ∑
n=1

m∑
s=1

∑
i,r∈Υ

log(Lh,ir)P(Θn−1 = s, z|M (γ))1[Zdn=r,Zdn−1=i].

Then, we can maximize by considering the three terms independently. We obtain

Πh =
P(Θ0 = h, Z|M (γ))∑m
j=1 P(Θ0 = j, Z|M (γ))

= P(Θ1 = h|Z,M (γ)) = ǔ0(h),

Ls,ir =

∑Q
d=1

∑Γ
n=1 P(Θn−1 = s, Z|M (γ))1[Zdn=r,Zdn−1=i]∑Q

d=1

∑Γ
n=1

∑
j∈Υ P(Θn−1 = s, Z|M (γ))1[Zdn=j,Zdn−1=i]

=

∑Γ
n=1 ǔn−1(s)∆N ir

n∑Γ
n=1 ǔn−1(s)Y in

,

Ksh =

∑Γ
n=1 P(Θn−1 = s,Θn = h, Z|M (γ))∑Γ

n=1

∑Q
j=1 P(Θn−1 = s,Θn = j, Z|M (γ))

=

∑Γ
n=1 v̌n(s, h)∑Γ
n=1 ǔn−1(s)

.
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B Continuous-time version of the filter

B.1 Framework and statements

Let (Ω,A,F = (Ft)t∈[0,T ],P), be a filtered probability space satisfying the “usual conditions”
of right-continuity and completeness needed to justify all operations to be made. All stochastic
processes encountered are assumed to be adapted to the filtration F and integrable on [0, T ]. In
particular, we have A = FT . The time horizon T is supposed to be finite.

Let N = (N1, . . . , Nρ) be a multivariate counting process where N i = (N i
t )t∈[0,T ], i = 1, . . . , ρ, is

a set of simple counting processes, such that, N i
t =

∑
0<s≤t ∆N i

s <∞ and ∆N i
s ∈ {0, 1}, for any

i = 1, . . . , ρ. It is assumed that these processes admit a predictable F - intensity νi = (νit)t∈[0,T ],

and that they do not have any common jumps, i.e., ∆N i
t∆N

j
t = δij∆N

i
t ie [N i, N j ]t = 0 (the

continuous martingale part of a counting process being null). We introduce FN = (FNt )t∈[0,T ] the
natural filtration of the multivariate counting process N = (N1, . . . , Nρ).
Let Θ be a square integrable process of the form

Θt =

∫ t

0

as ds+Mt , (16)

where a is a F -adapted process and M is a square integrable F -martingale. We assume that Θ
and ∆N i have no common jumps. Let FΘ be the natural filtration of Θ, augmented with P−null
sets.. The problem is to estimate the states of the unobserved process Θ using only the information
FN , resulting from the observation of the multivariate counting process N . By definition of the
conditional expectation,

Θ̂t = E[Θt|FNt ] .

is the L2 approximation of Θ knowing N . With the same notation, all the processes O filtered by
FNt is written

Ôt = E[Ot|FNt ].

The main result on univariate point process filtering can be stated in the following way (see [6],
[28], [33], [47]). The following proposition can be found in [6] but the different are expressed in
terms of change measure and are not explicit. Although his result is valid with simultaneous jumps
between a counting process N i and the hidden factor Θ, this leads to an extra term which cannot
be computed in practice. We aimed at obtaining an implementable formula so we had to forbid
simultaneous jumps. For the sake of completeness, we provide a self contained proof yielding the
explicit filtering formula with no simultaneous jumps.

B.2 General filtering equation

Proposition 11. The process Θ̂ is solution of the SDE

dΘ̂t = ât dt+

ρ∑
j=1

ηjt (dN j
t − ν̂

j
t− dt) , (17)

with

ηjt =
(̂Θ νj)t−

ν̂jt−
− Θ̂t− , (18)

and initial condition
Θ̂0 = E[Θ0]. (19)
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Proof (of Prop. 11). Let g and h be two F predictable processes such that E
[∫ T

0
(g2
s + h2

s) ν
j
s ds

]
≤

∞. We introduce the processes X and Y defined by Xt =
∫ t

0
gr(dN

j
r−νjr dr) and Yt =

∫ t
0
hs(dN

k
s −

νks ds) for all t ≤ T . X and Y are two F –martingales. The Itô formula applied to XY yields

d(XtYt) =Xt−dYt + Yt−dXt + ∆Xt∆Yt.

Since N j and Nk have no common jumps, ∆Xt∆Yt = gtht∆N
j
t δjk. Then, we obtain

E[XTYT −XtYt|Ft] = δjkE

[∫ T

t

gshsdN
j
s |Ft

]
. (20)

Note that XTYT −XtYt = (XT −Xt)(YT − Yt)− 2XtYt +XtYT +XTYt. Then,

E[XtYT −XtYt|Ft] = E[(XT −Xt)(YT − Yt)|Ft]. (21)

Note that the process Z =
(∫ t

0
gshs(dN

j
s − νjsds)

)
0≤t≤T

is a F –martingale.

So, E [ZT − Zt|Ft] = 0. Combining this remark with Equations (20) and (21), we finally obtain

E

[∫ T

t

gr(dN
j
r − νjr dr)

∫ T

t

hs(dN
k
s − νks ds)

∣∣∣∣∣Ft
]

= δjk E

[∫ T

t

gshs ν
j
s ds

∣∣∣∣∣Ft
]
. (22)

The innovation theorem says that the FN -intensities of the counting processes N j exist and are

ν̂js− = E
[
νjs− | FNs−

]
= E

[
νjs | FNs−

]
.

For any FN predictable process h satisfying E
[∫ T

0
|hsνjs |ds

]
<∞, we have

E
[∫ ∞

0

hsdN
j
s

]
=E

[∫ ∞
0

hsν
j
sds

]
= E

[∫ ∞
0

hsE
[
νjs |FNs−

]
ds

]
= E

[∫ ∞
0

hsν̂
j
s−ds

]
.

Now, rewrite (16) as

Θt =

∫ t

0

âs ds+ Lt +Mt , (23)

with

Lt =

∫ t

0

(as − âs) ds .

Taking conditional expectation, w.r.t. FNt , in (23) yields

Θ̂t =

∫ t

0

âs ds+ L̂t + M̂t . (24)

While L need not be a F –martingale, it is clear that L̂ is an FN–martingale. For t1 < t2,

E[L̂t2 − L̂t1 | FNt1 ] = E
[∫ t2

t1

(
as − E[as|FNs ]

)
ds

∣∣∣∣FNt1 ] = 0.

From the tower property, we deduce that M̂ is also a FN–martingale. Introduce

Kt = Lt +Mt = Θt −
∫ t

0

âs ds .
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Since Θ and N have no common jumps, we can deduce that K and N have any either. It has
been shown that K̂ = L̂+ M̂ is a FN–martingale. Therefore it has a predictable representation,

K̂t = γ +
∑
j

∫ t

0

ηjs (dN j
s − ν̂

j
s− ds), (25)

where γ = K̂0 is FN0 -measurable and the ηj are FN -predictable processes (see [6]). Note that
K̂0 = E[Θ0]. Now, any integrable FN -measurable random variable has a representation g +∑
j

∫ t
0
hjs (dN j

s − ν̂js ds), with g constant and the hj are FN -predictable. Therefore, since K̂t is

the L2 projection of Kt onto the space of square integrable FNt -measurable random variables, the
coefficients in the representation (25) are uniquely determined by the normal equations

E
[(
Kt − γ −

∑
j

∫ t

0

ηjs(dN
j
s − ν̂

j
s− ds)

)(
g +

∑
j

∫ t

0

hjs(dN
j
s − ν̂

j
s− ds)

)]
= 0,

for all constants g and all FN -predictable processes hj . Setting g = 0 and using (22) give

E

Kt

∑
j

∫ t

0

hjs (dN j
s − ν̂

j
s− ds)−

∑
j

hjs η
j
s ν̂

j
s− ds

 = 0 .

For j ∈ {1, . . . , ρ}, we compute E
[
Kt

∫ t
0
hjsdN

j
s

]
. Using that K̂ is a FN–martingale and that K

and N j have no common jumps, we have

E
[
Kt

∫ t

0

hjsdN
j
s

]
=E

Kt

∑
s≤t

hjs∆N
j
s

 =
∑
s≤t

E
[
E
[
Kt|FNs

]
hjs∆N

j
s

]
=
∑
s≤t

E
[
K̂sh

j
s∆N

j
s

]
= E

[∫ t

0

Ks−h
j
sdN

j
s

]

=E
[∫ t

0

Ks−h
j
sν
j
sds

]
=

∫ t

0

E
[
hjsE

[
Ks−ν

j
s |FNs−

]]
ds

=E
[∫ t

0

hjsΘ̂ν
j
s−ds

]
− E

[∫ t

0

hjsν̂
j
s−

∫ s

0

âudu ds

]
.

Using similar arguments, we compute the second term

E
[
Kt

∫ t

0

hjsν̂
j
s−ds

]
=

∫ t

0

E
[
hjsE

[
Kt|FNs−

]
ν̂js−

]
ds =

∫ t

0

E
[
hjsK̂s−ν̂

j
s−

]
ds

=E
[∫ t

0

hjsΘ̂s−ν̂
j
s−ds

]
− E

[∫ t

0

hjsν̂
j
s−

∫ s

0

âudu ds

]
.

Inserting these expressions into (7), gives

∑
j

E
[∫ t

0

hjs

(
Θ̂ νjs− − Θ̂s− ν̂

j
s− − ηjs ν̂

j
s−

)
ds

]
= 0.

Choosing hjs equal to the expression in the parentheses, gives
∑
j E
[∫ t

0
(hjs)

2 ds
]

= 0 hence all hj

vanish and ∀ j = 1, . . . , ρ:

ηjs =
Θ̂s− ν

j
s−

ν̂js−
− Θ̂s−. (26)
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From (25), (24), and the equality K̂ = L̂+ M̂ , it follows that

Θ̂t = E[Θ0] +

∫ t

0

âs ds+
∑
j

∫ t

0

ηjs (dN j
s − ν̂

j
s− ds)

with the ηj are given by (26). This finishes the proof of the proposition.

B.3 Finite latent factor model and a credit risk application

Proof (of Prop. 4). In order to apply Prop. 11, one needs to find the representation (16) for Iht .
Let Ψrh, r 6= h, r, h ∈ T, be the counting processes defined by

Ψrh
t = ]{s ∈ (0, t]; Θs− = r, Θs = h} .

The starting point is the expression

Iht = Ih0 +
∑
r;r 6=h

(Ψrh
t −Ψhr

t ) ,

which comes from the obvious dynamics

dIht =
∑
r;r 6=h

(dΨrh
t − dΨhr

t )

The counting processes Ψrh have intensities of the form Irt− κ
rh. Reshaping the last expression as

Iht = Ih0 +

∫ t

0

∑
r;r 6=h

(Irs− κ
rh − Ihs− κhr) ds

+

∫ t

0

∑
r;r 6=h

[
(dΨrh

s − Irs− κrh ds)− (dΨhr
s − Ihs− κhr ds)

]
,

shows that Ih is of the form

Iht =

∫ t

0

ahs ds+Mh
t ,

with
aht =

∑
r;r 6=h

(Irt− κ
rh − Iht− κhr) =

∑
r

κrh Irt− (27)

and Mh is a martingale commencing at Mh
0 = Ih0 .

Then the role of at is taken by aht in (27), the role of (Θ νj)t− is taken by

(Ihνij)t− = Iht− Y
i
t

∑
r

`r,ij Irt− = Y it `
r,ij Iht− ,

and the FN -intensities of N are given in (6). Inserting these expressions into (17), gives

dÎht =

m∑
r=1

krhÎrt−dt+
∑
i 6=j

(
lh,ij Îht−∑
r l
r,ij Îrt−

− Îht−

)(
dN ij

t − Y it
m∑
r=1

lr,ij Îrt−dt

)

This result may look similar to R4 of [6, Sec.IV.1] but we actually consider a more general frame-
work. On the hand, we deal with an aggregated version over the entire portfolio of the multivariate
process and on the other hand we take censorship into account though the processes of risk expo-
sure Y i.
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B.4 Calibration of the continuous version

Here, we present the detailed computations of the adaptations of the calibration for the continuous
filtering framework, presented in Section 3.2. In practice the number of entities monitored over
time may vary: either because some names appear or disappear or simply because of missing data.
This happens when the data is missing, censored or when it is not appeared yet. We attribute
the rating 0 to an entity in this case. Then it is clear that a transition involving the rating of
censure 0, is assumed to be independent with the states of the hidden factor. Let consider the list
of ratings Ῡ = {1, . . . , p} and Υ = {0, . . . , p}, the completed list of ratings. Note that the total
number of entities observed on Υ is constant equal to Q. Let Qt, be the number of entities which
have their rating in Ῡ (have a real rating) at time t.
We propose a calibration algorithm which assumes that no more than one entity may jump at a
given time step. In order to make the model identifiable while considering the impact of the size
of the sample (which may evolve), we define an independent process I, with values in {0, . . . , Q},
which uniformly picks the entity that may jump. If I picks an entity which is rated 0, (because
not already rated or censored), we do not observe jumps. Otherwise the entity jumps according
to the transition matrices (Lh)h.

We have ∀t ∈ {0, . . . ,Γ}, (i, j) ∈ Ῡ2, h ∈ T, q ∈ {0, . . . , Q}

P(Zqt = j|Zqt−1 = i, It−1 = q,Θt−1 = h) = Lh,ij .

For zt, zt−1 ∈ ΥQ, we define Wh
t−1 = P(Zt = zt|Zt−1 = zt−1,Θt−1 = h), where Zt = (Zqt )q≤Qt .

We compute

Wh
t−1 =

Q∑
d=1

P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h)P(It−1 = d)

=

Qt−1∑
d=1

P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h)P(It−1 = d)

+

Q∑
d=Qt−1+1

P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h)P(It−1 = d)

Let focus on the first sum, describing the situation when the chosen entity has a rating at current
time.

P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h) = P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h)1[zdt=zdt−1,∀l 6=d:zlt=z
l
t−1]

+ P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h)1[zdt 6=zdt−1,∀l 6=d:zlt=z
l
t−1]

= Lh,z
d
t−1z

d
t 1[zt=zt−1] + Lh,z

d
t−1z

d
t 1[zdt 6=zdt−1,∀l 6=d:zlt=z

l
t−1]

For the second sum, we have: P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h) = 1[zt=zt−1].

So finally,

Wh
t−1 = (1− Qt−1

Q
)1[zt=zt−1] +

Qt−1∑
d=1

1

Q
1[|zt−zt−1|0≤1]1[∀l 6=d zlt=zlt−1]L

h,zdt−1,z
d
t ,

where |x|0 = #{xi 6= 0}.
Then, it is easy to check that the previous algorithm can be adapted to the new framework

αt(h) =

m∑
s=1

αt−1(s)KshWh
t−1,
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βt(h) =

m∑
l=1

βt+1(l)KhlWh
t ,

ǔt(h) = P(Θt = h|Z0|Γ = z0|Γ) =
βt+1(h)αt+1(h)

LΓ
,

v̌t(s, h) = P(Θt = h,Θt−1 = s|Z0|Γ = z0|Γ) =
βt+1(h)Kshαt(s)W

h
t

LΓ
.

The forms of the transitions matrices (Lh)h, are a lot impacted by this adaptation. The max-
imisation does not run as simply as it does for the discrete setting. Explicit forms are heavy to
derive. Then, these parameters are directly estimated with optimization algorithms.

C Parameter estimations

In this appendix, we present the parameters chosen for the simulation in the testing framework
described in Section 4, with the estimated parameters issued from the EM algorithm.

Table 6: Initial and estimated rating transition matrix for Θ = 0
A B C

A 0.98 0.01 0.01
B 0.29 0.7 0.01
C 0.1 0.3 0.6

A B C
A 0.9799 0.0099 0.0102
B 0.2923 0.6977 0.0100
C 0.1023 0.2962 0.6016

Table 7: Initial and estimated rating transition matrix for Θ = 1
A B C

A 0.98 0.01 0.01
B 0.39 0.6 0.01
C 0.2 0.3 0.5

A B C
A 0.9803 0.0100 0.0097
B 0.3887 0.6018 0.0095
C 0.2002 0.3003 0.4995

Table 8: Initial and estimated rating transition matrix for Θ = 2
A B C

A 0.5 0.3 0.2
B 0.01 0.6 0.39
C 0.01 0.01 0.98

A B C
A 0.5072 0.3002 0.1926
B 0.0095 0.6004 0.3901
C 0.0099 0.0103 0.9798

Table 9: Initial and estimated rating transition matrix for Θ = 3
A B C

A 0.98 0.01 0.01
B 0.39 0.6 0.01
C 0.2 0.3 0.5

A B C
A 0.9803 0.0100 0.0097
B 0.3887 0.6018 0.0095
C 0.2002 0.3003 0.4995

Table 10: Initial and estimated rating transition matrix for Θ = 4
A B C

A 0.6 0.3 0.1
B 0.01 0.7 0.29
C 0.01 0.01 0.98

A B C
A 0.5993 0.2992 0.1015
B 0.0104 0.6983 0.2913
C 0.0099 0.0095 0.9806
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Table 11: Initial and estimated rating transition matrix for Θ = 5
A B C

A 0.8 0.15 0.05
B 0.01 0.9 0.09
C 0.01 0.01 0.98

A B C
A 0.8001 0.1493 0.0506
B 0.0099 0.8996 0.0904
C 0.0101 0.0098 0.9801

Table 12: Initial and estimated rating transition matrix for Θ = 6
A B C

A 0.98 0.01 0.01
B 0.09 0.9 0.01
C 0.05 0.15 0.8

A B C
A 0.9799 0.0102 0.0099
B 0.0908 0.8991 0.0101
C 0.0500 0.1517 0.7984

Table 13: Θ’s transition matrix
Θ = 0 Θ = 1 Θ = 2 Θ = 3 Θ = 4 Θ = 5 Θ = 6

Θ = 0 0.6 0.3 0.1 0 0 0 0
Θ = 1 0.25 0.4 0.25 0.1 0 0 0
Θ = 2 0.05 0.15 0.6 0.15 0.05 0 0
Θ = 3 0 0.03 0.12 0.7 0.12 0.03 0
Θ = 4 0 0 0.05 0.15 0.6 0.15 0.05
Θ = 5 0 0 0 0.1 0.25 0.4 0.25
Θ = 6 0 0 0 0 0.1 0.3 0.6

Table 14: Estimated Θ’s transition matrix
Θ = 0 Θ = 1 Θ = 2 Θ = 3 Θ = 4 Θ = 5 Θ = 6

Θ = 0 0.6029 0.3426 0.0544 0 0 0 0
Θ = 1 0.2827 0.4015 0.2526 0.0632 0 0 0
Θ = 2 0.0825 0.1546 0.5773 0.1443 0.0412 0 0
Θ = 3 0 0.0583 0.1083 0.7000 0.0750 0.0583 0
Θ = 4 0 0 0.0716 0.1592 0.5188 0.2124 0.0381
Θ = 5 0 0 0 0.1765 0.2475 0.3053 0.2708
Θ = 6 0 0 0 0 0.1237 0.2851 0.5912
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[30] Siem Jan Koopman, André Lucas, and André Monteiro. The multi-state latent factor intensity
model for credit rating transitions. Journal of Econometrics, 142(1):399–424, 2008.

[31] Ma lgorzata W Korolkiewicz and Robert J Elliott. A hidden markov model of credit quality.
Journal of Economic Dynamics and Control, 32(12):3807–3819, 2008.

[32] David Lando and Torben M Skødeberg. Analyzing rating transitions and rating drift with
continuous observations. Journal of banking & finance, 26(2-3):423–444, 2002.

[33] Vincent Leijdekker and Peter Spreij. Explicit computations for a filtering problem with point
process observations with applications to credit risk. Probability in the Engineering and
Informational Sciences, 25(3):393–418, 2011.

[34] Tingting Liu, Jan Lemeire, and Lixin Yang. Proper initialization of hidden markov models
for industrial applications. In 2014 IEEE China summit & international conference on signal
and information processing (ChinaSIP), pages 490–494. IEEE, 2014.

[35] Yu-Ying Liu, Alexander Moreno, Shuang Li, Fuxin Li, Le Song, and James M Rehg. Learning
continuous-time hidden markov models for event data. In Mobile Health, pages 361–387.
Springer, 2017.

[36] Robert C Merton. On the pricing of corporate debt: The risk structure of interest rates. The
Journal of finance, 29(2):449–470, 1974.

[37] Pamela Nickell, William Perraudin, and Simone Varotto. Stability of rating transitions.
Journal of Banking & Finance, 24(1-2):203–227, 2000.

[38] Uri Nodelman, Christian R Shelton, and Daphne Koller. Expectation maximization and
complex duration distributions for continuous time bayesian networks. arXiv preprint
arXiv:1207.1402, 2012.

[39] Sung Youl Oh, Jae Wook Song, Woojin Chang, and Minhyuk Lee. Estimation and forecasting
of sovereign credit rating migration based on regime switching markov chain. IEEE Access,
7:115317–115330, 2019.
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