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Abstract The estimation from available data of parameters governing epidemics is a major challenge. In addition
to usual issues (data often incomplete and noisy), epidemics of the same nature may be observed in several places
or over different periods. The resulting possible inter-epidemic variability is rarely explicitly considered. Here, we
propose to tackle multiple epidemics through a unique model incorporating a stochastic representation for each
epidemic and to jointly estimate its parameters from noisy and partial observations. By building on a previous
work, a Gaussian state-space model is extended to a model with mixed effects on the parameters describing
simultaneously several epidemics and their observation process. An appropriate inference method is developed,
by coupling the SAEM algorithm with Kalman-type filtering. Its performances are investigated on SIR simulated
data. Our method outperforms an inference method separately processing each dataset. An application to SEIR
influenza outbreaks in France over several years using incidence data is also carried out, by proposing a new
version of the filtering algorithm. Parameter estimations highlight a non-negligible variability between influenza
seasons, both in transmission and case reporting. The main contribution of our study is to rigorously and explicitly
account for the inter-epidemic variability between multiple outbreaks, both from the viewpoint of modeling and
inference.

Keywords Kalman filter; Latent variables; Parametric inference; Random effects; SAEM algorithm; Stochastic
compartmental models.

1 Introduction

Estimation from available data of model parameters describing epidemic dynamics is a major challenge in epi-
demiology, especially contributing to better understand the mechanisms underlying these dynamics and to pro-
vide reliable predictions. Epidemics can be recurrent over time and/or occur simultaneously in different regions.
For example, influenza outbreaks in France are seasonal and can unfold in several distinct regions with different
intensities at the same time. This translates into a non-negligible variability between epidemic phenomena. In
practice, this inter-epidemic variability is often omitted, by not explicitly considering specific components for
each entity (population, period). Instead, each data series is analysed separately and this variability is estimated
empirically. Integrating in a unique model these sources of variability allows to study simultaneously the ob-
served data sets corresponding to each spatial (e.g. region) or temporal entity (e.g. season). This approach should
improve the statistical power and accuracy of the estimation of epidemic parameters as well as refine knowledge
about underlying inter-epidemic variability.

An appropriate framework is represented by the mixed-effects models, which allow to describe the variability
between subjects belonging to a same population from repeated data (see e.g. Pinheiro and Bates, 2000, Lavielle,
2014). These models are largely used in pharmacokinetics with intra-population dynamics usually modeled by
ordinary differential equations (ODE) and, in order to describe the differences between individuals, random ef-
fects on the parameters ruling these dynamics (see e.g. Collin et al., 2020). This framework was later extended to
models defined by stochastic differential equations incorporating mixed effects in the parameters of these diffu-
sion processes (Donnet and Samson, 2008, Delattre and Lavielle, 2013, Donnet and Samson, 2013, Delattre et al.,
2018). To our knowledge, the framework of mixed-effects models has rarely been used to analyse epidemic data,
except in a very few studies. Among these, in (Prague et al., 2020), the dynamics of the first epidemic wave of
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COVID-19 in France were analysed using an ODE system incorporating random parameters to take into account
the variability of the dynamics between regions. Using a slightly different approach to tackle data from multiple
epidemics, Bretó et al., 2020 proposed a likelihood-based inference method using particle filtering techniques
for non-linear and partially observed models. In particular, these models incorporate unit-specific parameters and
shared parameters.

In addition to the specific problem of variability reflected in multiple data sets, observations of epidemic dynamics
are often incomplete in various ways: only certain health states are observed (e.g. infected individuals), data are
temporally discretized or aggregated, and subject to observation errors (e.g. under-reporting, diagnosis errors).
Because of this incompleteness together with the non-linear structure of the epidemic models, the computation
of the maximum likelihood estimator (MLE) is often not explicit. In hidden or latent variable models which
are appropriate representations of incompletely observed epidemic dynamics, estimation techniques based on
Expectation-Maximization (EM) algorithm can be implemented in order to compute the MLE (see e.g. Dempster
et al., 1977). However, the E-step of the EM algorithm requires that, for each parameter value θ, the conditional
expectation of the complete log-likelihood given the observed data,Q(θ), can be computed. In mixed-effects mod-
els, there is generally no closed form expression for Q(θ). In such cases, this quantity can be approximated using
a Monte-Carlo procedure (MCEM, Wei and Tanner, 1990), which is computationally very demanding. A more
efficient alternative is the SAEM algorithm (Delyon et al., 1999), often used in the framework of mixed-effects
models (Kuhn and Lavielle, 2005), which combines at each iteration the simulation of unobserved data under
the conditional distribution given the observations and a stochastic approximation procedure of Q(θ) (see also
Delattre and Lavielle, 2013, Donnet and Samson, 2014 for the study and implementation of the SAEM algorithm
for mixed-effects diffusion models).

In this paper, focusing on the inference for multiple epidemic dynamics, we intend to meet two objectives. The
first objective is to propose a finer modeling of multiple epidemics through a unique mixed-effects model, incor-
porating a stochastic representation of each epidemic. The second objective is to develop an appropriate method
for jointly estimating model parameters from noisy and partial observations, able to estimate rigorously and ex-
plicitly the inter-epidemic variability. Thus, the main expected contribution is to provide accurate estimates of
common and epidemic-specific parameters and to provide elements for the interpretation of the mechanisms un-
derlying the variability between epidemics of the same nature occurring in different locations or over distinct
time periods. For this purpose, we extend the Gaussian state-space model introduced in (Narci et al., 2021) for
single epidemics to a model with mixed effects on the parameters describing simultaneously several epidemics
and their observations. Then, following (Delattre and Lavielle, 2013) and building on the Kalman filtering-based
inference method proposed in (Narci et al., 2021), we propose to couple the SAEM algorithm with Kalman-like
filtering to estimate model parameters. The performances of the estimation method are investigated on simula-
tions mimicking noisy prevalence data (i.e. the number of cases of disease in the population at a given time or
over a given period of time). The method is then applied to the case of influenza epidemics in France over several
years using noisy incidence data (i.e. the number of newly detected cases of the disease at a given time or over a
given period of time), by proposing a new version of the filtering algorithm to handle this type of data.

The paper is organized as follows. In Section 2 we describe the epidemic model for a single epidemic, specified
for both prevalence and incidence data, and its extension to account for several epidemics through a two-level
representation using the framework of mixed-effects models. Section 3 contains the maximum likelihood esti-
mation method and convergence results of the SAEM algorithm. In Section 4, the performances of our inference
method are assessed on simulated noisy prevalence data generated by SIR epidemic dynamics sampled at discrete
time points. Section 5 is dedicated to the application case, the influenza outbreaks in France from 1990 to 2017.
Section 6 contains a discussion and concluding remarks.

2 A mixed-effects approach for a state-space epidemic model for multiple epidemics

First, we sum up the approach developed in (Narci et al., 2021) in the case of single epidemics for prevalence data
and extend it to incidence data (Section 2.1). By extending this approach, we propose a model for simultaneously
considering several epidemics, in the framework of mixed-effects models (Section 2.2).

2.1 The basics of the modeling framework for the case of a single epidemic

The epidemic model Consider an epidemic in a closed population of size N with homogeneous mixing, whose
dynamics are represented by a stochastic compartmental model with d + 1 compartments corresponding to the
successive health states of the infectious process within the population. These dynamics are described by a
density-dependent Markov jump process Z(t) with state space {0, . . . ,N}d and transition rates depending on a
multidimensional parameter ζ. Assuming that Z(0)/N → x0 , (0, . . . , 0)′, the normalized process Z(t)/N rep-
resenting the respective proportions of population in each health state converges, as N → ∞, to a classical and
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well-characterized ODE:
∂x
∂t

(ζ, t) = b(η, x(ζ, t)); x(0) = x0, (1)

where η = (ζ, x0) and b(η, ·) is explicit and easy to derive from the Q-matrix of process Z(t) (see (Guy et al.,
2015), (Narci et al., 2021)).

Two stochastic approximations of Z(t)/N are available: a d-dimensional diffusion process Z(tk) with drift co-
efficient b(η, ·) and diffusion matrix 1

NΣ(η, ·) (which is also easily deducible from the jump functions of the
density-dependent jump process, see e.g. (Narci et al., 2021)), and a time-dependent Gaussian process GN(t) with
small variance coefficient (see e.g. Britton and Pardoux, 2020), having for expression

GN(t) = x(η, t) +
1
√

N
g(η, t), (2)

where g(η, t) is a centered Gaussian process with explicit covariance matrix. There is a link between these two
processes: let W(t) be a Brownian motion in Rd, then g(η, t) is the centered Gaussian process

g(η, t) =

∫ t

0
Φ(η, t, u)σ(η, x(η, u))dW(u), where σ(η, x)σ(η, x)′ = Σ(η, x),

and Φ(η, t, s) is the d × d resolvent matrix associated to (1)

Φ(η, t, s) = exp
(∫ t

s
∇xb(η, x(η, u)) du

)
, (3)

with ∇xb(η, x) denoting the matrix ( ∂bi
∂x j

(η, x))1≤i, j≤d. In the sequel, we rely on the Gaussian process (2) to represent
epidemic dynamics.

The epidemic is observed at discrete times t0 = 0 < t1, · · · , < tn = T , where n is the number of observations. Let
us assume that the observation times tk are regularly spaced, that is tk = k∆ with ∆ the time step (but the following
can be easily adapted to irregularly spaced observation times). Setting Xk := GN(tk) and X0 = x0, the model can
be written under the auto-regressive AR(1) form

Xk = Fk(η) + Ak−1(η)Xk−1 + Vk, with Vk ∼ Nd (0,Tk(η, ∆)) and k ≥ 1. (4)

All the quantities in (4) have explicit expressions with respect to the parameters. Indeed, using (1) and (3), we
have

Ak−1(η) = A(η, tk−1) = Φ(η, tk, tk−1), (5)

Fk(η) = F(η, tk) = x(η, tk) −Φ(η, tk, tk−1)x(η, tk−1), (6)

Tk(η, ∆) =
1
N

∫ tk

tk−1

Φ(η, tk, s)Σ(η, x(η, s)) Φt(η, tk, s)ds. (7)

Example: SIR model. As an illustrative example, we use the simple SIR epidemic model described in Figure 1,
but other models can be considered (see e.g. the SEIR model, used in Section 5).

S I R
λI/N γ

Fig. 1 SIR compartmental model with three blocks corresponding respectively to susceptible (S), infectious (I) and recovered (R)
individuals. Transitions of individuals from one health state to another are governed by the transmission rate λ and the recovery rate
γ, respectively.

In the SIR model, d = 2 and Z(t) = (S (t), I(t))′. The parameters involved in the transition rates are λ and γ and
the initial proportions of susceptible and infectious individuals are x0 = (s0, i0)′. Denoting η = (λ, γ, s0, i0)′, the
ODE satisfied by x(η, t) = (s(η, t), i(η, t))′ is ∂s

∂t (η, t) = −λs(η, t)i(η, t); s(η, 0) = s0,
∂i
∂t (η, t) = λs(η, t)i(η, t) − γi(η, t); i(η, 0) = i0.

(8)
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When there is no ambiguity, we denote by s and i the solution of (8). Then, the functions b(η, ·), Σ(η, ·) and σ(η, ·)
are

b(η, s, i) =

(
−λsi

λsi − γi

)
; Σ(η, s, i) =

(
λsi −λsi
−λsi λsi + γi

)
, σ(η, s, i) =

( √
λsi 0

−
√
λsi
√
γi

)
.

We refer the reader to Appendix A for the computation of b(η, ·), Σ(η, ·) and σ(η, ·) in the SEIR model. Another
parameterization, involving the basic reproduction number R0 = λ

γ
and the infectious period d = 1

γ
, is more often

used for SIR models. Hence, we set η = (R0, d, s0, i0)′.

Observation model for prevalence data Following (Narci et al., 2021), we assume that observations are made
at times tk = k∆, k = 1, . . . , n, and that some health states are not observed. The dynamics is described by the
d-dimensional AR(1) model detailed in (4). Some coordinates are not observed and various sources of noise
systematically affect the observed coordinates (measurement errors, observation noises, under-reporting, etc.).
This is taken into account by introducing an additional parameter µ, governing both the levels of noise and
the amount of information which is available from the q ≤ d observed coordinates, and an operator B(µ) :
Rd → Rq. Moreover, we assume that, conditionally on the random variables (B(µ)Xk, k = 1, . . . , n), these noises
are independent but not identically distributed. We approximate their distributions by q-dimensional Gaussian
distributions with covariance matrix Pk(η, µ) depending on η and µ. This yields that the observations (Yk) satisfy

Yk = B(µ)Xk + Wk, with Wk ∼ Nq(0, Pk(η, µ)). (9)

Let us define a global parameter describing both the epidemic process and the observational process,

φ = (η, µ). (10)

Finally, joining (4), (9) and (10) yields the formulation (for both epidemic dynamics and observation process)
required to implement Kalman filtering methods in order to estimate the epidemic parameters:Xk = Fk(η) + Ak−1(η)Xk−1 + Vk, with Vk ∼ Nd (0,Tk(η, ∆)) , k ≥ 1,

Yk = B(µ)Xk + Wk, with Wk ∼ Nq (0, Pk(φ)) .
(11)

Example: SIR model (continued). The available observations could be noisy proportions of the number of
infectious individuals at discrete times tk. Denoting by p the reporting rate, one could define the operator B(µ) =

B(p) = (0 p) and the covariance error as Pk(φ) = 1
N p(1 − p)i(η, tk) with i(η, t) satisfying (8). The expression of

Pk(φ) mimics the variance that would arise from assuming the observations to be obtained as binomial draws of
the infectious individuals.

Observation model for incidence data For this purpose, we have extended the framework developed in (Narci
et al., 2021). For some compartmental models, the observations (incidence) at times tk can be written as the
increments of a single or more coordinates, that is B̃(µ)(Xk−1 − Xk) where, as above, B̃(µ) : Rd → Rq is a given
operator and µ are emission parameters. Let us write the epidemic model in this framework. For k = 1, . . . , n, let

∆kX = Xk − Xk−1.

From (11), the following holds, denoting by Id the d × d identity matrix,

∆kX = Fk(η) + (Ak−1(η) − Id)Xk−1 + Vk. (12)

As Xk−1 =
∑k−1

l=1 ∆lX + x0, (12) becomes:

∆kX = Gk(η) + (Ak−1(η) − Id)
k−1∑
l=1

∆lX + Vk, with (13)

Gk(η) = x(η, tk) − x0 −Φ(η, tk, tk−1)(x(η, tk−1) − x0). (14)

To model the errors that affect the data collected (Yk), we assume that, conditionally on (∆kX, k = 1, . . . , n), the
observations are independent and proceed to the same approximation for their distributions

Yk = B̃(µ)∆kX + W̃k; with W̃k ∼ Nq(0, P̃k(φ)). (15)

Consequently, using (13), (14) and (15), the epidemic model for incidence data is adapted as follows:∆kX = Gk(η) + (Ak−1(η) − Id)
∑k−1

l=1 ∆lX + Vk,

Yk = B̃(µ)∆kX + W̃k.
(16)

Contrary to (4), (∆kX, k = 1, . . . , n) is not Markovian since it depends on all the past observations. Therefore,
it does not possess the required properties of classical Kalman filtering methods. We prove in Appendix B that
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we can propose an iterative procedure and define a new filter to compute recursively the conditional distributions
describing the updating and prediction steps together with the marginal distributions of the observations from the
model (16).

Example: SIR model (continued). Here, ∆kX =
(
∆kS
N , ∆k I

N

)′
and the number of new infectious individuals at

times tk is given by
∫ tk

tk−1
λS (t) I(t)

N dt = −∆kS . Observing a proportion p of the new infectious individuals would
lead to the operator B̃(µ) = B(p) = (−p 0). Mimicking binomial draws, the covariance error could be chosen as
P̃k(φ) = 1

N p(1 − p)(s(η, tk−1) − s(η, tk)) where s(η, t) satisfies (8).

2.2 Modeling framework for multiple epidemics

Consider now the situation where a same outbreak occurs in many regions or at different periods simultaneously.
We use the index 1 ≤ u ≤ U to describe the quantities for each unit (e.g. region or period), where U is the total
number of units. Following Section 2.1, for unit u, the epidemic dynamics are represented by the d-dimensional
process (Xu(t))t≥0 corresponding to d + 1 infectious states (or compartments) with state space E = [0, 1]d. It is
assumed that (Xu(t))t≥0 is observed at discrete times tk = k∆ on [0,Tu], Tu = nu∆, where ∆ is a fixed time step
and nu is the number of observations, and that Yu,k are the observations at times tk. Each of these dynamics has
its own epidemic and observation parameters, denoted φu.

To account for intra- and inter-epidemic variability, a two level representation is considered, in the framework
of mixed-effects models. First, using the discrete-time Gaussian state-space for prevalence (11) or for incidence
data (16), the intra-epidemic variability is described. Second, the inter-epidemic variability is characterized by
specifying a set of random parameters for each epidemic.

1. Intra-epidemic variability Let us define Xu,k := Xu(tk), Xu,0 = xu,0 and ∆kXu := Xu(tk) − Xu(tk−1). Using (10),
conditionally to φu = ϕ, the epidemic observations for unit u are described as in Section 2.1.

For prevalence data, 1 ≤ k ≤ nu,Xu,k = Fk(ϕ) + Ak−1(ϕ)Xu,k−1 + Vu,k, with Vu,k ∼ Nd (0,Tk(ϕ, ∆)) ,
Yu,k = B(ϕ)Xu,k + Wu,k, with Wu,k ∼ Nq(0, Pk(ϕ)),

(17)

(see (5), (6) and (7) for the expressions of Fk(·), Ak−1(·), Tk(·) and (9) for B(·) and Pk(·)).

For incidence data, ∆kXu = Gk(ϕ) + (Ak−1(ϕ) − Id)
∑k−1

l=1 ∆lXu + Vu,k,

Yu,k = B̃(ϕ)∆kXu + W̃u,k with W̃u,k ∼ Nq(0, P̃k(ϕ)),
(18)

(see (14) for the expression of Gk(·) and (15) for B̃(·) and P̃k(·)).

2. Inter-epidemic variability We assume that the epidemic-specific parameters (φu, 1 ≤ u ≤ U) are independent
and identically distributed (i.i.d) random variables with distribution defined as follows,φu = h(β, ξu),

ξu ∼ Nc(0, Γ),
(19)

where c = dim (φu) and h(β, x) : Rc × Rc → Rc. The vector h(β, x) = (h1(β, x), . . . , hc(β, x))′ contains known
link functions (a classical way to obtain parameterizations easier to handle), β ∈ Rc is a vector of fixed effects
and ξ1, . . . , ξU are random effects modeled by U i.i.d centered random variables. The fixed and random effects
respectively describe the average general trend shared by all epidemics and the differences between epidemics.
Note that it is sometimes possible to propose a more refined description of the inter-epidemic variability by in-
cluding unit-specific covariates in (19). This is not considered here, without loss of generality.

Example: SIR model (continued). Let s0,u =
S u(0)

Nu
and i0,u =

Iu(0)
Nu

where Nu is the population size in unit u. The
random parameter is φu = (R0,u, du, pu, s0,u, i0,u)′ and has to fulfill the constraints

R0,u > 1; du > 0; 0 < pu < 1; 0 < s0,u, i0,u < 1, s0,u + i0,u ≤ 1.
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To meet these constraints, one could introduce the following function h(β, x) : R5 × R5 → R5:

h1(β, ξu) = exp
[
β1 + ξ1,u

]
+ 1,

h2(β, ξu) = exp
[
β2 + ξ2,u

]
,

h3(β, ξu) = 1
1+exp[−(β3+ξ3,u)] ,

h4(β, ξu) = 1
1+exp[−(β4+ξ4,u)]+exp[−(β5+ξ5,u)] ,

h5(β, ξu) =
exp[−(β4+ξ4,u)]

1+exp[−(β4+ξ4,u)]+exp[−(β5+ξ5,u)] ,

(20)

where ξu ∼i.i.d. N5(0, Γ) and φu = h(β, ξu).

In this example, we supposed that all the parameters have both fixed and random effects, but it is also possible
to consider a combination of random-effect parameters and purely fixed-effect parameters (see Section 4.1 for
instance).

3 Parametric inference

To estimate the model parameters θ = (β, Γ), with β and Γ defined in (19), containing the parameters modeling
the intra- and inter-epidemic variability, we develop an algorithm in the spirit of (Delattre and Lavielle, 2013)
allowing to derive the maximum likelihood estimator (MLE).

3.1 Maximum likelihood estimation

The model introduced in Section 2.2 can be seen as a latent variable model with y = (yu,k, 1 ≤ u ≤ U, 0 ≤ k ≤ nu)
the observed data and Φ = (φu, 1 ≤ u ≤ U) the latent variables. Denote respectively by p(y; θ), p(Φ; θ) and
p(y|Φ; θ) the probability density of the observed data, of the random effects and of the observed data given the
unobserved ones. By independence of the U epidemics, the likelihood of the observations yu = (yu,1, . . . , yu,nu ) is
given by:

p(y; θ) =

U∏
u=1

p(yu; θ).

Computing the distribution p(yu; θ) of the observations for any epidemic u requires the integration of the con-
ditional density of the data given the unknown random effects φu with respect to the density of the random
parameters:

p(yu; θ) =

∫
p(yu|φu; θ)p(φu; θ) dφu. (21)

Due to the non-linear structure of the proposed model, the integral in (21) is not explicit. Moreover, the computa-
tion of p(yu|φu; θ) is not straightforward due to the presence of latent states in the model. Therefore, the inference
algorithm needs to account for these specific features.

Let us first deal with the integration with respect to the unobserved random variables φu. In latent variable mod-
els, the use of the EM algorithm (Dempster et al., 1977) allows to compute iteratively the MLE. Iteration k of
the EM algorithm combines two steps: (1) the computation of the conditional expectation of the complete log-
likelihood given the observed data and the current parameter estimate θk, denoted Q(θ|θk) (E-step); (2) the update
of the parameter estimates by maximization of Q(θ|θk) (M-step). In our case, the E-step cannot be performed
because Q(θ|θk) does not have a simple analytic expression. We rather implement a Stochastic Approximation-
EM (SAEM, Delyon et al., 1999) which combines at each iteration the simulation of unobserved data under the
conditional distribution given the observations (S-step) and a stochastic approximation of Q(θ|θk) (SA-step).

a) General description of the SAEM algorithm Given some initial value θ0, iteration m of the SAEM algorithm
consists in the three following steps:

(S-step) Simulate a realization of the random parameters Φm under the conditional distribution given the
observations for a current parameter θm−1 denoted p(·|y; θm−1).
(SA-step) Update Qm(θ) according to

Qm(θ) = Qm−1(θ) + αm(log p(y,Φm; θ) − Qm−1(θ)),

where (αm)m≥1 is a sequence of positive step-sizes s.t.
∑∞

m=1 αm = ∞ and
∑∞

m=1 α
2
m < ∞.

(M-step) Update the parameter estimate by maximizing Qm(θ)

θm = arg maxθ Qm(θ).
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In our case, an exact sampling under p(·|y; θm−1) in the S-step is not feasible. In such intractable cases, MCMC
algorithms such as Metropolis-Hastings algorithm can be used (Kuhn and Lavielle, 2004).

b) Computation of the S-step by combining the Metropoligs-Hastings algorithm with Kalman filtering techniques
In the sequel, we combine the S-step of the SAEM algorithm with a MCMC procedure.

For a given parameter value θ, a single iteration of the Metropolis-Hastings algorithm consists in:

(1) Generate a candidate Φ(c) ∼ q(·|Φm−1, y; θ) for a given proposal distribution q
(2) Take

Φm =

Φm−1 with probability 1 − ρ(Φm−1,Φ
(c)),

Φ(c) with probability ρ(Φm−1,Φ
(c)),

where

ρ(Φm−1,Φ
(c)) = min

[
1,

p(y|Φ(c); θ) p(Φ(c); θ) q(Φm−1|Φ
(c), y; θ)

p(y|Φm−1; θ) p(Φm−1; θ) q(Φ(c)|Φm−1, y; θ)

]
. (22)

To compute the rate of acceptation of the Metropolis-Hastings algorithm in (22), we need to calculate

p(yu|φu; θ) = p(yu,0|φu; θ)
nu∏

k=1

p(yu,k |yu,0, . . . , yu,k−1, φu; θ), 1 ≤ u ≤ U.

Let yu,k:0 := (yu,0, . . . , yu,k), k ≥ 1. In both models (17) and (18), the conditional densities p(yu,k |yu,k−1:0, φu; θ) are
Gaussian densities. In model (17) involving prevalence data, their means and variances can be exactly computed
with Kalman filtering techniques (see (Narci et al., 2021)). In model (18), the Kalman filter can not be used in its
standard form. We therefore develop an alternative filtering algorithm.

From now on, we omit the dependence in u and Φ for sake of simplicity.

Prevalence data Let us consider model (11) and recall the successive steps of the filtering developed in (Narci et
al., 2021). Assume that X0 ∼ Nd(x0,T0) and set X̂0 = x0, Ξ̂0 = T0. Then, the Kalman filter consists in recursively
computing for k ≥ 1:

1. Prediction: L(Xk+1|Yk, . . . ,Y1) = Nd(X̂k+1, Ξ̂k+1)

X̂k+1 = Fk+1 + AkXk

Ξ̂k+1 = AkT kA′k + Tk+1

2. Updating: L(Xk |Yk, . . . ,Y1) = Nd(Xk,T k)

Xk = X̂k + Ξ̂kB′(BΞ̂kB′ + Pk)−1(Yk − BX̂k)

Tk = Ξ̂k − Ξ̂kB′(BΞ̂kB′ + Pk)−1BΞ̂k

3. Marginal: L(Yk+1|Yk, . . . ,Y1) = N(M̂k+1, Ω̂k+1)

M̂k+1 = BX̂k+1

Ω̂k+1 = BΞ̂k+1B′ + Pk+1

Incidence data Let us consider model (16). Assume that L(∆1X) = Nd(G1,T1) and L(Y1|∆1X) = Nq(B̃∆1X, P̃1).
Let ∆̂1X = G1 = x(t1) − x0 and Ξ̂1 = T1. Then, at iterations k ≥ 1, the filtering steps are:

1. Prediction: L(∆k+1X|Yk, . . . ,Y1) = Nd(∆̂k+1X, Ξ̂k+1)

∆̂k+1X = Gk+1 + (Ak − Id)

 k∑
l=1

∆lX


Ξ̂k+1 = (Ak − Id)

 k∑
l=1

T l

 (Ak − Id)′ + Tk+1

2. Updating: L(∆kX|Yk, . . . ,Y1) = Nd(∆kX,T k)

∆kX = ∆̂kX + Ξ̂k B̃′(B̃Ξ̂k B̃′ + P̃k)−1(Yk − B̃∆̂kX)

T k = Ξ̂k − Ξ̂k B̃′(B̃Ξ̂k B̃′ + P̃k)−1B̃Ξ̂k
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3. Marginal: L(Yk+1|Yk, . . . ,Y1) = N(M̂k+1, Ω̂k+1)

M̂k+1 = B̃∆̂k+1X

Ω̂k+1 = B̃Ξ̂k+1B̃′ + P̃k+1

The equations are deduced in Appendix B, the difficult point lying in the prediction step, i.e. the derivation of the
conditional distribution L(∆k+1X|Yk, · · · ,Y1).

3.2 Convergence of the SAEM-MCMC algorithm

Generic assumptions guaranteeing the convergence of the SAEM-MCMC algorithm were stated in (Kuhn and
Lavielle, 2004). These assumptions mainly concern the regularity of the model (see assumptions (M1-M5)) and
the properties of the MCMC procedure used in step S (SAEM3’). Under these assumptions, and providing that
the step sizes (αm) are such that

∑∞
m=1 αm = ∞ and

∑∞
m=1 α

2
m < ∞, then the sequence (θm) obtained through

the iterations of the SAEM-MCMC algorithm converges almost surely toward a stationary point of the observed
likelihood.

Let us remark that by specifying the inter-epidemic variability through the modeling framework of Section 2.2,
our approach for multiple epidemics fulfills the exponentiality condition stated in (M1) provided that all the
components of φu are random. Hence the algorithm proposed above converges almost surely toward a stationary
point of the observed likelihood under the standard regularity conditions stated in (M2-M5) and assumption
(SAEM3’).

4 Assessment of parameter estimators performances on simulated data

First, the performances of our inference method are assessed on simulated stochastic SIR dynamics. Second, the
estimation results are compared with those obtained by an empirical two-step approach.

For a given population of size N and given parameter values, we use the Gillespie algorithm (Gillespie, 1977) to
simulate a two-dimensional Markov jump process Z(t) = (S (t), I(t))′. Then, choosing a sampling interval ∆ and
a reporting rate p, we consider prevalence data (O(tk), k = 1, . . . , n) simulated as binomial trials from a single
coordinate of the system I(tk).

4.1 Simulation setting

Model Recall that the epidemic-specific parameters are φu =
(
R0,u, du, pu, s0,u, i0,u

)′. In the sequel, for all u ∈
{1, . . . ,U}, we assume that R0,u > 1 and 0 < pu < 1 are random parameters. We also set s0,u + i0,u = 1 (which
means that the initial number of recovered individuals is zero), with 0 < i0,u < 1 being a random parameter.
Moreover, we consider that the infectious period du = d > 0 is a fixed parameter since the duration of the in-
fectious period can reasonably be assumed constant between different epidemics. It is important to note that the
case study is outside the scope of the exponential model since a fixed parameter has been included. We refer the
reader to Appendix C for implementation details.

Four fixed effects β ∈ R4 and three random effects ξu = (ξ1,u, ξ3,u, ξ4,u)′ ∼ N3(0, Γ) are considered. Therefore,
using (19) and (20), we assume the following model for the fixed and random parameters:

φu =
(
R0,u, du, pu, i0,u

)′
= h(β, ξu), with (23)

h1(β, ξu) = exp
[
β1 + ξ1,u

]
+ 1,

h2(β, ξu) = exp
[
β2

]
,

hi(β, ξu) =
1

1 + exp
[
−(βi + ξi,u)

] , i = 3, 4.

In other words, random effects on (R0, p, i0) and fixed effect on d are considered. Moreover, these random effects
come from a priori independent sources, so that there is no reason to consider correlations between ξ1,u, ξ3,u and
ξ4,u, and we can assume in this set-up a diagonal form for the covariance matrix Γ = diag Γi, i ∈ {1, 3, 4}.

Parameter values We consider two settings (denoted respectively (i) and (ii) below) corresponding to two levels
of inter-epidemic variability (resp. high and moderate). The fixed effects values β are chosen such that the intrinsic
stochasticity of the epidemic dynamics is significant (a second set of fixed effects values leading to a lower
intrinsic stochasticity is also considered; see Appendix D for details).
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– Setting (i): β = (−0.81, 0.92, 1.45,−2.20)′ and Γ = diag(0.472, 1.502, 0.752) corresponding to E
(
R0,u

)
= 1.5,

CVR0,u = 17%; d = 2.5; E (pu) ≈ 0.74, CVpu ≈ 31%; E
(
i0,u

)
≈ 0.12, CVi0,u ≈ 66%;

– Setting (ii): β = (−0.72, 0.92, 1.45,−2.20)′ and Γ = diag(0.252, 0.902, 0.502) corresponding to E
(
R0,u

)
= 1.5,

CVR0,u = 8%; d = 2.5; E (pu) ≈ 0.78, CVpu ≈ 18%; E
(
i0,u

)
≈ 0.11, CVi0 ≈ 45%;

where CVφ stands for the coefficient of variation of a random variable φ. Let us note that the link between φu and
(β, ξu) for p and i0 does not have an explicit expression.

Data simulation The population size is fixed to Nu = N = 10, 000. For each U ∈ {20, 50, 100}, J = 100 data sets,
each composed of U SIR epidemic trajectories, are simulated. Independent samplings of

(
φu, j =

(
R0,u, du, pu, i0,u

)′
j

)
,

u = 1, . . .U, j = 1, . . . , J, are first drawn according to model (23). Then, conditionally to each parameter set φu, j,
a bidimensionnal Markov jump process Zu, j(t) = (S u, j(t), Iu, j(t))′ is simulated. Normalizing Zu, j(t) with respect
to Nu and extracting the values of the normalized process at regular time points tk = k∆, k = 1, . . . , nu, j, gives
the Xu,k, j =

( S u,k, j

Nu
,

Iu,k, j

Nu

)′
’s. A fixed discretization time step is used, i.e. the same value of ∆ is used to simulate

all the epidemic data. For each epidemic, Tu, j is defined as the first time point at which the number of infected
individuals becomes zero. Two values of ∆ are considered (∆ ∈ {0.425, 2}) corresponding to an average number
of time-point observations n j = 1

U
∑U

u=1 nu, j ∈ {20, 100}. Only trajectories that did not exhibit early extinction
were considered for inference. The theoretical proportion of these trajectories is given by 1− (1/R0)I0 (Andersson
and Britton, 2000). Then, given the simulated Xu,k, j’s and parameters φu, j’s, the observations Yu,k, j are generated
from binomial distributions B(Iu,k, j, pu, j).

4.2 Point estimates and standard deviations for inferred parameters

Tables 1 and 2 show the estimates of the expectation and standard deviation of the mixed effects φu, computed
from the estimations of β and Γ using functions h defined in (23), for settings (i) and (ii). For each parameter, the
reported values are the mean of the J = 100 parameter estimates φu, j, j ∈ {1, . . . , J}, and their standard deviations
in brackets.

Table 1 Estimates for setting (i): high inter-epidemic variability. For each combination of (n,U) and for each model parameter (defined
in the first line of the table), point estimates and precision are calculated as the mean of the J = 100 individual estimates and their
standard deviations (in brackets).

Parameters E
(
R0,u

)
d E (pu) E

(
i0,u

)
sd

(
R0,u

)
sd (pu) sd

(
i0,u

)
True values 1.500 2.500 0.739 0.119 0.250 0.226 0.079

n = 20 U = 20 1.580 2.584 0.688 0.126 0.335 0.193 0.078
(0.135) (0.293) (0.117) (0.024) (0.151) (0.051) (0.020)

U = 50 1.574 2.538 0.704 0.122 0.359 0.201 0.079
(0.111) (0.220) (0.089) (0.019) (0.149) (0.030) (0.014)

U = 100 1.583 2.564 0.700 0.124 0.385 0.199 0.081
(0.105) (0.210) (0.083) (0.015) (0.134) (0.023) (0.011)

n = 100 U = 20 1.501 2.502 0.734 0.118 0.292 0.217 0.075
(0.080) (0.159) (0.059) (0.021) (0.105) (0.035) (0.019)

U = 50 1.510 2.522 0.729 0.120 0.305 0.217 0.080
(0.054) (0.126) (0.038) (0.014) (0.070) (0.022) (0.012)

U = 100 1.503 2.508 0.738 0.119 0.308 0.216 0.079
(0.047) (0.097) (0.030) (0.010) (0.054) (0.016) (0.009)

The results show that all the point estimates are close to the true values (relatively small bias), whatever the
inter-epidemic variability setting, even for small values of n̄ and U. When the number of epidemics U increases,
the standard error of the estimates decreases, but it does not seem to have a real impact on the estimation bias.
Besides, observations of higher frequency of the epidemics (large n̄) lead to lower bias and standard deviations.
It is particularly marked concerning both expectation and standard deviations of the random parameters R0,u and
pu. Irrespective to the level of inter-epidemic variability, the estimations are quite satisfactory. While standard de-
viations of R0,u are slightly over-estimated, even for large U and n, this trend in bias does not affect the standard
deviations of pu and i0,u.
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Table 2 Estimates for setting (ii): moderate inter-epidemic variability. For each combination of (n,U) and for each model parameter
(defined in the first line of the table), point estimates and precision are calculated as the mean of the J = 100 individual estimates and
their standard deviations (in brackets).

Parameters E
(
R0,u

)
d E (pu) E

(
i0,u

)
sd

(
R0,u

)
sd (pu) sd

(
i0,u

)
True values 1.500 2.500 0.777 0.109 0.125 0.143 0.049

n = 20 U = 20 1.619 2.764 0.666 0.127 0.190 0.117 0.053
(0.120) (0.256) (0.099) (0.022) (0.106) (0.034) (0.014)

U = 50 1.638 2.789 0.653 0.128 0.213 0.122 0.056
(0.103) (0.233) (0.087) (0.018) (0.099) (0.018) (0.010)

U = 100 1.623 2.769 0.658 0.128 0.209 0.122 0.056
(0.081) (0.194) (0.075) (0.013) (0.056) (0.017) (0.007)

n = 100 U = 20 1.540 2.627 0.732 0.118 0.176 0.143 0.050
(0.066) (0.143) (0.057) (0.017) (0.055) (0.035) (0.012)

U = 50 1.539 2.622 0.733 0.117 0.183 0.145 0.052
(0.044) (0.098) (0.041) (0.009) (0.038) (0.018) (0.007)

U = 100 1.541 2.629 0.732 0.118 0.187 0.149 0.053
(0.040) (0.078) (0.030) (0.008) (0.035) (0.016) (0.006)

For a given data set, Figure 2 displays convergence graphs of the SAEM algorithm for each estimates of model
parameters in setting (i) with U = 100 and n̄ = 100. Although the model does not belong to the curved exponential
family, convergence of model parameters towards their true value is obtained for all parameters.

Fig. 2 Convergence graphs of the SAEM algorithm for estimates of β = (β1, β2, β3, β4) and diag(Γ) = (Γ1, Γ3, Γ4). Setting (i) with
U = 100 and n̄ = 100. Parameter values at each iteration of the SAEM algorithm (plain blue line) and true values of model parameters
(dotted red line).

4.3 Comparison with an empirical two-step approach

The inference proposed method (referred to as SAEM-KM) is compared to an empirical two-step approach not
taking into account explicitly mixed effects in the model. For that purpose, let us consider the method presented in
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(Narci et al., 2021) (referred to as KM) performed in two steps: first, we compute the estimates φ̂u independently
on each of the U trajectories. Second, the empirical mean and variance of the φ̂u’s are computed. We refer the
reader to Appendix C for practical considerations on implementation of the KM method.

Let us consider n̄ = 50 and U ∈ {20, 100}. Figure 3 displays the distribution of the bias of the parameter estimates
φu, j, j ∈ {1, . . . , J}, J = 100, obtained with SAEM-KM and KM for simulation settings (i) and (ii).

Fig. 3 Boxplots (25th, 50th and 75th percentiles) of the bias of the estimates of each model parameter, with n̄ = 50, obtained with
SAEM-KM (blue boxes) and KM (red boxes). Two levels: U = 20 and U = 100 epidemics. Dark colours: high inter-epidemic
variability (setting (i)). Light colours: moderate inter-epidemic variability (setting (ii)). The symbol represents the estimated mean
bias. For sake of clarity, we removed extreme values from the graphical representation. This concerns only the parameter R0 and the
KM method: 37 values for E(R0,u) (35 in setting (i), 2 in setting (ii)) and 50 values for sd(R0,u) (47 in setting (i), 3 in setting (ii)).

We notice a clear advantage to consider the mixed-effects structure. Overall, the results show that SAEM-KM
outperforms KM. This is more pronounced for standard deviation estimates in the large inter-epidemic variability
setting (i) than in the moderate inter-epidemic variability setting (ii). Concerning the expectation estimates, their
dispersion around the median is lower for KM than for SAEM-KM, especially in setting (ii), but the bias of KM
estimates is also higher. When the inter-epidemic variability is high (setting (i)), the performances of the two
inference methods are substantially different. In particular, KM sometimes fails to provide plausible estimates
(especially for parameter R0).

We also tested other values for n̄ and N (not shown here), e.g. n̄ = 20 (lower amount of information) and N = 2000
(higher intrinsic variability of epidemics). In such cases, KM also failed to provide satisfying estimations whereas
the mixed-effects approach was much more robust.

5 Case study: influenza outbreaks in France

Data The SAEM-KM method is evaluated on a real data set of influenza outbreaks in France provided by the
Réseau Sentinelles (url: www.sentiweb.fr). We use the daily number of influenza-like illness (ILI) cases between
1990-2017, considered as a good proxy of the number of new infectious individuals. The daily incidence rate

www.sentiweb.fr
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was expressed per 100, 000 inhabitants. To select epidemic periods, we chose the arbitrary threshold of weekly
incidence of 160 cases per 100, 000 inhabitants (Cauchemez et al., 2008), leading to 28 epidemic dynamics. Two
epidemics have been discarded due to their bimodality (1991-1992 and 1998). Therefore, U = 26 epidemic dy-
namics are considered for inference.

Compartmental model Let us consider the SEIR model (see Figure 4). An individual is considered exposed (E)
when infected but not infectious. Denote η = (λ, ε, γ, x0), with x0 = (s0, e0, i0, r0), the parameters involved in the
transition rates, where ε is the transition rate from E to I. ODEs of the SEIR model are as follows:



ds
dt (η, t) = −λs(η, t)i(η, t),
de
dt (η, t) = λs(η, t)i(η, t) − εe(η, t),
di
dt (η, t) = εe(η, t) − γi(η, t),
dr
dt (η, t) = γi(η, t),
x0 = (s0, e0, i0, r0).

(24)

S E I R
λI/N ε γ

Fig. 4 SEIR compartmental model with four blocks corresponding respectively to susceptible (S), exposed (E), infectious (I) and
recovered (R) individuals. Transitions of individuals from one health state to another are governed by the transmission rate λ, the
incubation rate ε and the recovery rate γ.

Another parametrization exhibits the basic reproduction number R0 = λ
γ
, the incubation period dE = 1

ε
and

the infectious period dI = 1
γ
. Thus, the epidemic pamareters are η = (R0, dE , dI , s0, e0, i0)′. Let us describe the

two-layer model used in the sequel.

Intra-epidemic variability For each epidemic u, let Xu =
(

S u
Nu
, Eu

Nu
, Iu

Nu

)′
and

ηu =
(
R0,u, dE,u, dI,u, su,0, eu,0, iu,0

)
,

where the population size is fixed at Nu = N = 100, 000. Denote by Incu(tk) the number of newly infected
individuals at time tk for epidemic u. We have

Incu(tk) =

∫ tk

tk−1

1
dE,u

Eu(t)dt = S u(tk−1) − S u(tk) + Eu(tk−1) − Eu(tk) = −(∆kS u + ∆kEu).

Observations are modeled as incidence data observed with Gaussian noises. We draw our inspiration from (Bretó,
2018) to account for over-dispersion in data. Therefore, assuming a reporting rate pu for epidemic u, the mean
and the variance of the observed newly infected individuals are respectively defined as puIncu(tk) and puIncu(tk)+

τ2
u p2

uIncu(tk)2, where parameter τu is introduced to handle over-dispersion in the data. Denote φu =
(
ηu, pu, τ

2
u

)
.

Therefore, we use the model defined in (18) with ∆kXu =
(
∆kS u

N , ∆k Eu
N , ∆k Iu

N

)′
, Vu,k ∼ Nd (0,Tk(φu, ∆)), W̃u,k ∼

Nq(0, P̃k(φu)), Gk(·), Ak−1(·) and Tk(·) deriving from (25) in Appendix A, B̃(φu) = (−pu − pu 0) and

P̃k(φu) =
1
N

(
B̃(φu)∆k xu + τ2

u

(
B̃(φu)∆k xu

)2
)
,

where x(·, t) is the ODE solution of (24).

Inter-epidemic variability Let us first comment on the duration of the incubation period dE and of the infectious
period dI . Studies in the literature found discrepant values of these durations (see Cori et al., 2012 for a review),
varying from 0.64 (Fraser et al., 2009) to 3.0 (Pourbohloul et al., 2009) days for the incubation period and from
1.27 (Fraser et al., 2009) to 8.0 (Pourbohloul et al., 2009) days for the infectious period. For example, Cori et al.,
2012 estimated that dE = 1.6 and dI = 1.0 days on average using excretion profiles from experimental infections.
In two other papers, these durations were fixed according to previous studies (e.g. Mills et al., 2004, Ferguson
et al., 2005): (dE , dI) = (1.9, 4.1) days (Chowell et al., 2008); (dE , dI) = (0.8, 1.8) days (Baguelin et al., 2013).
Performing a systematic review procedure from viral shedding and/or symptoms, Carrat et al., 2008 estimated dE

to be between 1.7 and 2.0 on average. For identifiability reasons, we consider the latent and infectious periods dE

and dI known and test three combinations of values: (dE , dI) = (1.6, 1.0), (0.8, 1.8) and (1.9, 4.1).
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We consider that the basic reproduction number R0 and the reporting rate p are random, reflecting the assump-
tions that the transmission rate of the pathogen varies from season to season and the reporting could change
over the years. Moreover, we assume eu(0) = iu(0) random and unknown (i.e. the proportion of initial exposed
and infectious individuals is variable between epidemics). Cauchemez et al., 2008 assumed that at the start of
each influenza season, a fixed average of 27% of the population is immune, that is r0,u = r0 = 0.27. To as-
sess the robustness of the model with respect to the r0 value, we test three values: r0 ∈ {0.1, 0.27, 0.5}. This
leads to s0,u = 1 − r0 − 2i0,u random and unknown. Finally, we assume that τ2

u = τ2 is fixed and unknown.
To sum up, we have to consider in the model: known parameters (dE , dI) ∈ {(0.8, 1.8), (1.6, 1.0), (1.9, 4.1)} and
r0 ∈ {0.1, 0.27, 0.5}; fixed and unknown parameter τ2 ; random and unknown parameters R0, i0 and p.

Therefore, using (19), we consider the following model for random parameters:

φu =
(
R0,u, pu, i0,u, τ2

)′
= h(β, ξu), with

h1(β, ξu) = exp
[
β1 + ξ1,u

]
+ 1,

h j(β, ξu) =
1

1 + exp
[
−(β j + ξ j,u)

] , j = 2, 3,

h4(β, ξu) = exp
[
β4

]
,

where fixed effects β ∈ R4 and the random effects are ξu ∼i.i.d. N3(0, Γ) with Γ a covariance matrix assumed to
be diagonal.

Parameter estimates We consider nine models with different combinations of values of ((dE , dI), r0). Using im-
portance sampling techniques, we estimate the observed log-likelihood of each model from the estimated param-
eters values initially obtained with the SAEM algorithm. Table 3 provides the estimated log-likelihood values
of the nine models of interest. Irrespectively of the r0 value, we find that the model with (dE , dI) = (1.9, 4.1)
outperforms the two other models in terms of log-likelihood value. Moreover, for a given combination of values
of (dE , dI), the estimated log-likelihood values are quite similar according to the three r0 tested values.

Table 3 Estimated values of the observed log-likelihood of the model obtained by testing nine combinations of values of ((dE , dI ), r0).

(dE , dI ) r0 Estimated log-likelihood
(0.8,1.8) 0.1 9011.752

0.27 8827.870
0.5 8499.452

(1.6,1.0) 0.1 9147.108
0.27 8961.991
0.5 8643.562

(1.9,4.1) 0.1 10270.000
0.27 10216.260
0.5 9905.436

Let us focus on the model with (dE , dI) = (1.9, 4.1). Table 4 presents the estimation results of the model parame-
ters obtained by testing the three values of r0: 0.1, 0.27 and 0.5.

Table 4 Estimates of the mean, 5th and 95th percentiles and coefficient of variation (CV) for model parameters
(
R0,u, i0,u, pu, τ

2
)′

,
assuming (dE , dI ) = (1.9, 4.1) and testing three values of r0: 0.1, 0.27 and 0.5. For fixed parameter, only the estimated mean is available.

R0,u pu i0,u τ2

Estimated mean r0 = 0.1 1.810 0.069 0.010 0.025
r0 = 0.27 2.238 0.084 0.008 0.013
r0 = 0.5 3.281 0.119 0.006 0.037

Estimated [5th,95th] percentiles r0 = 0.1 [1.470,2.264] [0.026,0.138] [0.003,0.023] —
r0 = 0.27 [1.787,2.825] [0.031,0.169] [0.002,0.019] —
r0 = 0.5 [2.696,3.977] [0.044,0.238] [0.002,0.014] —

Estimated CV r0 = 0.1 14 % 53 % 67 % —
r0 = 0.27 14 % 52 % 72 % —
r0 = 0.5 12 % 51 % 74 % —

The average estimated value of R0 is quite contrasted according to the r0 value: between 1.81 and 3.28 from
r0 = 0.1 to r0 = 0.5. By comparison, in (Cauchemez et al., 2008), R0 is estimated to be 1.7 during school term,
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and 1.4 in holidays, using a population structured into households and schools. Chowell et al., 2008 estimated
a different reproduction number R̃ = (1 − r0)R0 = 1.3, measuring the transmissibility at the beginning of an
epidemic in a partially immune population, from mortality data. In our case, the average value of R̃ is estimated
to 1.63, 1.63 and 1.64 when r0 = 0.1, 0.27 and 0.5 respectively. Therefore, given the nature of the observations
(new infected individuals) and the considered model, this appears to be difficult to correctly identify R0 together
with r0. Indeed, the fraction of immunized individuals at the beginning of each seasonal influenza epidemic is
an important parameter for the epidemic dynamics, but its value is not well known. This has implications for the
stability of the estimation of the other parameters. Interestingly, the average reporting rate is estimated particularly
low (around 10% irrespective of the r0 value). Moreover, we observe that R0 together with p and i0 seem to be
variable from season to season, with moderate coefficient of variation CV(R0,u) close to 15% and high coefficients
of variation CV(pu) and CV(i0,u) around 50% and 70% respectively.

Fig. 5 Post-predictive check. Observations (number of ILI as proxy for new infectious for each of the U epidemics) (blue). Simulated
trajectories obtained for r0 = 0.1 (red), r0 = 0.27 (magenta) and r0 = 0.5 (green) in three steps: (i) generation of 1000 φ̂u values
based on estimated values of parameters; (ii) given φ̂u, simulation of 1000 epidemics according to the model (18); (iii) computation
of average trajectory (solid line) and 5th and 95th percentiles (dotted lines) of the 1000 simulated epidemics. Population size fixed to
N = 100, 000.

The post-predictive check is shown in Figure 5. The difference between the average simulated curves obtained
with estimated parameter values is negligible according to the r0 value. Considering the values of R̃, very close in
the three scenarios, the proximity of the predicted trajectories is not surprising. Let us emphasize that the majority
of the observations are within the predicted envelope (5th and 95th percentiles). Moreover, the predicted average
trajectory informs about generic trends of influenza outbreaks: on average, the epidemic peak should be reached
around 25 days after the beginning of the outbreak with an incidence of 90/100, 000 inhabitants approximately.

6 Discussion

In this paper, we propose a generic inference method taking into account simultaneously in a unique model mul-
tiple epidemic trajectories and providing estimations of key parameters from incomplete and noisy epidemic data
(prevalence or incidence). The framework of the mixed-effects models was used to describe the inter-epidemic
variability, whereas the intra-epidemic variability was modeled by an autoregressive Gaussian process. The Gaus-
sian formulation of the epidemic model for prevalence data used in (Narci et al., 2021) was extended to the case
where incidence data were considered. Then, the SAEM algorithm was coupled with Kalman-like filtering tech-
niques in order to estimate model parameters.

The performances of the estimators were investigated on simulated data of SIR dynamics, under various scenar-
ios, with respect to the parameter values of epidemic and observation processes, the number of epidemics (U),
the average number of observations for each of the U epidemics (n̄) and the population size (N). The results
show that all estimates are close to the true values (reasonable biases), whatever the inter-epidemic variability
setting, even for small values of n̄ and U. The performances, in term of precision, are improved when increasing
U, whereas the bias and standard deviations of the estimations decrease when increasing n̄. We also compared
our method with a two-step empirical approach that processes the different data sets separately and combines
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the individual parameter estimates a posteriori to provide an estimate of inter-epidemic variability (Narci et al.,
2021). When the number of observations is too low and/or the coefficient of variation of the random effects is
high, SAEM-KM clearly outperforms KM.

The proposed inference method was also evaluated on an influenza data set provided by the Réseau Sentinelles,
consisting in the daily number of new infectious individuals per 100, 000 inhabitants between 1990 and 2017 in
France, using a SEIR compartmental model. Testing different combinations of values for (dE , dI) and r0, we find
that (dE , dI) = (1.9, 4.1) leads to the best fitting model. Then, irrespective to the r0 value, we estimated an average
value of R̃ = (1 − r0)R0 to be around 1.6. Moreover, we highlighted a non-negligible variability from season
to season that is quantitatively assessed. This variability appears especially in the initial conditions (i0) and the
reporting rate (p), as a combined effect of observational uncertainties and differences between seasons. Although
to a lesser extent, R0 also appears to vary between seasons, plausibly reflecting the variability in the transmission
rate (λ). Obviously, the estimations can strongly depend on the choice of the compartmental model, the nature
and frequency of the observations and the distribution of the random parameters. Our contribution is to propose
a finer estimation of the model parameters by taking into account simultaneously all the influenza outbreaks in
France for the inference procedure. This leads to an explicit and rigorous estimation of the seasonal variability.

Other methods have been implemented to deal with multiple epidemic dynamics. Bretó et al., 2020 proposed a
likelihood-based inference methods for panel data modeled by non-linear partially observed jump processes in-
corporating unit-specific parameters and shared parameters. Nevertheless, the framework of mixed-effects models
was not really investigated. Prague et al., 2020 used an ODE system with mixed effects on the parameters to anal-
yse the first epidemic wave of Covid-19 in various regions in France by inferring key parameters from the daily
incidence of infectious ascertained and hospitalized infectious cases. To our knowledge, there are no published
studies aiming at the estimation of key parameters simultaneously from several outbreak time series using both a
stochastic modeling of epidemic processes and random effects on model parameters.

The main advantage of our method is to propose a direct access to the inter-epidemic variability between multiple
outbreaks. Taking into account simultaneously several epidemics in a unique model leads to an improvement of
statistical inference compared with empirical methods which consider independently epidemic trajectories. For
example, we can mention two experimental settings: (1) the number of epidemics is high but the number of ob-
servations per epidemic is low; (2) the number of observations per epidemic is high but the number of epidemics
is low. In such cases, mixed-effects approaches can provide more satisfying estimation results. This benefit more
than compensates for the careful calibration of the tuning parameters of the SAEM algorithm.

In some practical cases in epidemiology, it might be difficult to determine whether a parameter is fixed or random.
Consequently, our approach could be associated with model selection techniques to inform this choice, using
a criterion based on the log-likelihood of observations (see for instance (Delattre et al., 2014) and (Delattre
and Poursat, 2020)). This would allow to determine more precisely which parameters reflect inter-individual
variability and thus help to better understand the mechanisms underlying this variability. Moreover, we presented
a case study on influenza outbreaks, where the variability between epidemics is seasonal, but our approach can be
also applied on epidemics spreading simultaneously in many regions. In this case, the inter-epidemic variability
is spatial and it would be interesting to evaluate trends from one region to another.
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A Key quantities involved in the SEIR epidemic model

In the SEIR model, epidemic parameters are the transition rates λ, ε and γ and the initial proportions of suscepti-
ble, exposed and infectious individuals s0 =

S (0)
N , e0 =

E(0)
N and i0 =

I(0)
N . When there is no ambiguity, we denote

by s, e and i respectively the solutions s(η, t), e(η, t) and i(η, t) of the system of ODEs defined in (24). Then, the
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functions b(η, ·) and Σ(η, ·) are

b(η, s, e, i) =

 −λsi
λsi − εe
εe − γi

 ; Σ(η, s, e, i) =

 λsi −λsi 0
−λsi λsi + εe −εe

0 −εe εe + γi

 , (25)

and the Cholesky decomposition of Σ(η, ·) yields

σ(η, s, e, i) =


√
λsi 0 0

−
√
λsi

√
εe 0

0 −
√
εe
√
γi

 .

B Details on the Kalman filter equations for incidence data of epidemic dynamics

Consider the model (16). Assume that L(∆1X) = Nd(G1,T1) and L(Y1|∆1X) = Nq(B∆1X, P1). Let ∆̂1X = G1 =

x(t1) − x0 and Ξ̂1 = T1. Then, at iteration k = 1, the three steps of the Kalman filter are:

1. Prediction: L(∆2X|Y1) = Nd(∆̂2X, Ξ̂2)

∆̂2X = G2 + (A1 − Id)∆1X

Ξ̂2 = (A1 − Id)T 1(A1 − Id)′ + T2

2. Updating: L(∆1X|Y1) = Nd(∆1X,T 1)

∆1X = ∆̂1X + Ξ̂1B̃′(B̃Ξ̂1B̃′ + P̃1)−1(Y1 − B̃∆̂1X)

T 1 = Ξ̂1 − Ξ̂1B̃′(B̃Ξ̂1B̃′ + P̃1)−1B̃Ξ̂1

3. Marginal: L(Y2|Y1) = N(M̂2, Ω̂2)

M̂2 = B̃∆̂2X

Ω̂2 = B̃Ξ̂2B̃′ + P̃2

Now, starting from the distribution of L(∆2X|Y1), the Kalman filter at iteration k = 2 becomes:

1. Prediction: L(∆3X|Y2,Y1) = Nd(∆̂3X, Ξ̂3)

∆̂3X = G3 + (A2 − Id)(∆1X + ∆2X)

Ξ̂3 = (A2 − Id)(T 1 + T 2)(A2 − Id)′ + T3

2. Updating: L(∆2X|Y2,Y1) = Nd(∆2X,T 2)

∆2X = ∆̂2X + Ξ̂2B̃′(B̃Ξ̂2B̃′ + P̃2)−1(Y2 − B̃∆̂2X)

T 2 = Ξ̂2 − Ξ̂2B̃′(B̃Ξ̂2B̃′ + P̃2)−1B̃Ξ̂2

3. Marginal: L(Y3|Y2,Y1) = N(M̂3, Ω̂3)

M̂3 = B̃∆̂3X

Ω̂3 = B̃Ξ̂3B̃′ + P̃3

Proof: We just have to prove that, conditionally on Y1, Y2, ∆1X and ∆2X are independent. First, we have:

∆3X = G3 + A2(∆1X + ∆2X) + U3.

Hence:

E(∆3X|Y2,Y1) = G3 + A2(E(∆1X|Y1) + E(∆2X|Y2,Y1)) = G3 + A2(∆1X + ∆2X).

Let t1, t2 ∈ Rd. Then, we can compute the characteristic function of ∆1X + ∆2X conditionally to Y2, Y1:

E
[
exp

(
it′1∆1X + it′2∆2X

)
|Y2,Y1

]
= E

[
exp

(
it′1∆1X

)
|Y2,Y1

]
E

[
exp

(
it′2∆2X|∆1X

)
,Y2,Y1

]
= exp

(
t′1∆1X +

1
2

t′1T 1

)
× exp

(
t′2∆2X +

1
2

t′2T 2

)
.
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Consequently, conditionally to Y1, Y2, ∆1X and ∆2X are independent and

Var(∆1X + ∆2X|Y2,Y1) = T 1 + T 2.

�

Then, the generalization to the case k ≥ 1 is direct, leading to the Kalman filter described in Section 3 for
incidence data.

C Practical considerations on implementation setting

Let us make some remarks on practical implementation.

– Two strategies for the choice of the step-size αm at a given iteration m of the SAEM algorithm are combined,
as recommended in (Lavielle, 2014): first, denoting by M0 the number of burn-in iterations, we use αm = 1
if m ≤ M0 to quickly converge to a neighborhood of the solution and then, αm = 1

(m−M0)ν0 if m > M0 with
1
2 ≤ ν0 ≤ 1 to ensure almost sure convergence of the sequence (θm) to the maximum likelihood estimate of θ.

– An extended algorithm for non-exponential models is proposed to include fixed effects (see e.g. Debavelaere
and Allassonnière, 2021). Let κ be a fixed parameter to be estimated. First, for m = 1, . . . ,M0, we use the
classical procedure of the SAEM algorithm, that is a mean and a variance of the parameter is estimated at
each iteration as if it were a random parameter. Then, at each new iteration m + 1, the current variance of the
parameter, denoted ω(m+1)

κ , is updated as: ω(m+1)
κ = K0 × ω

(m)
κ , with 0 < K0 < 1.

– Due to the small influence of the number of iterations in the Metropolis-Hastings procedure (see e.g. Kuhn and
Lavielle, 2005), a single iteration is used. Furthermore, if the proposal distribution is the marginal distribution
p(Φ; θ̃), the expression of the acceptance probability is simplified as follows:

ρ(Φm−1,Φ
(c)) = min

[
1,

p(y|Φ(c); θ̃)
p(y|Φm−1; θ̃)

]
.

– A stopping criterion for the SAEM algorithm is considered. Denote by θ(m)
j the j-th component of θ estimated

at iteration m of the SAEM algorithm. Then, the algorithm stops either when the criterion

max
j

 |θ(m)
j − θ

(m−1)
j |

|θ(m)
j |

 < µ0

is satisfied several times consecutively or when a limit of Mmax iterations is reached. The value of µ0 is chosen
sufficiently small (e.g. of the order of 10−3 or 10−4).

– As the convergence of the SAEM algorithm can strongly depend on the initial guess, a simulated anneal-
ing version of SAEM (Kirkpatrick, 1984) is used to escape from potential local maxima of the likelihood
during the first iterations and converge to a neighborhood of the global maximum. Let Γ̂

(
φ

( j)
m

)
the esti-

mated variance of the j-th component of Φm at iteration m of the SAEM algorithm. Then, while m ≤ M0,
Γ

( j)
m = max

[
τ0 Γ

( j)
m−1, Γ̂

(
φ

( j)
m

)]
with 0 < τ0 < 1. For m > M0, the usual SAEM algorithm is used to estimate

the variances at each iteration (see e.g. Lavielle, 2014).

– For the initialization of the SAEM algorithm, the starting parameter values β0 of the fixed effects β are uni-
formly drawn from a hypercube encompassing the likely true values. The initial variances Γ0 are chosen
sufficiently large (1 by default).

– When the sampling intervals between observations ∆ are large, the approximation of the resolvent matrix
proposed in (Narci et al., 2021), Appendix A, is used.

– Concerning the KM approach, we use the Nelder-Mead method implemented in the optim function of the R
software to maximize the approximated log-likelihood given by the Kalman filter. This requires to provide
some initial values for the unknown parameters. As the optimization can be very sensitive to initialisation,
10 different starting values are considered and the maximum value for the log-likelihood among them are
chosen. The starting parameter values for the maximization algorithm are uniformly drawn from a hypercube
encompassing the likely true values.

For simulation studies in Section 4.1, the tuning parameters values are chosen as: M0 = 500, ν0 = 0.6, K0 = 0.87,
µ0 = 0.001, Mmax = 1000 and τ0 = 0.98. Concerning the investigation of influenza outbreaks in Section 5, we
chose: M0 = 5000, ν0 = 0.6, K0 = 0.87, µ0 = 0.0001 and τ0 = 0.98. The algorithm stops when the criterion is
checked 100 times successively.
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D Estimation results for a second set of parameter values

D.1 Simulation settings

We consider a second set of parameter values which induces a lower intrinsic variability between epidemics. As
for the first set of values, we consider two settings (denoted respectively (i) and (ii)) corresponding to two levels
of inter-epidemic variability (resp. high and moderate):

– Setting (i): β = (0.58, 1.10, 1.45,−2.20)′ and Γ = diag(0.472, 1.52, 0.752) corresponding to E
(
R0,1:U

)
= 3,

CVR0 = 33%; d = 3; E (p1:U ) ≈ 0.74, CVp ≈ 31%; E
(
i0,1:U

)
≈ 0.12, CVi0 ≈ 66%.

– Setting (ii): β = (0.66, 1.10, 1.45,−2.2)′ and Γ = diag(0.252, 0.92, 0.52) corresponding to E
(
R0,1:U

)
= 3,

CVR0 = 17%; d = 3; E (p1:U ) ≈ 0.78, CVp ≈ 18%; E
(
i0,1:U

)
≈ 0.11, CVi0 ≈ 45%.

D.2 Point estimates and standard deviation for inferred parameters

Tables 5 and 6 show the estimates of the expectation and standard deviation of the random effects φu, computed
from the estimations of β and Γ using functions h defined in (23), for settings (i) and (ii). For each parameter, the
reported values are the mean of the J = 100 parameter estimates φu, j, j ∈ {1, . . . , J}, and their standard deviations
in brackets.

Table 5 Estimates for setting (i): high inter-epidemic variability. For each combination of (n,U) and for each model parameter (defined
in the first line of the table), point estimates and precision are calculated as the mean of the J = 100 individual estimates and their
standard deviations (in brackets).

Parameters E
(
R0,u

)
d E (pu) E

(
i0,u

)
sd

(
R0,u

)
sd (pu) sd

(
i0,u

)
True values 3.000 3.000 0.739 0.119 1.000 0.226 0.079

n = 20 U = 20 3.085 2.889 0.758 0.111 1.477 0.205 0.075
(0.460) (0.205) (0.060) (0.016) (0.666) (0.036) (0.018)

U = 50 3.152 2.926 0.761 0.111 1.509 0.199 0.075
(0.360) (0.170) (0.049) (0.011) (0.457) (0.025) (0.012)

U = 100 3.116 2.904 0.765 0.111 1.517 0.200 0.077
(0.307) (0.152) (0.046) (0.008) (0.366) (0.018) (0.009)

n = 100 U = 20 2.929 2.932 0.742 0.116 1.124 0.212 0.075
(0.263) (0.144) (0.047) (0.016) (0.332) (0.029) (0.017)

U = 50 3.002 2.973 0.749 0.116 1.186 0.207 0.075
(0.242) (0.116) (0.031) (0.012) (0.315) (0.022) (0.011)

U = 100 2.952 2.942 0.751 0.115 1.159 0.212 0.075
(0.148) (0.090) (0.022) (0.008) (0.155) (0.018) (0.007)

Table 6 Estimates for setting (ii): moderate inter-epidemic variability. For each combination of (n,U) and for each model parameter
(defined in the first line of the table), point estimates and precision are calculated as the mean of the J = 100 individual estimates and
their standard deviations (in brackets).

Parameters E
(
R0,u

)
d E (pu) E

(
i0,u

)
sd

(
R0,u

)
sd (pu) sd

(
i0,u

)
True values 3.000 3.000 0.777 0.109 0.500 0.143 0.049

n = 20 U = 20 3.183 3.051 0.771 0.106 0.811 0.128 0.046
(0.292) (0.164) (0.046) (0.012) (0.321) (0.029) (0.011)

U = 50 3.201 3.050 0.765 0.106 0.874 0.132 0.048
(0.208) (0.116) (0.035) (0.008) (0.241) (0.018) (0.007)

U = 100 3.232 3.068 0.765 0.106 0.906 0.132 0.048
(0.189) (0.103) (0.028) (0.005) (0.212) (0.013) (0.005)

n = 100 U = 20 3.037 3.051 0.770 0.110 0.563 0.135 0.046
(0.169) (0.100) (0.037) (0.012) (0.206) (0.026) (0.011)

U = 50 3.064 3.055 0.764 0.110 0.632 0.139 0.048
(0.117) (0.080) (0.023) (0.009) (0.142) (0.016) (0.007)

U = 100 3.059 3.057 0.768 0.110 0.619 0.141 0.048
(0.088) (0.061) (0.019) (0.005) (0.094) (0.013) (0.004)
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As for the first set of parameters values, all point estimates are closed to the true values. The standard error of the
estimates decreases when the number of epidemics U and the number of observations n̄ increases, whereas the
bias is only sensitive to n̄ (bias decreasing when n̄ increasing).

For a given data set, Figure 6 displays convergence graphs for model parameters in setting (i) with U = 100 and
n̄ = 100.

Fig. 6 Convergence graphs of the SAEM algorithm for estimates of β = (β1, β2, β3, β4) and diag(Γ) = (Γ1, Γ3, Γ4). Setting (i) with
U = 100 and n̄ = 100. Parameter values at each iteration of the SAEM algorithm (plain blue line) and true values of model parameters
(dotted red line).

We notice that all model parameters converge towards their true value.
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