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Abstract

Change-points in time series data are usually defined as the time instants at
which changes in their properties occur. Detecting change-points is critical
in a number of applications as diverse as detecting credit card and insurance
frauds, or intrusions into networks. Recently the authors introduced an online
kernel-based change-point detection method built upon direct estimation of the
density ratio on consecutive time intervals. This paper further investigates
this algorithm, making improvements and analyzing its behavior in the mean
and mean square sense, in the absence and presence of a change point. These
theoretical analyses are validated with Monte Carlo simulations. The detection
performance of the algorithm is illustrated through experiments on real-world
data and compared to state of the art methodologies.

Keywords: Non-parametric change-point detection, reproducing kernel
Hilbert space, kernel least-mean-square algorithm, online algorithm,
convergence analysis.

1. Introduction

From a statistical perspective, a change-point is defined as a time instant at
which some properties of a signal change, that is, the observations belong to one
state up to that point, and belong to an other state after it. This change can be
caused by external events, as well as by sharp transitions in the dynamics of the
signal, either way it can hold critical information. Among possible applications
of change point detection (CPD) we can mention medical monitoring [1, 2, 3],
finance [4] and network security [5, 6]. We refer interested readers to, e.g., [7]
or [8] for comprehensive reviews of CPD algorithms.

CPD algorithms can be classified, based on what is assumed to be known
about the data distribution, as parametric or non-parametric. Parametric ap-
proaches assume that a model describing the data distributions of the different
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states is available. For instance, cumulative sum (CUSUM) type algorithms [9]
assume, in their simplest form, that the parameter that undergoes changes is
known, but also require knowledge of its pre-change and sometimes post-change
values, e.g., change in the mean or in the variance [10]. In case where the afore-
mentioned parameters are unknown, the generalized likelihood ratio [11], which
consists of substituting all the unknown parameters by their maximum likeli-
hood estimates, can be used. Less restrictive approaches have also been devised.
Among these, subspace identification techniques are built upon the idea that if,
at a certain time instant, there is a change in the mechanism generating the time
series, then the (linear) subspace spanned by the signal trajectory also changes.
This principle is used in [12] where the authors explicitly model the observations
via a discrete-time linear state-space system. Another example is the Singular
Spectrum Transformation, which calculates distance-based change-point scores
by comparing singular spectra of two trajectory matrices over consecutive win-
dows [13, 14]. If all assumptions about the data model are met, these techniques
can be robust and efficient. In practice though, stochastic models that properly
describe the data are not often available. And, even when they are, data are
susceptible to deviations from the assumed models. Non-parametric approaches
were introduced to cope with these limitations. They can be used in a broader
range of applications, since they do not require (strong) prior information.

Non-parametric algorithms are usually classified as supervised or unsuper-
vised methods. In the first case, when the number of possible states is spec-
ified, and labeled data representing each state is available, machine learning
algorithms can be used to train multi-class classifiers and then find each state
boundary. If not, the nominal-state sequences represent the unique class and
the problem can be solved using, e.g., a one-class algorithm such as [15] and [16]
or alternative approaches such as the Hilbert-Schmidt Independence Criterion
in [17]. However, in many practical situations, labeled data is not available
and unsupervised algorithms that can adapt to different situations are required.
This problem can be tackled by extending subspace identification techniques to
non-linear subspaces using, e.g., nearest neighbors algorithms or, more gener-
ally, manifold learning methods, [18, 19]. An alternative approach consists of
operating in a Reproducing Kernel Hilbert Space (RKHS) in order to extend the
use of linear models and algorithms to nonlinear problems, [20]. This strategy
is used in [21] which proposes an online implementation of the Maximum Mean
Discrepancy (MMD) two-sample test based on the B-statistics [21]. Note that
[22], where change-points are detected using a Kernel Fisher Discriminant, and
[23], where the authors propose to monitor the mean of the process in the feature
space, are both strongly related to MMD. Another class of unsupervised meth-
ods is based on the direct estimation of the ratio of probability densities of the
data over consecutive segments. They include the Kullback-Leibler Importance
Estimation Procedure (KLIEP), the Unconstrained Least Squares Importance
Fitting (uLSIF) and the Relative Unconstrained Least Squares Importance Fit-
ting (RuLSIF) [24]. The main contributions of this article lie in this class of
methods.

Recently, an online version of a RuLSIF-based CPD algorithm, which con-
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sists of estimating the density ratio over consecutive intervals of the time series
data, was introduced [25]. In this algorithm, the model parameters are estimated
in an online and adaptive way similar to the Kernel Least Mean Squares (KLMS)
algorithm [26]. The methodology showed promising and reliable detection re-
sults. In [27] the authors proposed to modify the original cost function used
in [25] in order to further improve the performance and achieve unbiasedness
of the algorithm, referred to as NOUGAT (Nonparametric Online chanGepoint
detection AlgoriThm).

The main contribution of this paper are as follows. After introducing the
proposed algorithm (Section 2), we provide a theoretical analysis of its stochastic
behavior by deriving models for the mean and the variance of the detection
statistics, in the absence and the presence of a change-point (Section 3). These
models are useful for several purposes: i) to assess the detection performance of
the algorithm; ii) for detector design and optimization. Then we demonstrate
the accuracy of these models, and we present performance comparisons with
state-of-the-art algorithms on simulated and real data sets (Section 4). Finally
we conclude this paper with recommendations for future research (Section 5).

2. The NOUGAT algorithm

In this section, we formulate the CPD problem. We review the proposed
method and the online algorithm denoted as NOUGAT. Then we introduce the
detection statistic. Finally we briefly discuss related works.

2.1. Problem formulation

We aim at detecting change-points in the distribution of independent random
variables {yt}t∈N, yt ∈ Rk, by estimating a model g(·) for r(y)−1, where r(y) =
ptest(y)/pref(y) is the density ratio between the probability density ptest(y) of
the data on a test interval:

Y test
t = (yt−(Ntest−1), . . . ,yt−1,yt) ∈ Rk×Ntest (1)

and the probability density pref(y) of the data on a reference interval:

Y ref
t = (yt−(Nref+Ntest−1), , . . . ,yt−Ntest

) ∈ Rk×Nref (2)

where Ntest and Nref are the number of samples in the test and reference in-
tervals, respectively. Note that, contrary to RuLSIF [24], r(y) − 1 is preferred
to r(y) because it leads to an unbiased estimator under the no change-point
hypothesis as we shall see later.

In the general case of a scalar time series {yt}t∈N, as commonly reported in
the literature, we propose to proceed by considering

yt = (yt, yt+1, . . . , yt+k−1)> ∈ Rk (3)

to take into account any dependence that may exist between successive yt.
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2.2. Density-ratio estimation

The problem addressed in this paper consists of estimating a model g(·) for
r(y)−1. It can be solved by fitting g(y) to r(y)−1 with respect to the squared
loss:

C(g) =
1

2
Epref(y){(r(y)− 1− g(y))2} (4)

Note that, as in [24], the expectation operator is defined with respect to the
reference interval. By expanding (4) and then using r(y)pref(y) = ptest(y), we
obtain:

C(g) =
1

2
Epref(y){g

2(y)} − Eptest(y){g(y)}+ Eptest(y){g(y)}+ C (5)

where C denotes a constant value. Approximating the expected values in (5)
by their empirical averages over the reference and test intervals data Y ref

t and
Y test
t for any fixed t, leads to the following empirical optimization problem:

min
g∈H

 1

2Nref

t−Ntest∑
i=t−(Nref+Ntest−1)

g2(yi)−
1

Ntest

t∑
i=t−(Ntest−1)

g(yi)

+
1

Nref

t−Ntest∑
i=t−(Nref+Ntest−1)

g(yi) + ν Ω(‖g‖H)

 (6)

where H denotes an arbitrary reproducing kernel Hilbert space of real-valued
functions on R. Let κ(· , ·) be the reproducing kernel of H. The term ν Ω(‖g‖H)
with ν ≥ 0 is a regularization term added to promote smoothness of the solu-
tion. By virtue of the Representer Theorem [28], any function g(·) of H that
minimizes (6) can be expressed as a kernel expansion in terms of available data:

g(·,θ) =

t∑
i=t−(Nref+Ntest−1)

θi κ(· ,yi) (7)

where the θi are parameters to be learned. This model cannot be trained effi-
ciently in an online framework, as it needs to update both {yi} and θ as time
t progresses. A standard strategy in the literature is to substitute {yi} in (7)
by a fixed dictionary of size L, {yωi}

L
i=1, whose elements are chosen according

to some sparsification rule [29] to represent the input data space accurately,
resulting in a fixed order model,

g(·,θ) =

L∑
i=1

θiκωi(·) (8)

where κωi(·) = κ(·,yωi), for all i ∈ {1, . . . , L}, are the elements of the dictionary,
and κω(·) = [κω1

(·), . . . , κωL(·)]>.
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Substituting (8) into (6), assuming a ridge parameter space regularization [28],

and minimizing (6) w.r.t. θ, we find that the optimal parameter vector θ̂t is
the solution of the following strictly convex quadratic optimization problem:

θ̂t = arg min
θ∈RL

Jt(θ)

with Jt(θ) =
1

2
θ>Href

t θ + θ>e◦t +
ν

2
‖θ‖2

(9)

where
e◦t = href

t − h
test
t (10)

and

htest
t =

1

Ntest

t∑
i=t−(Ntest−1)

κω(yi) (11)

href
t =

1

Nref

t−Ntest∑
i=t−(Ntest+Nref−1)

κω(yi) (12)

Href
t =

1

Nref

t−Ntest∑
i=t−(Ntest+Nref−1)

κω(yi)κ
>
ω(yi) (13)

2.3. Online density-ratio estimation

Let θt be an estimate of the parameter vector of the density ratio model at
time instant t. When t → t + 1, according to (9), θt+1 should be computed,
as proposed in RuLSIF [24], by updating first (11)–(13) and then minimizing
the updated criterion Jt+1(θ). In order to reduce the computational cost, we
propose as an alternative strategy to compute θt+1 by updating θt based on a
gradient descent step of Jt+1(θ):

θt+1 = θt − µ∇Jt+1(θt) (14)

= θt − µ
[
(Href

t+1 + νI)θt + e◦t+1

]
(15)

where µ > 0 is a small step size, and ∇Jt+1(θt) denotes the gradient of Jt+1(·)
evaluated at θt. The resulting algorithm shares similarities with the KLMS
algorithm [30]. The convergence behavior of the KLMS was analyzed in the
case of a fixed dictionary in [31], and in a more general case in [32]. Additional
constraints such as sparsity have been also considered [33].

In practice, updating model g(·,θt) at each time instant t is a two-stage
process that consists of updating both the dictionary {yωi}

L
i=1 and the order L

of the kernel expansion (8), followed by the update of parameter vector θt.

2.4. Dictionary update

Numerous strategies of dictionary learning have been introduced in the on-
line kernel filtering literature. They consist of building the dictionary {yωi}

L
i=1
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sequentially, by inserting selected samples yi that improve the representation of
input data according to some criterion. For instance, the Approximate Linear
Dependency (ALD) [34] criterion checks whether, in feature space H, the new
candidate element κ(· ,yt+1) can be well approximated by a linear combination
of the elements κ(· ,yωi) which are already in the dictionary. If not, it is added
to the dictionary. The coherence rule [30] was introduced to avoid the compu-
tational complexity inherent to ALD. It is now considered as a state-of-the-art
strategy and widely used as such. Defined by:

η = max
i 6=j
|κ(yωi ,yωj )|,

coherence η reflects the largest correlation between the dictionary elements. The
coherence rule for kernel-based dictionary selection consists of inserting yt+1 in
dictionary {yωi}

L
i=1 provided that its coherence remains below a threshold η0

preset by the user:
max

yωi∈{yωi
}Li=1

|κ(yt+1,yωi)| ≤ η0 (16)

In [30] the authors show that the dimension of dictionaries determined with rule
(16) is finite due to the compactness of the input space.

2.5. NOUGAT Algorithm

Depending on whether the new sample yt+1 has been inserted into the dic-
tionary, or not, parameter vector θt is updated similarly to [30]. At each time
instant t, given θt, we propose as a test statistic to consider the average of the
(shifted by 1) density ratio estimators over the test interval, namely:

gt =
1

Ntest

t∑
i=t−(Ntest−1)

g(yi,θt) = θ>t h
test
t (17)

CPD is then performed by comparing gt + 1 to a given threshold ξ. The corre-
sponding NOUGAT algorithm is described in Alg. 1.

2.6. Related works

Iteration (15) turns out to be related to the classical Geometric Moving
Average algorithm (GMA) proposed in [35]. GMA monitors a geometrically
weighted estimate of the mean of yt and detects a change when the estimated
mean deviates from its nominal value. Without loss of generality, the mean in
the observation space can be replaced by the mean E{κω(y)} in the feature
space defined by mapping κω(·), leading to:

ϑt+1 = (1− α)ϑt + ακω(yt+1) (18)

However, as pointed out in [23], a drawback of GMA is that it requires to know
the nominal value of E{κω(y)} in order to be able to calculate the associated
test statistic: ‖ϑt − E{κω(y)}‖2.
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Algorithm 1: NOUGAT Algorithm

1: Step size µ, initial dictionary ω, regularization ν, thresholds η0 and ξ
2: for t = 1, 2, . . . do
3: update Href

t , htest
t and e◦t using (10)-(13)

4: if maxyωi∈{yωi}
L
i=1
|κ(yt+1,yωi)| > η0 then

5: # the dictionary remains unchanged and θt is updated using (15)
6:

θt+1 = θt − µ
[
(Href

t+1 + νI)θt + e◦t+1

]
7: else
8: # yt+1 is added to the dictionary and θt is updated
9: L← L+ 1, ωL+1 = t+ 1

10:

θt+1 =

(
θt
0

)
− µ

[
(Href

t+1 + νI)

(
θt
0

)
+ e◦t+1

]
11: end if
12: # compute the test statistic and test
13: gt+1 = θ>t+1h

test
t+1

14: if |gt+1 + 1| > ξ then
15: flag t+ 1 as a change point
16: end if
17: end for

To solve this problems in the GMA framework, a natural approach con-
sists of comparing the estimates of E{κω(yt)} on two sliding windows, namely,
the reference interval (2) and the test interval (1), as proposed in the Moving
Average (MA) algorithm described in [23] which tracks:

‖e◦t ‖2 = ‖htest
t − href

t ‖2 (19)

The approach implemented by NOUGAT differs in so far as, instead of calcu-
lating a deviation between two quantities estimated over the test and reference
intervals, it estimates a unique statistic r(y) over the two intervals which is
inherently equal to 1 under the null hypothesis. Note that an alternative ap-
proach, called NEWMA, proposed recently in [23], consists of testing the de-
viation between two GMA with different forgetting factors. The GMA with
the smallest forgetting factor is used to provide an estimation of the in-control
quantity. Contrarily to NOUGAT these algorithms do not explicitly take into
account the covariance of the data in the feature space. From this point of
view NOUGAT is similar to the Kernel Fisher Discriminant Ratio [22] but with
a much lower computation footprint since it does not require the inversion of
a covariance matrix for each t. Concerning the memory resources, NOUGAT
requires to buffer Nref +Ntest data points. The B-statistics CPD algorithm [21]
also relies on a single sliding test window, but, conversely, on multiple reference
windows which considerably increases the memory requirement.

7



In Section 4.2 we shall compare the detection performance and computa-
tional load of the three algorithms mentioned above with the same memory
footprint, namely, MA, NOUGAT and RuLSIF.

3. Theoretical analysis

In this section we analyze the stochastic behavior of the proposed algorithm,
and derive conditions for its stability in the mean and mean square sense, in
the absence and presence of a change-point. To make the analysis tractable,
we shall conduct it in the case of a pre-tuned dictionary, i.e., a fixed dictio-
nary of size L is assumed to be available beforehand. This means that L is
fixed and the {yωi}

L
i=1 are assumed to be deterministic. The classical Modified

Independence Assumption (MIA) [36], which assumes that Href
t+1 and θt are

statistically independent, will also be considered. Although not true in general,
this assumption is commonly used to analyze adaptive constructions since it al-
lows to simplify the derivations without constraining the conclusions. There are
several results in the adaptation literature that show that performance results
that are obtained under this assumption match well the actual performance of
the algorithms when the step-size is sufficiently small.

Using the update rule (15), we obtain the following recursion for θt:

θt+1 =
[
I − µ(Href

t+1 + νI)
]
θt − µe◦t+1 (20)

Define:

htestt = Eptest(y){h
test
t } (21)

hreft = Epref(y){h
ref
t } (22)

Href
t = Epref(y){H

ref
t } (23)

Taking the expected values on both sides of (20) and using the MIA we
obtain the mean weight model:

mθ,t+1 =
[
I − µ(Href

t+1 + νI)
]
mθ,t + µ(htestt+1 − hreft+1) (24)

We denote by Cθ,t the correlation matrix of the weight vector θt:

Cθ,t = E{θtθ>t }

Estimating the variance of the test statistics requires a model for matrix Cθ,t.
Post-multiplying (20) by its transpose, taking the expectation, and using the
MIA, we obtain the following recursive expression:

Cθ,t+1 =(1−µν)2Cθ,t − µ(1−µν)(Href
t+1Cθ,t +Cθ,tH

ref
t+1)

+ µ2(T+Q+Z+Z>)− µ(1− µν)(N+N>) (25)
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where:

T = E{Href
t+1θtθ

>
t H

ref
t+1} (26)

Q = E{e◦t+1e
◦
t+1
>} (27)

Z = E{e◦t+1θ
>
t H

ref
t+1} (28)

N = E{e◦t+1θ
>
t } (29)

In the general, all these matrices can depend on t. To simplify the notations,
this dependence is dropped.

3.1. Stochastic behavior analysis under the null hypothesis

3.1.1. Mean analysis

Under the null hypothesis we have:

hreft = htestt = Epref(y){κω(y)} = Eptest(y){κω(y)} = h

Href
t = Epref(y){κω(y) κ>ω(y)} = H

and the mean weight model (24) simplifies to:

mθ,t+1 =
[
I − µ(H + νI)

]
mθ,t (30)

The mean stability of the algorithm is then ensured by using a step size µ
that satisfies:

µ <
2

ζmax{H + νI}
(31)

where ζmax{·} stands for the maximal eigenvalue of its matrix argument. Un-
der this assumption mθ,t → 0. When y is Gaussian distributed, analytical
expressions of h and H for a Gaussian reproducing kernel can be derived; see
Appendix A.

Taking the expectation of (17) and assuming that θt and htest
t are indepen-

dent, we get the mean of the test statistics gt:

E{gt} = h>mθ,t (32)

The necessary independence assumption together with the MIA will be validated
by computer simulations.

Assuming (31) holds, under the null hypothesis, the asymptotic unbiasedness
of the estimator implies limt→∞ E{gt} = 0. When initializing (20) with θ0 = 0,
namely, mθ,0 = 0, equation (30) implies mθ,t = 0 for all t. As a consequence
E{gt} = 0, which means that the estimation of the density ratio r(yt) = 1 is
unbiased under the null hypothesis for all t.
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3.1.2. Mean squared analysis

The general model of Cθ,t in (25) depends on the matrices T , Q, Z and N ,
defined in (26)–(29). These matrices can be computed under the null hypothesis
as follows.

• Denoting cθ,t = vec(Cθ,t) where vec(·) refers to the standard vectorization
operator that stacks the columns of a matrix on top of each other, using the
MIA and vec(ABC) = (C> ⊗A) vec(B) with ⊗ the Kronecker product,
we find:

T =
1

Nref

(
vec−1(Γcθ,t) + (Nref − 1) HCθ,tH

)
(33)

where Γ is the (L2 × L2) matrix defined by:

Γ = Epref(y){κω(y)κ>ω(y)⊗ κω(y)κ>ω(y)} (34)

The expression of Γ is given in Appendix B.

• Under the null hypothesis, Q is given by:

Q =
Nref +Ntest

Nref Ntest
(H − hh>) (35)

• In the same way as T , we find that:

Z =
1

Nref

(
vec−1(∆mθ,t)− hm>θ,tH

)
(36)

where ∆ is the (L2 × L) matrix defined by:

∆ = Epref(y){κω(y)κω(y)> ⊗ κω(y)} (37)

The expression of ∆ is given in Appendix B.

• Application of the MIA implies N = 0.

The variance of the test statistics gt in (17) can be calculated using the
independence assumption required previously for the computation of its mean.
In particular:

var{gt} = E{g(yt)
2} − E{g(yt)}2

=
1

Ntest

(
tr(HCθ,t)− (h>mθ,t)

2
)

(38)

The mean term mθ,t in (36), (38) equals zero when θ0 = 0 and can be
neglected for large values of t according to the mean analysis in Section 3.1.1.
As a consequence, setting Z = 0, vectorizing (25) and using standard results
on Kronecker product leads to the following proposition.

10



Proposition 1. Under the null hypothesis, neglecting mθ,t and assuming the
MIA holds, cθ,t = vec(Cθ,t) verifies:

cθ,t+1 = Scθ,t + µ2 vec(Q) (39)

with:

S = (1− µν)2I +
µ2

Nref
(Γ + (Nref − 1)H ⊗H)− µ(1− µν)(H ⊕H)

where H ⊕H = H ⊗ I + I ⊗H. The variance of the test statistics (17) is
given by:

var{gt} =
1

Ntest
tr(HCθ,t) (40)

The stability of matrix S then ensures the mean-square stability of the
algorithm. If the algorithm is mean-square stable, then, cθ,t converges to:

cθ,∞ = µ2(I − S)−1 vec(Q) (41)

The asymptotic variance of the test statistics directly derives from this result.
Assuming a small step size µ we have:

S = I − 2µνI − µH ⊕H + o(µ)

Replacing in (40) and using classical properties of Kronecker products, the
asymptotic variance simplifies to:

var{g∞} =
µ

Ntest
tr
(
H vec−1

(
(2νI +H ⊕H)−1 vec(Q)

))
+ o(µ) (42)

=
µ

Ntest
vec(H)(2νI +H ⊕H)−1 vec(Q) + o(µ) (43)

Note that the rightmost term in (42) can be efficiently computed as the solution
of the Lyapunov equation (νI +H)X +X(νI +H) = Q , see [37, Proposition
7.2.4].

3.2. Stochastic behavior analysis in the presence of a change-point

Under the assumption of the presence of a single change-point t0, the analysis
is conducted by comparing each time instant t to t0, as hreft , htestt and Href

t defined
by (21)–(23) depend on time t. We assume that input data yi are i.i.d with
yi ∼ p0(·) before the change, and i.i.d with yi ∼ p1(·) after the change.

• If t < t0: htestt = hreft = h0 and Href
t = H0.

• If t0 ≤ t ≤ t0 + Ntest − 1: the test interval contains samples from both
distributions; see figure 1. According to (21):

htestt =
1

Ntest

t∑
i=t−(Ntest−1)

E{κω(yi)}

=
1

Ntest

(
n0 h0 + n1 h1

)
11



timet0 t

reference test

yi ∼ p0(·) yi ∼ p1(·)

Figure 1: An illustration of CPD procedure when the test interval contains samples driven by
p0(·) and p1(·).

timet0 t

reference test

yi ∼ p0(·) yi ∼ p1(·)

Figure 2: An illustration of CPD procedure when the reference interval contains samples
driven by p0(·) and p1(·).

where n1 = t − t0 + 1, and n0 = Ntest − n1. In that case: hreft = h0 and
Href
t = H0.

• If t0 + Ntest ≤ t ≤ t0 + Ntest + Nref − 1: the reference interval contains
samples from both distributions; see figure 2. In the same way we find:

hreft =
1

Nref
(n′0 h0 + n′1 h1)

Href
t =

1

Nref
(n′0 H0 + n′1 H1)

where: n′1 = t− (t0 +Ntest) + 1, and n′0 = Nref − n′1.

• If t ≥ t0 +Nref +Ntest, h
test
t = hreft = h1 and Href

t = H1.

h0, h1, H0 and H1 can be computed using the expressions in Appendix A
when p0 is N (µ0,R0) and p1 is N (µ1,R1).

3.2.1. Mean analysis

A recursive model of mθ,t can be obtained by replacing hreft , htestt , and Href
t

by their expressions over time in (24).

• If t < t0:
mθ,t+1 =

[
I − µ(H0 + νI)

]
mθ,t (44)

• If t0 ≤ t ≤ t0 +Ntest − 1:

mθ,t+1 =
[
I − µ(H0 + νI)

]
mθ,t + µ

n1
Ntest

(h1 − h0) (45)
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• If t0 +Ntest ≤ t ≤ t0 +Ntest +Nref − 1:

mθ,t+1 =
[
I − µ (

n′0
Nref

H0 +
n′1
Nref

H1 + νI)
]
mθ,t

+ µ
n′0
Nref

(h1 − h0) (46)

• If t ≥ t0 +Nref +Ntest:

mθ,t+1 =
[
I − µ(H1 + νI)

]
mθ,t (47)

and the mean stability of the algorithm is ensured by using a step size µ
that satisfies:

µ <
2

ζmax{H1 + νI}

The mean of the test statistics (17) is, in the presence of a change-point,
given by:

E{gt} =


h>0 mθ,t t < t0

1

Ntest
(n1h1 + n0h0)>mθ,t t0 ≤ t < t0 +Ntest

h>1 mθ,t t ≥ t0 +Ntest

(48)

3.2.2. Mean squared analysis

The first step consists of the computation of the matrices T , Q, Z and N
in the presence of a change point.

• Following the same steps as in (33), we find:

T =
1

Nref

(
vec−1(Γcθ,t) + (Nref − 1) Href

t+1Cθ,tH
ref
t+1

)
(49)

where Γ is defined in (34) and depends on t.

• Q can be decomposed as:

Q = Q1 +Q2 − (Q3 +Q>3 ) (50)

where:

Q1 = E{htest
t+1 h

test
t+1

>} (51)

Substituting (11) into (51) and expanding the expression we get:

Q1 =
1

Ntest
Htest
t+1 + (1− 1

Ntest
) htestt+1(htestt+1)>

where:
Htest
t = Eptest(y){H

test
t }

13



In the same way, we find:

Q2 = E{href
t+1 h

ref
t+1

>
}

=
1

Nref
Href
t+1 + (1− 1

Nref
) hreft+1(hreft+1)>

and since the samples yi in the reference and test intervals are indepen-
dent,

Q3 = E{htesthref>}
= htestt+1(hreft+1)>

• The matrix Z can be expanded as:

Z = E{href
t+1θ

>
t H

ref
t+1} − E{htest

t+1θ
>
t H

ref
t+1} (52)

The first expectation term in (52) can be computed using the MIA and
the vectorization operator:

Z =
1

Nref

(
vec−1(∆mθ,t) + (Nref − 1) hreft+1m

>
θ,tH

ref
t+1

)
− htestt+1m

>
θ,tH

ref
t+1 (53)

where ∆ is defined in (37) and depends on t.

• Using the MIA:
N = (htestt+1 − hreft+1) m>θ,t

The last step consists in replacing the expressions of hreft , htestt , and Href
t as a

function of t in T , Q, Z and N . We will denote by Γ0 (resp. Γ1) and ∆0 (resp.
∆1) matrices Γ and ∆ in (34,37) computed for yi ∼ p0(·) (resp. yi ∼ p1(·)),
see Appendix B. This leads to the following proposition.

Proposition 2. Under the assumption of a change-point t0 and assuming that
the MIA holds, Cθ,t is given by (25) where:

• If t < t0 :

T =
1

Nref

(
vec−1(Γ0cθ,t) + (Nref − 1) H0Cθ,tH0

)
Q =

Nref +Ntest

Nref Ntest
(H0 − h0h

>
0 )

Z =
1

Nref

(
vec−1(∆0mθ,t)− h0m

>
θ,tH0

)
N = 0

14



• If t0 ≤ t ≤ t0 +Ntest − 1:

T =
1

Nref

(
vec−1(Γ0cθ,t) + (Nref − 1) H0Cθ,tH0

)
Q =

( n0
N2

test

+
1

Nref

)
H0 +

n1
N2

test

H1 +
n1(n1 − 1)

N2
test

h1h
>
1

+
(n0(n0 − 1

)
N2

test

− 2n0
Ntest

− 1

Nref
+ 1
)
h0h

>
0

+ n1
( n0
N2

test

− 1

Ntest

)
(h0h

>
1 + h1h

>
0 )

Z =
(
1− 1

Nref
− n0
Ntest

)
h0m

>
θ,tH0 −

n1
Ntest

h1m
>
θ,tH0

+
1

Nref
vec−1(∆0mθ,t)

N =
n1
Ntest

(h1 − h0) m>θ,t

• If t0 +Ntest ≤ t ≤ t0 +Ntest +Nref − 1

T =
1

N2
ref

(
n′0 vec−1(Γ0cθ,t) + n′1 vec−1(Γ1cθ,t)

+ n′0(n′0 − 1)H0Cθ,tH0 + n′1(n′1 − 1)H1Cθ,tH1

+ n′0n
′
1 (H0Cθ,tH1 +H1Cθ,tH0)

)
Q =

n′0
N2

ref

H0 +
( n′1
N2

ref

+
1

Ntest

)
H1 +

n′0(n′0 − 1)

N2
ref

h0h
>
0

+
(n′1(n′1 − 1)

N2
ref

− 2n′1
Nref

− 1

Ntest
+ 1
)
h1h

>
1

+ n′0 (
n′1
N2

ref

− 1

Nref
) (h0h

>
1 + h1h

>
0 )

Z =
1

N2
ref

(
n′0 vec−1(∆0mθ,t) + n′1 vec−1(∆1mθ,t)

+ n′0(n′0 − 1) h0m
>
θ,tH0 + n′0n

′
1 h0m

>
θ,tH1

− n′20 h1m
>
θ,tH0 − n′1(n′0 + 1) h1m

>
θ,tH1

)
N =

n′0
Nref

(h1 − h0) m>θ,t
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• If t ≥ t0 +Ntest +Nref

T =
1

Nref

(
vec−1(Γ1cθ,t) + (Nref − 1) H1Cθ,tH

>
1

)
Q =

Nref +Ntest

Nref Ntest
(H1 − h1h

>
1 )

Z =
1

Nref

(
vec−1(∆1mθ,t)− h1m

>
θ,tH1

)
N = 0

The variance of the test statistics (17) is given by:

Ntest var{gt}

=


tr(H0Cθ,t)− (h>0mθ,t)

2 t < t0

tr(Htest
t Cθ,t)− (htest,>t mθ,t)

2 t0 ≤ t < t0 +Ntest

tr(H1Cθ,t)− (h>1mθ,t)
2 t ≥ t0 +Ntest

(54)

All these expressions can be further simplified by neglectingmθ,t, specifically
when t < t0 if e.g. θ0 = 0 and t� t0 assuming mean stability.

4. Simulation results

The julia code to reproduce all these experiments will be made available
at github.com/andferrari.

4.1. Model validation

In this subsection, we present Monte Carlo simulations to illustrate the ac-
curacy of the models derived in Section 3. Analytical expressions of the mean
and the variance of the detection statistics under the null hypothesis are first
considered. The observations yi were zero-mean two-dimensional i.i.d Gaussian
vectors, with correlation coefficient equal to 0.25, and standard deviation equal
to 0.5. Under these assumptions and for a Gaussian reproducing kernel, expres-
sions of h and H are given in Appendix A. The algorithm parameters were set
as follows: the bandwidth of the Gaussian kernel was σ = 0.25, the regulariza-
tion parameter ν = 10−3, the step-size µ = 5.10−4. The windows lengths were
set to Nref = Ntest = 250, and the L = 16 dictionary elements were obtained
by sampling the same distribution as yi. The results were averaged over 500
Monte Carlo runs.

Figures 3 and 4 compare respectively the theoretical models of the mean
given by (30), (32) and the variance given in Proposition 1 of the detection
statistics, to Monte Carlo simulations. The asymptotic value of the variance
computed from (41) is also reported. The initial weight vector was set to
θ0 = (0.3, 0.3)>. The simulation results clearly show a good accuracy between
the models and the actual performance provided by Monte Carlo simulations.
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Figure 3: Mean of NOUGAT detection statistics obtained using model (32) and Monte Carlo
simulations under the null hypothesis.
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Figure 4: Variance of NOUGAT detection statistics obtained using model (38) and Monte
Carlo simulations under the null hypothesis.
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Figure 5: Histogram of NOUGAT detection statistics under the null hypothesis.

These results also confirm the asymptotic unbiasedness of the estimator: E{gt}
converges to 0 as expected, and validate the assumptions used in the derivations.

We also provide the histogram of the detection statistics in Figure 5. Con-
trarily to [25], the histogram is very close to its Gaussian approximation as
reported in this figure. Note that, as proved above, the mean converges to-
wards zero for larger values of t. The accuracy of gt Gaussian approximation
is a central result to set the threshold and guarantee a given false alarm rate
using, e.g., the asymptotic expression of (38) computed using (41). Figures 6
compares the asymptotic variance of the test statistic computed using (40), (41)
and its first order approximation (43) when the step size µ is small (µ = 5.10−4

in this section). Note that this expression depends on h and H which can be
computed by Monte Carlo simulations in the non Gaussian case.

For the second part of the simulations, we inserted a change-point at time
instant t0 = 25 · 103 by changing the input vectors correlation coefficient to 0.1
and standard deviation to 0.7. The results for the mean behavior are given in
Figure 7, and for the variance in Figure 8. Both figures clearly show that the
theoretical curves provided by (44)-(48) and Proposition 2 match well the actual
performance provided by Monte Carlo simulations, especially in the vicinity of
the change point.

4.2. Performances comparison

This section aims to compare the performances of 1) dRuLSIF, a debiased
version of RuLSIF obtained solving (9) at each time instant t, 2) NOUGAT,
the proposed online version of dRuLSIF, and 3) MA, as defined in (19). Note
that all these algorithms share the same memory footprint.
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Figure 6: Asymptotic variance of the test statistic compared to its first order approximation,
as a function of the step size µ.
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Figure 7: Mean of NOUGAT detection statistics obtained using the model (48) and Monte
Carlo simulations. The change is identified by the green line.
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Figure 9: Mean of the test statistic (± standard deviation) for dRuLSIF, NOUGAT and MA.
The change point t0 is located at the red line and t0 +Nref at the green line.
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In order to assess the performance of all these algorithms compared to a
non-kernel-based algorithm, we shall now report the detection performance of
a nearest-neighbors based CPD algorithm. The algorithm we selected is based
on the two-sample test proposed by [38, 39], and recently considered for CPD
in [40]. At each time instant t, the k-nearest-neighbors algorithm is applied to
the samples in the interval (t−Nref−Ntest +1, t). The test statistic is related to
the number of edges Ne of the graph that connect observations in the reference
window with observations in the test window. Indeed, when these observations
are driven by two different distributions, this graph tends to be clustered with
respect to the reference and the test window, and Ne is then ideally close to
zero. Correspondingly, the test statistic, denoted as k-NN, is Ne corrected by
its mean value under equal distributions hypothesis, see e.g. [40].

The observations yt were sampled from a mixture of n k-dimensional Gaus-
sian distributions Nk(mq, q

−1Cq), with q = 1, . . . , n. The weights φq of the
mixture model were sampled from a n-dimensional Dirichlet distribution of pa-
rameter α. The means mq were sampled from Nk(0, I) and the covariance
matrices Cq from a Wishart distribution with scale matrix I and k+ 2 degrees
of freedom, that is, Wk(I, k + 2).

The change point was set to t0 = 400, the number of samples to nt = 700,
the dimension of measurements was fixed to k = 6, the number of mixture
components was set to n = 3 and α = 5. All the parameters (mq, φq,Cq), with
q = 1, . . . , n of the GMM were resampled at time t = t0.

For all simulations, we considered a Gaussian kernel. Its bandwidth σ was
set using the median trick, that is, the median of the pairwise distances between
samples governed by the same distribution as yt under the null hypothesis. A
dictionary of L = 80 elements was designed by sampling the same distribution.
For all Monte Carlo simulations, these parameters were kept fixed. For all al-
gorithms, the window lengths were set to Nref = Ntest = 64. The regularization
parameter for dRuLSIF and NOUGAT was set to ν = 10−2 and the step size
for NOUGAT was set to µ = 47 · 10−3. The number of nearest-neighbors of the
k-NN was set to 10. This value was obtained experimentally in order to achieve
the best performance.

4.2.1. Detection performance

Figure 9 provides the mean ± standard deviation for the four test statistics,
namely, NOUGAT, dRuLSIF, MA and k-NN computed from 106 runs. Note
that, contrarily to Figure 3, NOUGAT was initialized with θ−1 = 0 to guarantee
unbiasedness under the null hypothesis as shown in Section II.A.

When comparing the ratio between the peak at t0 + Nref (green line) and
the noise level for t < t0 (before the red line), Figure 9 reveals a slight drop in
performance of NOUGAT compared to dRuLSIF. A larger loss of performance
can be observed with MA and k-NN compared to NOUGAT and dRulSIF. As
MA test statistic is the norm of the solution of (9) with Href

t = I and ν = 0,
it does not take into account correlations in the feature space. In addition,
MA does not take advantage of the functional approximation framework as
it tests the norm of the parameters vector while NOUGAT approximates the
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Figure 10: MTFA as a function of PFA for NOUGAT, MA and dRuLSIF.

likelihood ratio (17). Moreover, we can observe a small detection delay between
NOUGAT and the other algorithms. This can be explained by the approximate
resolution of (9) by a gradient descent step in (14). This loss of performance
of the online NOUGAT algorithm must be put into perspective, given its much
lower computational cost compared to e.g. the offline dRuLSIF algorithm, see
Section 4.2.2.

To get more insight in the performance of dRuLSIF, NOUGAT and MA, we
shall now analyze the Mean Time to False Alarm (MTFA) and the Mean Time
to Detection (MTD). Both are usual online performance measures [41]. Let ta
be the time instant of detection and t0 the change point. They are defined as:

MTD = E{ta − t0 | ta ≥ t0} (55)

MTFA = E{ta | ta < t0} (56)

Figures 10 and 11 provide the MTFA and MTD as a function of the Proba-
bility of False Alarm (PFA). The PFA was computed, for each algorithm, as the
probability to detect an event at a time instant ta with ta < t0. The Probability
of Detection (PD) was estimated as the probability to detect at least a change
at a time instant ta with t0 ≤ ta ≤ nt, i.e. the probability that the test statis-
tics is larger than the threshold at least once. Figure 12 provides the Receiver
Operating Characteristic (ROC) for the three algorithms.

Figure 10 shows that, for PFA > 0.2, the MTFA for the four algorithms
is smaller than 40 samples. This means that the detection thresholds are too
small and make the algorithms non-operational due to numerous false alarms.

Focusing on the case PFA < 0.2, we observe in Figure 12 that when PFA <
0.01, as expected from Figure 9, MA and k-NN reach the worst performance:
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Figure 11: MTD as a function of PFA for NOUGAT, MA and dRuLSIF.
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Figure 13: Run time for nt = 1200 samples as a function of the dictionary size L.

for a given PFA, their PD are the smallest. We note that for 0.01 < PFA < 0.2
the PDs of NOUGAT, dRuLSIF and k-NN are almost equal to 1.

Figure 10 shows that the MTFAs are almost the same with a larger delay
of 5 samples for k-NN. Figure 11 shows that NOUGAT MTD is approximately
10 samples larger than dRuLSIF and 5 samples larger than k-NN. The delay of
NOUGAT, which can be observed on Figure 9 is, as explained before, due to
the online update of NOUGAT. It is worthy to note that the performance of
NOUGAT depends on µ and a smaller value would result in a smaller MTD.

4.2.2. Computational cost

This experiment aims at comparing the computational cost of the four al-
gorithms. It is worthy to note that, as long as the averages on the reference
and test windows required by dRuLSIF, NOUGAT and MA are computed re-
cursively, their computational cost does not depends on Nref and Ntest. The
data dimension k only intervenes when computing κω(·) and penalizes equally
the three algorithms. On the contrary, the computational cost of k-NN strongly
depends on the size of the windows, typically O((Nref +Ntest) log(Nref +Ntest)
using a KD tree [42].

Figures 13 depicts the run time for the three kernel-based algorithms as a
function of the dictionary size L, when processing 1200 samples of dimension
k = 6. For each value of L, the run time was calculated as the median value
of 1000 runs on an Intel Core i7 3,5 GHz. Figures 13 shows that, compared to
dRuLSIF, NOUGAT enjoys a considerably smaller run time while ensuring a
good level of performance.
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Figure 14: Credit card fraud detection. The red lines correspond to t0 +Ntest.

4.3. Experiments with real data

4.3.1. Credit card fraud detection

The data set used in this experiment, called “Credit Card Fraud Detection”,
contains the 28 principal components of transactions made by European card-
holders in September 2013. The data set is highly unbalanced as it contains 492
frauds out of 284,807 recorded transactions; see [43] for more details. We chose
to keep only 2,000 genuine transactions, and we inserted the 492 frauds in order
to create two change-points at t0 = 1000 and t0 = 1492 in data stream {yt}t∈N.
The four most significant principal components were used as inputs (k = 4).
The Gaussian kernel with kernel bandwidth σ2 = 14, and reference and test
windows of length Nref = Ntest = 114, were considered for all algorithms. A
regularization term with ν = 10−2 was used for NOUGAT and dRuLSIF, and
the step size of NOUGAT was set to µ = 0.28.

The online dictionary update procedure described in Section 2.3 was used
for all algorithms. The coherence threshold was set to η0 = 0.7, leading to a
dictionary size of L = 100. Parameter vector θ−1 was initially set to zero for
NOUGAT.

The results provided in Figure 14 show that all the algorithms were able to
detect the change-points. As expected, the detected change-points defined by
the maximum value of each peak of the test statistics, were all in the vicinity of
t0 +Ntest. Nevertheless, if MA was able to detect the two change-points marked
by red lines in addition to some false positive detections, it suffered from a
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Figure 15: Sentiment change detection in Twitter data stream. The red lines correspond to
t0 +NTest.

bias that deviated its static from zero after the first change-point. dRuLSIF
hardly detected the first change-point, but successfully detected the second one.
NOUGAT detected both change-points with less fluctuations of its detection
statistics. Finally, NOUGAT and dRuLSIF test statistics fluctuated around 0
under the null hypothesis. These results highlight the ability of the proposed
algorithm to detect consecutive change-points.

4.3.2. Sentiment change detection in Twitter data streams

The data set used in this paragraph, called “Twitter US Airline Sentiment”,
is available at [44]. This data set contains tweets related to US Airline in Febru-
ary 2015, manually tagged as positive, negative and neutral. Raw tweets were
first cleaned from non-ASCII characters. Stop words from Natural Language
Toolkit (NLTK) corpus were also removed. Finally, tweets were represented,
using a frequency-based method, in a linear space of dimension k = 50. The
series {yt}t∈N was obtained by concatenating the 9178 negative-tagged tweets,
the 2363 positive-tagged tweets and the 3099 neutral-tagged tweets. Parameters
were set to: µ = 10−1, ν = 5.10−33, and Nref = Ntest = 100. A Gaussian kernel
with σ2 = 1.3 was used, along with an online dictionary learning procedure with
a maximal coherence of η0 = 10−3. This resulted in a dictionary of size L = 12.
Parameter vector θ−1 was set to zero for NOUGAT.

Figure 15 provides the detection statistics of MA, NOUGAT and dRuLSIF.
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Figure 16: Top: Telemetry. Bottom: Signal pre-processed by a median filter.

MA produced 2 false alarms and the variance of its statistics was larger than the
other two methods. NOUGAT and dRuLSIF led to similar results. Note that,
as expected, for the three methods, the peak at the first (negative/positive)
transition was slightly higher than the peak at the second (positive/neutral)
transition.

4.3.3. Change detection in satellite telemetry

The data set used in this experiment was provided by Thales Alenia Space.
It consists of an electrical current signal produced by a panel of a geostationary
satellite. The sampling period of data points is approximately 32 seconds, and
the data span a time period of six months. A change point is known to occur
at time instant t0 = 177, 630. Marked by a red line, it represents a drop in the
quantity of electrical current produced by the panel due to the loss of solar cells.

Figure 16 (top) partly shows the electrical current signal. The consecutive
current drops observed at the beginning of the signal represent each a period of
eclipse. These drops were removed using a median filter of length 600, which
corresponds to the maximum duration of an eclipse. The filtered signal is shown
in Figure 16 (bottom). Vectors yt of dimension k = 10 used as inputs for the
detection algorithms were extracted using a sliding window as explained in (3).
Window lengths Nref = Ntest = 3000 were used. This value corresponds approx-
imately to a 1-day period, which is sufficient to capture the main stationary
characteristics of the signal. These characteristics depend on changes in the
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Figure 17: CPD in satellite telemetry data. The red line corresponds to t0 +NTest.

distance from the panels to the Sun, and the angle of incidence of the sunlight.
An online dictionary learning procedure was used with a maximal coherence

value of 0.5. This resulted in a dictionary of size L = 33. The three algorithms
produced false alarms. MA had a bias, dRuLSIF and NOUGAT showed similar
results but with a much lower computational load for NOUGAT. Note that
computational load is a key concern for this application.

5. Conclusion

We introduced an online kernel-based change-point detection method built
upon direct estimation of the density ratio on consecutive time intervals. We
analyzed its behavior in the mean and mean square sense. Finally, we evaluated
its detection performance and we compared it to state-of-the-art kernel-based
methodologies, MA and RuLSIF, and to another approach based on k-NN. We
showed that our algorithm has a considerably lower computational complexity
than dRuLSIF while ensuring comparable performance. Experiments on real-
world data proved the usefulness and efficiency of our algorithm in a number of
applications. These applications involved different types of data, namely, text
data, raw data, and features extracted from data, showing the interest in using
non-parametric techniques to perform change-point detection

We leave for future work the derivation of methods for kernel selection,
and the opportunity of using a symmetric detection statistic where covariance
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information on the test interval would also be considered.

Appendix A. Computation of H and h

Considering the Gaussian reproducing kernel:

κ(y,y′) = e−
‖y−y′‖2

2σ2

the entries of (23) are given by:

[H]`,q = e−
‖yω`‖

2+‖yωq ‖
2

2σ2 Epref(y)

{
e−
‖y‖2−(yω`

+yωq )>y

σ2

}
and those of h by:

[h]` = e−
‖yω`‖

2

2σ2 E

{
e−
‖y‖2−2y>ω`

y

2σ2

}
with `, q ∈ {1, . . . , L}. These expectations can be computed for Gaussian
distributed entries yi ∼ N (µ,R) using the moment generating function of a
quadratic form of a Gaussian vector [45]:

[H]`,q = e−
‖yω`‖

2+‖yωq ‖
2

2σ2 Ψ
(−1

σ2
, I,−(yω` + yωq ),µ,R

)
[h]` = e−

‖yω`‖
2

2σ2 Ψ
( −1

2σ2
, I,−2yω` ,µ,R

)
where:

Ψ(s,W , b,µ,R) (A.1)

= |I − 2sWR|− 1
2 exp

(
s
[
(µ>Wµ+ b>µ)

+
s

2
‖2Wµ+ b‖2R(I−2sWR)−1

] )
(A.2)

Appendix B. Computation of Γ and ∆

The (r, s)-th entry of the (q, n)-th block of matrix Γ, that is, E{κωq (yi)κωn(yi)κω(yi)κω(yi)
>}

is given by:

Γ(q−1)L+r,(n−1)L+s = e−
‖yωq‖2+‖yωn‖

2+‖yωr ‖
2+‖yωs‖

2

2σ2

Ψ
(−1

σ2
, 2I, − (yωq + yωn + yωr + yωs), µ, R

)
(B.1)

Similarly, the r-th entry of the (q, n)-th block of ∆, that is, E{κωq (yi)κωn(yi)κω(yi)},
is given by:

∆(q−1)L+r,n = e−
‖yωq ‖

2+‖yωn‖
2+‖yωr ‖

2

2σ2

Ψ
( −1

2σ2
, 3I, − 2(yωq + yωn + yωr ), µ, R

)
(B.2)
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