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We study the problem of distributed estimation over adaptive networks where communication delays exist between nodes. In particular, we investigate the diffusion Least-Mean-Square (LMS) strategy where delayed intermediate estimates (due to the communication channels) are employed during the combination step. One important question is: Do the delays affect the stability condition and performance? To answer this question, we conduct a detailed performance analysis in the mean and in the mean-square-error sense of the diffusion LMS with delayed estimates. Stability conditions, transient and steady-state mean-square-deviation (MSD) expressions are provided. One of the main findings is that diffusion LMS with delays can still converge under the same step-sizes condition of the diffusion LMS without delays. Finally, simulation results illustrate the theoretical findings.

of consensus and gossip strategies is investigated in [START_REF] Tsitsiklis | Distributed asynchronous deterministic and stochastic gradient optimization algorithms[END_REF]- [START_REF] Kar | Distributed consensus algorithms in sensor networks: Quantized data and random link failures[END_REF] in the presence of link-failures, switching topology, and noisy links. Single-task and multi-task diffusion strategies over asynchronous networks are also examined in [START_REF] Zhao | Asynchronous adaptation and learning over networks-Part I: Modeling and stability analysis[END_REF]- [START_REF] Nassif | Multitask diffusion adaptation over asynchronous networks[END_REF], while diffusion LMS over multi-task networks is investigated in [START_REF] Nassif | Diffusion LMS over multitask networks with noisy links[END_REF] in the presence of noisy links.

The aforementioned works focus on asynchronous events such as link-failures, switching topology, noisy links, and agents turning on and off randomly. Another critical challenge in a distributed implementation is the presence of communication delays. For instance, in underwater acoustic sensor networks, one of the main characteristics of underwater communication channels is their long propagation delays due to the low speed of sound. It is therefore crucial to consider distributed solutions that take into account the communication delays. In [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], the authors studied a situation where the agents in the network seek average-consensus in the presence of time delays. It was shown that, in a deterministic setting, time delays should be smaller than a threshold to reach consensus. Recently, several other works have also derived interesting findings on consensus strategies in the presence of communication delays [START_REF] Tsianos | Distributed consensus and optimization under communication delays[END_REF]- [START_REF] Yi | Asynchronous distributed algorithms for seeking generalized nash equilibria under full and partial-decision information[END_REF]. In [START_REF] Wu | Decentralized consensus optimization with asynchrony and delays[END_REF], the authors propose and analyze the decentralized asynchronous primaldual algorithm using fixed step-sizes which converges to the exact solution. In [START_REF] Yang | Distributed optimization based on a multiagent system in the presence of communication delays[END_REF], a distributed consensus algorithm is proposed and analyzed for continuous-time multiagent systems in the presence of communication delays. Proportional-Integral (PI) consensus-based distributed optimization algorithm is presented to handle constant communication delays in [START_REF] Hatanaka | Passivity-based distributed optimization with communication delays using PI consensus algorithm[END_REF]. In most cases, these works are problematic for processing streaming data in an adaptive context. It has been shown that diffusion strategies outperform consensus or primal-dual strategies in the stochastic setting due to gradient noise [START_REF] Tu | Diffusion strategies outperform consensus strategies for distributed estimation over adaptive networks[END_REF], [START_REF] Towfic | Stability and performance limits of adaptive primal-dual networks[END_REF]. By using constant step-sizes, diffusion strategies ensure continuous learning and adaptation. In this letter, we carry out a detailed performance analysis of diffusion LMS strategy in the presence of delays and provide stability conditions in the mean and mean-square sense. One of the main findings of this work is that the communication delays do not affect the convergence condition of adaptive diffusion networks.

II. DATA MODEL AND DIFFUSION STRATEGIES

Consider a network of N agents, labeled with k = 1, . . . , N . At each time instant i ≥ 0, each agent k is assumed to have access to a zero-mean scalar measurement d k,i ∈ R and a realvalued regression vector

x k,i ∈ R M with positive-definite co- variance matrix R k = E{x k,i x k,i }. Let r dx,k E{d k,i x k,i }.
The data {d k,i , x k,i } are assumed to be related via the linear regression model:

d k,i = x k,i w * + v k,i (1) 
where w * ∈ R M is an unknown parameter vector to be estimated, and v k,i ∈ R is a zero-mean spatially independent measurement noise with variance σ 2 v,k . In order to find an estimate for w * , the objective of the network is to minimize the cost function J(w) : R M → R given by:

min w J(w) = N k=1 E(d k,i -x k,i w) 2 .
(

) 2 
It can be verified that the solution of the above problem is given by w * = (

N k=1 R k ) -1 ( N k=1 r dx,k
). This requires the signal statistical information R k and r dx,k , which are rarely available in practice. To solve the problem in a fullydistributed and adaptive manner, the following adapt-thencombine (ATC) diffusion LMS strategy can be employed [START_REF] Cattivelli | Diffusion LMS strategies for distributed estimation[END_REF]:

ψ k,i = w k,i-1 + µ k x k,i (d k,i -x k,i w k,i-1 ) (3a) 
w k,i = ∈N k a k ψ ,i (3b) 
where N k denotes the set of neighbors of agent k including itself and w k,i denotes the estimate of w * at agent k and iteration i. The first step (3a) is an adaptation step where agent k uses its own data available at time i to update the previous estimate w k,i-1 to an intermediate estimate ψ k,i . Then, in the combination step (3b), agent k convexly combines the intermediate estimates ψ ,i from its neighbors to obtain w k,i . The parameter µ k is a positive step-size, and the combination coefficients {a k } are non-negative, chosen to satisfy the following conditions:

N =1 a k = 1, and 
a k > 0, if ∈ N k , a k = 0, otherwise. (4) 
The above conditions imply that the matrix [A] k = a k collecting the parameters a k is left-stochastic. Notice that, in the combination step (3b), each node k at time i is assumed to have access to the estimates ψ ,i obtained by its neighbors at the same time instant i. This requires the network to be time synchronized and each node should transmit its estimate to its neighbors before the next iteration i + 1. In this work, we are interested in scenarios where there are time delays in information exchange. In this case, at time i, the estimates ψ ,i from neighbors are not available at node k. Instead, previous estimates may just have been received. In principle, each node k could pause the adaptation step until receiving the required timely estimates and delay the processing of data by the network. Alternatively, we can directly use the delayed information without any additional complexity. By doing so, we arrive at ATC diffusion LMS with delays:

ψ k,i = w k,i-1 + µ k x k,i (d k,i -x k,i w k,i-1 ) (5a) 
w k,i = ∈N k a k ψ ,i-τ k (5b)
where the adaptation step (5a) is the same as (3a). However, instead of using the timely estimates ψ ,i , the combination step (5b) uses delayed estimates ψ ,i-τ k from neighbors, where τ k ≥ 0 is an integer denoting the communication delay from node to k.

III. PERFORMANCE ANALYSIS

We now analyze the stability and performance of diffusion LMS with delays [START_REF] Olfati-Saber | Consensus and cooperation in networked multi-agent systems[END_REF]. Before proceeding, we introduce the following independence assumption.

Assumption 1 (Independent regressors). The regression vector x k,i arises from a stationary random process that is temporally white and spatially independent with covariance matrix

R k = E{x k,i x k,i } > 0.
A consequence of Assumption 1 is that we can consider the regressors {x k,i } independent of w ,j for all and j < i.

Although not true in general, this assumption is commonly employed for analyzing adaptive filters and networks since it simplifies the derivations without constraining the conclusions. Furthermore, there are extensive results in the adaptive filtering literature indicating that the performance results obtained using this assumption match well the actual performance for sufficiently small step-sizes [START_REF] Sayed | Adaptive Filters[END_REF].

A. Error Recursion

We introduce the error vectors at node k and time instant i:

ψ k,i w * -ψ k,i , w k,i w * -w k,i , (6) 
and collect all error vectors into network block error vectors:

ψ i col{ ψ 1,i , . . . , ψ N,i }, w i col{ w 1,i , . . . , w N,i }. ( 7 
)
Subtracting w * from both sides of the adaptation step (5a) and using the data model (1), it can be verified that

ψ i = (I M N -MR i ) w i-1 -Ms i (8) 
where M and R i are N × N block diagonal matrices with each block of size M × M , s i is an N × 1 block vector whose entries are of size M × 1 each:

M bdiag{µ 1 I M , . . . , µ N I M }, (9) 
R i bdiag{x 1,i x 1,i , . . . , x N,i x N,i }, (10) 
s i col{x 1,i v 1,i , . . . , x N,i v N,i }. ( 11 
)
It holds that R = ER i = bdiag{R 1 , . . . , R N } and Es i = 0. Due to the communication delays, the relation between w i and ψ i cannot be obtained by simply subtracting w * from both sides of the combination step (5b). Following the same line of reasoning as in [START_REF] Lee | Spatio-temporal diffusion strategies for estimation and detection over networks[END_REF], [START_REF] Hua | Penalty-based multitask estimation with non-local linear equality constraints[END_REF], we introduce the following N (Γ + 1) × 1 extended network block error vectors with each block of size M × 1:

ψ e i col{ ψ 1,i , . . . , ψ N,i , ψ 1,i-1 , . . . , ψ N,i-1 , . . . , ψ 1,i-Γ , . . . , ψ N,i-Γ }, (12) 
w e i col{ w 1,i , . . . , w N,i , ψ 1,i , . . . , ψ N,i , . . . , ψ 1,i-Γ+1 , . . . , ψ N,i-Γ+1 }, (13) 
where Γ = max{τ k }, 1 ≤ , k ≤ N . For simplicity, we let T Γ + 1. Using the fact that the matrix A is left-stochastic, and from (5b), we obtain

w e i = A e ψ e i (14) 
with A e an M N T × M N T matrix given by

A e = A 0 A 1 . . . A Γ I M N Γ 0 (M N Γ)×(M N ) (15) 
where A τ A τ ⊗ I M (τ = 0, 1, . . . , Γ) with the ( , k)-th entry of the N × N matrix A τ is given by

[A τ ] k = [A] k , if τ k = τ ; [A τ ] k = 0, otherwise. (16) Observe that A = Γ τ =0 A τ and A A ⊗ I M = Γ τ =0 A τ .
Likewise, from (8), we can derive the extended error vector recursive relation between ψ e i and w e i-1 :

ψ e i = (I M N T -R e i ) w e i-1 -s e i ( 17 
)
with

R e i MR i 0 0 0 , s e i Ms i 0 (M N Γ)×1 . ( 18 
)
By combining ( 14) and ( 17), we conclude that the extended network error w e i evolves according to the following recursion:

w e i = B i w e i-1 -A e s e i (19) 
where

B i A e (I M N T -R e i ).

B. Mean-error Behavior

Taking the expectation of both sides of (19), using Assumption 1 and the fact that Es i = 0, we arrive at the mean-error recursion:

E w e i = A e (I M N T -R e )E w e i-1 = BE w e i-1 (20) R e = ER e i = bdiag{MR, 0, . . . , 0}, (21) 
B = A e (I M N T -R e ). (22) 
Lemma 1. Consider the block matrix B defined by [START_REF] Wu | Decentralized consensus optimization with asynchrony and delays[END_REF]. The matrix B is stable, i.e., its spectral radius ρ(B) is less than 1, when I M N -MR b,∞ < 1 where the notation • b,∞ denotes block maximum norm of its argument. 1

Proof: The proof can be found in the supplemental material. Theorem 1 (Convergence in the mean). Assume the linear data model (1) and Assumption 1 hold. Then, for any initial condition, algorithm (5) converges asymptotically in the mean toward the optimal vector w * if the step-sizes in M are chosen to satisfy:

0 < µ k < 2 λ max (R k ) , k = 1, . . . , N. (23) 
Proof: The proof can be found in the supplemental material.

Theorem 1 allows us to conclude that diffusion LMS with communication delays will continue to converge in the mean 1 For more details and properties of the block maximum norm, refer to [31, Appendix D].

sense under the same step-sizes condition of the algorithm without delays. It is worth noting that this work focuses on single-task problems where all nodes seek to estimate the same parameter vector w * in (1). In this case, the resulting estimates w k,i will be unbiased according to Theorem 1. When heterogeneity in the model exists, diffusion multitask algorithms [START_REF] Nassif | Multitask learning over graphs[END_REF], [START_REF] Chen | Multitask diffusion adaptation over networks[END_REF] and exact diffusion algorithms [START_REF] Yuan | Exact diffusion for distributed optimization and learning-Part I: Algorithm development[END_REF] can be used in order to obtain unbiased estimates.

C. Variance Relation

We now study the mean-square-error behavior. We consider the mean-square error vector weighted by a positive semidefinite matrix Σ, i.e., E w e i 2 Σ

E( w e i ) Σ w e i . The freedom in selecting Σ allow us to derive different performance measures about the network and the nodes. Evaluating the weighted square measures on both sides of ( 19), we get:

w e i 2 Σ = B i w e i-1 -A e s e i 2 Σ
=( w e i-1 ) B i ΣB i w e i-1 + (A e s e i ) ΣA e s e i -(B i w e i-1 ) ΣA e s e i -(A e s e i ) ΣB i w e i-1 . (24) Taking the expectation of both sides of ( 24), using Assumption 1 and the fact that the expectations of the last two terms on the right-hand side (RHS) of ( 24) are zero, we obtain:

E w e i 2 Σ = E w e i-1 2 Σ + E{(A e s e i ) ΣA e s e i } (25) 
where Σ E{B i ΣB i }. Let σ vec(Σ) denote the vector obtained by stacking the columns of the matrix Σ on top of each other. Note that, in the sequel, we will use the notation

• 2 σ and • 2 Σ interchangeably to refer to the same quantity. Considering the following properties of matrices:

vec(AΣB) =(B ⊗ A)σ, (26) 
Tr(ΣB) =[vec(B )] σ, (27) 
we find that σ vec(Σ ) = E{B i ⊗ B i }σ. Let F E{B i ⊗ B i }. Under sufficiently small step-sizes [START_REF] Sayed | Adaptive Filters[END_REF], the matrix F can be approximated by:

F ≈ B ⊗ B . (28) 
The first item on the RHS of ( 25) can be rewritten as

E w e i-1 2 
Σ = E w e i-1 2 
F σ . Now we evaluate the second term:

E{(A e s e i ) ΣA e s e i } = Tr(ΣG) = [vec(G )] σ (29) 
where

G A e S e (A e ) , (30) 
S e E{s e i (s e i ) } = bdiag{S, 0, . . . , 0},

S M • bdiag{σ 2 v,k R k } N k=1 • M. (31) 
Therefore, the variance relation ( 25) can be approximated as

E w e i 2 σ = E w e i-1 2 
F σ + [vec(G )] σ. (33) 
Theorem 2 (Mean-square stability). Consider the same settings as in Theorem 1. The diffusion LMS with delays algorithm (5) is mean-square stable if the matrix F is stable.

Assuming further that the step-sizes are small enough to justify [START_REF] Sayed | Adaptive Filters[END_REF], condition (23) ensures mean-square stability.

Proof: The proof can be found in the supplemental material.

D. Network Transient and Steady-state MSD

Iterating [START_REF] Chen | Multitask diffusion adaptation over networks[END_REF] starting from i = 0, we obtain:

E w e i 2 σ = E w e -1 2 F i+1 σ + [vec(G )] i t=0 F t σ (34)
where w e -1 = 1 N T ⊗ w * is an initial condition by assuming w -1 = 0. Comparing relation [START_REF] Yuan | Exact diffusion for distributed optimization and learning-Part I: Algorithm development[END_REF] at time instants i and i-1, we can derive the weighted variance recursion

E w e i 2 σ = E w e i-1 2 σ + w e -1 2 (F -I)F i σ +[vec(G )] F i σ. (35) Let ζ i 1 N E w i
2 denote the network transient MSD averaged over all nodes at time i. By replacing σ with σ = vec( Σ), Σ = bdiag{I M N , 0, . . . , 0}, we find that the network transient MSD evolves according to

ζ i = ζ i-1 + 1 N w e -1 2 
(F -I)F i σ + [vec(G )] F i σ (36) with ζ -1 = 1 N ( w e -1 ) Σ w e -1 .
Notice that the evaluation of (36) involves the manipulation of the (M N T ) 2 × (M N T ) 2 matrix, which will be prohibitive in computing. However, using property [START_REF] Towfic | Stability and performance limits of adaptive primal-dual networks[END_REF], expression (36) can be rewritten as

ζ i = ζ i-1 + 1 N Tr w e -1 ( w e -1 ) (B i+1 ) ΣB i+1 - (B i ) ΣB i + (B i ) ΣB i G (37) 
where the matrix operations ease to the order of O(M N T ).

The network steady-state MSD is defined as

ζ * 1 N lim i→∞ E w i 2 .
Assuming that F is stable and that the algorithm converges in the mean-square sense, taking the limit on both sides of (34), we observe that the first term on the RHS converges to zero. Then, by setting σ = 1 N vec( Σ) and using properties [START_REF] Tu | Diffusion strategies outperform consensus strategies for distributed estimation over adaptive networks[END_REF] and [START_REF] Towfic | Stability and performance limits of adaptive primal-dual networks[END_REF], we get:

ζ * = 1 N ∞ t=0 Tr (B t ) ΣB t G . (38) 
IV. SIMULATIONS

We consider a network of 30 nodes with the topology depicted in Fig. 1(a). The length of the parameter vector is set to M = 10 and the optimal vector is w * = [0.495, -0.134, 0.139, -0.328, 0.367, -0.049, -0.141, -1.858, -0.253, -0.602] . The regression vectors x k,i are generated from a zero-mean Gaussian distribution with covariance matrix R k = σ 2

x,k I 3 . The noises v k,i are zero-mean i.i.d. Gaussian random variables with variances σ 2 v,k . The variances σ 2

x,k and σ 2 v,k are shown in Fig. 1(b). The communication delay τ k between two connected nodes and k is proportional to their distance. The step-sizes are set to µ k = µ for all nodes. Combination coefficients for diffusion strategies are chosen according to the uniform rule, i.e., a k = 1/|N k | for ∈ N k . All simulated results are averaged over 500 independent trials.

In the first experiment, we set µ = 0.02 for non-cooperative LMS, diffusion LMS with delays, diffusion LMS with ideal communications where there is no delay, and synchronous diffusion LMS. Note that, for the synchronous diffusion LMS, all nodes need to wait for the longest delayed information to complete one adaptation and combination process. Observe from Fig. 2 that the diffusion LMS strategies perform better than non-cooperative LMS in terms of steady-state MSD, and that diffusion LMS with delays achieves better network steady-state MSD compared to synchronous diffusion LMS at a faster convergence rate and to diffusion LMS with ideal communications at a slower rate under the same stepsizes. In the second experiment, for comparison purposes, we set µ = 0.035 for diffusion LMS with delays in order to meet the same steady-state MSD. It is seen that diffusion LMS with delays converges much faster than the synchronous counterpart. This implies that one can adjust the step-sizes for diffusion LMS with delays to obtain faster convergence rate without additional asynchronous, computational and storage overheads. Moreover, the algorithm will be stable as long as the step-sizes are small enough, which is independent of delays. Finally, from Fig. 2, we observe that the simulated results match well the theoretical curves. 

V. CONCLUSION

In this work, we considered the problem of distributed estimation over adaptive networks in the presence of communication delays. We derived the stability condition for diffusion LMS strategy with delays. Stochastic behaviors in the mean and mean-square sense were also provided. Simulation results confirmed the theoretical findings.

Fig. 1 .

 1 Fig. 1. Simulation settings. Variances are generated as σ 2x,k ∼ U (0.8, 1.2), σ 2 v,k ∼ U (0.18, 0.22).
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