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Abstract—Machine learning techniques allow accurate
indoor localization with low online complexity. However,
a large amount of collected data samples is needed to
properly train a deep neural network (DNN) model used
for localization. In this paper, we propose to generate fake
fingerprints using generative adversarial networks (GANs)
based on a small amount of collected data samples. We
consider an indoor scenario where collected labeled data
samples are rare and insufficient to generate fake samples
of a good multitude and diversity in order to provide a good
localization accuracy. Thus, both labeled and unlabeled
fingerprints are provided to the GAN so that more realistic
fake data samples are generated. Then, a DNN model is
trained on mixed dataset comprising real collected labeled
and pseudo-labeled fingerprints as well as fake generated
pseudo-labeled fingerprints. The data augmentation based
on real measurements leads to a mean localization accuracy
improvement of 9.66% in comparison to the conventional
semi-supervised localization algorithm.

Index Terms—Indoor localization, deep neural network
(DNN), generative adversarial network (GAN), received
signal strength indicator (RSSI), semi-supervised learning.

I. INTRODUCTION

Future wireless systems will support a wide range of
innovative applications such as healthcare monitoring,
autonomous vehicles and personal navigation [1] [2].
To this end, these systems have to provide accurate
and efficient location-based services, resulting in an
increasing demand for accurate location information.
Classical localization techniques, comprising geometric
and fingerprints-based methods use wireless signal pa-
rameters including angle of arrival (AoA), time of arrival
(ToA), channel state information (CSI) and received
signal strength indicator (RSSI) [3]. These techniques
are severely impacted by multi-path effects and hinders
real-time implementation and operation, especially in
extended networks. To deal with this issue, machine
learning (ML) tools, in particular deep learning (DL)
techniques have been widely used in which an online
localization model is employed, whereby training and
optimization has been performed offline [4]–[6]. To
optimally train a DL model, a large amount of data is
needed. However, data collection is a highly consuming

task in terms of time, hardware resources, and human
effort.

To overcome these challenges, various techniques
have been used to generate fake data that would com-
pliment the real collected data for localization accuracy
improvement. Recently, generative models have been
widely adopted for data augmentation, in particular,
generative adversarial networks (GANs) [7] [8]. Such
networks are used to (i) increase the diversity of sam-
ples, by generating fake fingerprints at training positions
already used during data collection and (ii) increase the
size of the database by generating fake fingerprints at
new positions. Unlike our previous work [9] where we
assume that only labeled collected data are available for
data generation, we consider in this work a scenario
where a small amount of labeled collected data is insuf-
ficient to generate good and realistic fake data samples.
Thus, we leverage both labeled and unlabeled collected
data samples for data augmentation and then the whole
data (collected and generated) are combined and used
for localization. To the best of the authors knowledge,
it is the first time that labeled and unlabeled data are
explicitly used for data augmentation based on GANs in
the localization context. Such combination was implicitly
used in [10] to benefit from unlabeled data only in the
step of optimizing the GAN model weights while in our
work we also use it to build the localization model.

In this paper, collected RSSI fingerprints (labeled and
unlabeled) are used for new fake fingerprints generation.
Once fake fingerprints are generated, a pseudo-labeling
process [11] is performed to predict pseudo-labels for
both unlabeled and fake generated fingerprints. Then, the
whole data are combined in order to build a deep neural
network (DNN) model for localization. The remainder
of this paper is organized as follows: In Section II, we
describe and formulate the problem. Section III presents
the proposed semi-supervised GAN for location infor-
mation augmentation. The performance of the proposed
approach in comparison to the conventional method is
presented in Section IV for a real environment. Finally,
we conclude our work in Section V.



II. PROBLEM DESCRIPTION

Fingerprints-based localization methods have been
widely studied and adopted for its localization accuracy
and simplicity. Such technique consists of an offline
phase and an online phase. During the offline phase, a
site survey is conducted collecting RSSI measurements
at each training position received from different access
points (APs) when considering WiFi signals. Collected
RSSI associated to the corresponding location coordi-
nates construct training fingerprints contained in the
training database to be transmitted and stored in a central
unit (CU). For online localization, RSSI measurements
are compared with the training fingerprints for location
estimation. A prediction based on a DNN model is
recommended since the online complexity is shifted to
the offline phase. A good localization performance is
achieved when the DNN model is trained and optimized
based on a large set of collected data which makes the
fingerprints collection time and cost consuming. Thus,
data augmentation based on GANs for fake localization
data generation is widely studied. However, RSSI vec-
tors labeled by the (x, y) coordinates, collected during
the offline phase, can be insufficient for accurate fake
data generation. To solve this issue, we propose a data
augmentation module using GANs based on collected
labeled and unlabeled data. Then, the location predic-
tion is conducted combining collected data (labeled and
unlabeled) and fake generated data. This system reduces
the reliance on expensive labeled collected data, mixing
both labeled and unlabeled data with fake generated data.

III. PROPOSED SEMI-SUPERVISED GAN FOR
LOCATION DATA AUGMENTATION

We consider an indoor environment covering (L×W )
m2, where M APs are already deployed. Mobile sen-
sor nodes, used during the offline phase, collect RSSI
measurements at known training positions ’labeled data’
and at unknown positions ’unlabeled data’ for training
database construction. Other mobile sensor nodes are re-
quiring localization online periodically or when needed.
The localization process and the data pre-processing are
performed by the CU. Different steps of the system,
depicted in Fig. 1, are explained below.

A. Using GANs for data generation

To increase the training dataset size and diversity, we
use a special class of generative models: GANs. A GAN
is composed by a generator model G which learns how
to produce a representation similar to real data and a
discriminator model D which learns how to distinguish
between real and fake data. G and D, based on DNN,
are trained together until fake generated data samples
start looking as real samples. The goal is to generate Fg

RSSI vectors composed of M RSSIs received from used
APs starting from an input noise.

B. Training a supervised DNN model for pseudo-
labeling

To be used for localization, collected unlabeled data
and fake generated data need to be identified by predicted
coordinates called ’pseudo-labels’ using a DNN model.
Based on labeled collected RSSI vectors, a DNN model
can be built taking as input an RSSI vector and its
corresponding coordinates as output. Once trained, this
DNN model is used for pseudo-labeling. Thus, it takes
each real unlabeled or fake generated RSSI vector to
predict its pseudo-labels.

C. Using a mixed DNN model for localization

Localization is performed applying a mixed DNN
model trained offline while combining labeled and
pseudo-labeled data. To localize a mobile sensor node
online, such model is applied to estimate its coordinates
based on the corresponding collected RSSI vector.

IV. PERFORMANCE EVALUATION

We test the proposed system on real measurements
from the UJIndoorLoc database [12]. Since we work
on one floor environment, we consider only collected
data corresponding to Building1-Floor2. We consider
Fl = 500 labeled fingerprints and Fu = 500 unlabeled
fingerprints during training. For test, we use the rest
of fingerprints which is equal to Ft = 435. The data
collected is first pre-processed to eliminate redundant
and useless data since at each position only 18 AP are
detected from 520 existing. Thus, we keep only APs
detected at least once which is equal to 190. After data
pre-processing, the fake data samples are generated. This
step is performed with a GAN based on one-hidden
DNN layer as a discriminator with 200 neurons and a
one-hidden DNN layer generator with 200 neurons. The
GAN is trained during 200 epochs using 0.01 learning
rate. For data pseudo-labeling, the considered DNN is
trained during 200 epochs with 50 as mini-batch size
and 0.01 as learning rate. For localization, 250 epochs
are considered with a mini-batch size equal to 100 and
a learning rate equal to 0.01. The DNN architectures
used for pseudo-labeling and localization are mentioned
in Table I where Li(.) refers to the number of neurons
in the ith hidden layer.

We compare the localization accuracy of different
localization methods combining different types of data.

• Supervised (Fl): when using a supervised method
based on Fl labeled fingerprints.

• SS (Fl, Fu) is the localization method when using
classical semi supervised learning. Where Fl indi-
cates the number of labeled data samples and Fu

indicates the number of unlabeled data samples.
• SS-GAN (Fl, Fu, Fg) is the localization method

when we combine Fl labeled, Fu unlabeled and Fg

fake generated data samples for localization.
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Fig. 1: Overview of the system model and the different training steps.

TABLE I: Used DNN architectures.

Localization
method

DNN used for pseudo-
labeling

DNN used for local-
ization

SS (500, 500) L1(200) and L2(100) L1(200) and
L2(100)

SS-GAN
(500,500,100)

L1(200) and L2(100) L1(200), L2(100)
and L3(50)

SS-GAN
(500,500,250)

L1(200), L2(100)
and L3(100)

L1(200), L2(100)
and L3(50)

SS-GAN
(500,500,500)

L1(200), L2(100)
and L3(100)

L1(200), L2(100)
and L3(50)

SS-GAN
(500,500,1000)

L1(200), L2(100)
and L3(100)

L1(200), L2(100)
and L3(50)

SS-GAN
(500,500,1500)

L1(200), L2(100)
and L3(100)

L1(100), L2(100)
and L3(50)

Table II gives the localization errors (e.g., mean local-
ization error, min localization error and max localization
error) and the localization improvement compared with
SS (500, 500) i.e. using 500 labeled with 500 unlabeled
data samples. We can first notice that the conven-
tional semi-supervised localization algorithm improves
the mean localization accuracy by 2.24% compared with
the conventional supervised scheme. This shows that
pseudo-labeled data can indeed improve the localization
accuracy. For fake RSSI samples generations, we use
both available labeled and unlabeled data samples in
order to improve the quality of the fake generated
samples, since the GAN will be trained over a larger
dataset. [100 − 1500] RSSI vectors are then generated.
These RSSIs correspond to new fake positions covering
new regions of the studied indoor environment, which
gives more diversity and coverage to the dataset. We
notice that for all augmented datasets, the localization
accuracy is improved compared to the initial training
dataset limited only to real collected data. The best
localization accuracy is obtained when generating 1000
fake positions in terms of mean localization error 3.93

m and optimal localization error 3.91 m, improving
the conventional semi-supervised system by 9.66% and
8.85%, respectively. This improvement is explained by
the fact that the DNN, used for localization, is trained
over a larger dataset which contains new positions that
are not included in the limited dataset based only on
collected data and covering a large area in the considered
indoor environment as shown in Fig. 2. In this figure,
we show a distribution of 1000 generated fake positions
based on 1000 real positions (500 labeled positions
and 500 pseudo-labeled positions). In addition, using
additional fake data samples, the DNN model is able to
learn better which means that it gets more generalized
and avoids overfitting. Thus, even when working in a
real environment with high dynamic and heterogeneous
devices, our proposed system achieves good localization
accuracy and improves the performance obtained by the
conventional semi-supervised framework. Starting from
a certain number of generated fake data samples which
is equal to 1000, the performance is saturated and no
further improvements can be provided which can be ex-
plained by two reasons: (i) Based on 500 labeled vectors
and 500 pseudo-labeled vectors, we cannot provide a
higher diversity to the GAN, which leads to generating
less realistic samples, (ii) The prediction error resulting
from pseudo-labels prediction.

V. CONCLUSION

In this paper, GANs are leveraged for augmenting
data used for localization. Thus, a combination of real
collected labeled and unlabeled data along with fake
generated data is used to improve the localization ac-
curacy. The data augmentation process leads to a mean
localization accuracy improvement compared to the con-
ventional localization system based only on collected
labeled and unlabeled data considering real measure-
ments taken from the UJIndoorLoc database, without any
online complexity increase. In future works, we intend
to generate both RSSI vectors and their corresponding



TABLE II: Obtained localization performance considering 500 labeled data samples and 500 unlabeled data samples
with real measurements from the UJIndoorLoc Database: Building1-Floor2.

Localization method Optimal
localization
error (m)

Mean
localization
error (m)

Min - Max
localization
error (m)

Optimal localization
accuracy improvement
vs SS (500, 500)

Mean localization ac-
curacy improvement vs
SS (500, 500)

SS (500, 500) 4.29 4.35 4.29 - 4.41 – –

SS-GAN (500,500,100) 4.19 4.25 4.19 - 4.28 10 cm | 2.33% 10 cm | 2.29%

SS-GAN (500,500,250) 3.98 4.02 3.98 - 4.07 31 cm | 7.22% 33 cm | 7.58%

SS-GAN (500,500,500) 3.91 3.96 3.91 - 4.00 38 cm | 8.85% 39 cm | 8.96%

SS-GAN (500,500,1000) 3.91 3.93 3.91 - 3.97 38 cm | 8.85% 42 cm | 9.66%
SS-GAN (500,500,1500) 3.93 3.95 3.93 - 3.97 36 cm | 8.39% 40 cm | 9.19%

Supervised (500) 4.37 4.45 4.37 - 4.5 -8 cm | -1.83 % -10 cm | -2.24%
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Fig. 2: An example of a distribution of 1000 fake
positions generated based on 500 labeled positions and
500 pseudo-labeled positions.

coordinates to overcome the prediction error of pseudo-
labels.
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