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Abstract

Modeling relations between local optimum parameter vectors to estimate in multitask networks has attracted much attention
over the last years. This work considers a distributed optimization problem with jointly sparse structure among nodes, that is, the
local solutions have the same sparse support set. Several mixed norm have been proposed to address the jointly sparse structure in
the literature. Among several candidates, the (reweighted) !∞,1-norm is element-wise separable, it is more convenient to evaluate
their approximate proximal operators. Thus by introducing a (reweighted) !∞,1-norm penalty term at each node, and using a
proximal gradient method to minimize the regularized cost, we devise a proximal multitask diffusion LMS algorithm which
can promote joint-sparsity. Analyses are provided to characterize the algorithm behavior in the mean and mean-square sense.
Simulation results are presented to show its effectiveness, as well as the accuracy of the theoretical findings.

Index Terms

Distributed optimization, diffusion strategy, joint sparsity, proximal algorithm, stochastic performance, (reweighted) !∞,1-norm.

I. INTRODUCTION

Because of their superior performance and wider stability range [1], diffusion strategies have been widely used in multi-agent
networks to address estimation problems in a distributed and online manner. Several diffusion strategies have been introduced,
and their performance analyzed in various situations, such as the diffusion LMS [2], RLS [3], and APA [4], as well as several
of their variants [5], [6].

By referring to estimating an optimal parameter vector at a node as a task, and according to the relations between the optimal
parameter vectors over the entire network, diffusion networks are further divided into single-task and multitask networks. In
single-task networks, all nodes estimate the same parameter vector. Typical works related to single-task networks include
[7]–[11]. With multitask networks, multiple but related parameter vectors are inferred simultaneously in a cooperative manner,
so as to improve the estimation accuracy by exploiting the similarities between tasks. These similarities can be promoted
with appropriate regularization terms. Squared !2-norm regularization is used in [12], and !1-norm regularization is considered
in [13], [14]. For the latter, a subgradient and a proximal algorithm are introduced in [13] and [14], respectively. In [15] and
[16], the authors derive solutions for other classes of multitask problems where the relations between the nodes are defined by
common latent representations or local linear equality constraints, respectively. In [17], the authors solve a multitask problem
by estimating the combination matrix. In [18], the authors address multitask problems over asynchronous networks and carry
out a detailed theoretical analysis. In [19], the performance of multitask diffusion networks is analyzed for correlated noise and
regressors. In [20], the authors propose a combination framework that aggregates several diffusion strategies. All the algorithms
cited above are based on the diffusion LMS. In [21], the authors extend the diffusion APA to multitask framework in order to
improve the robustness against correlated regressors. In [22], the authors improve the performance of the multitask diffusion
APA via controlled inter-cluster cooperation. In [23], the authors propose a clustered multitask partial diffusion APA that
transmits only a subset of the entries of the intermediate estimates, to provide a trade-off between the estimation performance
and communication cost.

Multitask learning considerably enriches the possibilities of diffusion networks. Beyond the few examples listed above, there
are also applications where the optimal parameter vectors have a jointly sparse structure, namely, local solutions have the same
sparse support. Applications include, for instance, distributed spectrum sensing and channel identification in underwater and
wireless communication networks with multiple sensors [24]. In spectrum sensing of sparse wide-band spectra in distributed
wireless sensor networks, the parameter vectors at different nodes share the same intrinsic sparse structure. However, due to
different channel fading effects, shadowing effects and transmission losses, the values at the nonzero entries of these parameter
vectors are different [24]–[26]. For underwater and wireless communication networks, it has been shown that real-world
underwater channels [27] and wireless communication channels [28] are inherently sparse with large delay spread. In addition,
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the channel supports for neighboring antennas or nodes are approximately the same [28]. Indeed, times of arrival for closely
spaced nodes and antennas are quite close, though the tap weights are actually different [24]. For more detailed information
about this application, see Section VI-C. Taking jointly sparse structure into consideration can greatly improve the network
performance.

Several works have been proposed to address problems with jointly sparse structure over diffusion networks. In [29], the
authors consider the mixed !2,0-norm. In [24], the authors devise an algorithm with regularizers such as !2,0, !2,1 and reweighted
!2,1 regularizers. They also conduct theoretical analyses of the algorithm behavior in the mean and mean-square sense. However,
studies in [24], [29] are based on gradient-descent schemes, and use subgradient for non-differential regularization terms. For
subgradient approaches, the subdifferential at a point may not be a singleton set, that is, it may be empty or consist of several
elements. As a result, one may get stuck or have to choose one, respectively. Furthermore, even if the subdifferential is a
singleton at each step, it might be highly discontinuous, so small deviations might lead to a singular behavior of the algorithm
over iterations [30]. In this paper, we propose to use proximal operators to address the jointly sparse estimation problem and
then avoid the weaknesses of subgradient-based approaches mentioned above. Proximal algorithms result in subproblems that
often admit closed-form solutions or that can be solved efficiently with simple specialized methods [31]. In addition, they
guarantee better convergence rates and stability than subgradient approaches [30], [32]. For single-task learning problems,
proximal algorithms were first introduced in [33] to estimate sparse parameter vectors. They were used in [34] and [35] to
optimize general stochastic costs with non-differential regularizers, and non-smooth regularizers, respectively. For multitask
learning problems, related works only include [14]. In that paper, the authors consider the situation where the network is divided
into several clusters. All nodes in a cluster are interested in estimating the same parameter vector, while nodes in adjacent
clusters estimate parameter vectors that have a large number of similar entries. As a result the authors derive a closed-form
proximal solution for an !1-norm regularizer that promotes similarities among clusters. A theoretical analysis of the steady-state
behavior is provided. The algorithm in [14] is based on an extra exchange step of observations between neighboring nodes
within a same cluster as well as a fusion step that averages local estimates. The proximal algorithm derived in the current
work does not include these two steps.

In this paper, we introduce a proximal diffusion LMS strategy for multitask networks with jointly sparse structure. The main
contributions of this work are summarized as follows:

• We derive approximate closed-form expressions for the !∞,1-norm and reweighted !∞,1-norm proximal operators.
• We derive a proximal multitask diffusion LMS algorithm to solve problems with jointly sparse structure.
• We conduct a theoretical analysis of the algorithm performance, including a condition for stability and a study of its

transient behavior in the mean sense.
Notation. Normal font x, boldface small letters x and capital letters X denote scalars, column vectors and matrices,

respectively. Symbol [ · ]m denotes the m-th entry of its vector argument. The superscript (·)" denotes the transpose operator.
The mathematical expectation is denoted by E{·}. The Gaussian distribution with mean µ and variance σ2 is denoted by
N (µ,σ2). Operator |·| takes the absolute value of its scalar or vector argument. Operator max{·,·} extracts the maximum value
of its two arguments. Operator diag{·} generates a diagonal matrix from its argument. Symbol " denotes a component-wise
inequality. The symbol ⊗ denotes the Kronecker product. The set Nk denotes the neighbors of node k, including k itself, and
|Nk| denotes its cardinality. The N−

k denotes the neighbors of node k, excluding node k. Vector L is the all-one vector of
dimension L× 1.

II. PROBLEM FORMULATION

Consider a connected network consisting of N nodes. Each node has access to streaming data {dk,n,xk,n}, where xk,n is
the L × 1 real-valued regression vector at node k and time instant n, and dk,n denotes the observed real-valued signal. We
assume that the data at each agent k and time instant n are related via the linear model:

dk,n = x"
k,nw

!
k + zk,n, (1)

where w!
k ∈ IRL×1 is the unknown system vector to estimate, and zk,n is a zero-mean additive noise. We assume that zk,n is

independent of any other signal. Further, we assume that vectors {w!
k}Nk=1 are jointly sparse, namely, not only each w!

k is a
sparse vector but, in addition, they all have the same support. The support of w!

k is defined as [36]:

supp(w!
k) ! {j : [w!

k]j &= 0}, (2)

where [w!
k]j is the j-th entry of w!

k. By definition (2), jointly sparse structure means that:

supp(w!
1) = · · · = supp(w!

k) = · · · supp(w!
N ). (3)

Since it is not trivial to solve problems with jointly sparse structure directly, several mixed-norms have been introduced in
the literature to alleviate this problem. They include the mixed !2,1-norm [37], !∞,1-norm [38] and their reweighted versions
[39]. We collect w!

" over the entire network into an L ×N matrix, and we replace the k-th column w!
k by the optimization
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variable wk. This leads us to consider:

W glob
k !

[
w!

1 · · · w!
k−1 wk w!

k+1 · · · w!
N

]
. (4)

Since matrices defined in (4) differ from node to node, we use the subscript k in notation W glob
k to distinguish them. Evaluating

the mixed !p,1-norm of matrix W glob
k with p = 2 or ∞, so as to promote the jointly sparse structure, results in the following

two steps:
Step 1: Evaluate the !p-norm of each row of W glob

k , and stack the results into an intermediate vector of dimension L× 1;
Step 2: Evaluate the !1-norm of the obtained intermediate vector to promote sparsity.
Though !2,1-norm can be more efficient in some cases [40], we shall consider the !∞,1-norm and its reweighted form to

promote the joint-sparsity. It is shown in [41] that the !∞,1 relaxation is exact in the case of normalized nonrepeating data.
[38] introduced a recursive adaptive group lasso algorithm for real-time penalized least squares prediction by using the !1,∞
regularization (The anthors defined !∞,1-norm as !1,∞-norm in [38] for a vector with group sparsity structure). Each update
minimizes a convex but nondifferentiable function optimization problem. The authors developed an online homotopy method
to reduce the computational complexity. [41] proposed a collaborative convex framework for factoring a data matrix into a
nonnegative matrices product. The authors used !∞,1 regularization to select the dictionary from the data and shown that this
leads to an exact convex relaxation of !0 regularization in the case of distinct noise-free data. [42] proposed a class of group
sparse RLS algorithms by using different penalty term to promote the group sparsity, where the !∞,1-norm is used as one of
the penalty term and the subgradient of !∞,1-norm is evaluated. Both !∞,1-norm and its reweighted form are element-wise
separable, which facilitates the derivation of the proximal operator in the current work. As we focus on distributed processing
in the current work, only local information exchange is authorized. Thus, we restrict W glob

k to the local quantity:

Wk !
[
wk, w!

" with ! ∈ N−
k

]
∈ IRL×|Nk|. (5)

We consider that the columns of Wk are sorted in increasing order according to the values of k and !. In the sequel, we shall
show how to evaluate the (reweighted) !∞,1-norm of Wk.

III. PROXIMAL MULTITASK DIFFUSION LMS

Before proceeding, we rewrite Wk in another way in order to facilitate the presentation:

Wk =
[
w̄"

k,1 · · · w̄"
k,m · · · w̄"

k,L

]"
, (6)

where w̄k,m is the m-th row of matrix Wk and defined by

w̄k,m !
[
[wk]m, [w!

" ]m with ! ∈ N−
k

]
∈ IR1×|Nk| (7)

with [wk]m being the m-th entry of wk. Definition (7) means that w̄k,m is a row vector. Note that (5) and (6) are actually
the same matrix, but represented in different ways. Also, ‖w̄k,m‖∞ is defined as

‖w̄k,m‖∞ ! max{|[wk]m|, |[w!
" ]m| with ! ∈ N−

k } (8)

which will be used in g1(wk) and g2(wk) of (11) and (12), respectively.
To determine the unknown vectors w!

k with jointly sparse structure, we consider the regularized cost at node k:

Jk(wk) = J ′
k(wk) + λkgi(wk), (9)

where J ′
k(wk) is the mean-square error (MSE) defined as:

J ′
k(wk) !

1

2
E
{
|dk,n − x"

k,nwk|2
}
. (10)

The nonnegative parameter λk is used to control the regularization strength, g1(wk) and g2(wk) evaluate the !∞,1-norm and
reweighted !∞,1-norm of Wk, respectively, with:

g1(wk) !
L∑

m=1

‖w̄k,m‖∞, (11)

g2(wk) !
L∑

m=1

log

[
1 +

‖w̄k,m‖∞
ε

]
, (12)

where ε > 0 is a parameter set by the user. Interpretations about the !∞,1-norm g1(wk) and reweighted !∞,1-norm g2(wk)
are provided in Appendix A. At each node k, we then consider the convex optimization problem [43]:

w†
k = argmin

wk

Jk(wk). (13)
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Within the context of online learning, such optimization problem is usually solved via subgradient-based methods. In this
paper, we propose to devise a proximal algorithm since these algorithms are usually more stable and have a better convergence
rate than subgradient iterations [30], [32], [33]. Proximal gradient iteration consists of [31]:

wk,n+1 = proxµkλk,gi(wk)

(
wk,n − µk∇J ′

k(wk,n)
)
, (14)

where µk is a positive small step-size, and:

proxλ,gi(wk)(v) ! argmin
wk

(
gi(wk) +

1

2λ
‖wk−v‖22

)
. (15)

is the proximal operator. By introducing the intermediate quantity ψk,n+1, we further decompose (14) into two steps:

ψk,n+1 = wk,n − µk∇J ′
k(wk,n), (16)

wk,n+1 = proxµkλk,gi(wk)

(
ψk,n+1

)
. (17)

Equation (16) is the local update step, and (17) is the proximal step. Calculating the gradient of J ′
k(wk) at wk,n and

approximating the unknown statistical quantities with instantaneous quantities, (16) becomes:

ψk,n+1 = wk,n + µkxk,n

(
dk,n − x"

k,nwk,n

)
. (18)

Combining (17) and (18) yields the proximal multitask diffusion LMS algorithm for networks with jointly sparse structure
reported in Algorithm 1. This algorithm differs from the standard diffusion procedure devised in [8], [9] in the sense that
it does not combine, in an explicit manner, the intermediate estimates ψ",n+1 in the neighborhood of each node k. In our
algorithm, the information on the support of the local estimates is shared by neighboring nodes via gi(wk).

Algorithm 1 Proximal multitask diffusion LMS
Initialize wk,0 for all k = 1, 2, · · · , N , and repeat:

{
ψk,n+1 = wk,n + µkxk,n

(
dk,n − x"

k,nwk,n

)

wk,n+1 = proxµkλk,gi(wk)

(
ψk,n+1

) (19)

IV. PROXIMAL OPERATORS EVALUATION

To apply the algorithm, we need to derive closed-form expressions for the proximal operators. Equation (17) becomes:

wk,n+1=proxµkλk,gi(wk)(ψk,n+1)

=argmin
wk

(
gi(wk)+

1

2µkλk
‖wk−ψk,n+1‖22

)
. (20)

As gi(wk) is separable over its all entries, the proximal operator can be evaluated in an element-wise manner as [31]:

[proxµkλk,gi(wk)(ψk,n+1)]m
= proxµkλk,gi,m([wk]m)([ψk,n+1]m)

(21)

with:

g1,m([wk]m) ! ‖w̄k,m‖∞ (22)

g2,m([wk]m) ! log

[
1 +

‖w̄k,m‖∞
ε

]
, (23)

where w̄k,m is the m-th row of matrix Wk in (5).

A. Approximate proximal operator of !∞,1-norm
Substituting g1,m into (21), we obtain:

[wk,n+1]m = argmin
[wk]m

(
max{|[wk]m|, |[w!

" ]m| with ! ∈ N−
k }

+
1

2µkλk

(
[wk]m − [ψk,n+1]m

)2)
. (24)

For the sake of simpler notations, we shall denote [wk,n+1]m by ŵ as long as there is no ambiguity. We shall also denote the
maximal value of |[w!

" ]m| for ! ∈ N−
k as [wo

k]m. According to the relation between |[wk]m| and [wo
k]m, we further split the

problem into the following two cases:
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• Case 1: |[wk]m| < [wo
k]m. In this case, (24) becomes:

ŵ = argmin
[wk]m

|[wk]m|<[wo
k]m

[wo
k]m +

1

2µkλk

(
[wk]m − [ψk,n+1]m

)2
. (25)

Since the first term on the right-hand side (RHS) of (25) does not depend on [wk]m, we conclude that:

ŵ =






[ψk,n+1]m, if |[ψk,n+1]m| < [wo
k]m

[wo
k]m, if [ψk,n+1]m ≥ [wo

k]m
−[wo

k]m, if [ψk,n+1]m ≤ −[wo
k]m.

(26)

• Case 2: |[wk]m| ≥ [wo
k]m. Equation (24) becomes:

ŵ = argmin
[wk]m

|[wk]m|≥[wo
k]m

|[wk]m|+ 1

2µkλk

(
[wk]m − [ψk,n+1]m

)2
. (27)

We shall first discard the constraint |[wk]m| ≥ [wo
k]m for reasons of simplicity, and denote by ŵo the solution of the

unconstrained problem. As the cost function in (27) is convex on IR, this constraint will be taken into account in the
course of the calculation. Consider first:

ŵo = argmin
[wk]m

|[wk]m|+ 1

2µkλk

(
[wk]m − [ψk,n+1]m

)2

= proxµkλk,s([wk]m)

(
[ψk,n+1]m

)
(28)

where function s([wk]m) is defined as:
s([wk]m) ! |[wk]m|. (29)

The optimality condition of (28) says that zero belongs to the subgradient set at the minimizer ŵo, that is, [31]

0 ∈ ∂|ŵo|+ 1

µkλk

(
ŵo − [ψk,n+1]m

)
(30)

This means that: (
[ψk,n+1]m − ŵo

)
∈ µkλk ∂|ŵo| (31)

with

∂|ŵo| =






−1, if ŵo < 0

+1, if ŵo > 0

[−1, 1], if ŵo = 0

(32)

the subdifferential of the non-differentiable function |ŵo| [31]. The third case in (32) means that, at ŵo = 0, ∂|ŵo| can
be any value within [−1, 1].
Condition (31) leads to:

ŵo =






[ψk,n+1]m + µkλk, if [ψk,n+1]m < −µkλk

[ψk,n+1]m − µkλk, if [ψk,n+1]m > µkλk

0, otherwise.

(33)

If [wo
k]m = 0, problem (27) becomes unconstrained and we have:

ŵ = ŵo (34)

Otherwise, since problem (27) is convex on IR, considering constraint |[wk]m| ≥ [wo
k]m > 0 with (33) yields:

ŵ = (35)




[ψk,n+1]m+µkλk, if [ψk,n+1]m≤ −[wo
k]m − µkλk

−[wo
k]m, if −[wo

k]m−µkλk< [ψk,n+1]m<0

−[wo
k]m or [wo

k]m, if [ψk,n+1]m = 0

[wo
k]m, if 0< [ψk,n+1]m< [wo

k]m+µkλk

[ψk,n+1]m−µkλk, if [ψk,n+1]m ≥ [wo
k]m+µkλk

To evaluate the proximal operator (24), several issues have to be addressed.
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1. One of the main issues is that we first need to know which of (26), (34) or (35) has to be applied as the proximal operator
of (24). We shall now consider the following two cases: [wo

k]m = 0 and [wo
k]m > 0.

• Case A: [wo
k]m = 0. Since condition |[wk]m| < [wo

k]m of Case 1 cannot hold, we only consider Case 2. The proximal
operator is given by ŵo in (33). Interestingly, note that (33) is the proximal operator of the !1-norm regularizer for a
scalar.

• Case B: [wo
k]m > 0. Proximal operators (26) and (35) hold simultaneously. We shall choose the solution that minimizes

the cost (24). As shown in Appendix B, we finally arrive at the following expression:

ŵ = (36)




[ψk,n+1]m + µkλk, if [ψk,n+1]m ≤ −[wo
k]m − µkλk

−[wo
k]m, if −[wo

k]m−µkλk < [ψk,n+1]m ≤−[wo
k]m

[ψk,n+1]m, if
∣∣[ψk,n+1]m

∣∣ < [wo
k]m

[wo
k]m, if [wo

k]m ≤ [ψk,n+1]m < [wo
k]m + µkλk

[ψk,n+1]m − µkλk, if [w
o
k]m + µkλk ≤ [ψk,n+1]m

2. Another issue is that ŵ cannot be evaluated with (33) and (36) since [wo
k]m is unknown. To fix this problem, we follow

a local one-step approximation strategy that has already proven its effectiveness in the literature [17], and which consists of
using ψ",n+1 as an approximation of w!

" . One of the benefits of this approximation is that ψ",n+1 can be transmitted by node !
to node k if the latter is in its neighborhood. An approximation of [wo

k]m is then given by max"∈N−
k
{
∣∣[ψ",n+1]m

∣∣}, which
allows node k to evaluate its proximal operator. This approximation will be taken into consideration in the theoretical analysis
in Section V-A.

3. Before addressing the last issue, we need to point out the prominent role of Case A compared to Case B: unlike the
proximal operator (36) in Case B, only the proximal operator (33) in Case A has the capability to drive [wk]m to zero and
promote sparsity. Observe that condition [wo

k]m = 0 has to be satisfied to trigger Case A, otherwise Case B is considered.
Within the context of online learning with stochastic gradient descent algorithms, due to the existence of gradient noise, the
estimates of [wo

k]m for zero-valued entries are actually nonzero-valued but vary around zero. Condition [wo
k]m = 0 of Case A

is thus seldom satisfied, and [ψk,n+1]m is not driven to zero. To promote the sparsity of the estimates, since the true values
of the non-zero entries are usually far away from zero, we introduce a small positive threshold value τ1 instead of zero to
make a distinguish between zero-valued and nonzero-valued entries. As a consequence, we arrive at conditions [wo

k]m ≤ τ1 to
trigger Case A and [wo

k]m > τ1 to select Case B.
We summarize our method in Algorithm 2.

Algorithm 2 Approximate proximal operator of !∞,1-norm
Initialization: Choose threshold value τ1 > 0.
Proximal operator: At each instant n ≥ 0, for each node k, utilize ψk,n+1 to evaluate wk,n+1 in an elementwise manner:

1) Calculate [wo
k]m as the maximal value of

∣∣[ψ",n+1]m
∣∣ for all ! ∈ N−

k ;
2) If [wo

k]m ≤ τ1, then calculate [wk,n+1]m as ŵo via (33);
3) If [wo

k]m > τ1, then calculate [wk,n+1]m as ŵ via (36).

B. Approximate proximal operator of reweighted !∞,1-norm
Substituting the expression of g2,m into (21), we arrive at:

[wk,n+1]m =

argmin
[wk]m

[
log

(
1 +

max
{
|[wk]m|, |[w!

" ]m| : ∀! ∈ N−
k

}

ε

)

+
1

2µkλk

(
[wk]m −

[
ψk,n+1

]
m

)2
]
. (37)

Considering the same definition for [wo
k]m as before, and denoting [wk,n+1]m by ŵ for the sake of conciseness, the problem

can be split into two cases depending on the order relation between [wo
k]m and |[wk]m|:

• Case 1: |[wk]m| < [wo
k]m. Equation (37) becomes:

ŵ = argmin
[wk]m

|[wk]m|<[wo
k]m

log
(
1 +

[wo
k]m
ε

)

+
1

2µkλk

(
[wk]m −

[
ψk,n+1

]
m

)2
. (38)
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This problem has a closed-form solution given by:

ŵ =






[ψk,n+1]m, if |[ψk,n+1]m| < [wo
k]m

[wo
k]m, if [ψk,n+1]m ≥ [wo

k]m
−[wo

k]m, if [ψk,n+1]m ≤ −[wo
k]m.

(39)

• Case 2: |[wk]m| ≥ [wo
k]m. In this case, (37) becomes:

ŵ = argmin
[wk]m

|[wk]m|≥[wo
k]m

log
(
1 +

|[wk]m|
ε

)

+
1

2µkλk

(
[wk]m −

[
ψk,n+1

]
m

)2
. (40)

By first discarding the constraint |[wk]m| ≥ [wo
k]m as we did it before, we obtain the following unconstrained optimization

problem:

ŵo = argmin
[wk]m

log
(
1 +

|[wk]m|
ε

)

+
1

2µkλk

(
[wk]m −

[
ψk,n+1

]
m

)2
. (41)

Deriving the solution ŵo directly from the optimality condition is a tough problem. We shall now alleviate this issue with
a Majorization-Minimization (MM) approach [44], [45]. Conceptually, MM algorithms work by iteratively minimizing a
simple surrogate function majorizing a given objective function. By introducing the auxiliary variable [uk]m, problem (41)
can be written as:

ŵo = argmin
[wk]m,[uk]m

|[wk]m|≤[uk]m

log
(
1 +

[uk]m
ε

)

+
1

2µkλk

(
[wk]m −

[
ψk,n+1

]
m

)2
. (42)

Define:
f([uk]m) ! log

(
1 +

[uk]m
ε

)
. (43)

It can be observed that function f([uk]m) is concave and below its tangent. So we have:

f([uk]m) ≤ f([u(t)
k ]m)

+ f ′([u(t)
k ]m) ·

(
[uk]m − [u(t)

k ]m
) (44)

with f ′(·) the first-order derivative of f(·), and where the superscript (t) denotes the iteration index. Using (44), we can
construct a surrogate function for (42) as follows:

h([uk]m, [wk]m) ! log
(
1+

[u(t)
k ]m
ε

)
+
[uk]m−[u(t)

k ]m
ε+ [u(t)

k ]m

+
1

2µkλk

(
[wk]m −

[
ψk,n+1

]
m

)2 (45)

Using the driving principle of MM algorithms, this yields the following optimization problem:
(
[w(t+1)

k ]m,[u(t+1)
k ]m

)
= argmin

[wk]m,[uk]m
|[wk]m|≤[uk]m

[uk]m
ε+ [u(t)

k ]m

+
1

2µkλk

(
[wk]m −

[
ψk,n+1

]
m

)2 (46)

which is equivalent to:

[w(t+1)
k ]m = argmin

[wk]m

|[wk]m|
ε+ |[w(t)

k ]m|

+
1

2µkλk

(
[wk]m −

[
ψk,n+1

]
m

)2
. (47)
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Note that, in the construction of (46), we have dropped several constant terms unrelated to [uk]m and [wk]m. Using the
optimality condition of (47) at the minimizer [w(t+1)

k ]m, we have:

([
ψk,n+1

]
m
−[w(t+1)

k ]m
)
∈ µkλk

ε+ |[w(t)
k ]m|

· ∂
∣∣[w(t+1)

k ]m
∣∣. (48)

Considering (32) with (48) yields:

[w(t+1)
k ]m = (49)





[ψk,n+1]m+
µkλk

ε+|[w(t)
k ]m|

, if [ψk,n+1]m<
−µkλk

ε+|[w(t)
k ]m|

[ψk,n+1]m− µkλk

ε+|[w(t)
k ]m|

, if [ψk,n+1]m>
µkλk

ε+|[w(t)
k ]m|

0 otherwise.

Performing one iteration of (49) with [w(t)
k ]m = [wk,n]m at each instant n can be sufficient for approximating ŵo with

enough precision, as illustrated in the sequel. This value is then used to obtain an approximate solution ŵ of problem (40)
by taking the constraint |[wk]m| ≥ [wo

k]m into account.
If [wo

k]m = 0, problem (40) becomes unconstrained and we have:

ŵ = ŵo (50)

where ŵo is obtained by (49).
Otherwise, since problem (40) is convex on IR, considering constraint |[wk]m| ≥ [wo

k]m > 0 with (49) yields:

ŵ = (51)




[ψk,n+1]m +
µkλk

ε+ |[w(t)
k ]m|

, if [ψk,n+1]m ≤ −[ck]m

−[wo
k]m, if − [ck]m < [ψk,n+1]m < 0

−[wo
k]m or [wo

k]m, if [ψk,n+1]m = 0

[wo
k]m, if 0 < [ψk,n+1]m < [ck]m

[ψk,n+1]m − µkλk

ε+ |[w(t)
k ]m|

, if [ψk,n+1]m ≥ [ck]m

with [ck]m a constant defined as:

[ck]m ! [wo
k]m +

µkλk

ε+|[w(t)
k ]m|

. (52)

As with the !∞,1-norm, we have to fix several issues.
1. We first need to check which of (39), (49) and (51) has to be applied to calculate the proximal operator. We consider the

following two cases: [wo
k]m = 0 and [wo

k]m > 0.
• Case A: [wo

k]m = 0. We focus on Case 2 since condition for Case 1 cannot hold. In Case 2, observe that any [wk]m
calculated as [w(t+1)

k ]m in (49) satisfies |[wk]m| ≥ [wo
k]m = 0. Thus the proximal operator is given by (49).

• Case B: [wo
k]m > 0. Case 1 and Case 2 can hold simultaneously. We must choose, among the resulting proximal operators,

the one that minimizes cost (37). The derivation is provided in Appendix C. We obtain the following solution:

ŵ = (53)




[ψk,n+1]m +
µkλk

ε+ |[w(t)
k ]m|

, if [ψk,n+1]m ≤ −[ck]m

−[wo
k]m, if − [ck]m < [ψk,n+1]m ≤ −[wo

k]m
[ψk,n+1]m, if

∣∣[ψk,n+1]m
∣∣ < [wo

k]m
[wo

k]m, if [wo
k]m ≤ [ψk,n+1]m < [ck]m

[ψk,n+1]m − µkλk

ε+ |[w(t)
k ]m|

, if [ψk,n+1]m ≥ [ck]m

2. Unlike the proximal operator (53) in Case B, only the proximal operator (49) in Case A has the capability to drive
[wk]m to zero and promote sparsity. Thus, as in Section IV-A, we relax the condition [wo

k]m = 0 by introducing a small
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positive tolerance τ2 to distinguish between zero and nonzero entries. This leads to the condition [wo
k]m ≤ τ2 for Case A, and

[wo
k]m > τ2 for Case B.
We summarize our method in Algorithm 3.

Algorithm 3 Approximate proximal operator of reweighted !∞,1-norm
Initialization: Choose threshold value τ2 > 0 and ε > 0.
Proximal operator: At each instant n ≥ 0, for each node k, utilize ψk,n+1 to evaluate wk,n+1 in an element-wise manner:

1) Calculate [wo
k]m as the maximal value of

∣∣[ψ",n+1]m
∣∣ for all ! ∈ N−

k ;
2) If [wo

k]m ≤ τ2, then calculate [wk,n+1]m as [w(t+1)
k ]m via (49) with [w(t)

k ]m = [wk,n]m;
3) If [wo

k]m > τ2, then calculate [wk,n+1]m as ŵ via (53).

V. PERFORMANCE AND CONVERGENCE ANALYSES

In this section, we analyse the performance and convergence property of Algorithm 2 and Algorithm 3 in an unified
framework. Quantities specifically related to !∞,1-norm or reweighted !∞,1-norm are distinguished by the superscripts (1) and
(2), respectively. Observe that the closed-forms expressions of both approximate proximal operators can be written compactly
as:

proxµkλk,gi(wk)

(
ψk,n+1

)
= ψk,n+1 − γ(i)

k,n+1, (54)

with γ(i)
k,n+1 a (L× 1)-dimensional vector.

For the !∞,1-norm, the m-th entry of γ(1)
k,n+1 is given by:

[
γ(1)
k,n+1

]
m
=






−µkλk, if
[
ψk,n+1

]
m

< −µkλk[
ψk,n+1

]
m
, if

∣∣[ψk,n+1

]
m

∣∣ ≤ µkλk

µkλk, if
[
ψk,n+1

]
m

> µkλk

(55)

if [wo
k]m ≤ τ1, and:

[
γ(1)
k,n+1

]
m

= (56)





−µkλk, if
[
ψk,n+1

]
m
≤−[wo

k]m−µkλk[
ψk,n+1

]
m
+[wo

k]m, if −[wo
k]m−µkλk< [ψk,n+1]m≤−[wo

k]m
0, if

∣∣[ψk,n+1]m
∣∣< [wo

k]m[
ψk,n+1

]
m
−[wo

k]m, if [wo
k]m≤ [ψk,n+1]m< [wo

k]m+µkλk

µkλk, if
[
ψk,n+1

]
m
≥ [wo

k]m+µkλk

if [wo
k]m > τ1. For the reweighted !∞,1-norm, the m-th entry of γ(2)

k,n+1 is given by:

[
γ(2)
k,n+1

]
m
=






−µkλk

ε+|[w(t)
k ]m|

, if
[
ψk,n+1

]
m
<

−µkλk

ε+|[w(t)
k ]m|

[
ψk,n+1

]
m
, if

∣∣[ψk,n+1

]
m

∣∣≤ µkλk

ε+|[w(t)
k ]m|

µkλk

ε+|[w(t)
k ]m|

, if
[
ψk,n+1

]
m
>

µkλk

ε+|[w(t)
k ]m|

(57)

if [wo
k]m ≤ τ2, and:

[
γ(2)
k,n+1

]
m

= (58)





− µkλk

ε+|[w(t)
k ]m|

, if [ψk,n+1]m≤ −[ck]m

[ψk,n+1]m + [wo
k]m, if −[ck]m< [ψk,n+1]m≤−[wo

k]m
0, if

∣∣[ψk,n+1]m
∣∣< [wo

k]m
[ψk,n+1]m − [wo

k]m, if [wo
k]m≤ [ψk,n+1]m< [ck]m

µkλk

ε+|[w(t)
k ]m|

, if [ψk,n+1]m ≥ [ck]m
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if [wo
k]m > τ2. We observe in (55)–(56) that: ∣∣[γ(1)

k,n+1

]
m

∣∣ ≤ µkλk (59)

Thus, γ(1)
k,n+1 is absolutely bounded: |γ(1)

k,n+1| " µkλk L.
From (57)–(58), we conclude that:

|γ(2)
k,n+1| " bk L (60)

where bk is a constant defined as:
bk ! µkλk

ε
. (61)

Substituting (54) into (19), we obtain:
{
ψk,n+1 = wk,n + µkxk,n

(
dk,n − x"

k,nwk,n

)

wk,n+1 = ψk,n+1 − γ(i)
k,n+1.

(62)

We shall now analyse the performance of proximal multitask diffusion LMS algorithm based on expression (62).
Define

w̃k,n+1 ! wk,n+1 −w!
k, (63)

ψ̃k,n+1 ! ψk,n+1 −w!
k. (64)

By collecting w!
k, wk,n+1, ψk,n+1, w̃k,n+1, ψ̃k,n+1, γ(i)

k,n+1 over the entire network into block column vectors, we obtain
quantities w!, wn+1, ψn+1, w̃n+1, ψ̃n+1, γ(i)

n+1, respectively. To facilitate the theoretical analysis, we introduce the following
assumptions on the regression data and step-size. These assumptions are widely used in the analysis of adaptive filters [46]–[48]
and diffusion networks [7], [9], [14].

A1 (Independent Regressors): The regression vector xk,n, generated from a zero-mean random process, is temporally
stationary, white (over n) and spatially independent (over k) with covariance matrix Rx,k = E{xk,nx"

k,n} > 0.
A2 (Small step-sizes): The step-sizes µk of the network are small enough, so that terms on the higher-order powers of the

step-sizes can be ignored.

A. Mean behavior analysis

Subtracting w!
k from both sides of the first equation of (62), and using signal model (1) and block notations, we obtain:

ψ̃n+1 = Bnw̃n +Uhn, (65)

where
Bn ! I −UMn (66)

with

U ! diag{µ1, µ2, · · · , µN}⊗ IL, (67)
Mn ! diag

{
x1,nx

"
1,n,x2,nx

"
2,n, · · · ,xN,nx

"
N,n

}
, (68)

hn ! col{x1,nz1,n,x2,nz2,n, · · · ,xN,nzN,n}. (69)

Subtracting w!
k from both sides of the second equation of (62) and using block notations, we obtain:

w̃n+1 = ψ̃n+1 − γ(i)
n+1. (70)

Combining (65) and (70) leads to:

w̃n+1 = Bnw̃n +Uhn − γ(i)
n+1. (71)

Using A1 and taking the expectation of (71), we obtain:

E{w̃n+1} = BE{w̃n}− E{γ(i)
n+1}, (72)

where

B ! E{Bn} = I −UM , (73)
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[
E{γ(1)

k,n+1}
]
m

=






−µkλk, if
[
E{ψk,n+1}

]
m
≤−E{[wo

k]m}−µkλk[
E{ψk,n+1}

]
m
+E{[wo

k]m}, if −E{[wo
k]m}−µkλk<

[
E{ψk,n+1}

]
m
≤−E{[wo

k]m}
0, if

∣∣[E{ψk,n+1}
]
m

∣∣< E{[wo
k]m}

[
E{ψk,n+1}

]
m
−E{[wo

k]m}, if E{[wo
k]m}≤

[
E{ψk,n+1}

]
m
<E{[wo

k]m}+µkλk

µkλk, if
[
E{ψk,n+1}

]
m
≥ E{[wo

k]m}+µkλk

(77)

with

M ! E{Mn} = diag
{
Rx,1,Rx,2, · · · ,Rx,N

}
, (74)

E{γ(i)
n+1} = col

{
E{γ(i)

1,n+1}, · · · ,E{γ
(i)
N,n+1}

}
. (75)

To analyze iteration (72), we need to derive the explicit expression of E{γ(i)
n+1} firstly. Since it has different expressions for

!∞,1-norm and reweighted !∞,1-norm, we shall now evaluate it separately.
1) !∞,1-norm: Taking the expectation of (55), (56), and approximating the inequality conditions by conditions on the

expectation terms, the m-th entry of E{γ(1)
k,n+1} is given by:

[
E{γ(1)

k,n+1}
]
m

=





−µkλk, if
[
E{ψk,n+1}

]
m

< −µkλk[
E{ψk,n+1}

]
m
, if

∣∣[E{ψk,n+1}
]
m

∣∣ ≤ µkλk

µkλk, if
[
E{ψk,n+1}

]
m

> µkλk

(76)

if E{[wo
k]m} ≤ τ1, and it is defined by (77) if E{[wo

k]m} > τ1. To facilitate the derivation of the transient mean behavior in
(76) and (77), we approximate the quantities appeared in “if” conditions by their corresponding expectations. It is difficult, if
not impossible, to conduct theoretical analysis without this approximation. Note that this approximation is only used in the
transient mean behavior analysis and have not been used in any other places. It is observed that the theoretical transient mean
behavior obtained with this approximation match well with the results obtained via the Monte-Carlo simulation in Fig. 2 of
Section VI-A. Vector E{ψk,n+1} is the k-th block vector of E{ψn+1}, which is evaluated as follows:

E{ψn+1} = E{ψ̃n+1}+w!, (78)

with:

E{ψ̃n+1} = BE{w̃n}. (79)

On the other hand, E{[wo
k]m} is approximated by the maximal value of

∣∣[E{ψ",n+1}
]
m

∣∣ for all ! ∈ N−
k .

2) Reweighted !∞,1-norm: As the distribution of [w(t)
k ]m is unknown, we cannot evaluate exactly the expectations involving

[w(t)
k ]m in (57) and (58). We therefore consider the first-order Taylor series expansion as in [49]–[51]; the performance results

obtained with the first-order Taylor series expansion match well with the Monte-Carlo results in Fig. 3 of Section VI-A. By
expanding f([w(t)

k ]m) ! µkλk/[ε+ |[w(t)
k ]m|] around E{[w(t)

k ]m} and taking expectation, we obtain the following approxi-
mation:

E
{

µkλk

ε+ |[w(t)
k ]m|

}
≈ µkλk

ε+ |E{[w(t)
k ]m}|

. (80)

Taking the expectation of (57), (58) and using (80), as well as approximating the inequality conditions by conditions on
the expectation terms, we obtain the explicit expression of E{γ(2)

k,n+1}, with its m-th entry given by (83) or (84) when
E{[wo

k]m} ≤ τ2 and E{[wo
k]m} > τ2, respectively, with quantities:

E{[w(t)
k ]m} =

[
E{wk,n}

]
m

(81)

E{[ck]m} = E{[wo
k]m}+ µkλk

ε+
∣∣[E{wk,n}

]
m

∣∣ . (82)

Note that several approximations, such as the first-order Taylor series expansion [49]–[51] and approximated the inequality
conditions, are only used in the transient mean behavior of the reweighted !∞,1-norm, not in any other places. It is observed
that the theoretical transient mean behavior obtained with these approximations match well with the results obtained via the
Monte-Carlo simulation in Fig. 3 of Section VI-A.

From iteration (72), we obtain the following Theorem 1 for the mean stability of proximal multitask diffusion LMS algorithm
(19).
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[
E{γ(2)

k,n+1}
]
m

=






−µkλk

ε+
∣∣E{[w(t)

k ]m}
∣∣ , if

[
E{ψk,n+1}

]
m
<

−µkλk

ε+
∣∣E{[w(t)

k ]m}
∣∣

[
E{ψk,n+1}

]
m
, if

∣∣[E{ψk,n+1}
]
m

∣∣≤ µkλk

ε+
∣∣E{[w(t)

k ]m}
∣∣

µkλk

ε+
∣∣E{[w(t)

k ]m}
∣∣ , if

[
E{ψk,n+1}

]
m
>

µkλk

ε+
∣∣E{[w(t)

k ]m}
∣∣

(83)

[
E{γ(2)

k,n+1}
]
m

=






− µkλk

ε+
∣∣E{[w(t)

k ]m}
∣∣ , if

[
E{ψk,n+1}

]
m
≤ −E{[ck]m}

[
E{ψk,n+1}

]
m
+E{[wo

k]m}, if −E{[ck]m}<
[
E{ψk,n+1}

]
m
≤−E{[wo

k]m}
0, if

∣∣[E{ψk,n+1}
]
m

∣∣< E{[wo
k]m}

[
E{ψk,n+1}

]
m
−E{[wo

k]m}, if E{[wo
k]m}≤

[
E{ψk,n+1}

]
m
<E{[ck]m}

µkλk

ε+
∣∣E{[w(t)

k ]m}
∣∣ , if

[
E{ψk,n+1}

]
m

≥ E{[ck]m}

(84)

Theorem 1. (Mean stability) Assume data model (1) and assumption A1 hold. Then for any initial conditions, distributed
networks endowed with the proximal multitask diffusion LMS algorithm (19) are stable in the mean, if step-sizes µk satisfy:

0 < µk <
2

λmax{Rx,k}
, k = 1, · · · , N, (85)

where λmax{·} denotes the maximal eigenvalue of its matrix argument. The block maximum norm of the bias can be upper
bounded as:

lim
n→∞

∥∥E{w̃n+1}
∥∥
b,∞ ≤

√
L ·maxk

{
µkλk

}

1− ‖B‖b,∞
(86)

lim
n→∞

∥∥E{w̃n+1}
∥∥
b,∞ ≤ 1

ε

√
L ·maxk

{
µkλk

}

1− ‖B‖b,∞
(87)

for the !∞,1-norm and reweighted !∞,1-norm, respectively.
Proof: By iterating the RHS of (72) from time instant n = 0, and proving the convergence of the obtained series, we arrive

at condition (85) for step-size to ensure the mean stability of (19). For more details, see Appendix D. "
Remark 1: Equation (85) provides an upper bound for step-size µk to ensure the mean stability of the distributed networks
with the proximal multitask diffusion LMS algorithm (19). The upper bound is closely related to the second-order statistics
Rx,k of the input signals. Equations (86) and (87) indicate that the proximal multitask diffusion LMS algorithm (19) is biased.
The upper bound of the biases are proportional to the length of the system vector L, the step-size µk and the regularization
parameter λk. The bias can be reduced by using a sufficiently small step-size µk or regularization parameter λk. Besides, for
the reweighted !∞,1-norm, the bias is also inversely proportional to parameter ε. In addition, the upper bound of bias for the
reweighted !∞,1-norm has an improvement with a factor 1

ε than that of the !∞,1-norm.

B. Mean-square behavior analysis

Under A1 and using (71), then for any semi-positive definite matrix Σ of compatible dimension, the weighted mean-square
behavior of w̃n+1 evaluates as:

E{‖w̃n+1‖2Σ} = E{‖w̃n‖2Σ′}+ E{‖Uhn‖2Σ}+ E{‖γ(i)
n+1‖2Σ}

− 2E{w̃"
nB

"
n Σγ(i)

n+1}− 2E{h"
nU

"Σγ(i)
n+1}, (88)

where ‖x‖2Σ ! x"Σx, and

Σ′ ! E{B"
n ΣBn}. (89)

Let σ ! vec{Σ} and σ′ ! vec{Σ′}, where vec{·} operator stacks the columns of its matrix argument on top of each other.
Using the property of vec{·} operator, (89) becomes:

σ′ = E{B"
n ⊗B"

n }σ. (90)
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Under A2 and ignoring terms on the second-order of the maximal step-size, we have the approximation for (90):

σ′ ≈ Fσ (91)

with F ! B" ⊗B". Define:

H ! Udiag
{
σ2
z,1Rx,1, · · · ,σ2

z,NRx,N

}
U". (92)

We then have:

E{‖Uhn‖2Σ} = [vec{H}]"σ. (93)

To make the analysis tractable, we adopt approximation:

E{w̃"
nB

"
n Σγ(i)

n+1} ≈ E{w̃"
nB

"Σγ(i)
n+1}. (94)

Since |γ(1)
k,n+1| " µkλk L and |γ(2)

k,n+1| "
µkλk

ε L, we conclude that γ(i)
n+1 is at most of the same order as the step-size. This

implies that the last term on the RHS of (88) contains higher-order powers of the step-size, and can be ignored according to
assumption A2. Finally, by using (91), (93) and (94), expression (88) becomes:

E{‖w̃n+1‖2σ}=E{‖w̃n‖2Fσ}+[vec{H}]"σ + E{‖γ(i)
n+1‖2σ}

− 2E{w̃"
nB

"Σγ(i)
n+1}, (95)

where we use the notations E{‖w̃n+1‖2Σ} and E{‖w̃n+1‖2σ} interchangeably.
From iteration (95), we obtain the following Theorem 2 to ensure the mean-square stability of the proximal multitask

diffusion LMS algorithm (19).

Theorem 2. (Mean-square stability) Assume data model (1) and assumptions A1, A2 hold. Further assume that approximation
(91) is reasonable for sufficiently small step-sizes. Then for any initial conditions, distributed networks endowed with proximal
multitask diffusion LMS algorithm (19) is stable in the mean-square sense, if the step-sizes µk are sufficiently small and satisfy
(85).

Proof: By proving that the last two terms on the RHS of (95) is bounded, and iterating (95) from time instant n = 0, we
obtain the condition for step-size to ensure the mean-square stability of (19). For more details, see Appendix E. "
Remark 2: The weighted mean-square behavior of w̃n+1, that is E{‖w̃n+1‖2Σ}, can be decomposed as:

E
{
‖w̃n+1‖2Σ

}
= E

{∥∥wn+1−w!−E{wn+1}+E{wn+1}
∥∥2
Σ

}

= E
{∥∥w̃n+1 − E{w̃n+1}

∥∥2
Σ

}

︸ ︷︷ ︸
Variance term

+
∥∥E{w̃n+1}︸ ︷︷ ︸

Bias term

∥∥2
Σ

(96)

By substituting w̃n+1 of (71) and E{w̃n+1} of (72) into (96), we obtain an equivalent form of (95). Relation (96) is called the
bias-variance decomposition. From (96), we observe that the stability of E{‖w̃n+1‖2Σ} in Theorem 2 ensures the stabilities
of both the Variance term and the Bias term E{w̃n+1} of Theorem 1.

VI. SIMULATION RESULTS

In this section, we present simulation results to validate the effectiveness of the algorithm. With the exception of the
simulation results presented in Section VI-A, used to validate theoretical results in the mean behavior analysis and obtained by
averaging over 500 independent Monte-Carlo runs, all other simulated curves were obtained by averaging over 100 independent
Monte-Carlo runs.

A. Theoretical validation

We considered a connected network consisting of 16 nodes and 36 edges. The number of edges at each node was between 2
and 7, without taking into account the possible self-loops connecting each node to itself. Other characteristics of the network
are listed in Table I. Each regressor xk,n was generated from a zero-mean Gaussian distribution with covariance matrix
Rx,k = σ2

x,kI30. Each additive noise zk,n was generated from a zero-mean Gaussian distribution with variance σ2
z,k. Variances

σ2
x,k and σ2

z,k at each node were generated randomly from a Gaussian distribution as shown in Fig. 1. Note that these variances
settings are the same as in [12], [17].

To validate the theoretical results reported in the mean behavior analysis, we considered a stationary system identification
scenario. The unknown system coefficients w!

k were generated such that the entire network has a jointly sparse structure with
sparsity degree of 10/30. Each nonzero element of w!

k was generated independently from a standard Gaussian distribution.
The simulation results presented in this section were obtained by averaging over 500 independent runs.
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TABLE I
CHARACTERISTICS OF THE NETWORK USED FOR MODEL VALIDATION. L IS THE LAPLACIAN MATRIX ASSOCIATED WITH THE GRAPH, λ2(L) IS THE

ALGEBRAIC CONNECTIVITY [52] OF THE GRAPH, SIZE IS THE NUMBER OF NODES, DENSITY IS THE NUMBER OF NON-ZERO ENTRIES OF THE
ADJACENCY MATRIX, AND DIAMETER IS THE MAXIMUM DISTANCE BETWEEN ANY TWO NODES [53].

Network Size Density λ2(L) Diameter
Net 16 34% 0.9983 4
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Fig. 2. Validation of the mean behavior model for "∞,1-regularization; Theory: red solid line; Monte-Carlo simulations: blue dashed line.
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Fig. 4. The average error Eav(n) of "∞,1-regularization; Theory: red solid line; Monte-Carlo simulations: blue dashed line.

The results are illustrated in Fig. 2 and Fig. 3 for the proximal multitask LMS with !∞,1-regularization and reweighted
!∞,1-regularization, respectively. The good match between the theoretical results and the Monte-Carlo curves illustrates the
accuracy of theoretical results in the mean behavior analysis.

We also considered the average error over the entire network defined by:

Eav(n) !
1

N

N∑

k=1

‖wk,n −w!
k‖ (97)
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Fig. 5. The average error Eav(n) of the reweighted "∞,1-regularization; Theory: red solid line; Monte-Carlo simulations: blue dashed line.
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Fig. 6. Comparison of the proposed algorithms with several state-of-the-art algorithms for white inputs.

Though there is a small bias between theoretical and Monte-Carlo curves, the results reported in Fig. 4 and Fig. 5 confirm the
accuracy of the theoretical models.

B. Numerical Simulations

1) Comparison with existing algorithms: We firstly considered a non-stationary jointly sparse system identification scenario
with w!

k varying over time. Each nonzero entry of w!
k was generated independently from a standard Gaussian distribution. The

evolution of w!
k was divided into four stationary stages and three transient stages. During stationary stages, sparse vectors w!

k
were set to sparsity degree of 3/30, 5/30, 8/30 and 10/30, respectively. The transient stages were designed by using linear
interpolation over 500 time instants. The regressors xk,n were generated as those in Section VI-A for white inputs, while they
were generated according to a zero-mean Gaussian distribution with covariance matrix Rx,k = σ2

x,kR
† for colored inputs, where

R† is an 30×30 Hermite matrix with eigenvalue spread λmax{R†}/λmin{R†} = 21, and symbol λmin{·} denotes the minimal
eigenvalue of its matrix argument. For comparison purpose, non-cooperative diffusion LMS algorithm, non-cooperative sparse
diffusion LMS [6] with zero-attracting (ZA) regularizer and reweighted zero-attracting (RZA) regularizer, multitask diffusion
LMS with adaptive combiner [17] and jointly sparse multitask diffusion LMS [24] with !2,1-regularization, reweighted !2,1-
regularization (RW!2,1) and !2,0-regularization were taken into consideration. We adopted a uniform step-size 0.01 for all
algorithms. For these algorithms, we set their parameters so that they reach their best performance. To enable reproducible
research, details about parameters used by these algorithms can be found in Table III of Appendix F.

The results are illustrated in Fig. 6 for white inputs. We observe that multitask LMS with adaptive combiner is the worst one
among all competing algorithms, since it utilizes similarities between neighboring nodes to improve estimation accuracy. This
does not necessarily exist in jointly sparse scenarios and may deteriorate the MSD performance. Since jointly sparse system
can be regarded as a special case of general sparse systems, by using additional information about system sparsity, sparse
diffusion LMS with ZA regularizer and RZA regularizer have better performance than the non-cooperative LMS. Similarly, all
jointly sparse multitask algorithms considered in this comparative experiment perform better than the non-cooperative LMS.
Observe that sparse diffusion LMS algorithms can perform slightly better than jointly sparse diffusion LMS algorithms as the
parameter vectors to estimate become sparser, while they do not perform as well when these parameter vectors are less sparse.
These findings illustrate the interest of exploiting joint sparsity as prior information. On the one hand, the proposed proximal
multitask LMS with reweighted !∞,1-regularization performs better than all other algorithms as evidenced by its lowest steady-
state MSD. On the other hand, the proposed proximal multitask LMS with !∞,1-regularization has similar performance to the
sparse diffusion LMS with RZA regularizer when there are more zeros in the jointly sparse system to estimate, but the former
performs better than the latter as the number of nonzero entries increases.

The results are illustrated in Fig. 7 for colored input signals. It can be observed that the convergence rate of all algorithms
is slower than in the case of white inputs, and some algorithms have poorer performance than the non-cooperative algorithm
when the parameter vectors to estimate are less sparse. Besides some conclusions that have been drawn for white inputs, we
observe that the proximal multitask LMS algorithm with reweighted !∞,1-regularization still has the best performance.

Then we examined the performance of all algorithms as a function of the sparsity degree of the jointly sparse system to
estimate. We considered the steady-state MSD as the measure of performance in this experiment. The results are illustrated in
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Fig. 8. Besides some conclusions that have been drawn before, we observe that some of the multitask algorithms with sparse
and jointly sparse regularizers may have poorer performance than the non-cooperative LMS when the number of nonzero entries
increases. Three algorithms, including the proximal multitask LMS with reweighted !∞,1-regularization, uniformly show better
performance than all other algorithms for all sparsity degrees, and have similar performance to the non-cooperative LMS for
totally non-sparse systems.

2) Effects of parameters setting: To examine the effects of parameters setting, including the step-size µk, the regularization
parameter λk, the threshold values τ1, τ2 and the parameter ε, we considered a stationary system identification problem with
sparsity degree of 3/30. Each parameter was set to a same value for all nodes in the network. We examined the influence of
one selected parameter at a time, setting all other parameters to fixed values, in order to facilitate comparison.

The effects of the step-size µk are illustrated in Fig. 9 and Fig. 10 for the proximal LMS with !∞,1-regularization and
reweighted !∞,1-regularization, respectively. Observe that µk allows to control the trade-off between convergence rate and
steady-state performance. A larger step-size results in a faster convergence rate at the cost of a larger steady-state MSD. A
small step-size results in a more accurate estimation at the cost of a slower convergence speed.
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The effects of the regularization parameter λk are illustrated in Fig. 11 and Fig. 12. We observe that increasing λk improves
the convergence speed and the MSD at steady-state at first, and then degrades them. In this experiment, the critical values
were 0.08 and 0.01 for the !∞,1 regularizer and the reweighted !∞,1 regularizer, respectively.

The effects of parameters τ1 and τ2 are shown in Fig. 13. Similar behaviors can be observed on the MSD at steady-state of
both algorithms with respect to τ1 and τ2. The best values were obtained over interval [0.05, 0.8] for both regularizers. First, these
results show the need for introducing these two parameters. Second, they show that these two parameters can be appropriately
selected over a large interval. Consider the !∞,1-norm regularizer. When [wo

k]m ≤ τ1, observe that the approximate proximal
operator is given by (33) and corresponds to the !1-norm regularizer, which enjoys the following properties: On the one hand,
it shrinks the estimates of zero-valued parameters to zero when [wo

k]m ≤ τ1; On the other hand, for small nonzero-valued
entries, though introducing a bias when shrunk to zero, it lowers the estimates variance and results in a satisfying performance.
Since jointly sparse systems are a special case of general sparse ones, for which the !1-norm regularizer is prescribed, it is
expected that our algorithm works well for a large range of τ1 values. The same reasoning applies to the reweighted !∞,1-norm
regularizer and τ2.

The effects of parameter ε in the reweighted !∞,1 regularizer are illustrated in Fig. 14. We set both parameters µk and
λk to 0.01. We observe that the best value of ε resulting in the lowest MSD at steady-state was 0.002, but its effect on the
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steady-state MSD is weaker than the other parameters.

C. Practical application

We shall now validate the proposed algorithm in a practical application. This application follows the experimental setup
described in [24]. In demodulation and decoding in underwater and wireless communication networks, a standalone low-cost
sensor may not be able to decode or demodulate the source signal reliably due to the extra low signal-to-noise ratio (SNR)
condition. It is better to adopt multiple sensors to collaboratively recover the information coming from a same source [54],
[55] by combining and exchanging information within the sensor network. Practically, it is necessary to estimate the channel
impulse responses between the source and each sensor before decoding. On the one hand, it has been shown that real-world
underwater channels [27], and wireless communication channel [28], are sparse with large delay spread. On the other hand, the
channel supports for neighboring antennas or nodes are approximately the same [28]. Indeed the times of arrival for closely
spaced nodes and antennas are quite close, though the tap weights are different [24]. We shall now check that taking the jointly
sparse property into consideration can improve the network performance.

Consider the problem of identifying underwater acoustic channels. We set the scenario presented in Fig. 15, where we have
one source (the submarine) and two receiving sensor arrays. Both arrays are linear arrays and consist of 10 nodes with the
same distance (3.75 m) between each of them. We assume that each node has the ability to communicate and process data.
These two arrays are positioned in parallel with interspace 50 m, which gives us the distributed network with 20 nodes. Within
each array, the nodes are connected one by one in a chain, and the corresponding pairs of nodes between two arrays are
also connected. The underwater acoustic channels to estimate were generated via the BELLHOP model [56], which has been
developed for predicting acoustic pressure fields in ocean environments. We used a white signal as input, and the additive
noise at each node was white Gaussian. SNR conditions are listed in Table II.

TABLE II
SNR LEVEL IN DECIBEL (DB) FOR THE PRACTICAL APPLICATION. SINCE IT VARIES ACCORDING TO NODES, WE ENUMERATE THE MAXIMUM, MINIMUM

AND MEAN VALUES.

SNR Level Maximum Minimum Mean
SNR 7.89 6.19 7.07

We compared our algorithms with the algorithms considered in Section VI-B1. Parameters used by all them are listed in
Table III. The results are depicted in Fig. 16. As can be observed, the proposed proximal multitask diffusion LMS algorithm
with reweighted !∞,1 regularizer achieved the best performance in terms of the steady-state MSD.

VII. CONCLUSION

We considered the problem of estimating a set of parameter vectors in a distributed manner, where the local solutions have the
same sparse support. We devised a proximal diffusion algorithm with (reweighted) !∞,1-norm regularization, with closed-form
expressions for the regularizers. We conducted theoretical analyses of the algorithms behavior in the mean and mean-square
sense. Simulation results illustrated the effectiveness of the proposed algorithms, as well as the accuracy of theoretical results.
Integrating weighted network connection information to enhance this jointly-sparse estimation will be considered in future
work.
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APPENDIX A
INTERPRETATIONS ABOUT THE (REWEIGHTED) !∞,1-NORM

The !∞,1-norm of matrix Wk is defined as g1(wk) of (11). We focus on the interpretation of ‖w̄k,m‖∞. From (8) we have
that ‖w̄k,m‖∞ = max{|[wk]m|, |[w!

" ]m| with ! ∈ N−
k }. Denote the maximal value of |[w!

" ]m| for ! ∈ N−
k as [wo

k]m. Then
‖w̄k,m‖∞ writes to ‖w̄k,m‖∞ = max{|[wk]m|, [wo

k]m}. Now we consider the following three cases:
• Case a: The m-th row w̄k,m of matrix Wk corresponds to the zero-valued entries. In this case, ‖w̄k,m‖∞ = max{|[wk]m|, 0} =

max{|[wk]m|}. Minimizing g1(wk) over [wk]m attracts the m-th entry [wk]m to zero.
• Case b: The m-th row w̄k,m corresponds to the non-zero valued entries, and |[wk]m| ≤ [wo

k]m. In this case, ‖w̄k,m‖∞ =
max{|[wk]m|, [wo

k]m} = [wo
k]m. Minimizing g1(wk) over [wk]m will not penalize [wk]m.

• Case c: The m-th row w̄k,m corresponds to the non-zero valued entries, and |[wk]m| > [wo
k]m. In this case, ‖w̄k,m‖∞ =

max{|[wk]m|, [wo
k]m} = |[wk]m|. Minimizing g1(wk) over [wk]m will penalize [wk]m until |[wk]m| ≤ [wo

k]m, which
then becomes Case b.

Thus, the !∞,1-norm promotes the similarity between |[wk]m| and [wo
k]m for all m. Similar interpretations can be obtained

for the reweighted !∞,1-norm of (12).

APPENDIX B
DERIVATION OF (36)

The initial problem (24) leads to (25) and (27) in Case 1 and Case 2, respectively. For ease of presentation, we define:

J̄1([wk]m)! [wo
k]m+

1

2µkλk

(
[wk]m−[ψk,n+1]m

)2 (98)

J̄2([wk]m)! |[wk]m|+ 1

2µkλk

(
[wk]m−[ψk,n+1]m

)2
. (99)

We select solution (26) or (35) depending on the value taken by costs (98) and (99). To save space, we partially present the
derivation. The rest of the derivation can be obtained by following the same routine.

When [ψk,n+1]m ≥ [wo
k]m+µkλk, substituting ŵ = [wo

k]m of Case 1 into (98), we obtain:

J̄1([w
o
k]m) = [wo

k]m+
1

2µkλk

(
[wo

k]m−[ψk,n+1]m
)2
. (100)

Substituting ŵ = [ψk,n+1]m−µkλk of Case 2 into (99), we obtain:

J̄2(ŵ) = |ŵ|+ 1

2µkλk

(
ŵ −[ψk,n+1]m

)2

≤ J̄2([w
o
k]m) = J̄1([w

o
k]m) (101)

since J̄2(ŵ) with ŵ = [ψk,n+1]m−µkλk is the minimal cost. Thus the proximal operator is given by:

ŵ = [ψk,n+1]m−µkλk (102)

for [ψk,n+1]m ≥ [wo
k]m+µkλk.

When [wo
k]m ≤ [ψk,n+1]m < [wo

k]m+µkλk, since ŵ of both Case 1 and Case 2 is given by:

ŵ = [wo
k]m, (103)

we arrive at proximal operator (103) directly.
When 0< [ψk,n+1]m< [wo

k]m, substituting ŵ = [ψk,n+1]m of Case 1 into (98), we obtain:

J̄1
(
[ψk,n+1]m

)
= [wo

k]m. (104)

Substituting ŵ = [wo
k]m of Case 2 into (99), we obtain:

J̄2([w
o
k]m) = [wo

k]m+
1

2µkλk

(
[wo

k]m−[ψk,n+1]m
)2

≥ J̄1
(
[ψk,n+1]m

)
. (105)

Thus the proximal operator is given by:
ŵ = [ψk,n+1]m (106)

for 0< [ψk,n+1]m< [wo
k]m.

By following the same routine, we obtain the proximal operator for [ψk,n+1]m ≤ 0. Finally, by combining all these results,
we arrive at the expression of proximal operator (36) when [wo

k]m > 0.
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APPENDIX C
DERIVATION OF (53)

Define:

J̄3([wk]m) ! log
(
1 +

[wo
k]m
ε

)

+
1

2µkλk

(
[wk]m −

[
ψk,n+1

]
m

)2 (107)

J̄4([wk]m) ! log
(
1 +

|[wk]m|
ε

)

+
1

2µkλk

(
[wk]m −

[
ψk,n+1

]
m

)2
. (108)

The initial problem (37) leads to J̄3([wk]m) and J̄4([wk]m) in Case 1 and Case 2, respectively. We select solution (39),
(49) or (51) by comparing costs (107) and (108) as that in Section IV-A. We partially present the derivation to save space.

When 0< [ψk,n+1]m< [wo
k]m, substituting ŵ = [ψk,n+1]m of Case 1 into (107), we obtain:

J̄3
(
[ψk,n+1]m

)
= log

(
1 +

[wo
k]m
ε

)
. (109)

Substituting ŵ = [wo
k]m of Case 2 into (108), we obtain:

J̄4([w
o
k]m) = log

(
1 +

[wo
k]m
ε

)

+
1

2µkλk

(
[wo

k]m−[ψk,n+1]m
)2

≥ J̄3
(
[ψk,n+1]m

)
. (110)

This means that the proximal operator is given by:

ŵ = [ψk,n+1]m (111)

for 0< [ψk,n+1]m< [wo
k]m.

When [wo
k]m ≤ [ψk,n+1]m < [ck]m, since ŵ of both Case 1 and Case 2 is given by:

ŵ = [wo
k]m, (112)

we arrive at proximal operator (112) directly.
When [ψk,n+1]m ≥ [ck]m, substituting ŵ = [wo

k]m of Case 1 into (107), we obtain:

J̄3([w
o
k]m) = log

(
1 +

[wo
k]m
ε

)

+
1

2µkλk

(
[wo

k]m −
[
ψk,n+1

]
m

)2

= J̄4([w
o
k]m). (113)

Further, since ŵ = [ψk,n+1]m−µkλk/(ε+|[w(t)
k ]m|) of Case 2 is an approximation of the minimizer ŵo of (41), and according

to the relation J̄4(ŵo) ≤ J̄4([wo
k]m), we define the proximal operator as:

ŵ = [ψk,n+1]m− µkλk

ε+|[w(t)
k ]m|

(114)

for [ψk,n+1]m ≥ [ck]m.
By following the same routine, we obtain the proximal operator for [ψk,n+1]m ≤ 0. Finally, by combining all these results,

we arrive at expression (53) when [wo
k]m > 0.

APPENDIX D
PROOF OF THEOREM 1

Iterating (72) from n = 0, we obtain:

E{w̃n+1} = Bn+1E{w̃0}−
n∑

j=0

BjE{γ(i)
n+1−j} (115)
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where E{w̃0} is the initial condition. The convergence of (115) requires that both terms on the RHS to be convergent. For
the first term, it requires that spectral radius ρ(B) < 1 to ensure the convergence. For the second term, it is sufficient to prove
that

∑n
j=0

[
BjE{γ(i)

n+1−j}
]
m

is convergent for m = 1, · · · , NL. A series is absolutely convergent if each term is bounded
by a term of an absolutely convergent series [6], [14]. Define sm !

[
BjE{γ(i)

n+1−j}
]
m

. Since the block maximum norm of a
block vector is larger than or equal to the largest absolute value of its entry, we have:

|sm| ≤
∥∥BjE{γ(i)

n+1−j}
∥∥
b,∞

≤
∥∥B

∥∥j
b,∞ ·

∥∥E{γ(i)
n+1−j}

∥∥
b,∞

≤
[
ρ(B)

]j · γ(i)
max, (116)

where ‖ · ‖b,∞ is the block maximum norm [7]. The quantity
∥∥E{γ(i)

n+1−j}
∥∥
b,∞ is finite for all j and n, and bounded by some

constant γ(i)
max. Actually, from (76), (77), (83), (84) and following the routine for the boundness of γ(i)

k,n+1, we obtain:
∣∣E{γ(1)

k,n+1−j}
∣∣ " µkλk L (117)

∣∣E{γ(2)
k,n+1−j}

∣∣ " bk L (118)

where the quantity bk has been defined in (61).
Thus, we conclude that

∥∥E{γ(i)
n+1−j}

∥∥
b,∞ is bounded, with

∥∥E{γ(1)
n+1−j}

∥∥
b,∞ ≤ γ(1)

max !
√
L ·max

k

{
µkλk

}
(119)

∥∥E{γ(2)
n+1−j}

∥∥
b,∞ ≤ γ(2)

max !
√
L

ε
·max

k

{
µkλk

}
. (120)

Consequently, convergence of (116) is ensured by condition ρ(B) < 1. Step-sizes µk satisfying (85) ensure the mean stability
of the network.

With step-sizes µk satisfying (85) to ensure ρ(B) < 1, the block maximum norm of the bias can be bounded as n → ∞:

lim
n→∞

∥∥E{w̃n+1}
∥∥
b,∞ ≤ lim

n→∞

n∑

j=0

‖Bj‖b,∞
∥∥E{γ(i)

n+1−j}
∥∥
b,∞

≤ γ(i)
max

1− ‖B‖b,∞
. (121)

Substituting (119) and (120) into (121), we arrive at (86) and (87), respectively.

APPENDIX E
PROOF OF THEOREM 2

Since Σ is a positive semi-definite matrix, and vector γ(i)
n+1 is uniformly bounded for all time instant n and i = 1 or 2, we

have:

0 ≤ E{‖γ(i)
n+1‖2Σ} ≤ κ(i)

1 (122)

for all n, where κ(i)
1 is a positive constant depending on the jointly sparse regularizer. Since γ(i)

n+1 is uniformly bounded, vector
B"Σγ(i)

n+1 is also bounded for all n. Denote the bound of the largest component of 2B"Σγ(i)
n+1 in absolute-value sense as

τ (i)max for all n. We obtain:

∣∣2E{w̃"
nB

"Σγ(i)
n+1}

∣∣ ≤ τ (i)max

N∑

k=1

L∑

m=1

∣∣E
{[
w̃k,n

]
m

}∣∣

= τ (i)max ·
∥∥E{w̃n}

∥∥
1
. (123)

Given step-sizes µk satisfying condition (85) to ensure stability in the mean sense, we conclude that quantity
∥∥E{w̃n}

∥∥
1

is
upper bounded by some constant κ(i)

2 for all n. Consequently, (123) becomes:
∣∣2E{w̃"

nB
"Σγ(i)

n+1}
∣∣ ≤ τ (i)max · κ

(i)
2 . (124)

Define

φ
(
w̃n,γ

(i)
n+1

)
! E{‖γ(i)

n+1‖2σ}− 2E{w̃"
nB

"Σγ(i)
n+1}. (125)
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Using (122)–(125), we have:
∣∣φ

(
w̃n,γ

(i)
n+1

)∣∣ ≤ E{‖γ(i)
n+1‖2σ}+

∣∣2E{w̃"
nB

"Σγ(i)
n+1}

∣∣

≤ κ(i)
1 + τ (i)max · κ

(i)
2 (126)

for all n. Given a weighting matrix Σ, the positive constant κ(i)
3 ! κ(i)

1 + τ (i)max · κ(i)
2 can be written as a scaled multiple of

[vec{H}]"σ as:

κ(i)
3 = p · [vec{H}]"σ (127)

with p ≥ 0 [6]. Using (95) and (125)–(127), we obtain an upper bound of E{‖w̃n+1‖2σ} as:

E{‖w̃n+1‖2σ}≤E{‖w̃n‖2Fσ}+[vec{H}]"σ+
∣∣φ
(
w̃n,γ

(i)
n+1

)∣∣

≤E{‖w̃n‖2Fσ}+(1 + p)· [vec{H}]"σ. (128)

Iterating (128) from n = 0, we obtain:

E{‖w̃n+1‖2σ}≤E{‖w̃0‖2Fn+1σ}

+(1+p)[vec{H}]"
n∑

j=0

F jσ (129)

where E{‖w̃0‖2} is the initial condition. The stability of E{‖w̃n+1‖2σ} requires the convergence of terms on the RHS of
(129), which is ensured by condition ρ(F ) < 1. Since F = B" ⊗B", it is enough to select sufficiently small step-sizes µk

satisfying (85) to ensure ρ(F ) < 1.

APPENDIX F
PARAMETERS USED BY ALGORITHMS IN SECTION VI-B1

Table III provides all parameters used by the algorithms in Section VI-B1. Notations used for these parameters are the same
as those in the original references. Some pairs of columns, standing for different parameters, are merged into a single column
for compactness. The corresponding symbols can be distinguished by the symbol “ | ”. We used a uniform step-size 0.01 for
all algorithms.

TABLE III
PARAMETERS USED BY ALL ALGORITHMS FOR SIMULATION.

Algorithms λk | γ ε η τ1 | τ2
proposed "∞,1 proximal LMS 0.08 0.1

proposed RW"∞,1 proximal LMS 0.01 0.01 | 0.05
ZA-Sparse LMS [6] | 0.03

RZA-Sparse LMS [6] | 0.03 0.45
"2,0 jointly sparse [24] 8 0.1
"2,1 jointly sparse [24] 0.03

RW"2,1 jointly sparse [24] 100 1.5
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