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ABSTRACT

Modeling relations between local optimum parameter vectors in
multitask networks has attracted much attention over the last years.
This work considers a distributed optimization problem for param-
eter vectors with a jointly sparse structure among nodes, that is,
the parameter vectors share the same support set. By introducing
an `∞,1-norm penalty at each node, and using a proximal gradient
method to minimize the regularized cost, we devise a proximal mul-
titask diffusion LMS algorithm which promotes the joint-sparsity
to enhance the estimation performance. Analyses are provided to
ensure the stability. Simulation results are presented to highlight the
performance.

Index Terms— Distributed optimization, diffusion strategy,
proximal operator, joint sparsity, `∞,1-norm regularization.

1. INTRODUCTION

Diffusion adaptation has been widely used in multi-agent networks
to address estimation problems in a distributed and online manner
due to their superior performance and wide stability range [1]. Sev-
eral diffusion algorithms have been devised under specific settings
in the literature [2–6].

According to the relations between the optimal parameter vec-
tors over the entire network, diffusion networks are divided into
single-task and multitask networks. In single-task networks, all
nodes estimate the same parameter vector. Typical works in-
clude [7–9]. In multitask networks, multiple different but related
parameter vectors are inferred simultaneously in a cooperative man-
ner, so as to improve the estimation accuracy by exploiting the
similarities between tasks. One of the efficient ways to leverage
these similarities is to introduce appropriate regularization terms.
Related works include [10–13].

Multitask learning considerably enriches the modelling capacity
of diffusion networks. Beyond the multitask models appeared in the
aforementioned references, there are also applications where the op-
timal parameter vectors have a jointly sparse structure. Applications
include, for instance, distributed dictionary learning and distributed
spectrum sensing [14, 15]. Several works have been proposed to ad-
dress problems with jointly sparse structure over diffusion networks.
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In [16], the authors propose to use the mixed `2,0-norm. In [17],
the authors devise an algorithm with `2,0, `2,1 and reweighted `2,1
regularizers. However, these works use the subgradient method be-
cause the objective functions involve non-differentiable regulariza-
tion terms, which is unfavorable for an accurate and fast conver-
gence.

Compared to subgradient-based methods, it is known that us-
ing proximal operators is a more efficient way to solve optimization
problems with non-differentiable regularizers. It often results in it-
erations with subproblems that admit closed-form solutions or can
be solved with simple specialized methods [18]. For distributed es-
timation over networks, proximal algorithms have been used to esti-
mate sparse parameter vectors in [19]. They are further used to op-
timize general stochastic costs with non-differentiable regularizers,
and non-smooth regularizers in [20] and [21], respectively. Under
the multitask assumption, the authors in [11] derive a closed-form
solution to the proximal operator of the `1-distance between param-
eter vectors. In this paper, we propose a proximal diffusion LMS
strategy for multitask networks with jointly sparse structure. In con-
trast to existing works [16, 17], the optimization problem is formu-
lated with the `∞,1-norm regularization on the parameter matrices,
and the closed-form solution for the proximal operator under this
case is derived. Conditions to ensure the stability in the mean and
mean-square sense are also provided. The superiority of the pro-
posed method is validated with numerical experiments.

Notation. Normal font x, boldface small letters x and capital let-
ters X denote scalars, column vectors and matrices, respectively.
Symbol [ · ]m denotes the m-th entry of its vector argument. The su-
perscript (·)> denotes the transpose operator. The mathematical ex-
pectation is denoted by E{·}. The Gaussian distribution with mean
µ and variance σ2 is denoted by N (µ, σ2). Operator | · | takes the
absolute value of its scalar or vector argument. Operator max{·,·}
extracts the maximum value of its two arguments. Symbol� denotes
a component-wise inequality. The set Nk denotes the neighbors of
node k, including k itself, and |Nk| denotes its cardinality. TheN−k
denotes the neighbors of node k, excluding node k. Vector 1L is the
all-one vector of dimension L× 1.

2. PROBLEM FORMULATION

Consider a connected network consisting of N nodes. Each node k
has access to streaming data {dk,n,uk,n} at time instant n, where
uk,n ∈ IRL×1 is the regression vector and dk,n denotes the observed
signal. We assume that the data at time instant n are related via the
linear model:

dk,n = u>k,nw
?
k + zk,n, (1)



where w?
k ∈ IRL×1 is the unknown system vector to estimate, and

zk,n is a zero-mean additive noise. We assume that zk,n is indepen-
dent of any other signal. Further, we assume that vectors w?

k over
the entire network are jointly sparse. This means not only each w?

k

is a sparse vector but, in addition, they all share the same support,
namely,

supp(w?
1) = · · · = supp(w?

k) = · · · = supp(w?
N ) (2)

where supp(w?
k) , {j : [w?

k]j 6= 0} is the support ofw?
k [22].

In this work, we focus on distributed processing where only local
information exchange is authorized. We thus collect w?

` over the
neighborhood of node k into an L × |Nk| matrix, and replace the
k-th column w?

k by the optimization variable wk. This leads us to
the local parameter matrix:

Wk ,
[
wk, w

?
` with ` ∈ N−k

]
∈ IRL×|Nk|. (3)

Without loss of generality, we suppose that the columns of Wk are
sorted in increasing order according to the values of k and `. Several
mixed-norms have been introduced in the literature to promote the
jointly sparse structure of a matrix, including the mixed `2,1-norm
and `∞,1-norm. Evaluating the mixed `p,1-norm of matrixWk with
p = 2 or∞ results in the following two steps:

Step 1: Evaluate the `p-norm of each row of Wk, and stack the
results into an L× 1 intermediate vector;

Step 2: Evaluate the `1-norm of the obtained intermediate vector
to promote sparsity.

Though `2,1-norm can be more efficient in some cases [23], we
shall consider the `∞,1-norm to promote the joint-sparsity. It is
element-wise separable and facilitates the derivation of the proximal
operator.

3. PROXIMAL MULTITASK DIFFUSION LMS

Before proceeding, to facilitate the following derivation we also de-
noteWk by

Wk =
[
w̄>k,1 · · · w̄>k,m · · · w̄>k,L

]>
, (4)

where w̄k,m is the m-th row of matrix Wk. To determine the un-
known vectorsw?

k with jointly sparse structure, we consider the reg-
ularized cost at node k:

Jk(wk) = J ′k(wk) + λkg(wk) (5)

with J ′k(wk) , 1
2
E
{
|dk,n − u>k,nwk|2

}
. The nonnegative pa-

rameter λk is used to control the regularization strength, g(wk) ,∑L
m=1 ‖w̄k,m‖∞ evaluates the `∞,1-norm ofWk. At each node k,

we then consider the convex optimization problem [24]:

w†k = argmin
wk

Jk(wk). (6)

Within the context of online learning, such optimization problem
is usually solved via subgradient-based methods. In this paper, we
propose to devise a proximal algorithm since it is more stable than
subgradient iterations [19, 25]. Proximal gradient methods generate
a sequence of estimates by the following iterations [18]:

wk,n+1 = proxµkλkg

(
wk,n − µk∇J ′k(wk,n)

)
, (7)

where µk is a positive small step-size, and the proximal operator is
defined by

proxλg(v) , argmin
wk

(
g(wk) +

1

2λ
‖wk − v‖22

)
. (8)

By introducing the intermediate quantity ψk,n+1, calculating
the gradient of J ′k(wk) atwk,n and using instantaneous approxima-
tion for unknown statistical quantities, we obtain from (7) the prox-
imal multitask diffusion LMS algorithm for jointly sparse networks
reported in Algorithm 1. Different from regular diffusion algorithms
where the intermediate estimates are fused by weighted average, in
this algorithm, estimates from neighboring nodes are fused via the
proximal operator of g(wk,n).

Algorithm 1: Proximal multitask diffusion LMS

1 Initializewk,0 for all k = 1, 2, · · · , N , and repeat:{
ψk,n+1 = wk,n+µkuk,n

(
dk,n − u>k,nwk,n

)
wk,n+1 = proxµkλkg

(
ψk,n+1

) (9)

4. PROXIMAL OPERATOR EVALUATION

To perform Algorithm 1, we need to derive a closed-form expression
for the following proximal operator:

wk,n+1 =proxµkλkg
(ψk,n+1)

=argmin
wk

(
g(wk)+

1

2µkλk
‖wk−ψk,n+1‖22

)
. (10)

As g(wk) is separable over its all entries, its proximal operator can
be evaluated in an element-wise manner as [18]:

[proxµkλkg
(ψk,n+1)]

m
= proxµkλkgm

([ψk,n+1]m) (11)

with gm([wk]m) , ‖w̄k,m‖∞, [wk]m is the m-th entry ofwk, and
w̄k,m is the m-th row of matrixWk in (3). This leads us to:

[wk,n+1]m = argmin
[wk]m

(
max{|[wk]m|, |[w

?
` ]m| with ` ∈ N−k }

+
1

2µkλk

(
[wk]m − [ψk,n+1]m

)2)
. (12)

For ease of presentation, we shall denote [wk,n+1]m by ŵ as long as
there is no ambiguity, and denote the maximal value of |[w?

` ]m| for
` ∈ N−k as [wo

k]m. According to the relation between |[wk]m| and
[wo

k]m, we further split the problem into the following two cases:

• Case 1: |[wk]m| < [wo
k]m. In this case, (12) becomes:

ŵ= argmin
[wk]m

|[wk]m|<[wo
k]m

[wo
k]m+

1

2µkλk

(
[wk]m−[ψk,n+1]m

)2
.

(13)
The solution is directly given by:

ŵ =


[ψk,n+1]m, if |[ψk,n+1]m| < [wo

k]m
[wo

k]m, if [ψk,n+1]m ≥ [wo
k]m

−[wo
k]m, if [ψk,n+1]m ≤ −[wo

k]m.

(14)

• Case 2: |[wk]m| ≥ [wo
k]m. Equation (12) becomes:

ŵ= argmin
[wk]m

|[wk]m|≥[wo
k]m

(
|[wk]m|+

1

2µkλk

(
[wk]m−[ψk,n+1]m

)2)
(15)



We shall first discard the constraint |[wk]m| ≥ [wo
k]m, and

denote by ŵo the solution of the unconstrained problem. As
the cost function in (15) is convex on the real domain, this
constraint will be taken into account in the course of the cal-
culation. Consider first:

ŵo=argmin
[wk]m

(
|[wk]m|+

1

2µkλk

(
[wk]m−[ψk,n+1]m

)2)
(16)

the solution is given by the soft thresholding operator defined
as [26]:

ŵo = Sµkλk

(
[ψk,n+1]m

)
= (17)

[ψk,n+1]m+µkλk, if [ψk,n+1]m<−µkλk
[ψk,n+1]m−µkλk, if [ψk,n+1]m>µkλk

0 otherwise.

If [wo
k]m = 0, problem (15) becomes unconstrained and we

have:

ŵ = ŵo (18)

Otherwise, since problem (15) is convex, considering con-
straint |[wk]m| ≥ [wo

k]m > 0 with (17) leads to:

ŵ = (19)

[ψk,n+1]m+µkλk, if [ψk,n+1]m≤ −[wo
k]m − µkλk

−[wo
k]m, if −[wo

k]m−µkλk< [ψk,n+1]m<0

−[wo
k]m or [wo

k]m, if [ψk,n+1]m = 0

[wo
k]m, if 0< [ψk,n+1]m< [wo

k]m+µkλk

[ψk,n+1]m−µkλk, if [ψk,n+1]m ≥ [wo
k]m+µkλk

To evaluate the proximal operator (12), several issues have to be
addressed.

1. One of the main issues is that we first need to know which of
(14), (17) or (19) has to be applied as the proximal operator of (12).
We now consider the following two cases: [wo

k]m = 0 and [wo
k]m >

0.

• Case A: [wo
k]m = 0. Since condition |[wk]m| < [wo

k]m of
Case 1 cannot hold, we only consider Case 2. The proximal
operator is given by (17) directly.

Let us now consider the second case:

• Case B: [wo
k]m > 0. Proximal operators (14) and (19) hold

simultaneously. We shall choose the solution that minimizes
the cost (12). We arrive at the following expression:

ŵ = (20)

[ψk,n+1]m+µkλk, if [ψk,n+1]m≤ −[wo
k]m − µkλk

−[wo
k]m, if −[wo

k]m−µkλk<[ψk,n+1]m≤−[wo
k]m

[ψk,n+1]m, if
∣∣[ψk,n+1]m

∣∣< [wo
k]m

[wo
k]m, if [wo

k]m≤ [ψk,n+1]m< [wo
k]m+µkλk

[ψk,n+1]m−µkλk, if [ψk,n+1]m ≥ [wo
k]m+µkλk

2. Another issue is that ŵ cannot be evaluated with (17) and
(20) since [wo

k]m is unknown. To bypass this problem, we follow
a strategy adopted in the literature [27] by using ψ`,n+1 as an ap-
proximation of w?

` . An approximation of [wo
k]m is then given by

max
`∈N−

k
{
∣∣[ψ`,n+1]m

∣∣}.

3. Examining expressions in Case A and Case B, we notice that
only the proximal operator (17) in Case A has the capability to drive
[wk]m to zero and promote sparsity. Condition [wo

k]m = 0 has to be
satisfied to trigger Case A, otherwise Case B is considered. Within
the context of online learning with stochastic gradient descent algo-
rithms, due to the existence of gradient noise, the estimates of [wo

k]m
for zero-valued entries often fluctuate around zero rather than being
exact null, so that condition [wo

k]m = 0 of Case A is seldom satis-
fied. To promote the sparsity of the estimates, we introduce a small
positive threshold value τ instead of zero to make a distinguish be-
tween zero-valued and nonzero-valued entries. As a consequence,
we arrive at conditions [wo

k]m ≤ τ to trigger Case A and [wo
k]m > τ

to select Case B. The value of τ needs to be fine-tuned to ensure the
performance.

We summarize the proximal operator of `∞,1-norm in Algo-
rithm 2.

Algorithm 2: Proximal operator of `∞,1-norm

1 Initialization: Choose threshold value τ > 0.
2 Proximal operator: At each instant n ≥ 0, for each node

k, utilize ψk,n+1 to evaluatewk,n+1 in an elementwise
manner:

1. Calculate [wo
k]m as the maximal value of

∣∣[ψ`,n+1]m
∣∣ for

all ` ∈ N−k ;

2. If [wo
k]m ≤ τ , then calculate [wk,n+1]m as ŵo via (17);

3. If [wo
k]m > τ , then calculate [wk,n+1]m as ŵ via (20).

5. CONVERGENCE ANALYSIS

The proximal operator of `∞,1-norm can be expressed as:

proxµkλkg

(
ψk,n+1

)
= ψk,n+1 − γk,n+1, (21)

where γk,n+1 is a vector of dimensionL×1. The explicit expression
of γk,n+1 is omitted here, which can be derived from (17) and (20)
in an element-wise manner. Define

w̃k,n+1 , wk,n+1 −w?
k. (22)

By collecting w?
k, wk,n+1, w̃k,n+1 and γk,n+1 over the entire net-

work into block column vectors, we obtain quantities w?, wn+1,
w̃n+1 and γn+1, respectively. To facilitate theoretical analysis, we
introduce the following assumptions:

A1 (Independent Regressors): The regression vector uk,n, gen-
erated from a zero-mean random process, is temporally stationary,
white (over n) and spatially independent (over k) with covariance
matrixRu,k = E{uk,nu>k,n} > 0.

A2 (Small step-sizes): The step-sizes µk of the network are
small enough, so that terms depending of higher-order powers of
the step-sizes can be ignored.

5.1. Mean behavior analysis

Subtractingw?
k from (9), using signal model (1) and block notations,

and taking expectation under assumption A1, we arrive at the mean
behavior given by:

E{w̃n+1} = BE{w̃n} − E{γn+1}, (23)

where

B , I −UM (24)

M , diag
{
Ru,1,Ru,2, · · · ,Ru,N

}
(25)

E{γn+1} = col
{
E{γ1,n+1}, · · · ,E{γN,n+1}

}
. (26)



We point out that vector E{γk,n+1} is absolutely bounded with
|E{γk,n+1}| � µkλk1L at all time instant n. This can be derived
from the explicit expression of E{γk,n+1}. We provide the follow-
ing condition on the step-size to ensure the mean stability, without
proof due to the limited space.
Theorem 1. (Mean stability) Assume data model (1) and assump-
tion A1 hold. Then for any initial conditions, the distributed net-
works with proximal multitask diffusion LMS algorithm (9) is stable
in the mean, if the step-sizes µk of the network satisfies:

0 < µk <
2

λmax{Ru,k}
, k = 1, · · · , N, (27)

where λmax{·} denotes the maximal eigenvalue of its matrix argu-
ment.

5.2. Mean-square behavior analysis

Under assumptions A1, A2, and ignoring terms containing higher-
order powers of the step-size, then for any semi-positive definite ma-
trix Σ of compatible dimension, the weighted mean-square behavior
of w̃n+1 is given by:

E{‖w̃n+1‖2σ}=E{‖w̃n‖2Fσ}+[vec{H}]>σ + E{‖γn+1‖2σ}

− 2E{w̃>nB>Σγn+1}, (28)

where we use the notations E{‖w̃n+1‖2σ} and E{‖w̃n+1‖2Σ} inter-
changeably with ‖x‖2Σ , x>Σx, and we have defined the follow-
ing quantities:

σ , vec{Σ} (29)

F , B> ⊗B> (30)

H , Udiag
{
σ2
z,1Ru,1, · · · , σ2

z,NRu,N

}
U>. (31)

It is noted that (30) holds only for sufficiently small step-sizes. We
provide the following condition on the step-size to ensure the mean-
square stability, without proof due to the limited space.
Theorem 2. (Mean-square stability) Assume data model (1) and as-
sumptions A1, A2 hold. Further assume that approximation (30) is
reasonable for sufficiently small step-sizes. Then for any initial con-
ditions, the distributed networks with proximal multitask diffusion
LMS algorithm (9) is stable in the mean-square sense, if the step-
sizes µk of the network are sufficiently small and satisfy (27).

6. SIMULATION RESULTS

In this section, we present simulation results to validate the effec-
tiveness of the proposed algorithm. All curves were obtained by
averaging over 100 Monte-Carlo runs.

We considered a nonstationary jointly sparse system identifica-
tion scenario with w?

k varying over time. The evolution of w?
k was

divided into three stationary stages and two transient stages. Dur-
ing stationary stages, sparse vectors w?

k were set to sparsity degree
of 1/30, 5/30 and 3/30, respectively. Each nonzero element of
w?
k was generated independently from standard Gaussian distribu-

tion. The transient stages were designed by using linear interpolation
over 500 time instants. The regressors uk,n were generated from a
zero-mean Gaussian distribution with covariance matrices Ru,k =
σ2
u,kI30 for white inputs, and with Ru,k = σ2

u,kR
† for colored in-

puts, whereR† is an 30×30 Hermite matrix with eigenvalue spread
λmax{R†}
λmin{R†}

= 31, and λmin{·} denotes the minimal eigenvalue of its
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matrix argument. For comparison purpose, non-cooperative diffu-
sion LMS algorithm, sparse diffusion LMS [6] with zero-attracting
(ZA) regularizer and reweighted zero-attracting (RZA) regularizer,
multitask diffusion LMS with adaptive combiner [27] and jointly
sparse multitask diffusion LMS [17] with `2,1-regularization were
taken into consideration. We adopted a uniform step-size 0.01 for all
algorithms. For proximal multitask LMS with `∞,1-regularization,
we set λk to 0.08 and τ to 0.1. For the other algorithms, we adjusted
the parameters to reach the best performance.

The results are illustrated in Fig. 1 for white inputs. We ob-
serve that multitask LMS with adaptive combiner is the worst one
due to inappropriate cooperation between nodes. Since jointly
sparse systems can be regarded as special cases of general sparse
systems, sparse diffusion LMS with ZA regularizer and RZA regu-
larizer work better than non-cooperative LMS. Similarly, two jointly
sparse multitask LMS algorithms have better performance than the
non-cooperative LMS. The proposed proximal multitask LMS with
`∞,1-regularization has the best performance among all compet-
ing algorithms, especially when systems are more sparse. Similar
conclusions can be achieved from Fig. 2 for colored inputs.

7. CONCLUSIONS

Many practical problems of interest happen to have the jointly-sparse
structure. In this paper, by evaluating the proximal operator of `∞,1-
norm, we obtained a proximal multitask diffusion LMS algorithm
for networks with jointly-sparse structure. We derived conditions to
ensure the stabilities in the mean and mean-square sense. Simulation
results illustrated the effectiveness of the proposed algorithm.
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