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ABSTRACT

The generalized Hermitian eigendecomposition problem is ubiqui-
tous in signal and machine learning applications. Considering the
need of processing streaming data in practice and restrictions of ex-
isting methods, this paper is concerned with fast and efficient gener-
alized eigenvectors tracking. We first present a computationally effi-
cient algorithm based on randomization termed alternate-projections
randomized eigenvalue decomposition (APR-EVD) to solve a stan-
dard eigenvalue problem. By exploiting rank-1 strategy, two online
algorithms based on APR-EVD are developed for the dominant gen-
eralized eigenvectors extraction. Numerical examples show the prac-
tical applicability and efficacy of the proposed online algorithms.

Index Terms— Randomized algorithms, dominant generalized
eigenvectors, online algorithms, fast subspace tracking.

1. INTRODUCTION
The generalized Hermitian eigenvalue problem (GHEP) [1] is of
great interest in signal processing, machine learning and data anal-
ysis applications. The GHEP algorithms provide powerful tools to
treat problems in blind source separation [2,3], feature extraction [4,
5], noise filtering [6], fault detection [7], antenna array process-
ing [8], classification [9], and speech enhancement [10]. Traditional
methods for solving the GHEP include power and inverse iteration
based methods, Lanczos method and Jacobi-Davidson method [1,
11]. These batch methods, however, are inefficient and, in some
cases, infeasible to apply due to their computational workload. The
online methods presented in [8,9,12] are gradient-based, and extract
the first dominant (or principal) generalized eigenvector. However,
they are unsuitable for applications where multiple dominant gen-
eralized eigenvectors are desired [10]. In addition, these methods
suffer from the so-called speed-stability problem [13], i.e., it is hard
to select an appropriate learning rate to guarantee tracking speed and
numerical stability. To address the issue, coupled learning methods
were proposed in [14, 15]. These methods, which are considered as
sequential methods, in addition to be difficult to parallelize in order
to harness modern computational platforms, may even cause error
propagation during the procedure of orthogonal projection. Yang
et al. [16] proposed recursive least-square (RLS)-based online al-
gorithms based on the projection approximation subspace tracking
(PAST) technique [17]. The work in [18] presented a computation-
ally efficient algorithm, but it suffers from slow convergence speed

This work was supported in part by NSFC grants 61671382 and
61811530283, and 111 project (B18041). Corresponding author: J. Chen.

because of narrow search space [19]. Tanaka [19] developed an on-
line algorithm based on the power iteration scheme. To track the
r-dominant generalized eigenvectors, however, this method needs
O(rN2) operations in each iteration (with N being the dimension
of an input matrix), which is still computationally expensive.

The generalized eigenvalues and eigenvectors are extracted from
a matrix pencil (A,B). In online applications [2,4,6–10], however,
this pair is unknown, and the rank-1 update strategy [14–16, 18, 19]
uses the observed streaming stochastic signals to estimate it. Also,
in many cases, the signal subspace spanned by the dominant gener-
alized eigenvectors, lies in a low-dimensional space [10]. This im-
plies that low-rank approximation techniques can be applied to treat
GHEPs. Recent low-rank approximation methods based on random-
ized sampling [20–22] are computationally efficient and, in addition,
can harness advanced computer architectures.
Our Contributions. Through compounding a randomized low-rank
matrix factorization method and the rank-1 update strategy, we pro-
pose two online algorithms for r-dominant generalized eigenvectors
extraction, where r � 1: we first present the APR-EVD (alternate-
projections randomized eigenvalue decomposition) algorithm that
efficiently solves a standard eigenvalue problem. Then, by harness-
ing the rank-1 update scheme, we devise two line algorithms to ex-
tract the generalized eigenvectors with streaming data. Our proposed
algorithms are computationally efficient, as the necessary steps in
each iteration need O(N2) operations. Further, they can be paral-
lelized on modern computers.
Notation. Normal fonts x and X denote scalar. Boldface small
letters x and capital letters X denote column vectors and matrices,
respectively. C denotes the complex domain. The superscript (·)⇤
denotes the conjugate of a complex number, (·)H denotes the Her-
mitian transpose operator, and (·)† denotes the pseudo-inverse of a
matrix. IN denotes an identity matrix of order N . orthr(·) con-
structs an orthonormal basis with r columns for the range of a matrix.

2. PROBLEM FORMULATION

Given a matrix pencil (Ry,Rx), where Ry , Rx 2 CN⇥N are Her-
mitian and positive definite, the GHEP [1, 11] is defined as:

Rywi = �iRxwi, i = 1, · · · , N (1)

where w1, · · · ,wN are nonzero vectors corresponding to N gener-
alized eigenvalues �1 > �2 > · · · > �N > 0. Provided that Rx

is invertible, to obtain a generalized eigen-pair (wi,�i), in general,
(1) is reduced to a Hermitian or non-Hermitian eigenvalue problem:
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Case HEP: Provided that R1/2
x (R1/2

x )H = Rx, the set of eigen-
vectors w is obtained by (R�1/2

x )Hv, where v is the set of eigen-
vectors of R�1/2

x Ry(R
�1/2
x )H determined so that vTRxv = I.

Case Non-HEP: The generalized eigenvectors wi and generalized
eigenvalues �i are obtained by solving R�1

x Rywi = �iwi.
In many signal and information processing applications, Rx and

Ry are associated to data covariance matrices. Let the covariance
matrices of x(k) and y(k) be given by Rx = E{x(k)xH(k)} and
Ry = E{y(k)yH(k)}. When processing streaming data, at each
instant k these matrices are typically estimated by time averaging
with the most recent data [14–16, 18, 19, 23] as follows:

Rx(k) = ↵Rx(k � 1) + x(k)xH(k), (2)

Ry(k) = �Ry(k � 1) + y(k)yH(k), (3)

where parameters ↵ 2 (0, 1) and � 2 (0, 1) are smoothing con-
stants.

Under the above setting, in this paper we devise two online algo-
rithms by first transforming (1) into a standard eigenvalue problem
and then apply a randomized EVD algorithm, which enables pro-
cessing streaming data for tracking generalized eigenvactors.

3. PROPOSED ALGORITHMS
In this section, we first propose a randomized eigenvalue decompo-
sition algorithm. We then adapt this algorithm to the streaming data
setting with Case HEP and Case Non-HEP respectively.

3.1. The APR-EVD Algorithm

Given a rank-r matrix A 2 CN⇥N , the proposed APR-EVD algo-
rithm is computed as follows: we generate a random Gaussian matrix
 2 CN⇥d, where r  d < N . Then, we construct the matrix:

G = AH . (4)

Matrix G 2 CN⇥d is a projection onto the row space of A by  .
Next, we form the N ⇥ d matrix:

H = AG. (5)

Matrix H is a projection onto the column space of A by G. After,
we orthonormalize the columns of H to obtain an N ⇥ r basis Q:

Q = orthr(H). (6)

Note that the rank of H is at most r [24], and Q approximates
the range of A. Through exploiting Q, we use the Rayleigh-Ritz
method [25, 26] to compute the eigenvalues �i and corresponding
eigenvectors vi of the following matrix which is of order r:

T = QHAQ. (7)

Defining ui , Qvi, consequently {(ui,�i)}ri=1 constitute the ap-
proximate eigen-pairs of A.

APR-EVD makes two passes over A given the matrix is stored
in the row-major format. By approximating T in (7), we devise a
single-pass algorithm, which can be directly employed for streaming
data processing. In doing so, we pre-multiply (7) by HQ, obtain-
ing  HQT =  HQQHAQ. Having known that A ⇡ QQHA

and by the definition of G (4), an estimate eT is given by:

eT = ( HQ)†GHQ. (8)

Computational Cost of APR-EVD. To factor A, APR-EVD incurs
these costs: generating a random matrix costs O(Nd). Forming
G and H each costs O(N2

d). Considering an estimation to (7),
forming eT and computing an eigenpair cost O(Nr

2)+O(r3). Thus,
the operation count (dominated by multiplications of A) satisfies

CAPR-EVD = O(N2
d). (9)

Here d (the sampling size parameter) is very close to r.

3.2. Online Algorithm for Extracting r-dominant Generalized
Eigenvectors with Case HEP (Algorithm 1).

Directly recalculating R
�1/2
x (k)Ry(k)(R

�1/2
x (k))H has the com-

putation complexity of O(N3). We therefore consider the estimated
covariance matrices by rank-1 matrices at each instant, i.e., equa-
tions (2) and (3), together with the proposed APR-EVD algorithm to
recursively compute the generalized eigenvectors. For ease of nota-
tion, let K(k) = R

�1/2
x (k) and R(k) = K(k)Ry(k)K

H(k).
In order to use APR-EVD with the arrival of x(k) and y(k), we

recursively update R(k), then G(k) = RH(k) (k) and H(k) =
R(k)G(k) so that the orthonormal basis at instant k, Q(k), can be
extracted. Exploiting the results in [19], we update R(k) and K(k):

R(k) =
1
↵

⇥
�R(k � 1) + ỹ(k)ỹH(k) + x̃(k)cH(k)

+ �1(k)h(k)x̃
H(k)

⇤
,

K(k) =
1p
↵

K(k � 1) + �1(k)x̃(k)x̄
H(k). (10)

where
ỹ(k) = K(k � 1)y(k), (11)

x̃(k) =
1p
↵

K(k � 1)x(k), (12)

c(k) = �

⇤
2(k)x̃(k) + �1(k)h(k), (13)

h(k) = �rx(k) + a1(k)ỹ(k), (14)

x̄(k) =
1p
↵

KH(k � 1)x̃(k). (15)

In the above relations, a1(k), �1(k), �2(k) and rx(k) are defined by:

a1(k) = ỹH(k)x̃(k), (16)

�1(k) =
1

kx̃(k)k2
⇣ 1q

1 + kx̃(k)k2
� 1

⌘
, (17)

�2(k) = |�1(k)|2 (�x̃H(k)rx(k) + |a1(k)|2), (18)
rx(k) = R(k � 1)x̃(k). (19)

After updating R(k) and K(k), G(k) is obtained by the recursion:

G(k) =RH(k) 

=
1
↵

⇥
�G(k � 1) + ỹ(k)yH

o (k) + c(k)xH
o (k)

+ �1(k)x̃(k)h
H
o (k)

⇤
, (20)

where yo(k) ,  Hỹ(k), xo(k) ,  Hx̃(k), and ho(k) ,
 Hh(k). After that, H(k) is obtained through the recursion:

H(k) = R(k)G(k)

=
1
↵

2

⇥
�

2H(k � 1) + S1(k) + S2(k) + S3(k) + S4(k)
⇤
.

(21)
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The terms {Si(k)}4i=1 are given by:

S1(k) = �ry(k)y
H
o (k) + �rc(k)x

H
o (k) + ��1(k)rx(k)h

H
o (k),

(22)

S2(k) = ỹ(k)
⇥
�yH

h (k) + a2(k)y
H
o (k)

+ a

⇤
3(k)x

H
o (k) + �1(k)a1(k)h

H
o (k)

⇤
, (23)

S3(k) = x̃(k)
⇥
�cHh (k) + a3(k)y

H
o (k)

+ a4(k)x
H
o (k) + �1(k)a5(k)h

H
o (k)

⇤
, (24)

S4(k) = h(k)
⇥
�1(k)�x

H
h (k) + �1(k)a

⇤
1(k)y

H
o (k)

+ �1(k)a
⇤
5(k)x

H
o (k) + |�1(k)|2 a6(k)h

H
o (k)

⇤
. (25)

where
ry(k) = R(k � 1)ỹ(k), (26)
rc(k) = R(k � 1)c(k), (27)

yh(k) = GH(k � 1)ỹ(k), (28)

a2(k) = ỹH(k)ỹ(k), (29)

a3(k) = cH(k)ỹ(k), (30)

ch(k) = GH(k � 1)c(k), (31)

a4(k) = cH(k)c(k), (32)

a5(k) = cH(k)x̃(k), (33)

xh(k) = GH(k � 1)x̃(k), (34)

a6(k) = xH(k)x̃(k). (35)

Next, we orthonormalize the columns of H(k) (21), obtaining Q(k):

Q(k) = orthr(H(k)), (36)

Then, eT(k) is computed through the formula (8):

eT(k) = ( HQ(k))†(GH(k)Q(k)). (37)

By performing the Rayleigh-Ritz method on eT(k), we obtain
the eigenpair (e⇤(k), eV(k)). Accordingly, an approximation to the
r leading generalized eigenvectors of (Ry,Rx) is obtained by:

Wr(k) = K(k)Q(k)eV(k). (38)

Computational Cost of Algorithm 1. The main steps involve com-
putations of (10)-(35) in each iteration. The calculations of parame-
ters {ai(k)}6i=1, {�i(k)}2i=1 require O(N) operations. Computing
h(k), c(k) 2 CN costs O(N). Computing yh(k), xh(k), ch(k),
yo(k), xo(k), co(k) 2 Cd for {Si(k)}4i=1 2 CN⇥d, and updating
G(k), H(k) 2 CN⇥d cost O(Nd). Computing the column vectors
x̃(k), ỹ(k), x̄(k), ry(k), rx(k), rc(k) 2 CN requires 6N2 multi-
plications. Updating K(k), R(k) 2 CN⇥N requires 4N2 multipli-
cations. Thus, the dominant cost of Algorithm 1 is 10N2 +O(Nd).

3.3. Online Algorithm for Extracting r-dominant Generalized
Eigenvectors with Case Non-HEP (Algorithm 2).

Let P(k) = Qx(k)Ry(k), where Qx(k) = R�1
x (k). We first

recursively updates P(k). Applying the SM-formula (Sherman-
Morrison-formula) [11] immediately leads to a recursion for Qx(k):

Qx(k) =
⇥
↵Rx(k � 1) + x(k)xH(k)

⇤�1

=
1
↵

h
Qx(k � 1)� qx(k)q

H
x (k)

↵+ xH(k)qx(k)

i
,

(39)

where qx(k) , Qx(k� 1)x(k). Using the above recursion and (2),
P(k) is consequently obtained by:

P(k) =
1
↵

⇥
�P(k � 1) + qy(k)y

H(k)� qx(k)z
H(k)

⇤
,

(40)

where

qy(k) = Qx(k � 1)y(k), (41)

z(k) =
⇥
�xH(k)P(k � 1)
↵+ xH(k)qx(k)

+
qH
x (k)y(k)y

H(k)
↵+ xH(k)qx(k)

⇤H
. (42)

Combining these results leads to the update of G(k) = PH(k) as:

G(k) =
1
↵

h
�G(k � 1) + y(k)mH

y (k)� z(k)mH
x (k)

i
,

(43)

where mx(k) ,  Hqx(k) and my(k) ,  Hqy(k). After, H(k)
is obtained through the following recursion:

H(k) =P(k)G(k)

=
1
↵

2

⇥
�

2H(k � 1) + J1(k) + J2(k) + J3(k)
⇤
,

(44)

The terms {Ji(k)}3i=1 in (44) are given by:

J1(k) = �dy(k)m
H
y (k)� �dz(k)m

H
x (k), (45)

J2(k) = qy(k)
�
�nH

y (k) + b1(k)m
H
y (k)� b2(k)m

H
x (k)

�
, (46)

J3(k) = qx(k)
�
b3(k)m

H
x (k)� �nH

z (k)� b

⇤
2(k)m

H
y (k)

�
, (47)

where

dy(k) = P(k � 1)y(k), (48)
dz(k) = P(k � 1)z(k), (49)

ny(k) = GH(k � 1)y(k), (50)

b1(k) = yH(k)y(k), (51)

b2(k) = yH(k)z(k), (52)

nz(k) = GH(k � 1)z(k), (53)

b3(k) = zH(k)z(k). (54)

Following the procedure described in Algorithm 1, we form eT(k)

and compute the eigenpair (e⇤(k), eV(k)). The r leading generalized
eigenvectors of the matrix pencil (Ry,Rx) are then estimated via:

Wr(k) = Q(k)eV(k). (55)

Computational Cost of Algorithm 2. Computing the parameters
{bi(k)}3i=1 requires O(N) operations. Computations of mx(k),
my(k), nz(k), ny(k) 2 Cd cost O(Nd). Computing {Ji(k)}3i=1

2 CN⇥d, and updating G(k), H(k) 2 CN⇥d cost O(Nd). Updat-
ing qx(k), qy(k), dz(k), dy(k), z(k) 2 CN needs 5N2 multiplica-
tions, and calculations of P(k), Qx(k) require 3N2 multiplications.
The dominant cost of Algorithm 2 is thus 8N2+O(Nd). The extrac-
tion of generalized eigenvectors needs O(Nr

2) +O(r3) operations.
Therefore, the flop count of Algorithm 2 satisfies 8N2 +O(Nr

2).
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Fig. 1: DC and SSD results of tracking the first and second eigenvectors.

4. EXPERIMENTAL RESULTS

We validate proposed Algorithms 1 and 2 through a subspace track-
ing problem. The performance of our algorithms are compared
with the following algorithms: (1) Power-iteration based (PI-based)
method [19], (2) PAST-based method, here we use the sequential
version [16, Algorithm 2], (3) reduced-rank generalized eigenvector
extraction (R-GEVE) [18], (4) gradient-based method with negative
step-size [15, Algorithm 3], and (5) batch mode GSVD [11].

Our signals are generated by two sinusoids in additive noise de-
fined in the time domain [14–16, 18, 19, 23] as follows:

x(k)=
p
2 sin (0.46⇡k+✓2)+

p
2 sin (0.74⇡k+✓3)+n1(k), (56)

y(k)=
p
2 sin (0.62⇡k+✓1)+n2(k), (57)

where {✓i}3i=1 follow the uniform distribution U(0, 2⇡), and n1(k)
and n2(k) are zero-mean white Gaussian noises with variance �2

1 =
�

2
2 = 0.1. The vectors {y(k)} and {x(k)} are arranged in blocks

of size N = 8, that is, y(k) = [y(k), · · · , y(k � N + 1)]>,
x(k) = [x(k), · · · , x(k � N + 1)]>, and k � N . The gener-
alized eigenvalues of matrix pencil (Rx,Ry) are given by �1 =
16.0680, �2 = 6.8302, �3 = 1.0, �4 = 1.0, �5 = 0.1592,
�6 = 0.0708, �7 = 0.0254, and �8 = 0.0198. We track the
first four dominant generalized eigenvectors. For the random ma-
trix  of Algorithms 1 and 2, we set d = 5. The parameters of
considered algorithms are set as follows: For the PAST-based algo-
rithm, we set µ = 0.998 as suggested in [16]; For R-GEVE, we set
�1 = �2 = 0.998 as proposed in [18]. For other algorithms, we set
↵ = � = 0.998. In the Gradient-based algorithm, the step-size is

set to ⌘ = �0.0005 2 (2/ (�N � �1) , 0). All algorithms are ini-
tialized with Rx = Ry = IN , wi(0) = ei for i = 1, · · · , 4, where
ei is the ith column of IN .

To compare the convergence speed and estimation accuracy, we
use the direction cosine, which measures the similarity between the
ith estimated and exact generalized eigenvectors of (Ry,Rx):

DCi(k) =

�� ewH
i (k)wi

��
kewi(k)kkwik , (58)

where ewi and wi are the ith estimated and exact generalized eigen-
vectors, respectively. Here the result of (58) is averaged over 100
independent trials. Moreover, to measure the numerical stability of
considered algorithms, we make use of the sample standard devia-
tion (SSD) of the direction cosine defined as:

SSDi(k) =

vuut 1
L� 1

LX

j=1

⇥
DCi,j(k)�DCi(k)

⇤2
, (59)

where DCi,j(k) is the direction cosine of jth independent trial,
where j = 1, · · · , L, of the ith estimated generalized eigenvector,
and DCi(k) is the direction cosine of ith estimated generalized
eigenvector averaged over L trials. Here L = 100.

The results for the first two generalized eigenvectors are dis-
played in Figs 1. We make several observations: i) for the first gen-
eralized eigenvector, Algorithm 2 outperforms other algorithms in
terms of convergence speed, estimation accuracy and numerical sta-
bility. ii) For the second generalized eigenvector, again Algorithm
2 shows the best performance among the algorithms considered in
convergence speed and numerical stability, while its estimation ac-
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curacy being similar to that of the gradient-based method. iii) Al-
gorithm 1 shows similar performance as the PI-based method, how-
ever it is computationally more efficient (see Section 3.2). iv) The
gradient-based method has the slowest convergence speed among all
methods.

5. CONCLUSION

In this paper, we proposed the APR-EVD algorithm for standard
eigenvalue decomposition through randomization. By exploiting
rank-1 update strategy, we developed two online algorithms based
on APR-EVD for generalized eigenvectors extraction. Our numer-
ical results show that Algorithm 2 outperforms the compared algo-
rithms in tracking the first two dominant generalized eigenvectors
in terms of convergence speed, estimation accuracy and numerical
stability. Further, although Algorithm 1 has similar performance as
the PI-based method, it has lower computational cost.
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