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ABSTRACT

It has been recently recognized that the observational relativistic effects, mainly arising from the light propagation in an
inhomogeneous universe, induce the dipole asymmetry in the cross-correlation function of galaxies. In particular, the dipole
asymmetry at small scales is shown to be dominated by the gravitational redshift effects. In this paper, we exploit a simple
analytical description for the dipole asymmetry in the cross-correlation function valid at quasi-linear regime. In contrast to the
previous model, a new prescription involves only 1D integrals, providing a faster way to reproduce the results obtained by Saga
et al. Using the analytical model, we discuss the detectability of the dipole signal induced by the gravitational redshift effect
from upcoming galaxy surveys. The gravitational redshift effect at small scales enhances the signal-to-noise ratio (S/N) of the
dipole, and in most of the cases considered, the S/N is found to reach a maximum at z =~ 0.5. We show that current and future
surveys such as DESI and SKA provide an idealistic data set, giving a large S/N of 10-20. Two potential systematics arising
from off-centred galaxies are also discussed (transverse Doppler effect and diminution of the gravitational redshift effect), and
their impacts are found to be mitigated by a partial cancellation between two competitive effects. Thus, the detection of the
dipole signal at small scales is directly linked to the gravitational redshift effect, and should provide an alternative route to test

gravity.

Key words: gravitation —cosmology: theory —large-scale structure of Universe.

1 INTRODUCTION

Mapping the large-scale structure of the universe with galaxy surveys
is currently a major science driver for cosmology. In particular,
through its statistical characterizations such as two-point correlation
function or power spectrum, the large-scale galaxy distribution en-
ables us to probe the late-time cosmic expansion, growth of structure,
and even the primordial fluctuations. However, the observed 3D
map of galaxies does not directly reflect the true galaxy distribution
because of a number of physical effects. The most prominent effect
is the Doppler effect induced by the peculiar velocities of galax-
ies, which produces apparent anisotropies along the line-of-sight
direction, known as redshift-space distortions (RSD) (Kaiser 1987;
Hamilton 1992). The RSD has now been recognized as a sensitive
probe of the growth of cosmic structure, and the measurement of it
provides a unique opportunity for a test of gravity on cosmological
scales (e.g. Guzzo et al. 2008; Linder 2008; Percival & White 2009;
Reid et al. 2012; Sanchez et al. 2013; Alam et al. 2017a). The
upcoming galaxy surveys will observe an unprecedented number of
galaxies and provide us with high-precision measurements of RSD,
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which can further offer a way to detect small but non-negligible
special and general relativistic contributions to RSD (Sasaki 1987;
Pyne & Birkinshaw 2004; Yoo, Fitzpatrick & Zaldarriaga 2009; Yoo
2010; Bonvin & Durrer 2011; Challinor & Lewis 2011; Yoo 2014).

Recently, it has been shown that relativistic effects arising from the
light propagation in an inhomogeneous universe, e.g. gravitational
redshift, integrated Sachs-Wolfe, and weak lensing effects, produce
asymmetric distortions to the galaxy distribution along the line-of-
sight direction (Yoo et al. 2012; Croft 2013; Tansella et al. 2018).
This means that with a certain line-of-sight definition, applying
the multipole expansion to the cross-correlation function or power
spectrum between different biased objects yields non-vanishing odd
multipole moments, with the largest signals coming from the dipole
moment (e.g. McDonald 2009; Bonvin, Hui & Gaztafiaga 2014).
Detection of such relativistic signals would provide a new window
to probe gravity on cosmological scales, thus complementary to the
measurement of the redshift-space distortions induced by the Doppler
effect. Further, it can offer a fundamental or classical test of gravity
from a viewpoint of the equivalence principle, helpful to constrain
cosmology (e.g. Bonvin & Fleury 2018; Bonvin, Oliveira Franco &
Fleury 2020). Recently, Alam et al. (2017b) have claimed the
detection of the asymmetry at the 2.80 level using SDSS BOSS DR12
CMASS galaxy sample. Their results are consistent with the gravita-
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tional redshift effect predicted by general relativity (see also Wojtak,
Hansen & Hjorth 2011; Jimeno et al. 2015; Sadeh, Feng & Lahav
2015; Mpetha et al. 2021, for the detection using clusters of galaxies).

In our previous studies, toward a solid detection of the non-
vanishing relativistic dipole in the cross-correlation function, we
have numerically constructed halo catalogues on light cone, taking
consistently the observational relativistic effects into account (Breton
et al. 2019) (see Borzyszkowski, Bertacca & Porciani 2017; Coates
et al. 2020; Guandalin et al. 2021, for recent similar works at lower
resolution). At large scales, we found that the standard Doppler effect
without taking the distant-observer approximation gives the largest
contribution to the dipole (Taruya et al. 2020). On the other hand, at
the scales beyond the linear regime, the gravitational redshift effect
starts to dominate the dipole, and the linear theory prediction fails to
reproduce the simulation results.

In order to quantitatively explain major findings in the numerical
simulations, Saga et al. (2020) developed a quasi-linear model based
on the Zel’dovich approximation. The model considers the standard
Doppler and gravitational redshift effects as dominant relativistic
contributions, taking also the so-called wide-angle effect of RSD into
account in a self-consistent way. In particular, the model accounts for
the non-perturbative contribution to the gravitational redshift effect
arising from the halo potential, which is shown to play an important
role to describe the small-scale behaviours of the dipole moment,
leading to a remarkable agreement with the dipole cross-correlations
measured in simulations at quasi-linear scales (s = SMpch ™).

In this paper, based on the success of our numerical and analytical
modelling, we pursue to further investigate the relativistic dipole,
focusing specifically on its future detectability. Several authors have
investigated the feasibility to detect the relativistic dipole, but they
rely on the linear theory prediction, and consider large scales (Hall &
Bonvin 2017; Lepori et al. 2018). Contrary to these previous works,
our study here is based on a model capable of going beyond linear
regime, taking the non-linear gravitational potential of haloes into
account. A similar study focusing on small scales has been recently
done by Beutler & Di Dio (2020), using the third-order Eulerian
perturbation theory. They considered the power spectrum dipole,
i.e. the Fourier counterpart of the dipole cross-correlation function,
and dividing a single galaxy population observed by Dark Energy
Spectroscopic Instrument! (DESI; DESI Collaboration 2016) into
more than two subsamples, they found that the signal-to-noise ratio
of their cross power spectrum exceeds 10 if the difference of the
(linear) galaxy biases between two subsamples, Ab, becomes Ab =
1. In this paper, we estimate the signal-to-noise ratio for the cross-
correlation function, and applying the multitracer techniques, we
discuss systematically the detectability of the relativistic dipole
through the combination of various upcoming galaxy surveys. In
doing so, we will first present a simple analytical model, which
quantitatively reproduces major trends obtained from our previous
study (Saga et al. 2020). In contrast to our previous model which
involves seven dimensional integrals, the prediction of the dipole
in the present model needs only the 1D integrals, hence providing a
faster way to estimate the signal-to-noise ratio. We will then examine
the detectability of relativistic dipole in various upcoming surveys:
DESI (DESI Collaboration 2016), Euclid* (Laureijs et al. 2011),
Subaru Prime Focus Spectrograph® (PFS; Takada et al. 2014), and

Thttps://www.desi.Ibl.gov/
Zhttps://www.euclid-ec.org/
3http://sumire.ipmu.jp/en/
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Square Kilometre Array* (SKA; Square Kilometre Array Cosmology
Science Working Group 2020). Moreover, potentially important
systematics are also investigated, and incorporating these effects
into the analytical model, we quantitatively predict their impacts on
the dipole cross-correlation function.

This paper is organized as follows. In Section 2, we present a
simple analytical model for the relativistic dipole induced by the
Doppler and gravitational redshift effects, which involves only 1D
integrals. In Section 3, we write down the estimator for the dipole
moment of the cross-correlation function and compute its covariance
matrix following Bonvin, Hui & Gaztanaga (2016), Hall & Bonvin
(2017). This is used in Section 4 to estimate the signal-to-noise ratio
of the dipole moment for various upcoming surveys. In Section 5, we
discuss a potential impact of the systematic effects from off-centred
galaxies on the dipole moment. Finally, Section 6 is devoted to the
summary of important findings.

Supplementing with the analysis and results in the main text,
Appendices A, B, and C provide, respectively, key expressions
to derive the analytical expression for the dipole cross-correlation
function in our simple model, the comparison of its model with an
approximate description discussed in our previous paper, and the
analytical expressions of the non-vanishing multipoles based on the
model. Appendix D discusses the impact of the effect ignored in our
analytical model on the dipole signal, particularly focusing on the
Doppler magnification. In Appendix E, we summarize the parameters
characterizing upcoming galaxy surveys, which are used to estimate
the signal-to-noise ratio of the dipole in Section 4. In Appendix F,
we present an alternative way to estimate the signal-to-noise ratio, in
which the halo subsamples to cross-correlate are characterized by the
minimum halo mass and the width of (logarithmic) halo mass bins.

Throughout this paper, we assume a flat Lambda cold dark matter
(ACDM) model. The fiducial values of cosmological parameters are
chosen so as to match the numerical simulations (Borzyszkowski
et al. 2017), based on the seven-year WMAP results (Komatsu et al.
2011): Qmo = 0.25733, Qo = 0.04356, Q240 = 0.74259, and 2, =
8.076 x 107> for the density parameters for matter, baryon, dark
energy with equation-of-state parameter w = —1, and radiation,
respectively, at the present time. The other cosmological parameters
are chosen as h = 0.72, ny = 0.963, and og = 0.801 for the
Hubble parameter, scalar spectral index, and the root-mean-square
matter density fluctuations with a top-hat filter of radius 8 h~! Mpc.
Throughout the paper, we will work with units of ¢ = 1.

2 MODEL

The main purpose of this paper is to quantitatively estimate the
detectability of the relativistic dipole, arising from the gravitational
redshift effects, in upcoming deep and wide surveys. In doing so, we
first present an analytical model of dipole cross-correlation function
in this section. The model presented below involves only 1D integrals,
and hence it provides a fast way to predict the relativistic dipole as
well as to estimate its signal-to-noise ratio based on the covariance
matrix calculations.

In modelling the dipole cross-correlation function, the standard
Doppler effect has to be also taken into account, since it gives a
dominant contribution to the dipole at large scales through the so-
called wide-angle effect (Fisher, Scharf & Lahav 1994; Hamilton &
Culhane 1996; Zaroubi & Hoffman 1996; Szalay, Matsubara &
Landy 1998; Matsubara 2000; Matsubara 2004; Szapudi 2004;

“https://www.skatelescope.org/
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Péapai & Szapudi 2008). Considering both the Doppler and grav-
itational redshift effects, Saga et al. (2020) constructed a quasi-
linear model based on the Zel’dovich approximation. To account
for the non-perturbative contributions at small scales, we combined
it with the halo model to predict the relativistic dipole from the
halo potential. In Section 2.1, starting from the expression in our
previous work, we derive a simplified expression for the density
field by linearizing the displacement fields but still retaining the non-
perturbative contribution. Then, the expression for the dipole cross-
correlation function is simplified, and is presented in Section 2.2.

2.1 Modelling observed density fields

Consider an object at the true position x in comoving space. In
redshift space, the observed position s generally differs from x,
mainly due to the standard Doppler effect. Taking also into account
the relativistic corrections, which we denote by e, the relation
between the two positions x and s is given by (e.g. Challinor &
Lewis 2011):

1 A .
s=x+ﬁ(v-x)x+e(x)x, @))]

where % is the unit vector defined by ¥ = x/|x| and a, H, and v
are a scale factor, Hubble parameter, and peculiar velocity of the
object, respectively. Note that the expression at equation (1) is valid
in the weak-field approximation of metric perturbation, and |v| < 1.
In equation (1), we also ignore the gravitational lensing effect, which
has been shown to give a very minor contribution to the asymmetric
cross-correlation, i.e. odd multipole anisotropies. The term € includes
the contributions of gravitational redshift, integrated Sachs-Wolfe,
transverse Doppler, and Shapiro time-delay effects, among which
the gravitational redshift effect gives the most dominant relativistic
contribution. Thus, focusing on the major relativistic effect, it is
expressed as

1
e(x) = _Ed)(x)’ 2

where the function ¢(x) stands for the gravitational potential. The
explicit forms of other relativistic contributions to the observed
source position can be found in the literature (e.g. Yoo 2010;
Bonvin & Durrer 2011; Challinor & Lewis 2011).

To derive a simplified expression for the correlation function, we
first follow the analytical treatment given by Saga et al. (2020),
who applied the Zel’dovich approximation to predict the cross-
correlation function beyond linear regime (Novikov 1969; Zel’dovich
1970; Shandarin & Zeldovich 1989). The Zel’dovich approximation,
known as the first-order Lagrangian perturbation theory, describes
the motion of mass element at the Eulerian position x, introducing
the Lagrangian displacement field, ¥, which is given as a function
of the Lagrangian position (initial position) ¢. Assuming that the
objects of our interest follow the velocity flow of mass distributions,
the Eulerian position, and the velocity of each mass element at x, v,
at a given time ¢ are generally expressed as

x(q.t)=q+¥(q,1), (3)
(x) = a 4)
V(X _adt.

The displacement field should satisfy the condition ¥ — 0 at t —
0. In the Zel’dovich approximation, it is expressed in terms of the
(Lagrangian) linear density field §;, as V, - Wz, = —4., with the
operator V, being a spatial derivative with respect to the Lagrangian
coordinate. Recalling that the linear density field is related to initial
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density field §¢ through §;, = D, (#)§¢ with D being the linear growth
factor, the velocity field is rewritten with

v :aHf\IIZA, (5)

where the quantity f is the linear growth rate defined by f =
din D (a)/dIn a.

Substituting the expressions at equations (3) and (5) into equa-
tion (1), the relation between the redshift-space position s and the
Lagrangian-space position g becomes

si = q; +{8ij + fRix;}Vi(g) + e(x)X;
>~ q; + Rij(@)V;(q) + €(q)q:, (6)

with the matrix R;; defined by R;;(§) = 6;; + f§ig;. Here, we used
the Einstein summation convention and omit the subscript ZA, simply
writing Wz, as W. Note that the second line is valid at first-order
displacement field (i.e. Zel’dovich approximation).

Given the relation at equation (6), the number density field of the
object in redshift space, n®, is expressed in terms of the quantities
defined in Lagrangian space. We have

nS(s)d’s =7 (1+b-8.(q)) d°, 0

where the quantity b" is the Lagrangian linear bias parameter, and 7z
is the mean number density at a given redshift. The above expression
is recast as

-1
BS[

9g;

n®(s) = (1+b"8.(q)) '

= ﬁ/d3‘1 (1+ bL3L(‘1)) dp(si —qi — RijV; +€4i)

_ 3 d’k iki (si—qi —RijVj—€q;) L
Zn/dq /(271)36‘ R (14 b)) -
®)

Let us now consider the density fluctuation. Denoting it by 8§,
we define

nS)(s)

(nS)(s)) - L

where the bracket (---) stands for the ensemble average. Here, it is to
be noted that the quantity (n®) generally differs from 7, due to the
directional-dependent matrix R;; and relativistic correction along the
line-of-sight direction. In the presence of these terms, a naive sub-
stitution of equation (8) into the above yields an intricate expression
for the correlation function which involves the multidimensional in-
tegrals in both numerator and denominator. Indeed, without invoking
any approximation, Saga et al. (2020) derived an exact expression
for the cross-correlation function from equation (9) (see also Taruya
et al. 2020), with which the prediction of the dipole moment is made
numerically by performing seven dimensional integrals, requiring
a time-consuming computation. However, ignoring the relativistic
contribution, a detailed comparison of the predictions between the
exact expression and the linear theory has shown that the results
almost coincide with each other (Taruya et al. 2020). One can thus
linearize the expression at (9) with respect to the displacement field.
Further, the relativistic corrections, which are supposed to be small,
can be also expanded from the exponent. Then, we obtain

3
§S(s) = / d*q / % ek -0 {— (€ — (e))ik - §

+ <1 —e(ik.zi)+2@) (b“81 — ik R;j W) |. (10)

89(s) = ©)
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Here, in computing the density field for galaxies/haloes, we have to
be careful of dealing with the term € coming from the gravitational
redshift effect. Although the term € itself should be a small quantity,
the gravitational potential at the halo/galaxy position would not
be simply characterized by the gravitational potential of the linear
density field. Since the haloes/galaxies are likely to be formed in
the presence of a deep potential well through non-linear processes,
it should involve the non-perturbative contribution. Thus, following
Saga et al. (2020), we decompose the gravitational redshift contribu-
tion € into two pieces:

€(x) = eL(x) + ent. (11)

In equation (11), the first term at the right-hand side, €, (x), represents
the linear-order contribution arising from the gravitational potential
of the linear density field, ¢:

1
eL(x) = —ﬁdm(x)- (12)

On the other hand, the second term, en; describes the non-
perturbative contribution. In this paper, we shall model it with
the universal halo density profile called NFW profile by Navarro,
Frenk & White (1996), as adopted in Saga et al. (2020):

1
enL = ———®nrw.0(2, M) (13)
aH

with ¢npw,o being the halo potential of the NFW profile at the centre
(see Appendix D in Saga et al. 2020 for the explicit form of the
NFW potential ¢npwo). Here, we assume that the object to cross-
correlate resides at the halo centre. The potential impact of this
assumption will be later discussed in Section 5. Note that the non-
perturbative potential contribution, ey, is not a random variable but
a constant value as a function of the halo mass and redshift through
equation (13). Thus, we have (€) = exL.

Keeping the above points in mind, we substitute equations (11)
and (12) into equation (10). After performing the integration by parts,
the density fluctuation §® is recast in the following form:

8O(s) = §C9D(g) + 8PN () + §EN(s). (14)

Here, we classify the density fluctuations into three contributions: the
standard Doppler effects without assuming the plane-parallel limit,
86'9(s), the gravitational redshift effect due to the linear density
fields, §®°(s), and gravitational redshift effect due to the non-
linear halo potential, §N1)(s). Those contributions are explicitly
given by

! &Pk . 2
8(std)(s) = / melk-s |:b + fuz — i_faluk:| S.(k), (15)

3PV (s) = /

€ & o2
5(eNL)(s) = %/ oy eiks |:_1 + Mi _ 1fglvtk

¢k M
e {(i ks +2) @} .(k), (16)

. 2 .
— bk =2 f g =i = lfksuz} sk, (17

with the quantity x being the directional cosine defined by p; = § - k.
Here, we introduced a new quantity M = —3Qu0HZ/(2a*H). The
quantity b is the Eulerian linear bias parameter, which is related to the
Lagrangian linear bias b" through b = 1 + b". Note that in the above,
the gravitational potential ¢ is rewritten with the linear density fields
through the Poisson equation. The linear-order contributions given
in equations (15) and (16) reproduce the results obtained previously
if one neglects other minor contributions but keep the terms at the
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O

Figure 1. The geometric configuration of the cross-correlation function in
redshift space. The biased objects S;S ) and ag{s ) are, respectively, observed at
s1 and s, with respect to the observer (O). Here we assume bx > by. The
separation vector, line-of-sight vector, and directional cosine are defined by
s=58y—581,d=(s1+52)/2,and u =cosf =§ - d respectively.

O(aH/k) order (see e.g. equation (A7) in Bonvin et al. (2014) or
equation (1) in Hall & Bonvin (2017)).

Equation (14) with equations (15)—(17) is the key expression of
our analytical model for the dipole cross-correlation function. As we
will see in the next subsection, the resultant expression for the dipole
moment involves only 1D integrals, and the prediction can be made
much faster than that of the quasi-linear model by Saga et al. (2020),
also reproducing the simulation results remarkably well. Hence, the
present model can be used to systematically explore the dependence
of various parameters characterizing the properties of galaxies as
well as the setup of upcoming/ongoing surveys.

2.2 Cross-correlation function

We now compute the cross-correlation function and derive an analyti-
cal expression for the dipole moment. In doing so, we explicitly write
the density field for the objects X as SS ). Then, the cross-correlation
function between different species X and Y is given by

Eavs1, 52 = (0608(62)) - ()

Taking the directional dependence of the observer’s line of sight into
account, the statistical homogeneity and isotropy no longer hold,
and the cross-correlation function given above cannot be simply
characterized as a function of the separation s = |s, — §;|. Rather,
it also depends on the distances to the objects X and Y, i.e. |s;| and
|s2]. Equivalently, the function £xy is characterized as a function
of the separation s, the mid-point distance d = |s; + s2|/2, and
the directional cosine between the separation vector and the mid-
point vector, u = § - d , with separation vector defined by s = §, — 5,
(see Fig. 1 for the geometric configuration of the cross-correlation
function). We shall below write the explicit dependence of £xy in its
argument as Exy(s, d, w).

Substituting equation (14) into equation (18), the cross-correlation
function & xy is given as a collection of several pieces. Since the terms
coming from the gravitational redshift effect, i.e. §®° and §NV), are
supposed to be sub-dominant compared to the standard Doppler term,
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we can neglect the contributions from their cross-talks. We then have
(s do ) = (55980 (52))
+{ (800180 (52)) + (885108 s52)) }
+{ (85508552 + (85085 (s2)) |
= 50 (5. do ) + 58 (s, d. )+ EQV(s.d. ).

19)

Since we are particularly interested in the dipole moment of the cross-
correlation function, we hereafter consider the multipole expansion
of the & xv, taking specifically the mid-point vector,d = (s| + §2)/2,
as the line-of-sight direction:

2041 (1

Exy.(s.d) = — du Exy (s, d, w)Le(1), (20)
—1

= £, d) + EX (s, d) + QY (s, d), @1

with £, being the Legendre polynomials. Notice that the line-of-
sight direction considered here is directional-dependent. Since we
do not take the plane-parallel limit, the wide-angle effect comes to
play, and the multipole moment of the correlation function, £xy,,
is not simply given as a function of the separation, but rather given
as a bi-variate function of s and d. In order to isolate the scale
(i.e. separation) dependence of the multipole moment from the line-
of-sight dependence, we further expand the multipole moments in
powers of (s/d) as follows:

Exvs d) = €%, ) + (5) 85,0+ 0 ((5)2> 22)

The first and second terms at the right-hand side, respectively,
represent the contributions from the plane-parallel limit d — oo and
the leading-order wide-angle correction. In Appendix A, substituting
equations (15)—(17) into equation (19), the multipole expansion is
applied up to the plane-parallel limit and wide-angle correction,
and the terms defined above are derived in each contribution. The
resultant expressions for the dipole moment (¢ = 1), including only
the non-vanishing contributions, are summarized as follows (see
Appendix C for other multipoles):

; 1
BN d) = () 2bx — by) (Eﬁ”(s) -5 E;‘”(s))

+0 ((3)2) : 23)

60 (5. d) = —(bx — by)M s E(s) + O ((3)2) , (24)
fp(f%)(& d) = _E(GNL,X - GNL,Y)

3 o3 _
X (bbe + g(bx +by)f + 7f2> g7 ")

$\2
().
with the function /" defined by

k*dk ji(ks)
—~(n) _ Je
() = Py(k), 26
“(s) / 2t Gy o0 (26)
where the functions j, and Py (k) are, respectively, the spherical Bessel
function and the linear power spectrum defined in equation (A4).
The analytical expressions at equations (23)—(25) are one of the
main result in this paper. As we see, the expressions of the dipole
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moment involve only 1D integrals, and for a given redshift z, they
are characterized by the (Eulerian) bias parameters bx;y and the non-
perturbative halo potentials e x/y, the latter of which are predicted
with the NFW profile for given halo masses. We note that, in the
derivations above, the magnification bias caused by the fact that the
galaxy samples are flux limited is ignored (see e.g. Bonvin et al. 2014;
Hall & Bonvin 2017). In Appendix D, the impact of the magnification
bias, particularly induced by the Doppler effect (potentially the most
dominant contribution), is discussed in detail, showing that such
an effect is sub-dominant, and becomes negligibly small at higher
redshifts (z 2 0.1).

To see the quantitative behaviour of our model presented here, in
Fig. 2, the predictions of the dipole moment of the cross-correlation
function, £xy,, are plotted. The results at z = 0.33 are particularly
shown, and for comparison, we also plot the measured results from
the simulated halo catalogue, RayGalGroupSims,’ which consis-
tently take into account all the relativistic corrections by solving
the geodesic equation in the presence of matter inhomogeneities.
Here, the plotted results show the cross-correlation between the
haloes of data_Hicoo and data-H;oq, Whose bias parameters
are, respectively, given by bx = 2.07 and by = 1.08. In each
halo sample, the potentials at the halo centre are predicted to be
Snrwox = —1.63 x 107 and Pypy .oy = —0.285 x 107>, These
values are taken from table 1 of Saga et al. (2020), assuming the
NFW profile. We use them to estimate the size of the gravitational
redshift effect at each halo, enp x/y, and obtain expx > enxLy > 0.

In Fig. 2, the black solid lines are the predictions of our analytical
model. Also, their building blocks, i.e. &5y, £y, and £y, are
separately plotted as red, blue, and magenta lines. The predicted
behaviours of the dipole moment reproduce the simulation result
including all the relativistic corrections well at both large and small
scales. Also, it is rather close to the predictions based on the quasi-
linear model of Saga et al. (2020), depicted as grey dashed lines. Thus,
our present model not only successfully explain the overall trend, but
also quantitatively describe the halo cross-correlation both at small
and large scales. Hence, we can use it for a quantitative study on the
detectability of the gravitational redshift effect. Finally, we note that
the dipole moment of the cross-correlation function is dominated by
the standard Doppler effect at large scales, while the gravitational
redshift effect turns to be dominant at small scales, leading to the
sign flip of the amplitude of £xy; at s &~ 20-30 2~ Mpc. Thus, these
behaviours play a crucial role to detect the gravitational redshift
effect, and in this respect, the predictions beyond linear scales would
be indispensable.

3 COVARIANCE MATRIX

In estimating the signal-to-noise ratio of the relativistic dipole in the
upcoming surveys, the covariance matrix between different scales
plays a crucial role. This is in particular the case for the statistics
defined in the configuration space as we consider. In this paper, to
compute the covariance matrix, we adopt the formalism developed by
Bonvin et al. (2016), Hall & Bonvin (2017). This is a generalization
of the previous formulae for the Gaussian covariance (e.g. Cohn
2006; Smith 2009; Grieb et al. 2016) to include the anisotropies in
the correlation function and multitracer technique, taking also the
orientation-dependent weight function into account. In Section 3.1,
we present their analytical formulae for the covariance matrix. We

Shttps:/cosmo.obspm.fr/public-datasets/
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Figure 2. Dipole moment of the cross-correlation function between haloes
having different bias parameters on large (top) and small (bottom) scales.
The results of analytical model predictions presented in this paper are
particularly shown at z = 0.33, together with the measured results from the
halo catalogues, RayGalGroupSims, in which all possible special and general
relativistic effects arising from the light propagation in an inhomogeneous
universe are consistently taken into account (filled circles with errorbars).
Note that in the upper panel, to clarify the large-scale behaviour, the dipole
moment multiplied by the square of separation, i.e. Széxy,], is plotted. In
each panel, black solid lines are the predictions of the analytical model
(see equation (21) with equations (23)—(25)). The coloured solid lines
show the breakdown of these predictions, and the red, blue, and magenta,
respectively, represent the contributions from the standard Doppler (Egﬁ )1’
equation (23)), the gravitational redshift from linear-order potential (E)((p\((n)l,
equation (24)), and the gravitational redshift from the non-perturbative halo
potential (S)(fYNLl), equation (25)). For reference, we also plot the predictions
based on Sagﬁ et al. (2020) (grey dashed), in which the dipole cross-
correlation is computed based on the Zel’dovich approximation by performing
numerically seven dimensional integrals. In all predictions, we adopt the
bias parameters and halo masses of the data data_Hjeoo and data_Higo,
listed table 1 of Saga et al. (2020), and the potentials at the halo centre are
predicted to be ¢ypw.0.x = —1.63 x 1075 and dnpw.oy = —0.285 x 1073
(bias parameters are also indicated in the upper panel). In the top panel, the
horizontal black dotted line represents £xy,; = 0.

then estimate the covariance matrix, specifically focusing on the
dipole cross-correlation, in Section 3.2.

3.1 Covariance matrix of dipole cross-correlation function

To give the analytical formulae for the Gaussian covariance, let
us first define the estimator for the dipole moment of the cross-
correlation function. Here, we assume that the cross-correlation
function can be written as a function of the separation between two
objects, 5. This assumption is validated if we take the plane-parallel
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limit:

R 3 /! dr

Exy(s) = 5/ dup /75x(" —5/2)8y(r +s/2), 27
—1

where the quantities V and §x/y are, respectively, the survey volume
and the measured density fluctuation of the objects X/Y. The quantity
W is the directional cosine between the (fixed) line-of-sight Z and
separation vectors defined by © = § - 2. It is to be noted that while
the wide-angle effect indeed comes to play an important role in the
signal part, its impact on the covariance matrix has been shown to be
negligible at the scales below 190 Mpc 2! (Lepori et al. 2018).

Taking the contribution arising from the discreteness of the galaxy
samples into consideration, the ensemble average of the quadrature,
8x(r1)dy(r,), becomes

6K
(8x(r1)8y(r) = Exy(ra —r) + ;‘—gsm —r), (28)

where the quantity 8% y is the Kronecker’s delta and the function
Sp is the Dirac’s delta function. The first term, £y, represents the
cross-correlation function arising purely from the intrinsic clustering
properties. The second term characterizes the contribution from the
Poisson sampling process, which becomes non-vanishing only in the
self-correlation case (i.e. X = Y and r| = r;). Using the expression
atequation (28), the estimator given at equation (27) is shown to be an
unbiased estimator of the dipole cross-correlation, i.e. <.§'XY1 1(S)> =
Exy.1(s) unless X = Yand s = 0.
We then define the covariance of the dipole moment as follows:

COV(s, 5") = (bxy.1()Exy.1(s)) — (Exy1(9)) (xy.1(s)) . (29)

With the definition given above, Hall & Bonvin (2017) derived
the analytical formula for the covariance, which only involves 1D
integrals:

9 k2dk
COV(s,s) = v / o) Ji(ks) ji(ks")

00
X E G (PXX.ZIPYY,ZZ - PXY‘IZIPXY,ZZ)
£1,42

+3/k2dk‘(k)'(k’) P +2P !
= ks s ) z .
% 22 Ji J1 XX,0 5 XX,2

ny
+ (Prvo+ 2P Ly by 3
O ST )] T 2L, nxny V'

(30)

where we define the square pixels of the side-length L,. The
coefficient G3"' is defined by

2 2
ey el ez 53 l 4 83
G _% (2es+1)(0 0 0> (0 o o @D
(3

The functions Pxy, are the Fourier counterparts of the multipole
correlation function in the plane-parallel limit:

k- dk
Exy.(s) = (=)' / 5oz Pxvelk, )jilks). (32)

2

In equation (30), the covariance matrix consists of the three
contributions. The first term at the right-hand side represents the
contributions arising purely from the cosmic variance, which we call
the CV xCV term. On the other hand, the second term describes the
cross-talk between the cosmic variance and Poisson noise, and the
third term originates from the Poisson noise. We respectively call
these two terms the CVxP and the PxP terms. It is to be noted
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Figure 3. Diagonal components of the covariance matrix divided by the square of the dipole cross-correlation at various redshifts, plotted as a function of the
separation s. From left to right, we present the contributions of the CVxCV term, the CV xP term, and the PxP term, respectively. The depth of redshift and
fractional sky coverage are set to Az = 0.1 and fiky = 1, respectively. We choose the bias parameter and number density indicated in the middle panel, which
are the typical values of upcoming surveys. Note that the sharp feature near s & 20-30 Mpc /! arises from the zero-crossing of the dipole moment.

that for the CVxCV term, the summation over the non-zero even
multipoles ¢; and ¢, leads to (Bonvin et al. 2016)

S G (P, P, - P, P ) = (%)
£1,£r=even
This cancellation shows that the even multipoles of the standard
Doppler terms do not contribute to the CVxCV term. On the other
hand, the CV xP term contains the non-vanishing even multipoles
coming from the standard Doppler terms. These suggest that the
CVxCV term is a sub-dominant contribution to the covariance
matrix. Indeed, as we will see later, the covariance matrix is mostly
dominated by the two terms, CVxP and PxP, with a negligible
contribution of the CVxCV term.

To sum up, equation (30) is the covariance matrix of the dipole
cross-correlation function used in the subsequent analysis. Given
the multipole power spectra Pxx ¢, Pyy, and Pxy, the covariance
matrix COV(s, s) is characterized by the number densities of the
objects X and Y (i.e. nx and ny), the side-length of the square pixel
Ly, and the survey volume V. In what follows, we follow Lepori
et al. (2018), and set the pixel size L, to 2Mpc h~!. Note that the
choice of this parameter does not change the results significantly
as long as we consider the scales above L;. Ignoring the survey
masks and window functions, the survey volume of a hypothetical
galaxy survey with the fractional sky coverage fy, and redshift
width Az is expressed as V = (4n/3)fy{r’(z + Az/2) — P(z —
Az/2)}, with z being the mean redshift. Here, the function r(z)
represents the comoving distance at redshift z. Thus, provided the
survey specification parameters (i.e. nxy, z, Az), the remaining
pieces in estimating the covariance matrix are the multipole auto-
and cross-power spectra, which are characterized in our model of
cross-correlation function by the linear bias parameters bx,y and the
non-perturbative potentials ¢np. x/y for a given cosmological model.
In Appendix C, we present the explicit expressions for the multipole
power spectra. Since we ignored the wide-angle effect to derive the
covariance matrix above, it is sufficient to consider the contributions
from the plane-parallel limit, summarized in Appendix C1.

3.2 Numerical results of the dipole covariance

In this subsection, before computing the signal-to-noise ratio for
upcoming surveys, we shall elucidate the basic properties of the
covariance matrix. As we saw in the previous section, the covariance
matrix COV(s, s') includes several parameters characterizing both
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the galaxy survey and intrinsic clustering properties. In order to
relate these parameters, we adopt the halo model, and compute the
covariance of the halo cross-correlation function. For haloes in the
mass range [M — AM/2, M + AM/2], the model predicts the number
density n and the bias parameter b from the halo mass function, for
which we use the fitting form given by Sheth & Tormen (1999).
Further, through the NFW profile, the non-perturbative potential at
the halo centre ¢nrw, is also predicted. In other words, given the
halo bias and number density, the mass of haloes and the width of
mass range are determined uniquely, from which one can estimate
the central halo potential.®

With the halo model prescription mentioned above, we set the
bias parameters and number densities for the halo populations
X and Y to (bx, nx) = (2.5, 107> Mpch~")7%) and (by, ny) =
(1.5, 3 x 10~* (Mpc h~")~3). These are representative values among
various upcoming surveys summarized in Appendix E. Then, in
Fig. 3, the covariance matrix of the dipole cross-correlation function
is plotted as a function of the separation, focusing specifically on
the diagonal component, i.e. s = 5. Here, we consider a hypothetical
full-sky survey (fiy = 1) having the redshift width Az = 0.1, varying
the central redshift from 0.1 (purple) to 1.7 (yellow). Dividing the
diagonal covariance into the three contributions, the results normal-
ized by the dipole moment squared, i.e. COV/(£,)?, are separately
shown: CV xCV (left-hand panel), CV xP (middle), and PxP (right-
hand panel). That is, ignoring the oftf-diagonal components of the
covariance matrix, Fig. 3 effectively represents the inverse of the
square of the signal-to-noise ratio for a fixed separation. Indeed, the
off-diagonal components of the covariance matrix are shown to play
aminor role, and the estimated signal-to-noise mostly come from the
diagonal components, as we will see later in Section 4.1.

In Fig. 3, in all three cases, the normalized covariance stays almost
constant at large scales, s > 40 Mpc h~!, where no clear redshift
dependence is seen. On the other hand, at the scales of s = 20-
40 Mpc h~!, we see a sharp peak. This characteristic feature merely
comes from the denominator, (&), which exhibits the zero crossing,

°In the actual computation, the width of the halo mass AM turns out to be
narrow enough so that the bias parameter and halo potential averaged over
the halo mass range [M — AM /2, M + AM /2] are simply replaced with
those evaluated at the central halo mass, M, i.e. (b) >~ b(M) and (¢pNFw.0)
>~ ¢nrw,0(M). Also, the number density of haloes can be approximately
estimated by the halo mass function dn/dM multiplied by the width of halo
mass, i.e. n >~ (dn/dM)AM.
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Figure 4. (Top) Redshift dependence of the diagonal components of the co-
variance matrix, fixing the separations to s = s' = 5Mpc h~!. Contributions
from CVxCV (red dotted), CVxP (blue dot-dashed), and PxP (magenta
dashed) terms are separately plotted. For comparison, the square of the dipole
moment, (&1(s))?, is also shown (black solid). (Bottom) Redshift dependence
of the ratio, COV (s, s)/(§xv,1 (s)*ats =5 Mpc h~1, with contributions from
CV xCV, CV xP, and PxP separately plotted. In both panels, the contributions
from CVxCV are multiplied by 10° for clarity. The depth of redshift,
fractional sky coverage, bias, and number density are chosen to be the same
as in Fig. 3.

as shown in Fig. 2. In Saga et al. (2020), the zero-crossing point where
the amplitude of the dipole moment eventually flips the sign is shown
to scale as bxby/(bx — by)|A¢NL|{H0(1 + Z)/H(Z)}, with A¢np
defined by A¢nL = dnrwox — @nrwo.y- For haloes considered here,
the zero-crossing point typically appears at s & 20—-40 Mpc h~! for the
redshifts 0.1 < z < 1.7. Below this scale, the normalized covariance
starts to fall-off, and a rather clear redshift dependence becomes
manifest, compared to the one at large scales. This implies that the
signal-to-noise ratio of the dipole moment would be dominated by
the behaviour below the zero-crossing point. Although these features
are common in all three panels, the amplitude of the ratio for the
CVxCV (left-hand panel) is substantially smaller than the other
two contributions, meaning that the contribution coming from the
cosmic variance is sub-dominant in the covariance matrix of the
dipole moment. This is consistent with what was discussed in the
previous section (see equation 33 below). The results of Fig. 3 thus
show that the detectability of the relativistic dipole is mostly governed
by the covariance structure of the CV xP and PxP terms below the
zero-crossing point.

In Fig. 4, to see more clearly the redshift dependence of the
normalized covariance at small scales, we fix the separation s to
5Mpch~!, and plot the three contributions as a function of the
redshift, again focusing on the diagonal components of the covariance
matrix. The upper panel of Fig. 4 shows the diagonal components
of the covariance matrix and the square of the dipole moment, while
the lower panel plots their ratios. It is to be noted that the ratio
COV/(&)? exhibit a non-monotonic behaviour. That is, the result of
each contribution first decreases with the redshift, and then turns to
increase at z 2 0.5. These behaviours come from the competition
of the redshift dependence between the numerator and denominator,
as is explicitly shown in the upper panel. Due to the survey volume
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dependence of the covariance matrix dominated by the PxP term,
the numerator rapidly decreases at z < 0.5 — 1, but beyond that, it
asymptotically approaches a constant value. On the other hand, the
denominator, (£;)?, monotonically decreases its amplitude through
the redshift evolution of the linear growth factor and the halo potential
at the centre. Thus, taking the ratio, COV/(£)?, yields a non-trivial
behaviour which takes a minimum value around z ~ 0.5. Although
Fig. 4 shows a part of the covariance matrix, the trends seen in the
diagonal component generically appear in the signal-to-noise ratio
for various survey setup, and these indeed dominate the behaviours
of the signal-to-noise ratio, as we will see later.

4 RESULTS: ESTIMATING SIGNAL-TO-NOISE
RATIO IN UPCOMING SURVEYS

Provided the analytical model describing the relativistic dipole and
the covariance matrix in the previous section, we are in a position to
estimate the signal-to-noise ratio of the relativistic dipole. We define
the signal-to-noise ratio, (S/N):

2 Smax
(%) = ) Evals)COV (s, 8) Exva(s), (34)
$,8"=Smin

Here, the minimum and maximum separation, Sy, and Spax, have to
be specified in computing the signal-to-noise ratio. In what follows,
we fix the maximum separation sy, to 150 Mpc h~!. As long as we
set it to a scale larger than the zero-crossing point of the dipole signal
(typically at 2040 Mpc A1), the change of sp.x hardly affects the
signal-to-noise ratio. On the other hand, we see that our analytical
prediction of the dipole quantitatively reproduces the simulation
results even at s ~ 5Mpc h~!, below which the dipole amplitude
seems to be further increased with a negative sign. However, the
baryonic effects ignored in our analytical model and simulations
potentially affect the dipole, and their impacts may have to be taken
into account as a possible systematic effect, which needs further
study. For this reason, we restrict the signal-to-noise estimation to
the scales where such an effect is neglected, and set the minimum
separation sy, to 5 Mpch™'.

Then, in Section 4.1, varying the minimum separation and redshift,
we study the basic behaviours of the signal-to-noise ratio, and
discuss its key properties. In Section 4.2, we change parameters for
galaxy surveys and galaxy/halo clustering properties to investigate
the general trend of the signal-to-noise ratio. Finally, Section 4.3
estimates the signal-to-noise ratio for upcoming surveys.

4.1 Scale and redshift dependence

Let us look at the basic behaviour of the signal-to-noise ratio. First
consider the dependence of the signal-to-noise ratio on the minimum
separation Sp;,. In Fig. 5, assuming the same halo populations as
considered in Figs 3 and 4, we plot the signal-to-noise ratio with
(solid) and without (dotted) the halo potential contributions, &™~".
Here, the results at different redshifts are shown as a function of s,
keeping the redshift depth fixed to Az = 0.1. Since the signal-to-
noise ratio generally scales as (S/N) fs%(/yz, the plotted results are
normalized by fSL/yz.

Overall, the signal-to-noise ratio generally gets increased as
decreasing spmin. A notable point is that in the presence of the
halo potential term, the signal-to-noise ratio deviates from the one
ignoring the halo potential at s < 40Mpch~'. As decreasing the
minimum separation, it first tends to stay constant, but eventually
turns to increase, finally exceeding the signal-to-noise ratio without
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Figure 6. Redshift dependence of the signal-to-noise ratio normalized by the
fractional sky coverage, fS;yl / 2(S /N), fixing the minimum and maximum sep-
arations to Smin = 5 Mpc A~ and smax = 150 Mpc hL, respectively (black
solid). The redshift depth, bias, and number density are chosen to be the same
as in Fig. 3. The blue-dashed line represents the ratio, £xvy,1(s)/vCOV(s, s),
at s = 5Mpc h~!, which approximately describes the black-solid line.

the halo potential contribution. These behaviours are indeed expected
from the behaviour of the signal part, £xy, ;. That is, the plateau and
amplification of the signal-to-noise ratio are, respectively, linked to
the sign flip and the sharp drop with negative amplitude of the dipole
cross-correlation function, as shown in Fig. 2. Thus, the signal-to-
noise ratio at the small minimum separation can be dominated by the
gravitational redshift effect from the halo potential, and because of
this, the dipole signal would be detectable at a statistically significant
level.

In Fig. 5, another notable point is that the signal-to-noise ratio
in the presence of halo potential contribution shows a non-trivial
redshift dependence on its amplitude at sy, < 10 Mpc 2~!. To look
closely at the redshift dependence, we next plot in Fig. 6 the signal-
to-noise ratio as a function of the redshift, fixing the minimum
separation to Sy, = 5 Mpc A~". The result depicted as a black solid
line has a peak at z ~ 0.5. Ignoring the contribution of the off-diagonal
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covariance, this non-monotonic behaviour is indeed inferred from
the lower panel of Fig. 4, where we see the diagonal covariance
normalized by (£,)? has a minimum at z & 0.5. This indicates that
the estimated signal-to-noise ratio is dominated by the contribution
from the diagonal part of the covariance matrix, which is mainly
determined by the terms CV xP and PxP. To prove this, in Fig. 6,
we plot the ratio, £xy,;(s)/COV(s, s), evaluated at s = 5Mpc h!
(blue dashed). We then find that the resultant ratio nicely explains
the redshift dependence of the signal-to-noise ratio. Thus, the non-
monotonic redshift dependence of the signal-to-noise ratio, having
a maximum at z ~ 0.5, is shown to be originated from the two
competitive behaviours of the cross-correlation function and diagonal
covariance, as shown in Fig. 4. We will see below that based on the
halo model prescription, these are rather generic features, irrespective
of the survey parameters.

4.2 Dependence of target samples

So far, we have studied the behaviours of the covariance matrix
and signal-to-noise ratio for specific halo samples, fixing the halo
bias and halo number density, (bx,y, nx/y). Here, we investigate
the dependence of the halo samples on the signal-to-noise ratio. To
do this, we vary the parameters bx, nx, and ny. To be precise, we
first set the bias for the halo sample Y to by = 1 (or 1.5). We then
compute the signal-to-noise ratio for various set of parameters by,
nx, and ny, with bx being larger than by. Note that we ignore the
contributions from the magnification bias, among which the most
dominant contribution coming from the Doppler effect is discussed
in Appendix D, showing it to be negligible. The results normalized
by fSL/yz are plotted as a function of the halo bias bx and the central
redshift of the surveys, shown in Figs 7 and 8. Here, the redshift
depth of the survey is fixed to Az = 0.1. Note that given the halo
bias and number density, one can uniquely determine the halo mass
range, from which the halo potential is predicted through the NFW
profile, as we did in Section 3.2.

In Figs 7 and 8, the estimated results of fS;yl/ (s /N) are shown
for the haloes with the number density of nxy = 3 x 1072, 1074,
3 x 1074, and 1073, restricting the cases to nx < ny. In all cases,
we see that the signal-to-noise ratio has a peak at z =~ 0.5. In
particular, for the halo samples having the large number density
nx = ny = 1073 Mpc h~! (bottom right-hand panel), the signal-
to-noise ratio reaches fS;yl s /N) = 45.8 and 75.5, respectively in
Figs 7 and 8, which correspond to the halo samples with the biases
of (bx, by) = (3, 1) and (bx, by) = (3.5, 1.5). Comparing between
the results in both figures, while the width of the plot range in the
vertical axis are the same, i.e. Ab = by — by = 2, the resultant
signal-to-noise ratios are overall enhanced in the cases with by = 1.5
(Fig. 8). Ignoring the halo potential contribution, the dipole moment
of the cross-correlation function scales as £xy; o (bx — by) (see
equations 24 and 23). That is, in the absence of the halo potential,
the resultant signal-to-noise ratio should be the same in both Figs 7
and 8. This implies that the difference between the two figures is
attributed to the contribution from the halo potential in the dipole
moment. Since the haloes with a larger bias tend to have larger halo
masses, the halo potential also becomes deeper as increasing the
bias. The important point is that the depth of the potential is not
linearly proportional to the halo mass. As a result, the difference of
the potential A¢nL = dnrwox — PnNrwoy gets large as increasing
the bias or halo mass, leading to an additional enhancement of the
signal-to-noise ratio for haloes with large biases.
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Figure 7. 2D plot of the signal-to-noise ratio as a function of bx and z, where bx is the bias of massive halo populations and z is the redshift of the survey
assuming the range [z — 0.05, z + 0.05]. The bias of less massive halo population is fixed to by = 1.0. In each panel, the colour scale and black contours indicate
the signal-to-noise ratio normalized by the square of the fractional sky coverage, fs;yl / 2(S /N) (see the rightmost colour bar). Panels show the results adopting

various number densities of halo populations, nx and ny, ranging from 3 x 10~ (Mpch~!)73 to 1073 (Mpc h

The behaviours shown in Figs 7 and 8 provide a useful guideline
to discuss the feasibility to detect the relativistic dipole. In the next
subsection, based on these results, we will estimate the detectability
of the dipole moment.

4.3 Future observations

Having studied the general behaviours of the signal-to-noise ratio,
let us now focus on the upcoming galaxy surveys, and estimate the
signal-to-noise ratio of the dipole moment. The surveys considered
here are listed in Table 1. In Fig. 9, we summarize the redshift
dependence of the bias and number density for the target galaxies
in each survey, which are based on Tables E1-E6, summarized in
Appendix E.

In detecting the relativistic dipole, we need two galaxy samples
having different values of the bias parameters. There are in general
two strategies to measure the dipole cross-correlation functions.
One is to divide a single galaxy population in a given survey into
two subsamples. Another is to cross-correlate two different samples
obtained from multiple surveys (or single survey). In what follows,
we set Smin = 5 Mpc h~! and sy = 150 Mpc h~!, and separately
consider the two cases in estimating the signal-to-noise ratios.

4.3.1 Cross-correlating two divided populations from the single
target

We first focus on a single galaxy population, and dividing the sample
into two subsamples, we take a cross-correlation between them.

-1 )’3, as indicated in the blue and red texts.

Depending on how we divide the sample into two, the number
densities and the bias parameters of the two subsamples differ from
each other as well as those of the original sample. Thus, the signal-
to-noise ratio of the relativistic dipole varies on how we divide the
sample into two. Here, we shall estimate the best signal-to-noise ratio
based on the halo model prescription, assuming that the galaxies of
our interest follow the halo distribution whose halo masses are larger
than M ;. We then divide the galaxies into two subsamples Y and X
hosted, respectively, by the haloes with the mass ranges [M i, M, ]
and [M,, oo].

Denoting the number density of the galaxies before division by
Tobs, their bias parameters byx/y and number densities nxy are given
by

S, i dln M

nx(M,) = Ny, M —— (35)
-[ianin dlnnM dinM
oo n
S bst(M) s dIn M
bx(M,) = SR TRpTRY I (36)
flnM* dinp 411

for the massive population, and

In M dn
In Myg dinaz 410 M

nY(M*) = Nobs 7o a 5 (37)
fln Mmin dlnnM din M
In M, dn
(M)~ dIn M
by(M,) = 1an.l,‘.] MfT = din M _ (38)
In Mppin dInM dIn M

for the less massive population. Here, the functions bgr and dn/dln M
are the halo bias and mass function, for which we use the expressions
given by Sheth & Tormen (1999). Note that we also examined the
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Figure 8. Same as Fig. 7 but for the bias of less massive halo population, by = 1.5.

Table 1. The upcoming surveys considered in this paper. In Appendix E, we
summarize each survey parameters in Tables E1-EG6.

Survey Target samples Ssky (deg?) Redshift range
DESI BGS 14000 [0.05, 0.45]
LRG 14000 [0.65, 1.15]
ELG 14000 [0.65, 1.65]
Euclid H o emitter 15000 [0.9, 1.8]
PFS (Om) ELG 1464 [0.6,2.4]
SKALl H1 galaxies 1500 [0.05, 0.45]
SKA2 H 1 galaxies 30000 [0.23, 1.81]

prescription given by Tinker et al. (2008, 2010), and found that
the estimated halo potential changes at most by a few per cent, and
thus the results are insensitive to the choice of the model. With
this prescription, we have bx > by, and ngps = nx(M,) + ny(M.,).
Note that, because of the idealistic treatment in the above, i.e. two
subsamples having the mass ranges [Mpy,, M.] and [M,, oo], the
value of the parameter M, tends to be large when we obtain the best
signal-to-noise ratio. In Appendix E, we summarize the ratio of the
number densities nx (M, )/n.ps When the signal-to-noise ratio reaches
its maximum. This will give us a guideline for future observations
when we divide the sample into two subsamples.

In the expressions given above, the minimum halo mass My,
and the threshold mass M, are the parameters, but the former is
determined by the bias of the original sample, byps:

ﬁioMmin bST(M)d](:AnM din M
bobs =

A d1n M

% (39)
ﬁn Mmin dIn M
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That is, provided the value of by for a given survey, the minimum
mass My, is obtained by solving equation (39). Thus, the threshold
mass is the only free parameter that controls the signal-to-noise
ratio, and we determine it by maximizing the signal-to-noise ratio.
Note that in evaluating (S/N), the halo potential contribution to the
relativistic dipole, ¢nrw,o.x and ¢npw oy, are averaged over the mass
ranges [M,, oo] and [M,, M.], respectively, as similarly to the
biases given in equations (36) and (38). We note that, in the lowest
redshift bin of SKA1 (z = 0.05), the bias parameter given in Bull
et al. (2015) does not fulfill the condition given at equation (39), and
we cannot obtain the solution for M,. Hence, only for this case,
we do not use equation (39), but instead fix the minimum mass to
Mypin = 103 Mg h™!, based on Yahya et al. (2015).

Top panel of Fig. 10 shows the results of the optimal signal-to-
noise ratio for each galaxy population of upcoming surveys. We
find that among those considered, the DESI-BGS sample gives the
largest S/N. Since the cosmic variance is not the main source for
the statistical error, surveys with a larger number density can give
a higher signal-to-noise ratio, irrespective of the survey volume.
Further increasing the difference of the biases bx—by, the signal-
to-noise ratio for the DESI-BGS sample eventually reaches the
maximum value S/N = 23 at 0.1 < z < 0.2, above which the
signal-to-noise ratio sharply falls off due to a rapid decrease of the
number density. Note cautiously that with the minimum mass My,
determined by the bias by, the number density of the DESI-BGS
sample nqps exceeds the one inferred from the halo mass function.
This implies that the host halo generally contains multiple DESI-BGS
samples. Since these galaxies do not necessarily reside at the halo
centre, the non-perturbative potential contribution to the relativistic
dipole would be suppressed. In this respect, the resultant S/N for
the DESI-BGS samples should be considered as a theoretical upper
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Figure 9. Expected number density of galaxies (top) and bias parameter
(bottom) for the surveys listed in Table 1. The plotted data are taken from the
tables summarized in Appendix E.

bound. A more realistic estimation of the signal-to-noise ratio needs
a model based on the halo occupation distribution approach. We
leave specific modelling for the DESI-BGS samples to our future
work. This issue is a priori less severe in other surveys where the
halo occupation number is less than unity.

Apart from the low-z galaxy survey, other notable results having
large signal-to-noise ratios (1 < S/N) are found from the Euclid,
DESI-ELG, SKA2, and DESI-LRG samples, among which the last
two exceed S/N = 10 around z &~ 0.7. Interestingly, looking at Fig. 9,
the number density of the DESI-LRG sample is substantially smaller
than that of the SKA2 by more than one order of magnitude. However,
the bias of DESI-LRG sample is larger than that of the SKA?2 sample,
and the difference amounts to Ab ~ 1.5. As a result, at z ~ 0.7—
0.8, their signal-to-noise ratios are comparable and reach maximum
values. This implies that for a solid detection of the relativistic dipole,
samples having a large bias are preferable. In other words, samples
with a small bias b & 1-1.5 tend to have small signal-to-noise ratios,
as indeed shown for other surveys in Fig. 10. It is to be noted that
even though the bias and number density of the samples considered
are not constant over the redshifts, the overall trends seen in Fig. 10
resemble those shown in Figs 7 and 8.

Finally, to illustrate how the S/N shown in the left-hand panel
of Fig. 10 is robust and optimal against the strategies to create two
subsamples, we consider alternative ways to divide the sample into
two, and estimate their signal-to-noise ratios. The bottom panel of
Fig. 10 plots the results derived from the two strategies. One is to
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Figure 10. Expected signal-to-noise ratio for the surveys listed in Table 1,
using the single galaxy population. (Top) Dividing the sample into two
subsamples to cross-correlate, we choose the threshold halo mass M, so
that the signal-to-noise ratio is maximized at each redshift bin (see the text in
detail in Section 4.3.1). (Bottom) Same as the top panel, but the threshold halo
mass M, is chosen so that the CV xP (dashed lines) and PxP (dotted lines)
contributions are minimized by imposing the conditions, b%nx = b%ny and
nx = ny, respectively. Note that accounting for the halo occupation number,
the signal-to-noise ratio for DESI-BGS would be optimistic (see the main
text, fourth paragraph in Section 4.3.1 for details).

minimize the CV xP term in the covariance matrix (dashed), and
the other is to minimize the PxP term (dotted). Recalling from
equation (30) that the CV x P and P x P terms are roughly proportional
to COVxy o b%/ny + b} /nx and 1/(nxny), the conditions that
minimize these two contributions are found to be b%nyx = b%ny and
nx = ny (a popular choice), respectively. In our treatment, these
conditions are satisfied by choosing an appropriate mass threshold
M.,. Note that these strategies are considered from a perspective of
the error minimization, ignoring the role of the signal part itself.
In this respect, they do not necessarily provide an optimal signal-to-
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Figure 11. Expected signal-to-noise ratio for the cross-correlation between two different samples without creating subsamples. The target samples are obtained
either from different surveys or single survey listed in Table 1. The top (bottom) panel summarizes the results for which the cumulative signal-to-noise ratio

combining multiple redshift slices, given by 4 />~_(S/ N)2, is greater (less) than 2. The estimated values of the cumulative signal-to-noise ratio are summarized
in the legend (see parentheses). Note that the signal-to-noise ratio may be optimistic for the cases including the DESI-BGS sample (see the fourth paragraph in

Section 4.3.1 for details).

noise ratio. Accordingly, the signal-to-noise ratio is changed, and one
finds that in all surveys considered, the resultant value of S/N almost
halves the optimal signal-to-noise ratio. The results imply that both
the CVxP and PxP contributions play an equal role in estimating
the signal-to-noise ratio, suggesting that a careful sample cut needs
to be considered in practical observations in optimizing the S/N.

4.3.2 Cross-correlating two different targets

The signal-to-noise ratio of the relativistic dipole considered in Sec-
tion 4.3.1 depends on how we divide the sample into two subsamples,
and thus it would be sensitive to the internal properties of the galaxy
populations. Now, let us next consider the cross-correlation between
two different samples, obtained either from different surveys or
single survey, without creating subsamples. This is achieved with
the samples whose observed regions are overlapped with each other.
In order to maximize the detectability of the relativistic dipole,
we here consider an idealistic setup where the observed areas of
galaxy surveys considered are perfectly overlapped with each other
without survey masks. To be precise, based on Tables E1-E4 in
Appendix E, we follow the halo model prescription in Section 4.3.1
and first determine the minimum halo mass My;, in each sample from
equation (39). Then, we estimate the non-perturbative contribution
to the halo potential, ¢nrw,, Which we take an average over the
mass range [Mpi,, oo]. Plugging this potential into the dipole cross-
correlation function, the signal-to-noise ratio is computed, and we
examine all possible combinations of overlapping surveys in redshift.
In practice, one may encounter the case that redshift slices of the two
samples do not coincide with each other. In such a case, we adopt
the redshift bin for the sample having a larger value of the bias as
our fiducial redshift slice, and compute the signal-to-noise ratio for
this redshift bin, with the bias and number density of the less biased
galaxies redefined, as described in Appendix E2. This treatment
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would lead to an optimistic S/N, particularly for the cases including
the DESI-BGS sample.

Fig. 11 summarizes the results of the signal-to-noise ratio for var-
ious cross-correlated galaxy samples. The top (bottom) panels show
the results in which the cumulative signal-to-noise ratio combining all
redshiftbins, /3 _(S/N)?2, is larger (smaller) than 2, for presentation
purpose. We find that the cross-correlation between DESI and SKA2
surveys gives a large value of S/N, and a statistically significant
detection of the relativistic dipole is expected particularly for DESI-
BGS and SKA2 (purple), DESI-LRG and SKA2 (blue). Also, the
cross-correlation between the DESI samples, i.e. LRG and ELG
(orange), gives a large signal-to-noise ratio S/N = 10 around z = 0.7.
The detection of the dipole signal from these surveys would provide
a new way to probe gravity at cosmological scales. Furthermore,
making use of the cross-correlation technique, the signal-to-noise
ratio becomes improved, and SKA1 and Euclid surveys are capable
of detecting the relativistic dipole at high statistical significance
(S/N 2 5) if we combine them with the DESI-LRG and Euclid
galaxy samples, respectively. The results having a small signal-
to-noise ratio, shown in the bottom panel, mainly come from the
cross-correlation between emission-line galaxies which typically
have small bias parameters. Compared to the single-tracer cases
in Section 4.3.1, the advantage of the present method is that the
impact of the shot noise contribution is mitigated, also helping us to
reduce unknown systematics inherent in each survey. In this respect,
combining multiple tracers would be rather suited for detecting the
dipole moment induced by the gravitational redshift effects.

5 SYSTEMATIC EFFECTS FROM
OFF-CENTRED GALAXIES

So far, we have considered the detectability of the relativistic
dipole, taking only the gravitational redshift and Doppler effects
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into account. In this section, we discuss a potential impact of the
systematics ignored so far.

In our analytical treatment, one crucial assumption is that each of
the galaxies to cross-correlate strictly reside at the halo centre, and
thus no virialized random motion is invoked. This is an idealistic
situation, and there are galaxies whose positions are away from the
halo centre (e.g. Hikage et al. 2013). The off-centred galaxy positions
lead to two possible systematics in the dipole signal. One is the
diminution of the non-perturbative halo potential contribution to the
gravitational redshift effect. Another is to introduce the virialized
random motion to the off-centred galaxies. This can give a non-
negligible amount of the transverse Doppler effect as the second-
order special relativistic effect, which is known to produce the dipole
cross-correlation signal (Kaiser 2013; Zhao, Peacock & Li 2013; Cai
et al. 2017; Zhu et al. 2017; Breton et al. 2019). Note that there
are other relativistic effects that induce the dipole asymmetry in
the cross-correlation function, and their impacts on the detection
of gravitational redshift effect have been studied in both numerical
and analytical treatments (Zhu et al. 2017; Breton et al. 2019; Di
Dio & Seljak 2019; Beutler & Di Dio 2020). Below, we analytically
estimate the impacts of these two effects on the dipole signal.

Let us first discuss the suppressed gravitational potential. Follow-
ing Hikage et al. (2013), we introduce the probability distribution
function of the galaxy position inside each halo, p., normalized as
follows:

/ 47072 pose(r; Roge) dr = 1. (40)
0

We model it to be Gaussian distribution, i.e. pog(r; Rofr) o exp (—
(r/Ryi¢)*/2) with R being the offset parameter. Using the distribution
function p,, the halo potential at the off-centred galaxy position can
be estimated to be

Gnrw(@, M, Rogr) = / 4 new(r, 2, M) poit(r; Roge) dr,  (41)
0

where the explicit form of the NFW potential ¢npw (7, z, M) can be
found in Appendix D of Saga et al. (2020). Note that in the limit of Ry
— 0, the distribution function becomes p(r) = 8p(r)/(47 r*), and we
consistently reproduce ¢npw(z, M, Roir) = ¢nrw.0(z, M). Adopting
equation (41), we substitute ¢xpw into the expression of eyp in
equation (13), instead of the central potential ¢npw,o. Then the dipole
cross-correlation with the suppressed halo potential contribution is
estimated through the analytical formulas in Section 2.2.

Next consider the transverse Doppler effect from the off-centred

galaxies. To estimate its qualitative impact, we compute the velocity
dispersion of galaxies, o2, which is expressed as a sum of the two
contributions (e.g. Sheth & Diaferio 2001):
o (r.z, M) = ol(r,z, M) + oy, (z, M). (42)
Here, the first and second terms at the right-hand side are originated,
respectively, from the virial motion within a halo and the large-scale
coherent motion of the host haloes. Note that the second term is
non-vanishing even if the galaxies reside at the centre of the haloes.
Although we include it for self-consistency, we confirmed that the
transverse Doppler effect is dominated by the virial motion.

To compute the velocity dispersion of the virial motion, o2, we
adopt the halo model prescription and use the analytical formula for
the velocity dispersion of the NFW density profile (see equation 14
of Lokas & Mamon 2001):

GM 7 43)

erT

o2 r,z, M)y =a(r,z, M)

vir
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with the function «(r, z, M) given by

3 1
a(r,z, M) = Eczg(c)x(l +cx)? {6Li(—cx) + 72 —In(cx) — —
cX

|

- (1 + cx)? B + 30’1+ ex)

14+ cx
1 4 2

re)) @

where the quantities ¢, x, and function Li(x), respectively, stand for
the concentration parameter (Bullock et al. 2001; Cooray & Sheth
2002), the radius normalized by the virial radius, x = r/ry;;, and the
logarithmic integral function. The function g(c) is defined as g(c) =
[In(l+4c¢)—c/(1+c)]L

For the velocity dispersion, o2,,, we estimate it using the pre-
diction of the peak theory based on the linear Gaussian density
fields (Bardeen et al. 1986; Sheth & Diaferio 2001):

4
Uo(M)
UIZ(M)UEI(M))’ @

+1n(1+cx)<1+w P

Oimio(zs M) = (@Hf D)o (M) (1 -

where we define the function o, by

2 Kdk s, 2
o, (M) = / k7" PL(k)W=(kR). (46)
2m?

Here the function W(x) = 3j,(x)/x is the Fourier transform of the
real space top-hat window function, and the radius R is related to the
mass of the halo M through M = 47 pR3 /3, where the quantity p is
the background matter density.

Given the velocity dispersion from the above analytical formulae,
the total impact of the off-centring effects, including the transverse
Doppler effect, is estimated by replacing the €y, in equation (13)
with

B 1 — 1 1_
eNL —> ENL = —ﬁfﬁNFw(Z, M, Ry) + EEG%(Z’ M, Rof). (47)

Here, the second term at the right-hand side represents the transverse
Doppler effect, and the velocity dispersion, 5%, is obtained by averag-
ing o2 over the radius with the probability distribution function, pyt,
similarly to the first term (see equation 41). Equation (47) provides
an analytical way to estimate the impact of the off-centring effects on
the dipole signal, but we note that there are several assumptions and
simplifications in deriving equation (47). For instance, the velocity
dispersion o2 at equation (44) has been derived under the assumption
of the isotropic velocity distribution, which is known to be inaccurate
for the haloes in N-body simulations. Further, the bulk velocity
dispersion o2, at equation (45) is based on the linear theory, and
it underpredicts the actual velocity dispersion for simulated haloes.
Our primary focus here is to study the qualitative impacts of the
off-centring effects, and a more accurate estimation will have to be
addressed based on numerical simulations. This is left for our future
work.

Fig. 12 shows the impacts of the off-centring effects on the dipole
moment obtained from the analytical treatment at redshifts, z = 0.1
(top), 0.9 (middle), and 1.7 (bottom). Here, we particularly focus on
the dipole cross-correlation function at s = 5-20 Mpc h~!, where
the gravitational redshift effect dominates the standard Doppler
effect, and it dominantly contributes to the signal-to-noise ratio.
To elucidate how their impacts are changed with the off-centring
parameter, we examine the two cases: Ry = 0.1 ry;; (left-hand panel)
and 0.2 ry;; (right-hand panel), as typical values considered in Hikage
et al. (2013). In each panel, black solid and dashed lines are the
dipole cross-correlation functions with and without the systematics,
respectively (labelled by & (éxr) and & (eny) in Fig. 12). Overall, the
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Figure 12. Impacts of the off-centred galaxies on the dipole cross-correlation
function at z = 0.1, 0.9, and 1.7 (from top to bottom). The black-solid and
black-dashed lines, respectively, represent the results including and neglecting
the off-centring effects. The off-centred galaxies induce two effects: lowering
the halo potential and introducing the virial motion which gives rise to the
transverse Doppler effect. Contributions of these two effects are, respectively,
shown in the blue (§1(Ae€pq), equation 48) and red (§1(Aetp), equation 49)
dashed lines. The effects of the off-centred galaxies are characterized by
the parameter Rofr (see below equation 40). In the left-hand and right-hand
panels, we set it to Rot = 0.2ryir and Rogr = 0.1y, respectively. The bias
parameters are fixed to be bx = 2.5 and by = 1.5.

systematics arising from the off-centred galaxies lower the dipole
signals. The fractional changes in dipole amplitude are typically
7-25 percent at s < 10 Mpc h~!. That is, the gravitational redshift
effect still dominates the dipole signal at small scales.

To better understand the impact of the off-centring effects, we
divide the expression of €y into the three pieces as €xp = enp +
Aépo + Aerp, where the last two terms represent, respectively,
the diminution of the halo potential and the contribution from the
transverse Doppler effect, defined by

1 (—
Aepor = = {Prw(z M. Ror) = drwo(z. M) . (48)
1
Aérp = — —52(z, M, Rog). 49
e = 20U(Z ) (49)

Since the model considered here involves the terms that is linearly
proportional to ey, the dipole signal taking the off-centring effects
into account, &;(€ény), is decomposed into the three pieces:

&1(enr) = &1(enp) + &1(Aepor) + &1(Aerp). (50)
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In Fig. 12, the two contributions &;(Aepy) and & (Aerp) are,
respectively, plotted in blue and red dashed lines. We find that these
two contributions are competitive, and have different signs. That
is, a small impact of the off-centring effects is partly ascribed to
the cancellation between the two competitive effects. Note that the
negative amplitude of the term &€ | (A€e1p) comes from the fact that the
velocity dispersion of galaxies, o2, is dominated by the virial motion
inside the halo, and the dispersion 0.2, monotonically increases with
the halo mass.” These trends would hold even if we consider a more
elaborate estimation of the transverse Doppler effect, the cancellation
of the off-centring effects is expected to still happen for more accurate
modelling, and thus their impact on the dipole signal would be
small.

6 SUMMARY AND PERSPECTIVES

It has been recognized that the observational relativistic effects,
mainly arising from the light propagation in an inhomogeneous
universe, induce the dipole asymmetry in the cross-correlation
function between the haloes or galaxies having different clustering
biases. In particular, the dipole asymmetry at small scales has
been recently found to be dominated by the gravitational redshift
effects (Breton etal. 2019; Saga et al. 2020). Thus, the detection of the
dipole signal at small scales would provide an interesting opportunity
for an alternative test of gravity. In this paper, we have studied
analytically the future detectability of the dipole signal induced by
the gravitational redshift effect.

In doing so, we have exploited a simple analytical description
for the dipole cross-correlation function valid at quasi-linear regime.
Previously, Saga et al. (2020) presented a quasi-linear model of
the cross-correlation function. Taking the two major relativistic
effects, i.e. the standard Doppler and gravitational redshift effects
into account (but ignoring other minor contributions including
magnification bias), we adopted the Zel’dovich approximation and
halo model prescription to describe the dipole signals beyond the
linear scales. While the quantitative model predictions successfully
explain the dipole cross-correlation functions measured from the halo
catalogues into which all possible relativistic effects arising from
the light propagation are fully incorporated (Breton et al. 2019),
the analytical model involves seven dimensional integrals, and the
time-consuming numerical integration needs to be performed. To
remedy this, in this paper, we derive new approximate expressions
for the galaxy/halo density field based on the Lagrangian perturbative
treatment, including also the halo model prediction to account
for the non-perturbative potential contributions (see equations 14—
17). These results enable us to obtain rather simplified analytical
expression for the dipole cross-correlation function, and we found it
to quantitatively reproduce the previous result of Saga et al. (2020)
as well as the measured dipole signals in numerical simulations. The
new analytical model of dipole cross-correlation function, presented
in equations (23)—(25), involves only 1D integrals, and thus one can
quickly predict the dipole signal, making the practical application of
it to the Bayesian parameter estimation with Markov chain Monte
Carlo technique possible.

Based on the new analytical model, we have computed analytically
the covariance matrix of the dipole cross-correlation function, and

7If one considers the situation that the virial motion is ignorable, the sign
of £1(AeTp) becomes positive. This is because the velocity dispersion avz ~
tha]o now becomes a decreasing function of the halo mass. Such a situation
has been considered in Breton et al. (2019), Kaiser (2013), Zhao et al. (2013).
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investigated its behaviours. We found that the Gaussian covariance is
mostly dominated by the two contributions, i.e. the term characteriz-
ing the cross-talk between the cosmic variance and Poisson noise, and
the term purely originating from the Poisson shot noises, as similarly
found by Hall & Bonvin (2017). As a result, the covariance matrix
is shown to sensitively depend on not only the survey parameters
(redshift depth and survey area of the galaxy surveys) but also the
bias and number density of the galaxies/haloes to cross-correlate.
Plugging further the analytical predictions of both the dipole
signal and covariance matrix into the definition of signal-to-noise
ratio, we have quantitatively explored, in various setup for upcoming
surveys, the feasibility to detect the dipole cross-correlation function,
especially focusing on the scales where the gravitational redshift
effect starts to be dominated and changes the sign of the dipole
amplitudes. Our main findings are summarized as follows:

(1) In most of the cases we examined, the signal-to-noise ratio of
the dipole cross-correlation functions becomes maximum around z
~ 0.5 (see Figs 6, 7, and 8). For the non-perturbative halo potential
described by the NFW profile, the trend would generically appear
true if one considers surveys with a fixed redshift interval in the
universe close to the ACDM model.

(i) Generally, cross-correlating between galaxies having large
number densities with a larger difference of the clustering biases
enhances the signal-to-noise ratio. Also, the signal-to-noise ratio
becomes further increasing if the bias parameters for both of the
galaxies gets large. For an idealistic situation with the galaxies of the
number density nx y &~ 107> (Mpc 2~")~3 and the biases (bx, by) =
(3.5, 1.5), it reaches f,,/>S/N = 75.5 for a survey at z = 0.5 with
the interval of Az = 0.1 (see Fig. 8).

(iii) For planned future galaxy surveys considered, if one divides
the galaxy samples in each survey into two subsamples, a statistically
significant detection of the dipole signal is expected from DESI-
BGS, DESI-LRG, and SKA2 samples, and the signal-to-noise ratios
of these samples reach 23, 11, and 13, respectively (see Fig. 10).

(iv) On the other hand, if the survey regions of the two different
samples are overlapped, one can take a cross-correlation between
them without dividing the samples into two. In this case, the dipole
cross-correlation between DESI-LRG and SKA?2 samples gives the
largest signal-to-noise ratio, S/N & 21. A solid detection of the dipole
signal is also expected from the cross-correlations between DESI-
LRG and DESI-ELG samples, and SKA2 and DESI-BGS samples,
leading respectively to the signal-to-noise ratios, S/N = 11 and 16
(see Fig. 11).

(v) As possible systematic effects arising from the off-centred
galaxies, the diminution of the gravitational redshift effect from the
halo potential and the non-vanishing transverse Doppler effect can
change the dipole signal at small scales. However, these two effects
are found to be competitive, leading to different signs of the dipole
cross-correlations (blue and red dashed lines in Fig. 12). As aresult of
the partial cancellation, the net result of their contributions becomes
small, and the dipole signal at s < 10 Mpc h~! is shown to be still
dominated by the gravitational redshift effect.

Our forecast study suggests that upcoming surveys enable us to
detect dipole signals at a statistically significant level, and this would
offer a unique probe of the depth of the halo gravitational potential.
Exploiting the dipole to test the fundamental physics would be
also an interesting subject through a precision measurement of the
gravitational redshift effect, and this is left to our future work.

Note that the major findings summarized above rely on several
assumptions and simplification based on the halo model. In particular,
our analysis assumes the one-to-one correspondence between halo
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and galaxy distributions. For more realistic estimations, a proper
account of the halo—galaxy connection would be crucial, using e.g.
the halo-occupation distribution approach, in which the contribution
of the so-called satellites would play a substantial role to detect the
dipole signal. Furthermore, in this paper, the gravitational redshift
effect from the halo potential is computed from the NFW profile,
whose potential depth is solely determined by the halo mass and
redshift for a given cosmological model. However, even for a fixed
halo mass, halo clustering features have been known to depend on
secondary halo properties that correlate with halo assembly history,
referred to as the halo assembly bias (see e.g. Gao, Springel & White
2005; Zentner et al. 2005). This effect would give a systematic impact
on the estimation of the halo potential, and proper modelling of it
needs further study.

Finally, we have investigated the detectability of the dipole
signal, restricting the scales to s > 5Mpc h~!, where our analytical
prediction of the dipole cross-correlation is shown to reproduce
quantitatively the simulation results well. Nevertheless, below this
scale, the amplitude of the dipole cross-correlation is expected to
become further large (with a negative sign), and thus the signal-to-
noise ratio would be improved if one uses the cross-correlation data
at small scales. In doing so, however, the analytical treatment based
on perturbation theory may not be adequate, and one has to exploit a
method to quantitatively predict the dipole cross-correlation function,
taking consistently not only the non-linear gravitational clustering but
also the baryonic effects on the galaxy distribution into account. This
is a challenging task, but is worth for further investigation towards a
decisive detection of the gravitational redshift effect.
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APPENDIX A: DERIVATIONS OF THE
MULTIPOLE MOMENTS

In this appendix, we summarize key expressions to derive the dipole
cross-correlation function presented in Section 2.2.

Based on the density fields given at equation (14) together with
equations (15)—(17), let us first compute cross-correlation function.
Substituting these equations into equation (19), we obtain

&k )
(std) _ ik-s E 2 .
e (27{)3e (bx + f i + lfalluk1>
E 2 L2
x| by + fu — 1fg#k2 PL(k), (Al
2
&Pk, 5 5
(pot) __ ik-s E 5 . .
e (27{)3e [(bx + frua + lfalwbm) (lkukz + g>
2 ) M
E 2 . )
+ (bY + fl/«kz - lfrvzﬂm) (_lk,ukl + g)] kuPL(k),
(A2)
Bk ., Te )
(enn) ks | ENLX . .
Xy = (277;)3e s[ . (—1 + Wiy "f'lfk—SIMk1 + ibE ks, i

.2 .
—2fup + laﬂkl + lkaIM}%)

L, 2
X (bE + fui — lfszlLkz)

ENL,Y

+

142, —i fi
5 2% ks2Mk2

. .2 .
—ibSksapn — 2 f iy — iy e — 1fkszu22)
2

E 2 .2
X (bx + fug + lfalim)} PL(k), (A3)

where we define py; = §; - k and ko = 8§ - k. The function Py (k)
stands for the linear power spectrum of the density field ;. given by

(SLtsLK")) = 2m)*sp(k + k') PL(k). (A4)
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Equations (A1)-(A3) involve the 3D integrals over k. Introducing
the polar coordinate, the angular integral can be performed by using
the following formulae:

aQ
/4k*“wa (AS)
o
/ Tk (ih,) = — ks o, (A6)
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where j, stands for the spherical Bessel function.

As a result of the angular integration, the dependence of the
correlation function on the vectors s; and s, in equations (Al)-
(A3) is shown to be described by the following quantities: (§ - §1),
($-82), (81 - §2), 51, and s5,. Note that these are re-expressed in terms
of the three variables, i.e. separation s = |s, — s|, the line-of-sight

distance d = |s| + s2|/2, and directional cosine ;t = § - d. Since we
are interested in the cases with s < d, one can expand the quantities
as
a1 Ly o i) All
1= (_*M‘Fz(g)) = (_EEM)’ ( )
al1+2 +1(S)2 P ed 4 Lis (A12)
%2 a"Ta\a - 24")
ls
A A n=57 1
G-80= s = (- uh) (A13)
(1=5u+12))
- Y
G-8)= SRRt a—u>f (Al4)
(1 5u+52))
1—1(s)?
(§1'§2): 4((1) _1
K 1 (s)\2 172 K 1 (s 172
(1—3M+*<;) ) (1+3M+1(3) )

(A15)

where the last equalities in each equation is valid at O(s/d).
Substituting these expressions into the cross-correlation function,
the results are divided into the plane-parallel (d — o0) and leading-
order wide-angle contributions (O(s/d)), in which the dependence of
the directional cosine is factorized, and is expressed as a polynomial
form of . Thus, applying the multipole expansion, one easily derives
the analytical expression for the multipole correlation functions,
summarized in Appendix C.
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APPENDIX B: COMPARISON WITH
APPROXIMATE FORMULA IN SAGA ET AL.
(2020)

Employing the Zel’dovich approximation and combining the non-
perturbative contribution from the halo potential, Saga et al. (2020)
have built a quasi-linear model of the dipole cross-correlation
function, which successfully explains numerical simulations at both
small and large scales. While a rigorous treatment of their model
requires the time-consuming multidimensional integration, they also
derived a simple approximate expression for the dipole moment,
which resembles the analytical model presented in this paper. In
this appendix, we clarify the similarity and difference between the
approximate expression derived in Section 2.1 and the one obtained
from Saga et al. (2020) (see their equation (4.2) in Section 4.2).

In Saga et al. (2020), the simplified expression of the dipole
was derived based on a perturbative treatment of their rigorous
quasi-linear model. Ignoring the non-perturbative halo potential,
let us first denote the cross-correlation function of their model
by &xy.en=0(s1,52). We then consider the gravitational redshift
contributions arising from the non-perturbative halo potential, which
gives a systematic offset of the redshift-space positions away from the
observer (origin), i.e. §1, — 812 — en,x/v81,2- The resultant cross-
correlation function taking the halo potential into account, £xy, is
expressed as

= Exv.en =0 (Sl —enLx81, $2 — ENL,Y§2)
[1 — {GNL,X §1-Vy, +enLy §2-Vy, ]
X SXYA,ENL:O(sli 52). B1)

Exy(s1, 52)

1

Here, in the second equality, the systematic offset caused by the halo
potential is treated as a small perturbation and is expanded at linear
order, as similarly done by Saga et al. (2020).

Note that expanding the displacement field ¥ from the exponent
and truncating it at linear order, the cross-correlation function
&xv,en =0 15 shown to be identical to the cross-correlation function

81D 1 £ given in this paper (see equation 19). With this linearized
treatment, the above expression is reduced to

Exy(s1, 82) =~ §(Std)(31, §2) + 5;'(p0t)(sl ,82)

~ st
- [ENL.X §1-Vy +enpy $o- sz} fx D(s1, 52)

d t

=&y (51,82 + &Y (1.5 +5Q (1. 52), (B
where, in the first equality, we used the fact that the term &y ®on) only
gives a sub-dominant contribution, and the contribution proportlonal
0 enL,X/Y S)((p;’l) have been ignored from the second line. The function
&x (ENL)(sl , §2) is explicitly given by

€NL,X
f(ENL)(Sl, §2) =

. 2f
ik-s 2 :
b _iZL
) € ( vy + f i 1kS2 Mkz)
. 2 L 2f
X | (iksypgr) | bx + frg + LM
1

2f
+i— s, 41 P(k)
+ X <Y, 51 <8, 4 < —U2). (B3)
Thus, comparing equation (B2) with the analytical model in

Section 2.1, the difference essentially appears at the gravitational
redshift contribution from the halo potential, i.e. £ and &5
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Taking their difference gives

3
(ex) _ Tlen) _ ENLX &k )
xyo — iy = 5 7(27_[)36 ' (bY + i — 1fE,uk2

L2
X (—1 + Uiy +1frﬂk1) Py (k)
S1
+XeY, 515, w o —m). (B4)

As explicitly demonstrated in Fig. 2, this produces a rather small
difference, and the simple approximation presented in Saga et al.
(2020) leads to the prediction of the dipole moment almost identical
to the one from the present analytical model.

APPENDIX C: MULTIPOLE COEFFICIENTS

Here, we present the analytical expressions for the multipole mo-
ments of the cross-correlation functions. As we discussed in previous
Appendix and Section 2.2, the correlation function can be written
as a function of the separation s = |s, — s,|, line-of-sight distance
d = |(s; + 52)/2], and directional cosine between the line-of-sight
and separation vectors, given by u =§ - d. Based on the results
in Appendix A, the cross-correlation function can be expanded in
powers of (s/d). Further applying the multipole expansion, we obtain:

Exy(s,d, 1) =Y Exy.u(s, L) (@)
4
> {spp,m) + (5) o)
) ((%)2>]Ee(ﬂ)» (©2)

where the functions &, ((s) and &, ¢(s), respectively, represent the
contribution in the plane-parallel limit and wide-angle correction at
leading order. These expressions involve only the 1D integral given
by

k* dk

Epp.e(8) = (—1)" / Er Pop.e(k, 2) je(ks), (C3)
k* dk

gwa,i(s) = (_l)l/ 272 Pwa,l(ks Z)~ (C4)

Below, we separately present the analytical expressions for the
functions Py, ¢ and Py, ¢. While we focus on the dipole moment (¢ =
1) in the main text, we summarize all the non-vanishing moments
valid at the order of O(s/d).

C1 Plane-parallel limit

The non-vanishing multipoles in the plane-parallel limit are summa-
rized as follows:

s [ 1 1
Py = |bxby + 3(bx + b0 f + 54 PL(K), (C5)
P(sld) o [2 b b 4 ) Pk c6
op.2 = gf(x-*— y)+;f L(k), (C6)
s [ 8
Py = gfz] PL(k), (7
for the standard Doppler contribution,
o [ . M
Pt = | —ilbx — bY)T} PL(K), (C8)

for the linear gravitational redshift contribution, and
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(enL) . 3
Pt = | —i(enLx — enLy) | bxby + g(bx +by)f
3
+ 7#) k} P(k), (C9)
€ . 2
Plipl‘\lsL) = |:_1(6NL,X - ENL,Y)Ef O(bx +by) +10f) k| PL(k),
(C10)
¢ .8
P;pquL) = |:_laf2(fNL,X - GNL,Y)k:| PL(k), (C11)

for the contribution arising from the non-perturbative halo potential.

C2 Wide-angle correction

The non-vanishing multipoles of the wide-angle correction are
summarized as follows:

P\gi) =i2f(bx — by) {—é Jolks) + J 1](::8)} Py (k), (C12)
(std) . 2f .
Pz = —1?(bx — by)ja(ks)| PL(k). (C13)

for the standard Doppler contribution,

o MT 1 21\ .
Py =% 73 (bx +by — ?> jitks)
jo (ks
+2bx + by)’olisv)] PL(k), (C14)
MT 1 2 8f
PO = T |~ (bx 4+ by — 2 f ) jilks) + == ja(ks) | PL(k),
w2 = |73 x + by 5f JI(S)+35]3( s)| Pu(k)
(C15)
Mf
(pot) .
=|—= PL(k). 1
wa.4 [35 3 Js(ks)} (k) (C16)
for the linear gravitational redshift contribution, and
22 2 2f
PN = |2 Ty — T (1 + Sby) phs joi(k
wa,0 H 5 3bv 15( + 5by) pks j-1(ks)
13> f
— ——Q2+b Tb
+{ 35 15( + bx +7by)
1 .
+ g(bx - 2)by}ks Jiks)
2f . €NL,X
+E(5bx+3f>J0(kS)} !
x PLk) + (X < Y), (C17)

1
P = {—g{fz + %(2 + Tbx + Tby)
1 .
-5+ SbX)bY}ksjl(ks)

1 (162 2
—{ f7_ 2by + 7f(1 + 6bx — 4by)}ksj3(ks)

15 7
4
+ 2—{(71»( + 6f)j2(ks)} GNSL*" PL(K)
+X<Y), (C18)
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PN = {—f(z Obyx + 27by + 2.f )ksjjs (ks)

315
8 f . NL.X
a1 - 7f)kS]5(kS)] P
FX oY), (C19)
162
Py = {231f ks js(ks) + 3§ j4(ks)} NLXPL(k)
FX oY) (C20)

for the non-perturbative contribution.

APPENDIX D: ON THE IMPACT OF THE
MAGNIFICATION BIAS

In this appendix, we discuss the impact of the magnification bias on
the dipole signal. In general, flux-limited galaxy samples inherently
lead to the apparent density fluctuations through the fluctuation in
luminosity distance, referred to as the magnification bias, which
also induces the additional dipole signal beyond the plane-parallel
limit (Bonvin & Durrer 2011; Hall & Bonvin 2017). The mag-
nification bias mainly comes from two contributions: one is the
lensing magnification and another is the Doppler magnification,
among which the latter has been shown to produce a larger dipole
signal (Hall & Bonvin 2017). At linear order, the Doppler magni-
fication modulates the standard Doppler term. To be precise, the
factor of 2/s in the last term at equation (15) is changed to 2/s —
SsgaH + (2 — Ssg)/s, where the quantity sg is the slope of the
luminosity function (e.g. Bonvin & Durrer 2011; Hall & Bonvin
2017). Here, incorporating these contributions into our analytical
model, we estimate the impact of the Doppler magnification on the
dipole signal.

Coupling with other terms in the density field, the modulation due
to the Doppler magnification mentioned above yields the following
new contributions to the dipole cross-correlation (see equation 19):

ey = () A —ata)f

X (Sbysp.x — Sbxssy +3f(sex —ssy)E, (D)

aglh == (5) 10aH M Gx = 5o (8 +29) . D2
. s\ 2aH
AERY = - (3) 7 ! (5B,YENL.X — $B,XENL,Y)
x (3720 + 7+ 12)E"). (D3)

In the above, all the corrections are found to be proportional to the
factor (s/d), thus implying that these corrections are insignificant at
small separation or higher redshift.

Using the expressions at equations (D1)—(D3), we show in Fig. D1
the impact of the Doppler magnification on the dipole signal, focusing
particularly on small scales where the gravitational redshift effect
becomes dominant. Here, we adopt the same parameter set as used
in Fig. 12, but for the slope of the luminosity function, we set sg. x =
1.2 and sg x = 1.0 that are the typical values for the LRG and ELG
samples (e.g. Hall & Bonvin 2017). Fig. D1 shows that the Doppler
magnification can contribute about 10 per cent to the dipole signal at
low redshift, z = 0.1. On the other hand, going to higher redshifts, the
contribution from the magnification bias becomes negligibly smaller,
as we expected. Thus, we conclude that the impact of the Doppler
magnification on the dipole signal is neglected as long as we consider
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Figure D1. Impact of the magnification bias on the dipole moment from
z = 0.1 (top) to 1.7 (bottom), given by equations (D1)—(D3). The parameters
including the bias are the same as Fig. 12. We set the slope of the luminosity
function as representative values of LRG and ELG for sg, x = 1.2 and
sB,x = 1.0, respectively (Hall & Bonvin 2017). As seen in these figures,
the magnification bias has less contribution to the dipole, especially at high
redshift.

the high redshifts and small scales, where the gravitational redshift
effect dominates the dipole signal.

APPENDIX E: SURVEY PARAMETERS AND
TARGET SAMPLES

In Section 4.3, we examine the detectability for the dipole in future
surveys: DESI, Euclid, Subaru-PFS, and SKA. In this appendix, we
summarize the survey parameters of each observation we used.

E1 Survey parameters and target samples

When calculating the signal-to-noise ratio, we use the values of
the central redshift, width of redshift bins, number density, bias,
and the fractional sky coverage or survey volume, for each survey.
These survey parameters are summarized in Tables E1 (DESI-BGS),
E2 (DESI-LRG/ELG), E3 (Euclid), E4 (Subaru-PFS), ES (SKA1),
and E6 (SKA2). In these tables, we also include the ratio of the
number densities nx (M, )/n when the signal-to-noise ratio reaches its
maximum (see Section 4.3 in detail). This will give us a guideline for
future observations when we divide the sample into two subsamples.

Given the number density per unit redshift per square degree,
d?>N/(dz ddeg?), in order to obtain the number density per unit
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Table E1. DESI Bright Galaxy Survey (BGS) (taken from table 2.5 of DESI
Collaboration 2016). The bias of BLG in DESI Collaboration (2016) is

assumed to be bpgs(z) = 1.34/D4(z). The width of the redshift bin and
fractional sky coverage are, respectively, Az = 0.1 and fy = 0.339.

z n(Mpch~1)3 nx(M,)/n
0.05 4.1 x 1072 6.6 x 1073
0.15 1.9 x 1072 7.4 x 1073
0.25 46 %1073 83 x 1073
0.35 9.9 x 10~* 9.4 x 1073
0.45 1.1 x 1074 1.1 x 1072

Table E2. DESI Luminous Red Galaxies (LRG) and Emission Line
Galaxies (ELG) (taken from table 2.3 of DESI Collaboration 2016). The
biases of LRG and ELG in DESI Collaboration (2016) are assumed to be
brrG(z) = 1.7/D4(z) and bgg(z) = 0.84/D,.(z), respectively. The width of
the redshift bin and fractional sky coverage are, respectively, Az = 0.1 and
Jsky = 0.339.

ELG LRG
z nMpch ™73 ax(M)Im nMpch™H73 nx(M)n
0.65 1.6 x 1074 1.8 x 1073 44 x 10~* 2.3 x 1072
0.75 1.0 x 1073 23 x 1073 42 x 107* 2.6 x 1072
085 74x107* 2.8 x 1073 25 %1074 22 x 1072
095 72x107* 2.3 x 1073 9.3 x 107 2.6 x 1072
1.05 45x 1074 29 x 1073 1.6 x 107 2.3 x 1072
.15  39x 10 3.6 x 1073 49 x 107° 2.7 x 1072

125  3.6x 1074 3.1 x 1073 - -
135 13 x10* 39 x 1073 - -
1.45 1.1 x 1074 3.4 x 1073 - -
155 7.7 %107 44 %1073 - -
165 29x107° 5.6 x 1073 - -

Table E3. Euclid with the fractional sky coverage fyy = 0.364, Ha
Emission Line Galaxies (taken from table 3 of Euclid Collaboration 2019).

z Az n(Mpch~1)=3 bias nx(M,)/n
1.0 0.2 6.86 x 1074 1.46 45 %1073
12 0.2 5.58 x 1074 1.61 48 x 1073
1.4 0.2 421 x 1074 1.75 74 %1073
1.65 0.3 2.61 x 1074 1.90 7.8 x 1073

Table E4. Subaru PFS with the fractional sky coverage fiky = 0.0355, [O11]
Emission Line Galaxies (taken from table 2 of Takada et al. 2014).

z Az n(Mpeh~1)™3 bias nx(M,)/n
0.7 0.2 1.9 x 10~* 1.18 1.7 x 1073
0.9 0.2 6.0 x 10°* 1.26 2.5 %1073
1.1 0.2 5.8 x 1074 1.34 2.7 %1073
1.3 0.2 7.8 x 1074 1.42 29 x 1073
15 0.2 55x%x107% 1.50 32 %1073
1.8 0.4 3.1 x107* 1.62 33 x 1073
22 0.4 2.7 x 1074 1.78 3.1 %1073
volume, n, we use the relation:
2N Az
A2 fuy, ED)

n=———x
dz ddeg? Vv

where the quantities Az, fy, and V are the width of the redshift bin,
the fractional sky coverage, and survey volume, respectively.
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Table E5. SKA1-MID with the fractional sky coverage fgy = 0.121 and the
width of redshift bin Az = 0.1, H1 Galaxies (taken from table 1 of Bull et al.
2015). Only in the lowest redshift z = 0.05, since the given bias parameter
is too small, equation (39) does not have a solution M,;,. Therefore, we will
fix Mpin = 108 Mo h! only for this case, based on Yahya et al. (2015).

z n(Mpc™3) bias nx(My)n
0.05 2.92 x 1072 0.678 3.7 x 1072
0.15 6.74 x 1073 0.727 8.2 x 1076
0.25 1.71 x 1073 0.802 8.1 x 107
0.35 4.64 x 1074 0.886 35%x 1074
0.45 1.36 x 1074 0.975 7.6 x 10°%

Table E6. SKA?2 with sky coverage with the fractional sky coverage fsky =
0.727 and the width of redshift bin Az = 0.1, HI Galaxies (taken from
table 1 of Bull et al. 2015).

z n(Mpc) bias nx(M,)in
0.23 443 x 1072 0.713 2.0 x 107°
0.33 2.73 x 1072 0.772 4.6 x 1073
0.43 1.65 x 1072 0.837 15%x107*
0.53 9.89 x 1073 0.907 3.6 x 1074
0.63 5.88 x 1073 0.983 7.5 x 10~*
0.73 3.48 x 1073 1.066 1.0 x 1073
0.83 2.05 x 1073 1.156 1.9 x 1073
0.93 1.21 x 1073 1.254 24 %1073
1.03 7.06 x 1074 1.360 3.0x 1073
1.13 4.11 x 1074 1.475 3.7 x 1073
1.23 239 x 1074 1.600 4.6 x 1073
1.33 1.39 x 1074 1.735 5.6 x 1073
1.43 7.99 x 1073 1.882 6.9 x 1073
1.53 4.60 x 1073 2.041 8.5 x 1073
1.63 2.64 x 1073 2214 1.0 x 1073
1.73 1.51 x 1073 2.402 1.3 x 1073
1.81 9.66 x 1076 2.566 1.7 x 1073

E2 Cross-correlating two measurements with different redshift
bins

Since the width of redshift bins is generally different for each
observation, we perform the following procedure for different width
of bins when cross-correlating in Section 4.3.

We have the survey parameters as summarized in Appendix E: the
mean redshift zf(/ ¥, width of redshift bins Azlx/ ¥, number density
n,X/ ¥, and bias b,x/ ¥ where the subscript i stands for the ith redshift
bin. Then, we define the number density and bias for the survey Y

as a function of redshift:

n"(2)=n' (2 — Azl /2 <z<z+AZ0/2), (E2)

bY(2)=b" (zf — Azl /2<z=<z+AZ7')2), (E3)

where these functions correspond to the plots shown in Fig. 9. Then,
we obtain the number density and bias for the survey Y in the mean
redshift and redshift bin for the survey X by

v 1 X+AzX)2 v

il = — n¥(z)dz, E4)
el NG (
v 1 z,x-%—Ale/Z ¥ ¥

bY = o e / b ()n'(z)dz. (ES5)

f:?é_yx/z nY(z)dz /< -ad2

Thus, we obtain the survey parameters (bX,bY,nX,7iY) in the

common mean redshifts and redshift bins of the survey X. In this
definition, when the mean redshift and redshift bin for the survey
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X are the same as ones for the survey Y, we obtain bY = bY and

Y _ Y
iij =nj.

APPENDIX F: SIGNAL-TO-NOISE RATIO IN
SIMULATIONS: AS A FUNCTION OF HALO
MASS

When performing N-body simulations with a halo finder algorithm,
we observe all haloes with their masses and number density. In
this appendix, assuming the minimum mass My, and the width of
logarithmic mass bins AlnM in simulations, we ideally split two
populations:

(My, My, M3) = (Myin, Miine™™ ™, Myyine®®™ ) (F1)

and thereby we discuss the signal-to-noise ratio, as a function
of My, and AlnM. This investigation provides us with an in-
sight into the detectability in N-body simulations including special
and general relativistic effects (Breton et al. 2019; Guandalin
et al. 2021).

Using two mass bins, the parameters to evaluate the dipole moment
are given by

/lan dn
ny = din M, (F2)
7 Jum, dinM
1 My qp
Ay) = — AM)dIn M, F3
(Ay) nYAMldemn (F3)
In M3 dn
nxz/ dln M, (F4)
In M> dlnM
1 M 4y
Ax) = — AM)dIn M, F5
(Ax) HXAMdeMUn (F5)

where we define A = M, bst(z, M), and ¢pnpw,0(z, M), and the function
dn/dln M is the Sheth-Tormen mass function.

Since all the galaxies within haloes would not be detected in
real observations, we introduce a suppression factor, the so-called
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Figure F2. The relevant parameters to compute the signal-to-noise ratio in
Fig. F1. From top to bottom, we present the parameters as a function of
the mean redshift and minimum mass, by, bx, ny, nx, ¢nLy, and ¢NLX,
respectively. From left to right, the logarithmic mass bin AlnM is varied
from In2 to In 16.

halo occupation number 0 < fhgo < 1: the number of galaxies
found in a virialized halo of a given mass, in the number density
of haloes. Thus this factor can be regarded as a kind of halo
occupation number. If fi,o = 1, all haloes in simulations are assumed

AlnM =1In2 AlnM =1n4 AlnM=In8 AlnM=In16
13 / I iy S & ~ .
—( =
S EFnpg = © 24 l 5/\30
T = — ~
3 % 1f i e x t 8
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Figure F1. Signal-to-noise ratio as a function of the minimum halo mass Mp;, and mean redshift z. From left to right, the logarithmic mass bin Aln M is varied
from In2 to In 16, and from top to bottom, the parameter fj, is varied from 0.1 to 1. The cross symbols accompanied by a number indicate the parameters that
give the maximum signal-to-noise ratio in the parameter space and the corresponding value of the signal-to-noise ratio. The width of the redshift bins is fixed to

Az =0.1.
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to be detected. In calculating the covariance matrix and signal-
to-noise ratio, we multiply this factor by the number density of
haloes.

In Fig. F1, we show the signal-to-noise ratio normalized by the
fractional sky coverage fy as a function of the minimum halo mass
M, and mean redshift z. This figure indicates that the signal-to-
noise ratio becomes maximum at z &~ 1.3, slightly depending on the
parameters AlnM and fi,,. Note that the width of the redshift bins
is fixed to Az = 0.1 in this figure. This value of redshift at which
the signal-to-noise ratio is maximum is different from Figs 7 and 8
because the number density is not constant in Fig. F1, but depends on
the redshift following the Sheth-Tormen mass function. In Fig. F2,
from top to bottom, we have shown the parameters as a function of
the mean redshift and minimum mass, by, bx, ny, nx, ¢nLy, and
dnLx, respectively.

MNRAS 511, 2732-2754 (2022)

Fig. F1 is useful to discuss the detectability for the dipole moment
in simulations. For example, comparing the amplitude of the signal
with its error bars in Fig. 2, the signal-to-noise ratio is roughly given
by (S/N) ~ 4 in simulations with the following parameters: Aln M ~
2, Az~ 0.5, Myin & 2 x 10" Mg h™", and fy = 1 (see Breton et al.
2019), which lie at the region shown in the bottom-leftmost panel of
Fig. F1. Looking particularly at z &~ 0.3, we obtain the signal-to-noise
ratio of S/N & 0.8 for the width Az = 0.1. Accounting further for
the width of the redshift bins, a simple multiplication by the factor 5
results in S/N = 4, which reasonably agrees with the signal-to-noise
ratio estimated from the measured dipole amplitudes and their error
bars in simulations (Breton et al. 2019; Saga et al. 2020).

This paper has been typeset from a TeX/I&TEX file prepared by the author.
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