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Analysis of Smart Contracts Balances

Cosimo Laneve1, Claudio Sacerdoti Coen2

Dept. of Computer Science and Engineering, University of Bologna – INRIA Focus

Abstract

We define a technique for analyzing updates of smart contracts balances due to trans-
fers of digital assets. The analysis addresses a lightweight smart contract language and
consists of a two-step translation. First, we define the input-output behaviours of smart
contract functions by means of a simple functional language with static dispatch. Then
we associate the terms of this intermediate language with cost equations that compute
the loss or gain of digital assets. The resulting equations can be fed to an off-the-shelf cost
analyzer to provide upper bounds to the loss or gain. Our analysis has been prototyped
and we report its assessments and discuss extensions with additional features.

1. Introduction

Smart contracts are programs that run on distributed networks with nodes storing a
common state in the form of a blockchain. These programs are gaining more and more
interest because they implement applications that can manage and transfer assets of con-
siderable value (usually, in the form of cryptocurrencies, like Bitcoin), called decentralized
applications. Examples of such applications are food supply chain management, energy
market management and identity notarization.

Several smart contracts languages have been recently proposed for specifying decen-
tralized applications, such as the Bitcoin Scripting [10], Solidity for Ethereum [13], Move
for Libra [9]. Security guarantees in these languages are of paramount importance be-
cause it is possible to program the transfer of large capitals. Actually, already in the past
few years, several millions of USD have been lost because of subtle flaws in the smart
contracts [25, 11].

To alleviate the burden of smart contract analysis, a number of automated techniques
have been designed for verifying relevant properties, such as liquidity [6], gas consump-
tion [2], and compliance and violation of programming patterns [27]. This contribution
follows these lines of research by focussing on another critical feature that is at the core

1Cosimo Laneve has been partly supported by the H2020-MSCA-RISE project ID 778233 “Be-
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of famous attacks: the transfer of cryptocurrency assets from one smart contract to an-
other. Indeed, our technique automatically computes upper bounds of the amount of
cryptocurrency gained and lost by a smart contract during a transaction.

We carry this study on a language for smart contracts whose constructs have been in-
spired by Solidity. The language is lightweight because it does not have complex features
such as new contracts instantiation, inheritance, try-catch exception handling, arrays
and mappings. In our setting, programs are a (finite) set of smart contracts whose func-
tions may either update the state or transfer cryptocurrencies or abort or invoke other
functions. Overall, our model is simple and rigorous, which are, in our opinion, funda-
mental criteria for reasoning about properties of smart contracts and for understanding
their basic principles. Once the properties on the core model have been analyzed, one
can address other, more complex features that are drawn from the mainstream smart
contract languages.

Our contribution. In Section 2, we define mSCL, an acronym for mini Smart Contract
Language, which is dubbed minuscule. mSCL has function invocations, field updates,
conditional behaviour, cryptocurrency transfer, fallback functions, recursion and failures.
More importantly, mSCL has a formal operational semantics that is defined in Section 3
and is expressive enough to define standard attacks – c.f. the Bank-Thief contracts in
Example 1.

The transfer of digital assets between mSCL smart contracts is analyzed by means
of cost analyzers [14, 1]. These cost analyzers use (declarative) languages that have
a rigid structure and a poor expressivity. For example, predicates must be written
in disjunctive normal form, data types are only numbers (integers and reals) and cost
functions are stateless. Encoding in these rigid languages the intricacies of the semantics
of transfers of assets and of failures, the states of smart contracts, environments, and
boolean expressions turns out to be painful and ad-hoc. For this reason we decided to
separate semantics concerns of mSCL from concerns due to the rigidity of cost analyzers
and to the definition of the appropriate cost model. Therefore, in Section 4, we introduce
an intermediate functional language that has static dispatch and admits environments
as primitive data types, tail function invocations, and every predicate and operator of
Presburger arithmetics. Functions in the intermediate language are intended to define the
input-output behaviour of mSCL functions. Indeed, they take in input environments (that
model the state of programs) and return environments. (Other intermediate languages
have been defined for smart contracts; a thorough discussion is reported in Section 8.)

While the intermediate language has a very simple operational semantics (two rules
only), which allows us to establish the correctness of the translation in a standard way,
it is inadequate to express mSCL functionalities in a direct way. In particular, a number
of mSCL features has required an explicit encoding that entangle the translation: failures
and the corresponding definition of backtracking, implicit and explicit management of
assets (such as the complexities due to the fallback), function invocations with explicit
continuations (which should have required an higher-order language for expressing the
Continuation Passing Style, while the intermediate language is first order).

In Section 5 we derive cost equations from terms in the intermediate language. These
equations are associated to two cost models: one for computing the loss of a smart
contract at the end of a transaction and the other for the gain. To this aim, we flatten
the environments (in order to feed cost functions with tuples of values), normalize the
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predicates, and select adequate cost models. It is worth to notice that the normalization
process gives an exponential number of equations with respect to the equations without
normalized predicates: our analysis would benefit by a cost analyzer that accepts generic
predicates. The normalized cost equations can be fed to a cost analyzer to compute
upper bounds to the loss and gain.

We have prototyped our technique and run the prototype on several smart contracts
that have been downloaded from Ethereum (and adapted to mSCL). Section 6 reports
the assessments obtained by running the prototype on few archetypal examples (a Bank-
Thief code, an English Auction Scheme, and two Ponzi Schemas). These examples have
been chosen to highlight the issues of our technique and the current prototype. We
notice that, because of scalability problems, our analysis can be profitably used only in
presence of aggressive optimizations. As discussed in the conclusions, this is matter of
current research.

In Section 7 we also study an extension of mSCL with additional features (that are
also inspired by Solidity). In particular, the extension of mSCL function invocations with
explicit continuations allows us to express famous attacks, such as the DAO [25]. We
discuss the related works in Section 8 and we deliver our conclusions in Section 9.

Captatio benevolentiae. This work is not intended to address Solidity and to provide a
full-fledged analyzer for that language (which is an industrial project that would require a
different effort). It is rather a proof-of-concept about how to compute the cryptocurrency
movements in generic smart contract languages. Solidity has been used as an inspiration
source to design our mSCL language that models, we hope, the innovative features of smart
contracts (transfer of cryptocurrencies, and ACID properties of transactions obtained by
reverting to the initial state in case of errors).

A key contribution of the paper is the definition of the intermediate language and
the development of the analysis technique for it. Once the back-end of the analyzer for
the intermediate language is in place, it will be sufficient to define the translation of
any source code into the intermediate code for verifying the corresponding updates of
balances. In our mind, the intermediate language is a decoupling point between front-
ends that deal with different smart contract languages and back-ends that apply different
techniques to analyze the code. Actually, our intermediate language, being much simpler
than the source language, may be equipped with several analyses, in such a way that
verifying a source language amounts to compile it to the intermediate one (thus forgetting
about all the technicalities of the analysis). For example, it is possible to reuse analyses
such as computational cost and gas consumption since the corresponding techniques have
been already developed for the target cost equation language [1, 2].

2. The mSCL calculus

The mini Smart Contract Language, noted mSCL and dubbed minuscule, is a calculus
featuring a minimal set of smart contract primitives, such as function invocations, field
updates, conditional behaviour, cryptocurrency transfer, recursion and failures that are
inspired to Solidity.

We use a countable set of smart contract names Id , ranged over by C, D, H, a
countable set of function names, ranged over by m, m1, a countable set of field names
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FId , ranged over by f, f1, and a countable set Var of variables, ranged over by x, y, z.
Variables include field names and smart contract names.

The syntax of mSCL is

C ::“ contract C t T f; F
“

fallbackp q payable t u
‰

u

F ::“ ε | function mpT xq rpayables tT z; Su F
T ::“ uint

S ::“ ε | x“E; S | if pEq t S u else t S u | E.mr.valuepEqspEq; | revert;

| E.transferpEq; S
E ::“ n | x | this | E 7 E | !E | msg.sender | msg.value | E.balance
7 ::“ ` | ´ | ą | “ | ě | && | ˚ | {

where terms written within “[” and “]” are optional. A mSCL program P is a sequence
of smart contract definitions

`

C1, ¨ ¨ ¨ , Cn
˘

, which, in turn, are sequences of fields and
function definitions. If C “ contract C t ¨ ¨ ¨ u, we say that C is the smart contract name
of C and we address the set of contract names of P with cnamespPq.

In a contract contract C t T f; F
“

fallbackp q payable t u
‰

u, the fields are

T f; and the corresponding set is fieldspCq, the functions are either those in F or the
fallback. We write mpT xqrpayablestT z; Su P C if the function belongs to the contract
named C and similarly for fallback P C. Additionally, in function mpT xqrpayablestT z; Su,
T x are the formal parameters and T z; S is the body of m, where T z are the local vari-
ables. We assume that fields, formal parameters and local variables do not contain
duplicate names.

Smart contracts have an implicit field – the balance – that records the cryptocurrency
stored in the contract. This field is updated either (i) when a payable function is invoked
(in this case the balance is increased by the cryptocurrencies carried by the invocation –
keyword value), or (ii) when the cryptocurrency is explicitly transferred (the operation
transfer).

The fallback function, when present, allows a contract to accept cryptocurrency trans-
fers. In particular, the transfer of cryptocurrencies also includes the invocation of the
callee’s fallback function. (The semantics of transfer in Figure 2 does not model this
invocation of fallback because the corresponding body is always empty.) If the callee has
no fallback then cryptocurrency transfers to it are refused and always backtrack. Sim-
ilarly, since in mSCL the invocations of the undeclared functions default to the fallback
function, when it misses, a backtrack occur. In these cases, the fallback function ignores
all actual parameters of an undeclared function, except the transferred cryptocurrencies.

Statements S include the empty statement ε; the assignment x“E followed by a con-
tinuation, where x may be either a field or a formal parameter or a local variable; con-
ditionals; the invocation of a function in the two formats E.mpE1q and E.m.valuepE2qpE1q,
where E is the callee contract, m is the function and E1 are the actual parameters; the term
valuepE2q highlights when a cryptocurrency transfer occurs from the caller to the callee
during the invocation (mSCL function invocations are external in Solidity terminology).
Statements may also be revert that backtracks the computation to the initial store,
and E.transferpE1q that transfers E1 cryptocurrencies from the caller to E, provided
caller’s balance is sufficient and the callee has a fallback function (otherwise a backtrack
occurs). 3

3In smart contract languages, such as Solidity, actions consume gas and this gas is never returned dur-
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contract Bank {
fallback() payable{}
function pay(uint n) payable{

if (msg.valueě 1 && this.balanceąn && nă5) {
msg.sender.transfer(n) ;
msg.sender.ack() ;

}
}

}
contract Thie f {

fallback() payable{}
function ack() {

msg.sender.pay.value(1)(2) ;
}

}

Figure 1: The contracts Bank and Thief in mSCL.

Expressions are standard ones, except for three terms: msg.sender that returns the
caller, msg.value that returns the transmitted cryptocurrencies during the invocation (to
be used only inside a payable function), E.balance that returns the contract’s balance.
In the following we use u, v to range over constant expressions or elements in Id.

The initial state of a mSCL program is determined by (i) defining the balances of the
smart contracts therein, (ii) invoking a function, and (iii) specifying the caller of the
invocation in (ii). See the following Example 1 for a possible initial state and Section 3
for a formal definition. It is worth to notice that the caller in (iii) may also be external
(for example, it may be a smart contract that is not in the program or a user). In this
case the semantics is completely determined as long as the program does not access to
its functions – with msg.sender (otherwise we need to make assumptions on the external
caller, e.g. it must have a fallback function). Our technique will admit external callers.

Assumption 1 (Programs are typed). In the rest of the paper we assume all mSCL
programs to be well-typed with respect to a completely standard type system where all
functions are first order and the only two types are uint and address . Local variables
and function parameters are typed by uint and the only expressions typed by address

are msg.sender, this and the names of the smart contracts defined in the program. In
particular the type systems ensures that all variables are declared before their use, that
functions are only used totally applied and that the receiver of transfer and function
calls are only expressions of type address .

The features of mSCL are illustrated by discussing an example.

Example 1. Figure 1 reports the codes of the contracts Bank and Thief, implementing
respectively a shared bank account and a greedy client. Bank is used for paying clients: it
has a balance and, as soon as a client invokes pay with a non negative integer n and the
balance is large enough – line 4 –, it withdraws n cryptocurrencies and transfers them to
the client – line 5. In order to allow several clients to withdraw at the same time, the
Bank only allows to draw out at most 5 cryptocurrencies for every transaction. That is,

ing the backtracking. In this paper we are overlooking gas consumption since bounding gas consumption
is already a well understood problem in the literature (see [2], for instance).
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to achieve fairness between the owners of the shared account, the programmer constrains
clients that want to withdraw more consistent amounts to issue multiple invocations of
the pay function.

However, thanks to re-entrancy, Thief finds a way to bypass the check and grab
all the money at once using just one transaction. In particular, the function pay also
acknowledges the writhdraw by invoking client’s function ack (because the client has payed
1 cryptocurrency for it) – line 6. This apparently harmless operation is at the core of the
attack because the ack function of Thief calls back pay and the process continues till the
account is emptied (e.g. the boolean expression at line 4 becomes false). The invocation
Bank.pay.valuep1qp2q performed by Thief expresses the attack.

We notice that our forthcoming technique allows one to replace the constant values 1
and 2 in Example 1 with two variables x and y, and to analyze which instances of x and
y cause the attack.

Remark. There are two features that are not modelled in mSCL. First, nonempty fallback
bodies. The analysis of this extension requires the management of explicit continuations
of transfer, which is difficult and makes more complex the technical development of the
analysis. We have preferred to deal with nonempty fallback bodies in the later Section 7
where, we hope, the analysis has been digested for the simpler setting.

Second, we do not address dynamic contract creation and deployment. In particu-
lar, we use symbolic names for smart contracts that represent smart contract addresses.
When we need to model several instances of a smart contract, we simply duplicate the
code, using different names. Initially, a contract knows the names of other contracts it
wants to interact with, but he can also become aware of additional names later (e.g. read-
ing msg.sender). This restriction allow us to avoid dependencies from the context and
augment precision of the cost analysis. In Section 7 we discuss to what extent this
limitation may be relaxed.

3. The semantics of mSCL

We use memories, ranged over `, `1, ¨ ¨ ¨ , which are maps FId Y Var Ñ N. The
following auxiliary functions are used in the semantic rules:

– `rf ÞÑ vs is the memory update, namely p`rf ÞÑ vsqpfq “ v and p`rf ÞÑ vsqpgq “ `pgq,
when g ‰ f.

– JeKC1,v,C,` is a function that returns the value of e assuming C be the current
contract, v be the value that has been transmitted during the invocation, C 1 be
the caller and ` be the memory of C where values of fields and variables occurred
in e are stored. We omit the definition of JeKC1,v,C,`, which is completely standard,
but we notice that the function is total thanks to the mSCL constraint that, in a
division, the second argument is always a non null constant. JeKC1,v,C,` returns the
tuple of values of e.

A state of a mSCL program P, ranged over by S, S 1, ¨ ¨ ¨ , is defined by the following
syntax

S ::“
ś

iPI Cip`i ¨ `
1
iq|C

1 v§C : S |
ś

iPI Cip`i ¨ `
1
iq|0
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where
ś

iPI Cip`i ¨`
1
iq is a parallel composition of (runtime) contracts and either C 1

v
§C : S

or 0 is the runtime statement. As usual, parallel composition in states is associative and
commutative.

Runtime contracts have pairs of memories ` ¨ `1 where ` is the current memory and
`1 is the backtrack memory. The memory `1 is the one at the beginning of the current
transaction; ` is a working copy of `1, which is updated during the transaction and it
is committed if the transaction ends successfully, becoming the new backtrack memory.
When we write Cp` ¨ `1q, we always assume that domp`1q “ fieldspCq Ď domp`q (because
` also defines formal parameters and local variables). We say that a state is final when
the runtime statement is of the form

ś

iPI Cip`i ¨ `iq|0. Note that in a final state the two
memories of every contract are equal. Contracts Cp` ¨ `1q have a unique name C that is
in one to one correspondence with contract names in P.

Runtime statements may be either 0, the terminated statement, or C 1
v
§C : S, where

S must be evaluated into the contract C, with a caller C 1 and with a value v.
The semantics of mSCL programs is defined by means of the transition relation S µ

ÝÑS 1,

where
µ
ÝÑ “ ÝÑY

X
ÝÑY

fail
ÝÑ (the program is kept implicit in the notation). In a

µ
ÝÑ-

derivation to a final state, all transitions are ÝÑ, except the last one that is responsible

for committing the memory. In particular, if the last transition is a
X
ÝÑ, then the com-

putation terminates normally and the current memory becomes the new initial memory;

if the last transition is
fail
ÝÑ then the computation backtracks and the memory is reverted

to the initial memory. The formal definition of
µ
ÝÑ is given in Figure 2.

Let us comment some semantic rules (comments are omitted when rules are standard).
Rule [upd] defines the semantics of an update of a field or a variable: the expression e
is evaluated in the current memory of C and the resulting memory binds the value to
x. Rules [transfer] and [transfer-fail] define the semantics of e.transferpe1q. The
former one verifies that the recipient e is payable (e.g. has a fallback function) and caller’s
balance is larger than e1; in this case the balances of the caller and of e are updated. The
second rule deals with errors: either the recipient is not payable or caller’s is not sufficient.
In this case a failure occurs and it is propagated to the whole solution (with rule [bkt]).
When fallback bodies are nonempty, [transfer] is more complex: see [transfer-cont]

in Figure 6).
Rules [meth*] of Figure 2 deal with function invocations, which are particularly com-

plex in mSCL. Rule [meth] defines successful non-payable function invocations e.mpe1q. In
this case, the function dispatch is performed by using the value C2 of e and the state-
ment to evaluate becomes the body of m (without any continuation). Rules [meth-fb]

and [meth-err] define unsuccessful non-payable function invocations. The two rules deal
with the two subcases whether the callee has a fallback function or not; in the first one,
the invocation is dispatched to the fallback that has an empty body and the compu-
tation terminates successfully; in the second one, the invocation fails and the overall
computation backtracks. The other three rules for function invocations, namely [meth-

pay], [meth-pay-fb] and [meth-pay-err] account for invocations of payable functions. In
these cases the invocation carries a value and, when it is successful, the balances of the
caller and of the callee must be updated correspondingly. Rule [meth-pay-err] does not
update balances because it models a failure. This happens either when caller’s balance
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[emp]

C1
v
§C : ε

X
ÝÑ0

[revert]

C1
v
§C : revert

fail
ÝÑ0

[upd]

JeKC1,v,C,` “ v1

Cp` ¨ `1q | C1
v
§C : x“e;SÝÑCp`rx ÞÑ v1s ¨ `1q | C1

v
§C : S

[if-true]

JeKC1,v,C,` ‰ 0

Cp` ¨ `1q | C1
v
§C : if peq t S u else t S1 u

ÝÑCp` ¨ `1q | C1
v
§C : S

[if-false]

JeKC1,v,C,` “ 0

Cp` ¨ `1q | C1
v
§C : if peq t S u else t S1 u

ÝÑCp` ¨ `1q | C1
v
§C : S1

[transfer]

JeKC1,v,C,` “ C2 Je1KC1,v,C,` “ v1

`pbalanceq ě v1 fallback P C2

`1 “ `rbalance ÞÑ´ vs `2 “ `2rbalance ÞÑ` vs

Cp` ¨ `1q | C2p`2 ¨ `3q | C1
v
§C : e.transferpe1q; S

ÝÑCp`1 ¨ `
1
q | C2p`2 ¨ `

3
q | C1

v
§C : S

[transfer-fail]

JeKC1,v,C,` “ C2 Je1KC1,v,C,` “ v1
´

`pbalanceq ă v1 or fallback R C2
¯

Cp` ¨ `1q | C2p`2 ¨ `3q | C1
v
§C : e.transferpe1q; S

fail
ÝÑCp`1 ¨ `1q | C2p`3 ¨ `3q | 0

[transfer-self]

JeKC1,v,C,` “ C Je1KC1,v,C,` “ v1

`pbalanceq ě v1 fallback P C

Cp` ¨ `1q | C1
v
§C : e.transferpe1q; S ÝÑCp` ¨ `1q | C1

v
§C : S

[transfer-self-fail]

JeKC1,v,C,` “ C Je1KC1,v,C,` “ v1
´

`pbalanceq ă v1 or fallback R C
¯

Cp` ¨ `1q | C1
v
§C : e.transferpe1q; S

fail
ÝÑCp`1 ¨ `1q | 0

[meth]

JeKC1,v,C,` “ C2 Je1KC1,v,C,` “ v1

mpT xqtT1 z;Smu P C
2

Cp` ¨ `1q | C2p`2 ¨ `3q | C1
v
§C : e.mpe1q ÝÑCp` ¨ `1q | C2p`2rx ÞÑ v1, z ÞÑ 0s ¨ `3q | C

0
§C2 : Sm

[meth-fb]

JeKC1,v,C,` “ C2 Je1KC1,v,C,` “ v1

mpT xqtT1 z;Smu R C
2 fallback P C2

Cp` ¨ `1q | C1
v
§C : e.mpe1q

X
ÝÑCp` ¨ `q | 0

[meth-err]

JeKC1,v,C,` “ C2 Je1KC1,v,C,` “ v1

mpT xqtT1 z;Smu, fallback R C
2

Cp` ¨ `1q | C1
v
§C : e.mpe1q

fail
ÝÑCp`1 ¨ `1q | 0

[meth-pay]

JeKC1,v,C,` “ C2 Je1KC1,v,C,` “ v1 Je2KC1,v,C,` “ v2

mpT xq payable tT1 z;Smu, fallback P C
2 `pbalanceq ě v2

`1 “ `rbalance ÞÑ´ v2s `2 “ `2rbalance ÞÑ` v2, x ÞÑ v1, z ÞÑ 0s

Cp` ¨ `1q | C2p`2 ¨ `3q | C1
v
§C : e.m.valuepe2qpe1q ÝÑCp`1 ¨ `

1
q | C2p`2 ¨ `

3
q | C

v2

§ C2 : Sm

[meth-pay-fb]

JeKC1,v,C,` “ C2 Je1KC1,v,C,` “ v1 Je2KC1,v,C,` “ v2

mpT xq payable tT1 z;Smu R C
2 fallback P C2

`pbalanceq ě v2 `1 “ `rbalance ÞÑ´ v2s `2 “ `2rbalance ÞÑ` v2s

Cp` ¨ `1q | C2p`2 ¨ `3q | C1
v
§C : e.m.valuepe2qpe1q

X
ÝÑCp`1 ¨ `1q | C

2
p`2 ¨ `2q | 0

[meth-pay-err]

JeKC1,v,C,` “ C2 Je1KC1,v,C,` “ v1 Je2KC1,v,C,` “ v2

`pbalanceq ă v2 or
´

mpT xq payable tT1 z;Smu, fallback R C
2
¯

Cp` ¨ `1q | C2p`2 ¨ `3q | C1
v
§C : e.m.valuepe2qpe1q

fail
ÝÑCp`1 ¨ `1q | C2p`3 ¨ `3q | 0

[cmt]

S X
ÝÑS1

Cp` ¨ `1q | S X
ÝÑCp` ¨ `q | S1

[bkt]

S fail
ÝÑS1

Cp` ¨ `1q | S fail
ÝÑCp`1 ¨ `1q | S1

[tau]

SÝÑS1

Cp` ¨ `1q | SÝÑCp` ¨ `1q | S1

Figure 2: State transitions
µ
ÝÑ of mSCL (

µ
ÝÑ = ÝÑ Y

X
ÝÑ Y

fail
ÝÑ), JeKC1,v,C,` never fails.

is smaller than the value to be sent or when the dispatch cannot be performed because
there is no function and there is no fallback.
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Initial states. The initial state of a mSCL program P “
`

C1, ¨ ¨ ¨ ,Cn
˘

is a term

ś

iP1..n Cip`i ¨ `iq | K
0
§C 1 : C.mpvq

where K is a dummy smart contract name, C,C 1 P cnamespPq and Ci is the contract
name of Ci. That is we assume that runtime contracts are in a one-to-one correspondence
with smart contract definitions; we duplicate the code in case we need several runtime
contracts of a same C. We also assume that Id contains a dummy name User that may be
used instead of C 1 in the initial state. We use this expedient in order to cover invocations
of a function of the program by an external smart contract or by an external user. For
simplicity sake, we are ruling out initial statements such as C.m.valuepv1qpvq.‹ Cosimo: questo ‘For simplicity sake...’

è da cancellare secondo meFor example, the initial state of Example 1 is

Bankp`B ¨ `Bq | Thief p`T ¨ `T q | K
0
§Thief : Bank .pay.valuep1qp2q

where `B “ rbalance ÞÑ vs and `T “ rbalance ÞÑ 1s.

We conclude by observing that mSCL programs are executed sequentially, in a deter-
ministic way, and that the execution never gets stuck.

Theorem 2 (Determinism and progress). Let P be a mSCL program and S be an
initial state such that SÝÑ˚S 1. Then

1. Determinism: there is at most one S2 such that S 1 µ
ÝÑS2.

2. Progress: either S 1ÝÑS2 for some S2, or S 1 is final.

We note that progress is a consequence of the assumption that mSCL programs are well-
typed (Assumption 1), which ensures that all invocations of JeKC1,v,C,` return a value
and that when e is of type address then JeKC1,v,C,` “ C2 where C2 is the name of one
of the contracts in the state.

4. The translation of mSCL into an intermediate language

Programs in our intermediate language are sets of functions that take in input two
environments – the backtrack one and the current one – and variables (which represent
non negative integers and smart contract names) and return an environment. Envi-
ronments, which are native values in the intermediate language, encode the state of a
mSCL program, namely they map fields and local variables to values. More precisely, the
codomain of environments are abstract values that are expressions of mSCL4. As we will
see, the evaluation of a program amounts to compute a final environment from the initial
ones, which are identical, by passing updated current environments from one function
invocation to another.

4To improve readability, we denote with e the expressions that occur in mSCL programs and with e
the same expressions when used as abstract values in the intermediate language. Equivalently, e and e
range over the productions of two grammars E and E that are defined identically.
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Environments. Γ, called environment, is a map pId Ñ FId Ñ Eq Y pVar Ñ Eq; we
always shorten ΓpCqpfq into ΓpC.fq and use ΓrC.f ÞÑ es to denote the update to e of
the field C.f. Notice that environments return abstract terms (which are expressions in
mSCL) rather than (integer) values. We also use two update operations on environments:

ΓrC.f ÞÑ` es
def
“ ΓrC.f ÞÑ ΓpC.fq`es and ΓrC.f ÞÑ´ es

def
“ ΓrC.f ÞÑ ΓpC.fq´es.

The syntax of the intermediate language uses particular environments, called pure:
an environment is pure whenever it is injective and returns only variables. The semantics
of the intermediate language also uses ground environments: an environment is ground
when the expressions in the codomain are ground values.

Syntax of the intermediate language. A program in the intermediate language is a tuple
I of function definitions

C.mpΓ0,Γ1,v,x,Hq“
ÿ

DPIdpH“DqΘD

(we keep the notation of mSCL for the name of functions). We require that

1. the formal parameters of a function definition include two environments Γ0 and Γ1

that are pure and with disjoint codomains. Γ0 is the environment that has to be
returned in case of backtrack; Γ1 is the environment that must be updated by the
function body in case of successful termination;

2. the remaining parameters, namely v, x and H respectively describe the amount of
the transferred cryptocurrency, the parameters of the function and the caller name.

We observe that functions’ bodies are summands on the set Id of smart contract
names that, for every program, we assume to be finite. This expedient allows us to
consider only ground smart contract names during the translation. This is the technique
we use to map mSCL, which has dynamic address resolution, to a language with static
dispatch only.

The syntax of function bodies Θ is

Θ ::“ Γ | e.mpΓ,Γ1,e1,e2,Hq |
ř

iP1..npϕiq Θi

where ϕi are boolean expressions that also contain predicates such asmPC orm.payablePC.
According to the syntax, a function may either return an environment, or invoke an-
other function, or have a nondeterministic behaviour

ř

iP1..npϕiq Θi that is regulated
by a finite set of predicates ϕ1, ¨ ¨ ¨ , ϕn. The term

ř

iP1..npϕiq Θi is an abbreviation for
pϕ1q Θ1 ` ¨ ¨ ¨ ` pϕnq Θn (we use the latter notation when we write programs).

Semantics of the intermediate language. In order to formalize the semantics of function
call, we need to match an actual parameter Γ1 that is a ground environment with the
formal one Γ that is a pure environment. We denote with σΓ,Γ1 the unique substitution
such that σΓ,Γ1 ˝ Γ “ Γ1.

The semantics of a program is defined by the two rules:

[Apply]

pC.mpΓ0,Γ1,x,z,Hq“
ř

iP1..npH“DiqΘDiq P I
1 ď k ď n JeK “ u Je1K “ v

C.mpΓ,Γ1,e,e1,DkqùñIΘDkt
u,v
{x,zuσΓ0,ΓσΓ1,Γ1

[Choice]

JϕiK “ true
ř

iPIpϕiqΘiùñIΘi

10



where JeK is the value of e. (The definition of JeK is omitted because straightforward.)
We notice that the semantics of intermediate programs is nondeterministic: if Θ is
p1ą0qΘ1`p2ą1qΘ2 then it may evolve into either Θ1 or Θ2. We also notice that the
intermediate language is actually a standard functional language with mappings (the
environments), tuples, conditionals and nondeterminism. Rule [Apply] is beta-reduction
plus pattern matching over mappings, while rule [Choice] allows one to select a branch
when the corresponding guard is true. The syntax and the semantics of the intermediate
language are illustrated in the following example.

Example 3. The function Bank.pay and Thief.ack of Example 1 can be written in the
intermediate language as follows. Let

Γ0 “ rBank ÞÑ rbalance ÞÑ xBank ,bs,Thief ÞÑ rbalance ÞÑ xThief ,bs s

Γ1 “ rBank ÞÑ rbalance ÞÑ yBank ,bs,Thief ÞÑ rbalance ÞÑ yThief ,bs s

Notice that Γ0 and Γ1 are pure environments with disjoint codomains. Let also Id “

tBank ,Thief u. For Bank .pay we obtain:

Bank .paypΓ 0 ,Γ 1 ,v ,n,H q“
ř

DPIdpH“Dq pvě1 ^ yBank,bąn ^ nă5q Θ
` !pvě1 ^ yBank,bąn ^ nă5q Γ1

where Θ “ pyBank,bąn ^ fallbackPDq Θ1 ` pyBank,bďnq Γ0 ` pfallbackRDq Γ0

Θ1 “ packPDq D.ackpΓ0,Γ
1
1, 0,Bankq

` pack .payablePDq D.ackpΓ 0 ,Γ
1
1 ,0 ,Bankq

` packRD ^ ack .payableRD ^ fallbackPDq Γ11
` packRD ^ ack .payableRD ^ fallbackRDq Γ0

Γ11 “ Γ1rBank .balance ÞÑ´ n,D.balance ÞÑ` ns

For Thief.ack we get:

Thief .ackpΓ 0 ,Γ 1 ,v ,H q“
ř

DPIdpH“Dq Θ2

where Θ2 “ ppayPDq Γ0

` ppay .payablePD ^ yThief ,bě1q Θ3

` ppay .payablePD ^ yThief ,bă1q Γ0

` ppayRD ^ pay .payableRD ^ fallbackPD ^ yThief ,bě1q Γ11
` ppayRD ^ pay .payableRD ^ fallbackPD ^ yThief ,bă1q Γ0

` ppayRD ^ pay .payableRD ^ fallbackRDq Γ0

and Θ3 “ D.paypΓ 0 ,Γ
1
1 ,1 ,2 ,Thief q and Γ 11 “ Γ 1 rThief .balance ÞÑ´ 1 ,D .balance ÞÑ` 1 s

As regards the semantics of the intermediate language, let us discuss the transitions of
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[const]

v P uint or v P Id

Γ $eC,D v : v

[field]

x P dompΓpDqq

Γ $eC,D x : ΓpD.xq

[var]

x R dompΓpDqq

Γ $eC,D x : Γpxq

[this]

Γ $eC,D this : D

[sender]

Γ $eC,D msg.sender : C
[this]

Γ $eC,D msg.value : e

[bal]

Γ $eC,D e1 : H H P Id

Γ $eC,D e1.balance : ΓpH.balanceq
[ops]

Γ $eC,D e1 : e11 Γ $eC,D e2 : e12
7 P t`.´,ą,“,ě,&&u

Γ $eC,D e17e2 : e117e
1
2

[prod-div]

Γ $eC,D e1 : e2 7 P t˚, {u

Γ $eC,D e17n : e27n

[not]

Γ $eC,D e1 : e2

Γ $eC,D !e1 : !e2

Figure 3: Translation of mSCL expressions

Bank .paypΓ ,Γ ,1 ,2 ,Thief q, where Γ “ rBank ÞÑ rbalance ÞÑ 4s,Thief ÞÑ rbalance ÞÑ 1s s:

Bank .paypΓ ,Γ ,1 ,2 ,Thief q ùñI p1ě1 ^ 4ą1 ^ 2ă5q ΘtThief
{Dut

2,4,1
{n,yBank,b,yThief ,bu

`!p1ě1 ^ 4ąn ^ 2ă5q Γ
ùñI packPThief q Thief .ackpΓ ,Γ 1,0 ,Bankq

` pack .payablePThief q Thief .ackpΓ ,Γ 1,0 ,Bankq
` packRThief ^ ack .payableRThief ^ fallbackPThief q Γ1

` packRThief ^ ack .payableRThief ^ fallbackRThief q Γ
ùñI Thief .ackpΓ ,Γ 1,0 ,Bankq

ùñI Θ2tBank
{Dut

0,2,3
{v,yBank,b,yThief ,bu

ùñI Bank .paypΓ ,Γ 2,1 ,2 ,Thief q

where
Γ1 “ rBank ÞÑ rbalance ÞÑ 2s,Thief ÞÑ rbalance ÞÑ 3s s

Γ2 “ rBank ÞÑ rbalance ÞÑ 3s,Thief ÞÑ rbalance ÞÑ 2s s .

The translation of mSCL. The translation of mSCL in the intermediate language is defined
by using judgments and inference rules. The judgments have the following form:

• judgments for expressions: Γ $eC,D E : e1, where e and e1 are expressions that con-
tain constants or variables; e is the amount of cryptocurrency transmitted during
the invocation, while e1 is the value of the expression E; C and D are respectively
the caller and the callee contracts;

• judgments for statements: Γ,Γ1 $eC,D S : Θ, where Γ is the backtrack environment,
Γ1 is the current environment and Θ is the resulting intermediate code (e, C and D
are similar to the corresponding one for judgments of expressions). Backtrack and
current environments correspond to the (instances of) environments Γ0 and Γ1 in
the function definitions and are used to model backtrack (in case of failures) and
success, respectively.

The translation of expressions is reported in Figure 3. It partially evaluates expressions
by replacing accesses to fields with the corresponding values in the environment. Rules
[field] and [var] manage variables; there are three cases: a variable is a callee’s field, or it
is a formal parameter or a smart contract name. In any case we return the corresponding
value in Γ (which may also be an expression). In [bal] the translation of e1.balance is
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[empty]

Γ,Γ1 $eC,D ε : Γ1
[revert]

Γ,Γ1 $eC,D revert; : Γ
[asgn]

x P dompΓpDqqztbalanceu
Γ1 $eC,D E : e1 Γ,Γ1rD.x ÞÑ e1s $eC,D S : Θ

Γ,Γ1 $eC,D x“E;S : Θ

[asgn-var]

x R dompΓpDqq
Γ1 $eC,D E : e1 Γ,Γ1rx ÞÑ e1s $eC,D S : Θ

Γ,Γ1 $eC,D x“E;S : Θ
[invk-nv]

Γ1 $eC,D E : e0 e0 P Id Γ1 $eC,D E : e1

Γ,Γ1 $eC,D E.mpEq :

pmPe0q e0.mpΓ,Γ
1,0,e1,Dq

` pm.payablePe0q e0.mpΓ,Γ
1, 0, e1, Dq

` pmRe0 ^ m.payableRe0 ^ fallbackPe0q Γ1

` pmRe0 ^ m.payableRe0 ^ fallbackRe0q Γ
[invk]

Γ1 $eC,D E : e0 e0 P Id Γ1 $eC,D E : e1 Γ1 $eC,D E1 : e2

Γ2 “ Γ1re0.balance ÞÑ` e2srD.balance ÞÑ´ e2s

Γ,Γ1 $eC,D E.m.valuepE1qpEq :

pmPe0q Γ

` pm.payablePe0 ^ Γ1pD.balanceqěe2q e0.mpΓ,Γ
2,e2,e1,Dq

` pm.payablePe0 ^ Γ1pD.balanceqăe2q Γ
` pmRe0 ^ m.payableRe0 ^ fallbackPe0 ^ Γ1pD.balanceqěe2q Γ2

` pmRe0 ^ m.payableRe0 ^ fallbackPe0 ^ Γ1pD.balanceqăe2q Γ
` pmRe0 ^ m.payableRe0 ^ fallbackRe0q Γ

[if-then-else]

Γ1 $eC,D E : e1 Γ,Γ1 $eC,D S : Θ Γ,Γ1 $eC,D S1 : Θ1

Γ,Γ1 $eC,D if pEq t S u else t S1 u : pe1q Θ ` p!e1q Θ1

[transfer]

Γ1 $eC,D E : e0 e0 P Id Γ1 $eC,D E1 : e1

Γ2 “ Γ1re0.balance ÞÑ` e1srD.balance ÞÑ´ e1s
Γ,Γ2 $eC,D S : Θ

Γ,Γ1 $eC,D E.transferpE1q;S :
pΓ1pD.balanceqěe1 ^ fallbackPe0q Θ
` pΓ1pD.balanceqăe1q Γ
` pfallbackRe0q Γ

Figure 4: The translation of mSCL statements

the balance of a contract; in this case it is necessary that e1 is a smart contract name H:
in our setting we write H P Id . Rule [prod-div] addresses multiplication and division.
Since the cost analysis of Section 5 only covers Presburger arithmetics expressions where
the second argument of products and divisions are constants, the inference rules do not
translate expressions that cannot be fed to the analyzer. The translation of statements
is defined in Figure 4. The judgments return intermediate codes that use the predicates
(the notation is the same that has been used in mSCL):

• fallbackPe, with ePId , to mean that the contract e has the fallback function;

• mPe, with ePId , to mean that m is a function in e that is not payable; m.payablePe
additionally requires that m is also payable.

The translation of statements is defined in Figure 4. Rules [invk-nv] and [invk] define
function invocations for non-payable functions and payable ones, respectively. The former
one returns a choice between several alternatives: (i) when m is in e0 then it reduces
to the invocation; (ii) when m is in e0 and it is payable then it is translated to the
invocation with 0 cryptocurrency transferred; (iii) when m is not in e0 but the contract
has the fallback function then the translation is the call to fallback that, in our case,
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[function]
´ Γ0pD

1
q “ rf1 ÞÑ xD1,1, ¨ ¨ ¨ , fn ÞÑ xD1,n, balance ÞÑ xD1,bs

Γ1pD
1
q “ rf1 ÞÑ yD1,1, ¨ ¨ ¨ , fn ÞÑ yD1,n, balance ÞÑ yD1,bs

¯tf1,¨¨¨ ,fn,balanceu“fieldspD1q,D1PId

function mpT xqrpayablestT y; Su P C
´

Γ0,Γ1rx ÞÑ x0, y ÞÑ 0s $vD,C S : ΘD

¯DPId

Γ0,Γ1 $ C.mpΓ0,Γ1,v,x0,Hq“
ř

DPId pH“Dq ΘD

[program]

I “
´

Γ0,Γ1 $ C.mpΓ0,Γ1,v,x,Hq“ΘC.m

¯CPcnamespPq

$ P : I

Figure 5: The translation for mSCL functions and programs

returns the current environment (because fallback has empty body); (iv) when both m
and fallback are not in e0 then a backtrack occurs and the translation is the backtrack
environment. Rule [invk] manages invocations with cryptocurrency transfer from the
caller to the callee; in this case we must check that the caller has enough cryptocurrency
in his balance, otherwise a backtrack occurs.

The translation of mSCL is completed with the rules for function definition and pro-
grams, given in Figure 5, where we use the judgments Γ0,Γ1 $ C.mpΓ0,Γ1,v,x,Hq“Θ
and $ P : I with the obvious meaning. In [function], the definition of a function is given
in two pure environments that act as formal parameters. We recall that Γ0 is the back-
track environment, e.g. the environment to which transiting in case of errors, while Γ1

is the environment where the function invocation must be evaluated. The critical point
is that, in our system, the set Id is finite, therefore the hypotheses of rule [function]

and the choice in the conclusion are finite. (Said otherwise, we analyze the cost of smart
contract programs with a finite number of known contract instances.) Rule [program]

gives the translation of a smart contract program. The premise of the rule contains a set
of hypotheses that depend on a finite set of smart contract names and function names.
This does not mean that our analysis requires that the code of all the interacting con-
tracts must be known. In particular, the analysis (and our prototype) covers invocations
of a function of the program by an external caller (either a smart contract or a user). As
discussed in Section 3, we assume the presence of a dummy name User that belongs to
Id .

As an example, one can compute the translation defined in this section when applied
to the corresponding functions of the mSCL program in Figure 1. The reader may verify
that these codes are exactly those of Bank .pay and Thief .ack in Example 3.

We conclude this section by asserting the correctness of the translation. To assess
this property we need to formalize the correspondence between a state of a mSCL program
and its intermediate code. The following definition intends to specify this relationship.

Definition 4 (Correspondence of states and intermediate codes). Given a state

S “
ś

iP1..n Cip`
1
i ¨ `iq | Ck

v
§Ch : S, we define

envspSq def
“

“`

Ci ÞÑ `i
˘iP1..n‰

,
“`

Ci ÞÑ `1i
˘iPp1..nqzh

, Ch ÞÑ `1h|fieldspChq, `
1
h|Var

‰

and we write S $ Θ whenever S “
ś

iP1..n Cip`
1
i ¨ `iq | C

v
§D : S and envspSq $vC,D S : Θ

or S “
ś

iP1..n Cip`
1
i ¨ `iq | 0 and Θ “ Γ and envspSq “ Γ,Γ.
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The correctness of the translation follows; the proof can be found in the Appendix.

Theorem 5. Let P be a mSCL program such that $ P : I and let S be an initial state
such that S $ Θ. Then

1. ( determinism) If ΘùñI
˚Θ1 then there is at most one Θ2 such that Θ1ùñIΘ2;

2. ( correctness) If SÝÑ˚S 1 then there is a Θ1 such that S 1 $ Θ1 and ΘùñI
˚Θ1.

5. The analysis of smart contract balances

The cost model of mSCL. The programs in the intermediate language that are generated
by the translation in Section 4 return environments when they terminate. This output is
too informative since we are interested in computing cryptocurrency movements of exactly
one smart contract, which are recorded in the corresponding balance field. Moreover,
instead of computing the final value of the balance, it is more relevant to compute an
upper bound of the amount of cryptocurrencies that a smart contract can either lose
or gain during a terminating computation. It is also worth to notice that the upper
bounds we are looking for are not just numbers, i.e. a maximal value that can be reached
considering all possible outputs. Instead, we are interested into symbolic upper bounds
expressed as functions on the value of the fields of the initial environments and the actual
parameters of the initial call.

We start by defining the final gain and loss associated to a smart contract C 1, a
system of equations I and an initial invocation C.mpΓ,Γ,e,x,Hq.

Definition 6. Let P be a mSCL program and $ P : I. Let gainC
1

I,C,m and lossC
1

I,C,m be
the functions

gainC
1

I,C,mpΓ, z, x,Hq “

$

&

%

maxp0,Γ1pC 1.balanceq ´ ΓpC 1.balanceqq if C.mpΓ,Γ,z,x,Hqùñ˚
IΓ1

0 otherwise

lossC
1

I,C,mpΓ, z, x,Hq “

$

&

%

maxp0,ΓpC 1.balanceq ´ Γ1pC 1.balanceqq if C.mpΓ,Γ,z,x,Hqùñ˚
IΓ1

0 otherwise

where, for every D P cnamespPq, dompΓpDqq “ fieldspDq. By Theorem 5(1) the above
functions are well defined on ground inputs because the reduction of compiled mSCL pro-
grams is deterministic.

We notice that gainC
1

I,C,m and lossC
1

I,C,m compute the amount of cryptocurrency gained/lost
at the end of the computation of C.mpΓ,Γ,z,x,Hq. In this respect, the two functions re-
turn 0 if the computation does not terminate. Indeed, in actual smart contract languages,
a divergent program will be considered to gain/lose no cryptocurrency, since the transac-
tion will be rolled-back because either it fails or it runs out of gas — gas exhaustion turns
diverging computations into failing ones. (A similar remark might concern computations
that become stuck, but this never happens in our case.) We also notice that the function
lossC

1

I,C,m is not the opposite of gainC
1

I,C,m. For example, if C begins with a balance 10
and terminates with a balance 5, then its gain is 0 and its loss is 5.
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Assuming a pointwise ordering between functions, we are interested in possible precise
upper bounds of gainC

1

I,C,m and lossC
1

I,C,m. However, sometimes our technique returns
asymptotic upper bounds that are less informative, like in Example 15, page 32.

Definition 7. • A function ugainC
1

I,C,m is an upper bound of gainC
1

I,C,m if and only

if, for every Γ, v1, v,D in the domain of definition of gainC
1

I,C,m, gainC
1

I,C,mpΓ, v
1, v,Dq ď

ugainC
1

I,C,mpΓ, v
1, v,Dq.

• A function ugainC
1

I,C,m is an asymptotic upper bound of gainC
1

I,C,m if and only if

gainC
1

I,C,m P OpugainC
1

I,C,mq.

• Similarly for lossC
1

I,C,m.

Definitions 6 and 7 are given on the intermediate language. Similar definitions may
be given for mSCL where, this time, the input of the function is an initial state. Once they
are in place, it is possible to demonstrate their relationship as a corollary of Theorem 5.

Definition 8. Let C be a mSCL program. Let mgainCP and mlossCP be the functions defined
on initial states S:

mgainCPpSq “

$

&

%

maxp0, C.balancepS 1q ´ C.balancepSqq if SÝÑ˚S 1 for some S 1 final

0 otherwise

mlossCPpSq “

$

&

%

maxp0, C.balancepSq ´ C.balancepS 1qq if SÝÑ˚S 1 for some S 1 final

0 otherwise

where C.balancepSq is the value of the balance field of the smart contract C in the state S.

Corollary 1 (of Theorem 5). Let S “
ś

iP1..n Cip`i ¨ `iq | K
0
§D : C.mpvq be an initial

state of a mSCL program P and $ P : I and S $ C.mpΓ,Γ,0,x,Dq, where pΓ,Γq “ envspSq.
Then mgainC

1

P pSq “ gainC
1

I,C,mpΓ, 0, x,Dq and mlossC
1

P pSq “ lossC
1

I,C,mpΓ, 0, x,Dq.

As a consequence of Corollary 1, instead of computing upper bounds of mgainCPpSq
and mlossC

1

P pSq, it is sufficient to do the same for programs written in our intermediate
language. In turn, the intermediate code may be used as input of an additional translation
that returns cost equations to be fed to a cost analyzer such as CoFloCo [14] and PUBS [1].
This will allow us to compute mgainCPS and mlossC

1

P S automatically, without any effort.
In the following we introduce the syntax of CoFloCo and we define the set of CoFloCo

cost equations associated to a program in our intermediate language such that the cost
model considered by CoFloCo is either that of gainC

1

I,C,m or that of lossC
1

I,C,m.

The syntax and semantics of CoFloCo. Cost equation solvers take a list of equations in
input that are terms [14]

mpxq “ e`
ÿ

iP0..nmipeiq r ϕ s
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where variables occurring in the right-hand side and in ϕ are a subset of x and5

• m is a (cost) function symbol,

• e (i.e. the cost of the step) and ei are Presburger arithmetic expressions, namely
(q is a positive rational number)

e ::“ x | q | e` e | e´ e | q ˚ e | max pe1, ¨ ¨ ¨ , ekq

• ϕ is a conjunction of linear constraints, e.g. constraints of the form `1 ă `2 or
`1 ď `2 or `1 “ `2, where both `1 and `2 are Presburger arithmetic expressions.

The solution of a cost program is the computation of bounds of a particular function
symbol (typically the one of the first equation in the list). The bounds are parametric in
the formal parameters of the function symbol. The operational semantics of the (subset
of) CoFloCo we are considering is defined below.

Definition 9 (Semantics of cost equations seen as a functional language). Let
ÑCoFloCo be the reduction relation over ground Presburger expressions augmented with
function calls (in the obvious way) defined by the following two rewriting rules, that can
be applied in any context:

1. mpeqÑCoFloCoe
jte{xu `

ř

i“0,...,njm
j
i pe

j
i t
e{xuq for every cost equation

mpxq “ ej `
ÿ

iP0..njm
j
i pe

j
i q r ϕj s

such that ϕjte{xu holds;

2. eÑCoFloCov if e is a Presburger expression whose value is v.

The relation ÑCoFloCo, seen as a reduction relation, is obviously non deterministic, as
the following example shows. However, all cost equations generated from mSCL programs
exhibit a deterministic behaviour.

Example 10. Consider the following set of cost equations:

npxq “ x` 1 rs

mpxq “ 1` np2 ˚ xq r0 ď xs
mpxq “ 2´ np2 ˚ xq rx ď 2s

It turns out that mp1qÑCoFloCo
˚4 and mp1qÑCoFloCo

˚´1.

5Actually, CoFloCo does not require the condition we just imposed on the variables that occur in
the right-hand side. The remaining variables are handled in logic programming style, via unification.
Thanks to our additional constraint, it becomes possible to think of CoFloCo equations like functional
programs instead. We will take advantage of this later, when we will equip the syntax with an operational
semantics in functional style.
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The translation. In this paragraph we associate two sets of cost equations to every in-
termediate program; the first set is used to compute the upper bound for the gain of
cryptocurrency of a chosen contract, while the second set is for the upper bound for the
loss of cryptocurrency. The two sets of equations will only differ by the choice of a cost
function that will be defined below.

Translating the codes obtained from Figures 3, 4 and 5 into cost equations does not
seem difficult:

• a function in the intermediate program is mapped into a cost equation function
that either returns a final environment, or it is a finite sum of function calls;

• sums are mapped to sets of guarded equations; a function call to cost equations
call where the steps have 0 cost;

• returning a final environment Γ1 amounts to compute the empty set of calls where
the step has cost maxp0,Γ1pC 1.balanceq ´ ΓpC 1.balanceqq — to compute gainC

1

I,C,m
— or maxp0,ΓpC 1.balanceq ´ Γ1pC 1.balanceqq — to compute lossC

1

I,C,m.

In practice, the association is technically more involved due the following differences
between our intermediate language and CoFloCo cost equations:

• functions in our intermediate language pass around environments, while cost equa-
tions take in input tuples of variables. We will introduce a flattening operation to
map the formers into the latters;

• CoFloCo guards are very basic: only conjunctions of comparisons between integer
numbers are admitted, while guards of our intermediate language uses all logical
operators and tests like mPD that look for an element in a finite set. We will encode
our expressions into CoFloCo guards, which will also include the writing of guards
into disjunctive normal forms to fit the restricted syntax of CoFloCo;

• our intermediate language uses non negative integers while CoFloCo uses signed
integers; therefore we must be careful when encoding subtraction (2 ´ 4 “ 0 on
signed integers) and we must add initial preconditions to cost equations stating
non negativity of every input.

Therefore we introduce a preliminary code simplification x¨y that takes care of ironing
out the differences between the two languages. The translation x¨y acts on expressions,
guards and codes, and it uses the companion t ¨ u translation of environments into flat
lists of variables. The simplifications x¨y and t ¨ u are defined as follows6:

• the simplification of a formula ϕ, written xϕy, is an homomorphic operator with

6In the rest of the section we use the green color both for cost equations and for simplified intermediate
programs, whose syntax is looser since it does not require formulae to be only conjunctions.
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respect to all arithmetic operators but subtraction and such that

xe´ e1y “ maxpxey´ xe1y, 0q
xxy “ x if x R Id
xky “ k

xm P Dy “
Ž

χPfunpDqpxD.my “ xD.χyq

xm.payable P Dy “
Ž

χPfunpDqpxD.m.py “ xD.χyq

xm R Dy “
Ź

χPfunpDqpxD.my ‰ xD.χyq

xm.payable R Dy “
Ź

χPfunpDqpxD.m.py ‰ xD.χyq

xfallback P Dy “ true if D declares the fallback function, false otherwise

where χ P funpDq is true if, for some function name m, χ “ m and m is a non
payable function declared in D or if χ “ m.p and m is a payable function declared
in D. The simplification on D, D.m, D.m.p can be picked to be any injective
function whose codomain are integer values.

Moreover, x¨y also puts formulae ϕ in disjunctive normal form plus the additional
constraint that atomic formulae are inequalities. For example, e ‰ e1 is normalized
to e ă e1 _ e1 ă e.

• the flattening operation on environments Γ, noted tΓu, encodes Γ into a list of
integer expressions:

let Γ “
”

C1 ÞÑ rf1,1 ÞÑ e1,1, ¨ ¨ ¨ , f1,n1
ÞÑ e1,n1

, balance ÞÑ e1,bs,

¨ ¨ ¨ , Ck ÞÑ rfk,1 ÞÑ ek,1, ¨ ¨ ¨ , fk,nk ÞÑ ek,nk , balance ÞÑ ek,bs
ı

according to total orders Ci ď Ci`1 and fi,j ď fi,j`1, then

tΓu
def
“

´

xe1,1y, ¨ ¨ ¨ , xe1,n1y, xe1,by, ¨ ¨ ¨ , xek,1y, ¨ ¨ ¨ , xek,nk y, xek,by
¯

Note that the flattening of a pure environment is a list of disjoint variables that
can be used as formal parameters of a function.

• the simplification x¨y is lifted to the intermediate code as follows:

xΓy “ tΓu

xe.mpΓ1,Γ2,e,e1,Dqy “ e.mptΓ1u, tΓ2u, xey, xe1y, xDyq

x
ř

iPIpϕq Θiy “
ř

iPIpxϕyq xΘiy

• the simplification x¨y of a program, i.e. a list of function definitions, is obtained
simplifying each function in the list as follows

xC.mpΓ0,Γ1,v,x,Hq “
ř

DPIdpH“DqΘDy
def
“

C.mptΓ0u, tΓ1u, v, x,Hq “ x
ř

DPIdpH“DqΘDy

A simplified intermediate program  L is turned into the sets of cost equation x Ly as
follows: every simplified function declaration

C.mptΓ0u, tΓ1u, v, x,Hq “
ÿ

iP1..hp
ł

jP1..ki

ϕji q Θi
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(where each ϕji is a disjuction of comparisons between Presburger expressions) is turned
into the following cost equations:

C.mptΓ0u, tΓ1u, v, x,Hq “ costptΓ0u,Θ1q rϕ1
1s

¨ ¨ ¨

C.mptΓ0u, tΓ1u, v, x,Hq “ costptΓ0u,Θ1q rϕk11 s

¨ ¨ ¨

C.mptΓ0u, tΓ1u, v, x,Hq “ costptΓ0u,Θhq rϕk1h s
¨ ¨ ¨

C.mptΓ0u, tΓ1u, v, x,Hq “ costptΓ0u,Θhq rϕ
kh
h s

where

• cost is either costC
1

gain — to obtain the set of equations to compute the upper bound

for the gain of C 1 — or costC
1

loss — to obtain the set of equations to compute the
lower bound;

• costC1gainptΓu, tΓ1uq “ maxp0,Γ1pC 1.balanceq ´ ΓpC 1.balanceqq and

costC
1

lossptΓu, tΓ1uq “ maxp0,ΓpC 1.balanceq ´ Γ1pC 1.balanceqq;

• costptΓu, e.mptΓu, tΓ1u, e1qq “ e.mptΓu, tΓ1u, e1q in both cases

Finally, if we are interested in the analysis of an invocation of the function C.m, we
add a first equation

mainptΓu, yq “ C.mptΓu, tΓu, yq rb1 ě 0^ . . .^ bn ě 0s (1)

where b1, . . . , bn are the variables in tΓu, y of type uint . We assume that these variables
are non negative (this is required because variables in CoFloCo are signed).

To conclude, if I is a program in the intermediate language and C.mpΓ,Γ,z,x,Hq its
initial state, then the equation (1) plus xxIyy gives the bunch of CoFloCo cost equations.

Example 11. To illustrate the output of our technique we compute the cost equations of
the functions Bank.pay and Thief.ack in Example 3, according to the cost model that
computes the loss of the Bank. We shorten Bank and Thief into B and T , respectively;
for readability sake, we always write predicates such as fallback P T and ack P T , even
if the translator omits them because they evaluate to true (the functions belong to T ).
Similarly for the other predicates of the same shape. Equations whose guards is always
false (e.g. pay P T ) are not shown nor generated by our translator.

mainpxB,b, xT ,b, v, n,Hq “ B .paypxB,b, xT ,b, xB,b, xT ,b, v, n,Hq
rxB,b ě 0^ xT ,b ě 0^ v ě 0^ n ě 0s

B .paypxB,b, xT ,b, yB,b, yT ,b, v, n,Hq “ T .ackpxB,b, xT ,b, yB,b ´ n, yT ,b ` n, 0,Bq
rH “ T ^ v ě 1 ^ yB,b ą n ^ n ă 5 ^ fallback P T ^ ack P T s

B .paypxB,b, xT ,b, yB,b, yT ,b, v, n,Hq “ maxp0, xB,b ´ yB,bq rH “ T ^ v ă 1s
B .paypxB,b, xT ,b, yB,b, yT ,b, v, n,Hq “ maxp0, xB,b ´ yB,bq rH “ T ^ yB,b ď ns
B .paypxB,b, xT ,b, yB,b, yT ,b, v, n,Hq “ maxp0, xB,b ´ yB,bq rH “ T ^ n ě 5s
B .paypxB,b, xT ,b, yB,b, yT ,b, v, n,Hq “ maxp0, xB,b ´ pyB,b ´ n` nqq

rH “ B ^ v ě 1 ^ yB,b ą n ^ n ă 5 ^
fallback P B ^ ack R B ^ ack .payable R Bs

B .paypxB,b, xT ,b, yB,b, yT ,b, v, n,Hq “ maxp0, xB,b ´ yB,bq rH “ B ^ v ă 1s
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B .paypxB,b, xT ,b, yB,b, yT ,b, v, n,Hq “ maxp0, xB,b ´ yB,bq rH “ B ^ yB,b ď ns
B .paypxB,b, xT ,b, yB,b, yT ,b, v, n,Hq “ maxp0, xB,b ´ yB,bq rH “ B ^ n ě 5s
T .ackpxB,b, xT ,b, yB,b, yT ,b, v,Hq “ B .paypxB,b, xT ,b, yB,b ` 1, yT ,b ´ 1, 1, 2, T q

rH “ B ^ pay .payable P B ^ yT ,b ě 1s
T .ackpxB,b, xT ,b, yB,b, yT ,b, v,Hq “ maxp0, xB,b ´ yB,bq

rH “ B ^ pay .payable P B ^ yT ,b ă 1s
T .ackpxB,b, xT ,b, yB,b, yT ,b, v,Hq “ maxp0, xB,b ´ yB,bq

rH “ T ^ pay R T ^ pay .payable R T ^ fallback P T ^ yT ,b ě 1s
T .ackpxB,b, xT ,b, yB,b, yT ,b, v,Hq “ maxp0, xB,b ´ yB,bq

rH “ T ^ pay R T ^ pay .payable R T ^ fallback P T ^ yT ,b ă 1s

In Section 6 we analyze CoFloCo [14] outputs when these equations are fed to the tool.

The next theorem grants the correctness of our encoding according to the operational
semantics for the (subset of) the syntax of CoFloCo we are considering. The proof is
reported in the Appendix.

Theorem 12 (Correctness of cost equation generation). Let P be a mSCL program
such that $ P : I and let S be an initial state and S $ C.mpΓ,Γ,v1,v,Hq and C.mpΓ,Γ,v1,v,Hq
ùñ˚

IΓ1. Let us extend xxIyy (where we use either costC
1

gain or costC
1

loss during the transla-
tion) with a main function that calls C.m. Then

1. Determinism: mainptΓu, v1, v,Hq has a unique ÑCoFloCo-normal-form

2. Correctness:

• mainptΓu, v1, v,HqÑCoFloCo
˚gainC

1

I,C,mpΓ, v
1, v,Hq if we selected costC

1

gain dur-
ing the translation,

• mainptΓu, v1, v,HqÑCoFloCo
˚lossC

1

I,C,mpΓ, v
1, v,Hq if we selected costC

1

loss dur-
ing the translation.

The overall correctness of our technique is stated in Theorem 13. A preliminary
statement about the correctness of our off-the-shelf tool CoFloCo is required. We have
not found any such statement in the literature, therefore we conjecture it [14].

Conjecture 1 (Correctness of CoFloCo). Given a set of guarded cost equations whose
first equation is

mainpxq “ mpeq rϕs

if CoFloCo claims that f is an upper bound to main on the domain where ϕ is true, then
for every x belonging to such domain, mainpxq ď fpxq. When f is claimed to be an
asymptotic bound, then main P Opfq (on every x such that ϕ is true).

Theorem 13 (Final theorem). Let S be an initial state of a mSCL program P, $ P : I
and S $ C.mpΓ,Γ,v1,v,Hq. If CoFloCo claims f to be an upper bound/an asymptotic
upper bound to main of the equations obtained by xxIyy with a main function that calls
C.m, then f is an upper bound/an asymptotic upper bound to mgainCpSq, if costCgain was

selected during the translation, or to mlossCpSq if costCloss was.
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Proof. Either S converges or it diverges. If it diverges, then both mgainCpSq and
mlossCpSq are defined to be 0, and the statement trivially holds because all bounds
computed by CoFloCo for our cost equations are non negative.

If S converges then, by Theorem 2, the last reduction step leads to a final state S 1.
Thus, by Definition 4 and Theorem 5, C.mpΓ,Γ,v1,v,Hqùñ˚

IΓ1 where envspS 1q “ Γ1,Γ1.
The thesis follows trivially from Corollary 1, Theorem 12 and Conjecture 1.

Note that CoFloCo may also compute a finite upper bound also for diverging mSCL

programs. This may sound strange because, usually, the cost equations fed to CoFloCo

represent the computational cost in time of executing a program. Therefore, if the time is
bounded, the program can not diverge. However, in our case, the cost equations compute
transfer of cryptocurrency. Hence, it is plausible to have a program that first transfers
some asset and then enters into an infinite loop that does not change any balance. In this
context, CoFloCo may compute a finite bound even if the program diverges. We recall
that diverging computations of smart contracts are always aborted due to gas shortage
and thus any non negative bound is correct.

6. Assessments

We prototyped the cost analyzer of mSCL in about 2,500 lines of OCaml code. The
code is then compiled to JavaScript to be run in the browser and can be found at the
address: https://sacerdot.github.io/SmartAnalysis/behavioral_types. Our tool
takes in input a list of smart contract declarations, produces a list of cost equations,
and computes the cost equations of the first function of the first contract, say C. The
user can choose between two cost models: the gain of C’s balance and the loss of C’s
cryptocurrency. The cost equations can then be manually fed to CoFloCo to obtain an
upper bound both in asymptotic form and in explicit form. Remarkably, the analyzer
computes the worst scenario with respect to gaining and loosing because the computed
cost depends on functions’ input parameters, the initial value of all contracts’ fields,
including balances, and every possible caller.

The number of cost equations returned by our prototype is bi-linear in the number
of functions and the number of contracts when the only variable of type address is
msg.sender. (It is worth to notice that, in the following examples, we have used the
extension of the prototype that also deals with address data types, see Section 7, which
makes the number of cost equations exponential with respect to address variables, where
the base is the number of contracts, see Section 9).

To test the tool and gain preliminary experience, we have analyzed several smart
contracts from etherscan.io. This required little programming overhead for most of
the contracts in order to rewrite Solidity code in mSCL. In Table 1, we report our analysis
of four archetypal contracts we identified among the other ones. In particular, for every
program, we give the lines of of original code (7 LOC), those produced by our translation
(7 LMC), the number of equations produced (7 Equations) and the sum of CoFloCo times
for computing the upper bound to the gain and to the loss.

Few remarks about the output of the analyzer are in order. In the Bank-Thief code of
Figure 1, the costs are a function of the initial values of Bank’s balance (Bank__balance_),
Thief’s balance (Thief__balance_), the invoker of the analyzed function (_msg_sender_),
the amount of coins passed to the function (_msg_value_) and the function parameter
(N). CoFloCo’s output is:
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7 LOC 7 LMC 7 Equations CoFloCo’s Time for gain + loss

Bank-Thief code 20 20 20 734ms + 240ms

English Auction Scheme 32 32 38 509ms + 468ms

Handover Ponzi Scheme 42 50 336 6,964ms + 4,784ms

Chain-shaped Ponzi scheme 45 63 1030 27,978ms + 27,962ms

Table 1: Statistics on a few archetypal examples

MAXIMUM GAIN:

Maximum cost of main__(Bank__balance_,Thief__balance_,_msg_sender_,_msg_value_,N):

nat(-Bank__balance_+2)

Asymptotic class: n

MAXIMUM LOSS:

Maximum cost of main__(Bank__balance_,Thief__balance_,_msg_sender_,_msg_value_,N):

nat(Bank__balance_-2)

Asymptotic class: n

where nat(x) returns the maximum between x and 0. The output shows that the attack
can be successful: the bank can lose all of its balance, but for 2 coins. It can also happen
that the bank earns money instead, but only up to 2. This happens when the initial
bank account has fewer than two coins. A careful analysis by hand of the code tells us
that the upper bound to the loss computed by CoFloCo is tight, while the one for the
gain is not: the bank can actually only win one coin.

In the English Auction Scheme, the smart contract Auctioneer records the address of
the bidder that is currently winning the auction, together with his bid. When a new bid
arrives, if it is greater than the currently winning one, the previous winner is refunded.
Otherwise the bid is refunded to the sender. The result of the analysis is interesting:

MAXIMUM GAIN:

Maximum cost of main__(Bidder1__balance_,Auctioneer__balance_,Auctioneer_max,

Bid1, ...): 0

Asymptotic class: constant

MAXIMUM LOSS:

Maximum cost of main__(Bidder1__balance_,Auctioneer__balance_,Auctioneer_max,

Bid1, ...): max([nat(Bid1),nat(-Auctioneer_max+Bid1)])

Asymptotic class: n

The bidder cannot gain any money by bidding: either he can lose all its bid nat(Bid1)

(because he is winning the auction) or he can lose the lesser amount nat(-Auctioneer max+Bid1)

because he was already winning and decided to lift his offer (the previous offer is returned
back).

In the “Handover Ponzi scheme” of [5], every user invests more money than the
current price and he receives back more money than the amount invested when the next
user joins the scheme. The current price is augmented (by 50%) every time a new user
joins in order to provide an income to all users. The 10% of the money invested by every
user is reclaimed by the owner of the contract and thus only the 90% is used to pay the
previous user.
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We analyse two scenarios. The first scenario is when Player joins the scheme, followed
by Player2. The analysis yields:

MAXIMUM GAIN:

Maximum cost of main__(Player__balance_,Player_amount,Player2__balance_,

N, ...): nat(7/20*N)

Asymptotic class: n

MAXIMUM LOSS:

Maximum cost of main__(Player__balance_,Player_amount,Player2__balance_,

N, ...): 0

Asymptotic class: constant

In this scenario Player does not lose money and it can gain 7
20 of the invested money.

An analysis by hand shows that the bound is tight7 and it is both an upper and a lower
bound. Note that it is not trivial to figure out the fraction 7

20 just looking at the code
where the only constants that occur are 9

10 and 3
2 .

In the second scenario, Player is the unique player. The analysis yields:

MAXIMUM GAIN:

Maximum cost of main__(Player__balance_,Player_amount,N,...): 0

Asymptotic class: constant

MAXIMUM LOSS:

Maximum cost of main__(Player__balance_,Player_amount,N,...): nat(N)

Asymptotic class: n

In this scenario Player loses all the money he invested.
The remarks about the outputs of the Chain-shaped Ponzi scheme are omitted be-

cause similar to the Handover Ponzi scheme.

7. Extensions of the analysis

Three features, which are relevant for the expressivity of mSCL, have not yet been
discussed: (i) address and bool data types, (ii) functions invocations with explicit
continuations, and (iii) dynamic creation of smart contracts and their deployment. The
first two have already been integrated in our analyzer. We discuss these extensions in
this section.

7.1. Addresses

The extension of the encoding in Section 5 to cope with addresses is not difficult.
Indeed, it is sufficient to follow the same scheme we used to deal with msg.sender that
was the only parameter of type address. In particular, the translation rule for functions
whose formal parameters are also addresses becomes

7The first user pays x; the second one must pay 3
2
x, and 90% of it, i.e. 3

2
9
10

x goes back to the first

user whose final gain is 3
2

9
10

x´ x “ 27
20

x´ x “ 7
20

x.
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[function-addr]
´ Γ0pD

1
q “ rf1 ÞÑ xD1,1, ¨ ¨ ¨ , fn ÞÑ xD1,n, balance ÞÑ xD1,bs

Γ1pD
1
q “ rf1 ÞÑ yD1,1, ¨ ¨ ¨ , fn ÞÑ yD1,n, balance ÞÑ yD1,bs

¯tf1,¨¨¨ ,fn,balanceu“fieldspD1q,D1PId

function mpT x, address zqrpayablestT y; Su P C
´

Γ0,Γ1rx ÞÑ u, z ÞÑ D, y ÞÑ 0s $v
C1,C

S : ΘC1,D

¯C1,DPId

Γ0,Γ1 $ C.mpΓ0,Γ1,v,u,D1,Hq “
ř

C1PId pH“C
1
q
ř

D1PId
pD1“Dq ΘC1,D

(for readability sake we have separated addresses from other types). That is, address
variables add (finite) alternatives in the body of functions in order to cope with every
possible instance of the variable.

Once we make the address type a first class citizen, we also have to deal with local
variables and field names that store addresses. The solution remains the same: the
translation of each function body must start with a nested sum for each field, parameter
and local variable of type address , where each summand differs from the previous one
by the value taken by the variable in the finite set of known contract addresses.

7.2. Booleans

Booleans are encoded in the intermediate language using 0 (for false) and 1 (for true).
The occurrence of a boolean variable/parameter/field b in an expression is encoded as
b “ 1.

Assignment to boolean variables and invocation of a function that takes a boolean
argument is slightly annoying because a boolean expression (such as b1 && b2) can not
be directly encoded as an arithmetic expression in the usual way (b1 ˚ b2) because of
the restrictions due to Presburger arithmetics. This issue is solved by introducing a
conditional statement for every assignment/actual parameter. E.g. x“b1 && b2; is
equivalent to if pb1 && b2q t x“1; u else t x“0; u. Therefore the intermediate code
will have one additional binary sum for each assignment to a boolean value and for each
boolean expression in a function call.

7.3. Continuations

Dealing with explicit continuations of function invocations is not straightforward be-
cause our intermediate language in Section 4 only admits tail recursive (or tail mutual
recursive) invocations. Nevertheless, the extension of the analyzer with explicit contin-
uations is significant because it allows one to verify fallback functions with non-empty
bodies.

To illustrate our solution, consider the following extension of the mSCL syntax:

C ::“ contract C t T f; F
“

fallbackp q payable tT x; Su
‰

u

F ::“ ¨ ¨ ¨ | function mpTxqrpayables returns pTq tT y; Su F

S ::“ ¨ ¨ ¨ | if pEq t S u else t S u; S | returnpEq | returnpE.mr.valuepEqspEqq

| E.mr.valuepEqspEq; S | x “ E.mr.valuepEqspEq; S

In this extended syntax fallback functions may now have non-empty bodies; function
bodies may also return values; function invocations, as well as conditionals, may have
continuations.
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The translation of the above language expands the one in Section 4 by using the
standard CPS translation for removing continuations. Actually, there is one difference:
instead of using a higher order language (which is required by CPS), we keep the same
intermediate language by extending functions’ arguments with another one representing
the stack of activation records for continuations. However, since the arity of CoFloCo
functions is fixed, we won’t be able to manage stacks of arbitrary size. We solve the issue
by parameterising our translation with a constant κ that limits the length of the stack.
The value κ can be chosen as follow:

1. compute the graph of invocations where nodes correspond to function definitions
and arcs to function calls;

2. assign weight 0 to the arcs that correspond to tail invocations and 1 to the other
arcs; (Tail invocations have weight 0 because, to preserve expressivity, our trans-
lation implements the tail (mutual) recursion optimization, so that tail calls do
not require more stack space. In particular programs whose functions are all tail
recursive require only one frame for the initial call.)

3. (a) if the graph of invocation contains no cycles of unbound weight, choose κ as
the the maximal weight of a path;

(b) otherwise the value for κ is requested to the user by the analyzer. In this case
we are technically verifying the κ-th approximant of the program, that reverts
if it tries to nest more than κ non tail-recursive calls, exhausting the stack
space.

Let ι be the maximum number of parameters and local variables of functions. The
maximal size of the stack is bounded by pι ` 4q ˆ pκ ` 1q where ι ` 4 is the maximal
size of a frame (the 4 is due to the extra slots in the stack frame to record the function
caller, the callee, the function identifier and the amount of cryptocurrency transferred).
The extra unit added to κ is required for the additional stack frame used for the initial
call to the program.

More formally, let σ be a sequence of frames of the form

α1 ¨ ¨ ¨αhKK ¨ ¨ ¨ KK
looooooooomooooooooon

κ`1 frames

where

• the initial frames αi are equal to xC,m,e,D,e1y, where C is the callee, m is callee’s
function to be executed with arguments e, assuming it has been called by D that
has transferred e1 cryptocurrencies;

• the frames KK, called empty frames, are equal to xK,mK,K,K,0y, where K, mK are
special names and we assume K to be a new valid expressions;

• there is no empty frame to the left of a non-empty frame, and the last (i.e. right-
most) frame in σ is always empty;

• a frame xC,m,e,D,e1y is equal to KK if and only if C “ K.

A sequence σ represents the stack of continuations: every non-empty frame stands for a
continuation to be executed; the first empty frame denotes the end of the stack. We use
the following operations on tuples of expressions and on sequences of frames:

26



• |e| returns the length of the tuple;

• e ÓD.m returns the prefix of e whose length is equal to the number of arguments of
D.m;

• σé drops the last frame in σ, i.e. pσ1αqé “ σ1;

• rσsí returns the first element of the last-but-one frame in σ, if it exists, or any value
different from K, if k “ 0. That is rσ1xC,m,e,D,e1yKKs

í
“ C. The key property

is that if rσs
í
“ K then the last-but-one frame is unused (it is KK), therefore the

sequence σ is not full and it can hold one more element. It is sufficient to throw
away the last empty frame (using ¨é) and push the new element at the beginning,
effectively shifting to the right all the already present frames.

Finally, we write m P funpCq to mean that C P cnamespPq and the smart contract named
C has a function m. The notation keeps P implicit.

Figures 6 and 7 report the rules for translating mSCL programs in intermediate codes.
Rule [empty-cont] deals with empty statements. It has two subcases, according to the

[empty-cont]
´ Γ11 “ Γ1rC

1.balance ÞÑ` e1, D1.balance ÞÑ´ e1s

Γ0,Γ
1
1 $

e,σKK

C,C1
D1.m.valuepe1qpe2 ÓD1.m q : ΘC1,D1,m

¯C1,D1PId,mPfunpD1q

Γ0,Γ1 $
e,xH,m,e2,H1,e1yσ
C,D ε :

ř

C1,D1PId,mPfunpD1qpH“D
1
^ H1“C1qΘC1,D1,m

` pH“Kq Γ1

[revert-cont]

Γ0,Γ1 $
e,σ
C,D revert; : Γ0

[asgn-cont]

x P fieldspΓ0pDqqztbalanceu
Γ1 $

e
C,D E : e1 Γ0,Γ1rD.x ÞÑ e1s $e,σC,D S : Θ

Γ0,Γ1 $
e,σ
C,D x“E;S : Θ

[asgn-var-cont]

x R fieldspΓ0pDqq
Γ1 $

e
C,D E : e1 Γ0,Γ1rx ÞÑ e1s $e,σC,D S : Θ

Γ0,Γ1 $
e,σ
C,D x“E;S : Θ

[if-then-else-cont]

Γ1 $
e
C,D E : e1

Γ0,Γ1 $
e,σ
C,D S ; S2 : Θ Γ0,Γ1 $

e,σ
C,D S1 ; S2 : Θ1

Γ0,Γ1 $
e,σ
C,D if pEq t S u else t S1 u ; S2 : pe1q Θ ` p!e1q Θ1

[transfer-cont]

Γ1 $
e
C,D E : e0 e0 P Id Γ1 $

e
C,D E1 : e1

Γ0,Γ1 $
e,σ
C,D e0.fallback.valuepe

1
qp q ; S : Θ

Γ0,Γ1 $
e,σ
C,D E.transferpE1q;S : Θ

[return-cont]

Γ1 $
e
C,D E : eret

´ Γ11 “ Γ1rC
1.balance ÞÑ` e1, D1.balance ÞÑ´ e1s

Γ0,Γ
1
1 $

e,σKK

C,C1
D1.m.valuepe1q.peret , e2 ÓD1.m´1 q : ΘC1,D1,m

¯C1,D1PId,mPfunpD1q

Γ0,Γ1 $
e,xH,m,e2,H1,e1yσ
C,D returnpEq :

ř

C1,D1PId,mPfunpD1qpH“D
1
^ H1“C1qΘC1,D1,m

` pH“Kq Γ

[return-invk-cont]

Γ0,Γ1 $
e,σ
C,D E.m.valuepE1qpE2q : Θ

Γ0,Γ1 $
e,σ
C,D returnpE.m.valuepE1qpE2qq : Θ

Figure 6: Translation of mSCL statements with continuations, Part I

sequence σ is of the form KK ¨ ¨ ¨ KK – the stack is empty – or not. According to our mod-
elling, the former case is when H “ K, where H is the first element of the initial frame.
In this case we return the current environment. In the second case, we evaluate the
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continuation, say D.m (in the judgment in the premise we drop out useless expressions
in the initial frame). That is, in our translation, continuations of invocations and condi-
tionals are managed by ad-hoc functions that extends those of the mSCL program. Each
one of these new functions implements a continuation. Since the continuation can access
msg.sender and msg.value, it is important that when the continuation is called the right
values are restored: this is achieved by making these functions payable and by trans-
lating in the premise D1.m.valuepe1q.p . . . q that sets msg.sender to D1 and msg.value to
e1. However, this also transfers again e1 units of cryptocurrency from msg.sender to the
receiver (see rule [invk-tail]), which would not be correct. To contrast this, we perform
the translation in Γ11 where we first transfer back e1 units from the receiver to msg.sender.

We notice that in the premise of [empty-cont] we pass two expressions of the inter-
mediate language (e1 and e2) where expressions of mSCL are expected. This is correct
since, according to the rules in Figure 3, e1 and e2 are expressions in the source language
mSCL as well.

Rule [return-cont] defines the code for return statements; it has similar premises
to [empty-cont], except for the return value. We notice that, in this case, the contin-
uation stored on the sequence of frames lacks the first argument that is provided by
the return and is therefore taken by mS. Rules [asgn-cont-invk] and [invk-cont] define
invocations with continuations when invocations return a value or when the function is
void. In both cases, we assume the functions of the corresponding smart contract are
extended with new ad-hoc functions managing the continuation. The formal parameters
of these ad-hoc functions are the variables in the current environments (e.g. dompΓ1|Var q,
see also rule [function-cont]) plus an additional variable for function returning a value.
In this case, the sequence of frames stores the values of the variables in the environ-
ment, which will be restored when the continuation is triggered (see rules [empty-cont]

and [return-cont]).
Rules [invk-tail-nv] and [invk-tail] extend rules [invk-nv] and [invk] of Figure 4 by

taking into account stacks. We notice that our translation implements the tail (mutual)
recursion optimization, so that tail calls do not require more stack space.

Example 14. The extension of mSCL with continuations allows us to write the code of
a DAO-like attack [25]:

contract Bank {
uint to pay=5 ;
function pay(uint n) {

if (this.ba lanceąn && nďto pay) {
msg.sender.transfer(n) ;
to pay=to pay-n ;

}
}

}

contract Thie f {
fallback() payable{

msg.sender.pay(1) ;
}

}

The contract Bank admits withdraws of at most to pay cryptocurrencies, provided that the
account balance is large enough. However, the Thief client circumvent this constraint by
exploiting a feature of mSCL (and of Solidity) according to which Thief’s fallback function
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[asgn-cont-invk]

Γ1 $
e
C,D E : e0 e0 P Id rΓ1 $

e
C,D E1 : e1s Γ1 $

e
C,D E2 : e2

dompΓ1|Var q “ w function mSpT
1 x1,Tw wq payable tx“x1;Su P D

Γ1pwq “ ew |K| “ ι´ |ew| σ1 “ xD,mS,ewK,C,ey σ
é

Γ0,Γ1 $
e,σ1

C,D e0.mr.valuepe
1
qspe2q : Θ

Γ0,Γ1 $
e,σ
C,D x“E.mr.valuepE1qspE2q;S : prσsí“Kq Θ ` prσsí‰Kq Γ1

[invk-cont]

Γ1 $
e
C,D E : e0 e0 P Id rΓ1 $

e
C,D E1 : e1s Γ1 $

e
C,D E2 : e2

dompΓ1|Var q “ w function mSpTw wq payable tSu P D
Γ1pwq “ ew |K| “ ι´ |ew| σ1 “ xD,mS,ewK,C,ey σ

é

Γ0,Γ1 $
e,σ1

C,D e0.mr.valuepe
1
qspe2q : Θ

Γ0,Γ1 $
e,σ
C,D E.mr.valuepE1qspE2q;S : prσsí“Kq Θ ` prσsí‰Kq Γ1

[invk-tail-nv]

Γ1 $
e
C,D E : e0 e0 P Id Γ1 $

e
C,D E : e1

Γ0,Γ1 $
e,σ
C,D E.mpEq :

pmPe0q e0.mpΓ0,Γ1,0,e1,Dqσ
` pm.payablePe0q e0.mpΓ0,Γ1,0,e1,D,σq
` pmRe0 ^ m.payableRe0 ^ fallbackPe0q e0.fallbackpΓ 0 ,Γ 1 ,0 ,D ,σq
` pmRe0 ^ m.payableRe0 ^ fallbackRe0q Γ

[invk-tail]

Γ1 $
e
C,D E : e0 e0 P Id Γ1 $

e
C,D E : e1 Γ1 $

e
C,D E1 : e2

Γ11 “ Γ1re0.balance ÞÑ` e2srD.balance ÞÑ´ e2s

Γ0,Γ1 $
e,σ
C,D E.m.valuepE1qpEq :

pmPe0q Γ
` pm.payablePe0 ^ Γ1pD.balanceqěe2q e0.mpΓ0,Γ

1
1,e
2,e1,D,σq

` pm.payablePe0 ^ Γ1pD.balanceqăe2q Γ
` pmRe0 ^ m.payableRe0 ^ fallbackPe0 ^ Γ1pD.balanceqěe2q

e0.fallbackpΓ 0 ,Γ
1
1 ,e

2,D ,σq
` pmRe0 ^ m.payableRe0 ^ fallbackPe0 ^ Γ1pD.balanceqăe2q Γ0

` pmRe0 ^ m.payableRe0 ^ fallbackRe0q Γ

[function-cont]

´

Γ0pDq “ rf1 ÞÑ xD,1, ¨ ¨ ¨ , fn ÞÑ xD,n, balance ÞÑ xD,bs
Γ1pDq “ rf1 ÞÑ yD,1, ¨ ¨ ¨ , fn ÞÑ yD,n, balance ÞÑ yD,bs

¯tf1,¨¨¨ ,fn,balanceu“fieldspDq,DPId

function mpTx xqrpayablestTy y;Su P D

σ “ xz1,1, ¨ ¨ ¨ ,z1,ι`4y ¨ ¨ ¨ xzκ,1, ¨ ¨ ¨ ,zκ,ι`4yKK

´

Γ0,Γ1rx ÞÑ x0, y ÞÑ Ks $
v,σ
C,D S : ΘC

¯CPId

Γ0,Γ1 $ D.mpΓ0,Γ1,v,x0,H,σq“
ř

CPIdpH“Cq ΘC

Figure 7: Translation of mSCL statements with continuations, Part II
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is invoked when it is the recipient of a transfer. In fact, in the above code, Thief’s
fallback contains an invocation to Bank’s pay function that is performed without having
updated the to pay field. It turns out that the overall effect of an invocation Bank.pay(1)

by Thief is to drain the account.
Note that the graph of invocations is cyclic; therefore our technique analyzes the κ-th

approximant and compute the corresponding maximal gains and losses. In these cases,
we actually compute two consecutive approximants and deduce properties of the code
according to the differences of the results. The following intermediate code defines the
approximant 1 of the DAO-like attack.

Let Γ0 and Γ1 two pure environments (with disjoint codomains) defined as follows

Γ0 “ rBank ÞÑ rbalance ÞÑ xBank ,b; to pay ÞÑ xBank ,to pay s,Thief ÞÑ rbalance ÞÑ xThief ,bs s

Γ1 “ rBank ÞÑ rbalance ÞÑ yBank ,b; to pay ÞÑ yBank ,to pay s,Thief ÞÑ rbalance ÞÑ yThief ,bs s

To improve readability, we use the following abbreviations and conventions:

• σ “ s1, . . . , s12,

• we hide dead code, i.e. code that will never be executed. The detection of dead code
has been performed by hand, but this can be automatized using standard techniques
( e.g. abstract interpretation);

• H is always the value of msg.sender and v the value of msg.value;

• in Bank.pay:

Γ11 “ Γ1rBank .balance ÞÑ´ n,Thief .balance ÞÑ` ns
σ1 “ pay cont , v,Bank , n, 0, s1, s2, s3, s4, s5, s6

The intermediate code for Bank.pay is (comments are added for readability sake):

Bank .paypΓ 0 ,Γ 1 ,H ,v ,n,σq“
pH“Bankq . . . -- dead code: the Bank never calls Bank.pay

` pH“Thief q
pyBank,bąn^yBank,to payěnq -- if(this.balance > n && n <= to pay)

ps1“Kq -- stack not full

pně0^yBank,běnq -- enough money to transfer

-- σ1 “ <C= Bank, m= pay cont, e= msg.value, D= Bank, e1= n,0>σ
-- where pay cont implements continuation to pay= to pay-n;

-- msg.sender.transfer() calls Thief.fallback

Thief .fallbackpΓ 0 ,Γ
1
1 ,Bank ,n,Bank ,σ1q

` pnă0^yBank,běnq Γ1 -- revert: not enough money to transfer

` ps1‰Kq Γ1 -- revert: push on full stack

` p!pyBank,bąn^yBank,to payěnqq -- else case: pop and call next continuation

runtime dispatchpΓ 0 ,Γ 1 ,0 ,0 ,0 ,σq

The function pay cont implementing the continuation to pay = to pay - n; is:

pay contpΓ 0 ,Γ 1 ,H ,v ,r ,n,σq“runtime dispatchpΓ 0 ,Γ 1 rBank .to pay ÞÑ´ ns,0 ,0 ,0 ,σq
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where runtime dispatch defines the code that pops a continuation from the stack and calls
it, or it commits the computation when the stack is empty. We let

σ2 “ s7, s8, s9, s10, s11, s12,K
6 .

runtime dispatchpΓ 0 ,Γ 1 ,H ,v ,r ,σq“
ps1“Bankq

ps2“pay contq pay contpΓ 0 ,Γ 1 ,s4 ,s3 ,r ,s5 ,σ
2q

` ps2“payq. . . -- Bank.pay is never used as a continuation

`ps1“Thief qps2“fallbackq. . . -- Thief.fallback is never used as a continuation

`ps1“Kq Γ1 -- empty continuation stack: commit

Finally, the intermediate code for Thief.fallback is:

Thief .fallbackpΓ 0 ,Γ 1 ,H ,v ,σq“
pH“Bankq Bank .paypΓ 0 ,Γ 1 ,Thief ,0 ,1 ,σq -- tail call to Bank.pay

` pH“Thief q . . . -- the Thief never calls its fallback

The code for the second approximant is the same, with the following minor changes:

• σ “ s1, . . . , s18

• σ1 “ pay cont , v,Bank , n, 0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12

• σ2 “ s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18,K
6 .

• the stack not full check in the Bank.pay equation becomes ps7“Kq

7.4. The analysis

We use the same arguments of Section 5 to make the intermediate code of the above
translation adequate to a cost analyzer. In particular, we conform to the same cost
models and below we only detail the differences due to the need of passing around the
encoding of the stack.

Let pC1, ¨ ¨ ¨ ,Cnq be a program in the mSCL extended syntax, where κ is the maximal
weight of a path in the graph of invocations and ι is the maximal number of arguments
and local variables of a function. For every sequence of κ`1 frames σ “ α1 ¨ ¨ ¨αhKK ¨ ¨ ¨ KK,

let
hkkkkj

σ be the tuple whose length is pι` 4q ˆ pκ` 1q that is defined as follows:

hkkkkkkkkkkkkkkkkkkkkkkj

α1 ¨ ¨ ¨αhKK ¨ ¨ ¨ KK “
hkkkkj

α1 , ¨ ¨ ¨ ,
hkkkkj

αh ,

hkkkkj

KK , ¨ ¨ ¨ ,

hkkkkj

KK

hkkkkkkkkkkkkkkkkj

xC,m,e,D,e1y “ C,m, e,K, ¨ ¨ ¨ ,K
looomooon

ι´|e| times

, D, e1

hkkkkj

KK “ K, ¨ ¨ ¨ ,K
looomooon

ι`4 times

Sequences of pι ` 4q ˆ pκ ` 1q elements will be ranged over by σ. Cost equations of a
mSCL program are derived from the corresponding intermediate code as follows:
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1. for every function C.mpΓ0,Γ1,v,x,H,σq“ΘC.m, let
Ž

iP1..hpϕiq Θi be the canonical
form of xΘC.my (therefore every ϕi is a conjunction). Then we have the following
cost equations:

C.mptΓ0u, tΓ1u, v, x,H,
hkkkkj

σ q “ Θ1 rϕ1s

¨ ¨ ¨

C.mptΓ0u, tΓ1u, v, x,H,
hkkkkj

σ q “ Θh rϕhs

2. if we are interested in the analysis of an invocation of the function C.m, we add
the next equation where we initialize the stack to an empty one:

mainptΓu, yq “ C.mptΓu, tΓu, y,

hkkkkkkkkj

KK ¨ ¨ ¨ KKq rb1 ě 0^ . . .^ bn ě 0s

where b1, . . . , bn are the variables in tΓu, y of type uint . We assume that these
variables are non negative (this is required because variables in CoFloCo are signed).

Example 15. The cost equations of the first approximant that are generated by our
analyzer for the functions in Example 14 are the following ones. We use the abbreviations

Kn “ K, ¨ ¨ ¨ ,K
looomooon

n times

σ “ s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12

σ Ò6 “ s7, s8, s9, s10, s11, s12 .
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mainpxBank,b, xBank,to pay , xThief ,b, H, v, nq
“ bank paypxBank,b, xBank,to pay , xThief ,b, xBank,b, xBank,to pay , xThief ,b, H, v, n,K

12
q

rxBank,b ě 0^ xThief ,b ě 0^ v ě 0^ xBank,to pay “ 5s

bank pay intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, H, v, n, σq
“ thief fallbackpxBank,b, xBank,to pay , xThief ,b, yBank,b ´ n, yBank,to pay , yThief ,b ` n,

Bank , n,Bank , pay cont int int, v,Bank , n, 0, s1, s2, s3, s4, s5, s6q

rH “ Thief ^ yBank,b ą n^ yBank,to pay ě n^ s1 “ K^ n ě 0^ yBank,b ě ns

bank pay intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, H, v, n, σq “ 0
rH “ Thief ^ yBank,b ą n^ yBank,to pay ě n^ s1 “ K^ n ă 0s

bank pay intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, H, v, n, σq “ 0
rH “ Thief ^ yBank,b ą n^ yBank,to pay ě n^ s1 “ K^ yBank,b ă ns

bank pay intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, H, v, n, σq “ 0
rH “ Thief ^ yBank,b ą n^ yBank,to pay ě n^ s1 ă Ks

bank pay intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, H, v, n, σq “ 0
rH “ Thief ^ yBank,b ą n^ yBank,to pay ě n^ s1 ą Ks

bank pay intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, H, v, n, σq
“ runtime dispatch intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, 0, 0, 0, σq

rH “ Thief ^ yBank,b ď ns

bank pay intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, H, v, n, σq
“ runtime dispatch intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, 0, 0, 0, σq

rH “ Thief ^ yBank,to pay ď ns

pay cont int intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, H, v, r, n, σq
“ runtime dispatch intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay ´ n, yThief ,b, 0, 0, 0, σq

rtrues

thief fallback pxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, H, v, σq
“ bank pay intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b,Thief , 0, 1, σq

rH “ Bank s

runtime dispatch intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, H, v, r, σq
“ pay cont int intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, s4, s3, r, s5, σ Ò

6,K6
q

rs1 “ Bank ^ s2 “ pay cont int ints

runtime dispatch intpxBank,b, xBank,to pay , xThief ,b, yBank,b, yBank,to pay , yThief ,b, H, v, r, σq
“ maxp0, xBank,b ´ yBank,bq rs1 “ Ks

Output by CoFloCo on the first approximant when computing a bound to the amount
of cryptocurrency lost is:

MAXIMUM LOSS:

### Maximum cost of

main__(Bank__balance_,Bank_to_pay,Thief__balance_,_msg_sender_,_msg_value_,_ret_,N,
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S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12)

: nat(N)

Asymptotic class: n

On the second approximant the output is:

MAXIMUM LOSS:

### Maximum cost of

main__(Bank__balance_,Bank_to_pay,Thief__balance_,_msg_sender_,_msg_value_,_ret_,N,

S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15,S16,S17,S18)

: nat(Bank__balance_-1)

Asymptotic class: n

The bound to the second approximant is not tight: it is easy to prove that the Bank can
never lose more than N ` 1 coins when the computation uses at most two stack frames.

7.5. Alternative approach to CPS translations

As discussed in [14], it is possible to remove continuations (of imperative languages)
without using any CPS translation. The key to avoid CPS translations is to resort
to a technique used in logic programming to encode imperative programming, since
logic programming is the model of CoFloCo. We illustrate the feature with an example.
Consider to analyze the cost of the function f defined in pseudo-C code as follows

fpxqt returnpgphpxqqq u .

One can use the cost equation

kf pX,Zq “ e` khpX,Y q ` kgpY,Zq rtrues

where each kf , kh and kg are the cost of the functions f , g and h, respectively. In this
equation, logic variables encode the return values of functions and, at the same time, the
input of the continuation. In particular, Y , which encodes the return value of hpxq, is
used as an output parameter of kh and as an input parameter of kg. The logical variable
Z, which encodes the return value of f and g, is used an output parameter of both kf and
kg. By means of the above expedient, we could have avoided CPS-like translations and
augmented our intermediate language with continuations to function calls. We decided
not to do that for several reasons:

1. an intermediate language without continuations is much easier to be statically
analyzed; in the future we plan to try other techniques different from the generation
of cost equations and the lack of continuations grants us more freedom in the choice
of techniques;

2. smart contract languages display failures with automatic backtracking and ad-
hoc catch operations on errors. That is, these languages have explicit control
operators. It turns out that CPS translation is the most flexible technique to encode
languages with control operators (in languages without them). Adopting the CPS
translation since the beginning allows easier scaling to more complex analyzes of
future extensions of mSCL.
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Example No CPS CPS
number of cost equations number of cost equations

Bank-Thief code 11 20
English auction1 29 20
English auction2 27 38
Handover Ponzi 1438 336

Table 2: Comparison of De Santis’s direct translation to cost equations versus ours based on the CPS
transformation

Finally, it is not clear a priori whether an alternative approach that avoids the CPS
translation could scale better producing fewer equations. De Santis, in his Bachelor
Thesis [23], has implemented the foregoing direct technique, which is entangled by the
resolution of dynamic dispatch and the management of the initial memory to implement
backtracking. After applying optimizations comparable to the ones in our prototype the
result is that the two methods are incomparable in the number of equations generated
(see Table 2, taken directly from [23]).

7.6. Further extensions

The encoding of the frame stack for invocations given in Section 7.3 can be generalized
to any array of bounded size8: if n is the maximum size of the array A, then A can
be encoded by a sequence of n variables a1, . . . , an plus a further variable top that
records the current array length. Operations like array access, push and pop can then
be implemented using large if - then - else decision trees. Actually, this pattern has
been used to encode manually the Chain-Shaped Ponzi scheme in mSCL.

In a similar way, maps of finite domains, e.g. maps used to associate data to contract
addresses, can be encoded as a set of pairs of variables, holding respectively a key and its
associated value. At the moment, though, our prototype does not implement bounded
array and finite maps.

7.7. Dynamic instantiation of smart contracts

Smart contract languages also feature the dynamic creation of contracts (c.f. the
operation new in Solidity). Our technique, does not allows us to verify programs that
use this operation in an unconstrained way, e.g. new inside an unbounded recursion
or iteration. In all the other cases, the dynamic creation of smart contracts may be
anticipated at static time by pre-instantiating the contract a finite number of times, thus
paving the way to our analysis.

More precisely, as discussed in Section 6, we have analyzed smart contracts taken from
etherscan.io and written in Solidity. We have found very few contracts that always use
a statically bounded number of new (no contract use the operation inside a recursion or
an iteration). To test our analyzer, we rewritten the code by replacing the new with a set
of pre-instantiated contract name. As expected, the overall result has been a blow-up of
the equations because the set Id is augmented (see the foregoing Subsection 7.1).

8We are adopting the Solidity terminology: an array is a stack data structure that can grow dynami-
cally, e.g. via push operations.
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7.8. Deployment

Our prototype is a static analyzer for mSCL that does not run any code: the successful
codes will eventually run on a real blockchain. In his bachelor thesis [23], De Santis has
implemented a compiler from mSCL to Solidity. The compiler turns every mSCL contract
into a Solidity contract with additional fields to hold the address of companion contracts.
Moreover, the Solidity contracts have an additional function that, when called for the first
time, receives the address of the companion contracts and store them in the additional
fields. Additionally, the compiler also returns a Python script that compiles and injects
the Solidity code in Ethereum, creates a new contract instance for every mSCL contract and
invokes each additional function to let each contract know the addresses of its companion
contracts. Finally, the compiler perform type inference for translating function calls over
addresses, since Solidity requires to cast every address to a contract interface.

While the code in [23] is quite simple, it is already important from our perspective.
Indeed, thanks to it, we can think of mSCL as a basic programming language for verifiable
smart contracts that we can evolve in diverging directions from Solidity in order to strike
a good balance between expressivity and the possibility of doing static analyses, in the
spirit of other languages like Vyper [17], which even sacrifices Turing completeness for
that.

8. Related works

In the past few years formal methods have been largely used to analyze smart con-
tracts to verify security properties. Our technique follows the same pattern of previous
analyzers proposed in [15, 19]. In those cases, the purpose of the analysis has been
the over-approximation of the computational cost and the resource usage of actor-based
programming languages.

A contribution that also addresses cryptocurrency movements in a subset of Solidity
similar to mSCL is [7]. They propose an analysis framework based on a compilation of
the subset of Solidity to F˚, a functional language aimed at program verification with
a powerful type and effect system. Using F˚ types, it is possible to trace Ethers and
discover critical patterns in smart contracts, such as reentrancy attacks. Unlike our
technique, they are not able to derive upper bounds of Ethers gained and lost by smart
contracts.

A technique based on cost equations has been already applied to smart contract lan-
guages for analyzing gas-consumption [2]. In that work the authors analyze the Ethereum
Virtual Machine code obtained from Solidity using classical control flow analysis where
every node records the gas-consumption of the corresponding operation. The technique
yields a precise analysis of conditional statements by restricting the language to guards
belonging to Presburger arithmetic (similarly to what we do in this paper). There are
similarities and differences between [2] and our paper. They use a cost analyzer to com-
pute gas and use an intermediate language, which is called RBR. However they address
the bytecode instructions (for which gas is defined) and RBR is completely different from
our intermediate language: it is imperative, uses memory locations, and abstracts over
the instruction of a particular assembly language. In this paper, we are interested on
a property that is expressed on the high level code, where the programmer has a bet-
ter grasp of the invariants. For this reason our intermediate code abstracts away from
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the instructions of a high level language. The important difference between this paper
and [2] is the following one. Computing gas amounts to over-approximate a function
GAS pxq (see our Definition 7) and, in [2], the authors define this over-approximation by
abstracting out from the identity of smart contract addresses. This abstraction is not
possible when one has to compute balances because confusing one smart contract ad-
dress with another may lead to awful errors. It is exactly this analysis of smart contract
addresses that causes the huge number of cost equations, even exponential with respect
to the input, which is not the case in [2]. Finally, up-to our understanding, [2] analyzes
one smart contract at a time, and, looking at the examples in the paper and the ones
pre-loaded in the on-line prototype, that smart contract never calls methods of other
smart contracts. Instead our analyzer verifies sets of interacting smart contracts and, in
particular, the cases of reentrant codes.

An interesting paper about asset movements targets Bitcoin Script [6]. In that work,
the authors verify the absence of assets that remain frozen in contracts, i.e. liquidity. In
particular they prove decidability of liquidity in a model of Bitcoin Script, called BitML.
We think that our technique is adequate to reason about liquidity as well, and it would
be interesting to compare the two approaches on mSCL.

As regards intermediate languages, other languages have been defined for smart con-
tract analysis (apart RBR mentioned above). One such language is Scilla [24] that is
based on communicating automata that are stateful and use updates. At the moment,
the model of Scilla does not feature exceptions and, therefore, it is not clear how to
model rollbacks. Vandal, defined in [12], converts Ethereum Virtual Machine bytecode
to semantic logic relations. These relations, paired with the security analysis expressed
as logic rules, produces outputs listing potential vulnerabilities. Also Vandal does not
model backtrack: it reduces to flagging “vulnerable” all those actions that may cause
rollback. So, as far as we can see, we could have used neither Scilla nor Vandal to define
mSCL behaviours.

Other formal techniques have addressed the critical interplay between smart contracts
and users (that are usually untrusted) [8, 20, 21, 18]. In these cases, the model is
nondeterministic (because of users’ behaviour) and one tries to predict the maximum
profit for some user. The proposed techniques range from game theory to symbolic
analysis of computations and to (decidable fragments of) temporal logic. In this paper,
we focus on (deterministic) behaviours and compute the best and the worst possible
scenarios of smart contract compositions. That is, if we want to analyze the interaction
with a possible user, we need to express the user as a deterministic contract.

9. Conclusions

In this paper we have analyzed cryptocurrency movements of smart contracts writ-
ten in a lightweight version of Solidity, called mSCL, which is procedural and features
dynamic dispatch. The analysis yields cost equations defining upper bounds of loss and
gain of smart contracts that are computed by means of an off-the-shelf cost analyzer.
The definition of the cost equations has been given by means of a simple functional lan-
guage with static dispatch that expresses the input-output behaviour of mSCL functions.
Our technique has been prototyped and we have reported its assessments and discussed
extensions with additional features to partially cover the gap with mainstream smart
contract languages.
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7 Smart Contracts 7 Equations without optimizations 7 Equations with optimizations

2 6,492 1,030

3 98,133 11,825

4 1,452,566 170,308

Table 3: Results of current optimizations for the Chain-shaped Ponzi scheme

Several extensions of the analyzer need to be investigated in the next future. They
mostly concern the management of other data types and other operations, such as mod-
ifiers, try-catch instructions, etc.

Another important research direction concerns the study of optimizations for our
prototype. The encoding of the extended language with the address data type gives a
number of cost equations that is exponential with respect to the address variables in
the source mSCL code. This explosion is due to having chosen a simple and intelligible
encoding. For example, if one encodes a function f that just passes the msg.sender to
another function g, the resulting equations for f and g will have two disjoint sums over
all possible addresses, while one sum would have been sufficient (and it might be the
case that no sum is necessary at all, e.g. the msg.sender is never used anyway in g). To
avoid this pitfall, our current prototype (which admits address types) already refines
the encoding by using optimizations that greatly reduce the size of the output. These
optimizations are not very aggressive at the moment: they only remove conditionals
with identical branches and merge identical alternatives in choices. Table 3 reports the
results of these optimizations for the Chain-shaped Ponzi scheme in [5] when the smart
contracts involved are 2, 3 and 4: the reader may notice that the number of equations
decreases by 87% in average. A formal study of (more aggressive) optimizations has not
been undertaken so far and is in our agenda.

Our analysis is symbolic and fully automatic, which are evident pros. Two cons of
the technique are: (i) it is not clear how much approximated it is, namely how much
tight are the maximal loss and maximal gain we compute, and, up-to optimizations,
(ii) the number of equations we produce are exponential in the code size because cost
solvers are too rigid. However there are other analyses and techniques one can try and
that we intend to investigate. In particular, one may benefit from the simplicity of our
intermediate language that, being functional, first-order and with static dispatch, is a
simple target for formal methods. Therefore one could trade automation for precision and
scalability, manually proving tight bounds by means of interactive provers, like [22, 4],
using functional languages with expressive types systems, like F* [26], or even combining
them with amortized analysis in the spirit of [16] (in the Chain-shaped Ponzi scheme
a potential can easily be attached to the queue of current participants to compute the
maximal gain). These approaches also allow one to perform the analysis of functional
and non-functional properties at once.

Finally, while gas consumption has been overlooked in this paper, its analysis is
relevant and we are going to address it. Indeed, gas consumption decreases the maximal
gain and increases the maximal loss, thus triggering unwanted backtracking in case of lack
of gas. Previous work on gas focuses on the direct analysis of the bytecode, whereas we
work directly on the source code. However, the two approaches can be reconciled using
the technique defined in the project CerCo [3]: an instrumented compiler can produce
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at once the bytecode and it is possible to define a precise cost model for the source
language where the cost of every basic block is induced by the cost of the bytecode that
corresponds to that block.
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A. Technical details

Lemma 16 (Substitution Lemma). Let Γ0,Γ1 be pure environments and Γ,Γ1 be
ground environments. If Γ0,Γ1rx ÞÑ x0, y ÞÑ 0s $zC,D S : Θ then Γ,Γ1rx ÞÑ v, y ÞÑ

0s $uC,D S : Θtu,v{z,x0
urΓ0,Γ1  Γ,Γ1s. Similarly for expressions.

Proof. Standard induction on the depth of the proof tree of Γ0,Γ1rx ÞÑ x0, y ÞÑ 0s $zC,D
S : Θ and a case analysis on the last rule used.

Theorem 5. Let P be a mSCL program such that $ P : I and let S be an initial state
such that S $ Θ. Then

1. ( determinism) If ΘùñI
˚Θ1 then there is at most one Θ2 such that Θ1ùñIΘ2;

2. ( correctness) If SÝÑ˚S 1 then there exists Θ1 such that S 1 $ Θ1 and ΘùñI
˚Θ1.

Proof. Determinism. This follows directly from the translation in Section 4 because,
in every

ř

iP1..npϕiq Θi, at most one ϕi may be true every time.

Correctness. The proof is by induction on the length of SÝÑ˚S 1. We use the property

that, if Γ $vC,D e : e1 and JeKC,v,D,` “ v1 where ` is the memory of D in some state S2
then e1 is a ground expression whose value Je1K is v1.

The basic case of the induction is immediate; the inductive case

SÝÑ˚S 1ÝÑS2

is demonstrated by means of a case-analysis on the reduction S 1ÝÑS2.
We discuss only the sub-case when S 1ÝÑS2 uses rule [meth]; the other ones are either

simpler or similar. Since we are using [meth], the following are true:

p1q S 1 “
ś

iP1..n Cip`
1
i ¨ `iq | Cj

v
§Ck : e.mpe1q

p2q JeKCj ,v,Ck,`1k “ Ch
p3q Je1KCj ,v,Ck,`1k “ v1

p4q mpT xqtT1 y;Smu P Ch
p5q Γ,Γ1 “ envspS 1q

Additionally, since S 1 $ Θ1 for some Θ1 by induction hypothesis, we have used rule [invk-

nv] with the hypotheses:
p6q Γ1 $vCj ,Ck e : e0

p7q Γ1 $vCj ,Ck e
1 : e2

By definition of envspS 1q we have Γ1pCkq “ `1k; therefore, by (2) and (6) we have e0 “ Ch
and, by (3) and (7), e2 are ground expressions whose values are v1.

According to rule [meth], we have

S2 “
ź

iPp1..nqzh

Cip`
1
i ¨ `iq | Chp`

1
hrx ÞÑ v1, y ÞÑ 0s, `hq | Ck

0
§Ch : Sm
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where mpT xqtT1 y;Smu P Ch. We demonstrate that there is Θ2 such that S2 $ Θ2 and
Θ1ùñIΘ2. By rule [function],

Γ0,Γ1rx ÞÑ x0, y ÞÑ 0s $0
Ck,Ch

Sm : ΘCk

and, by the Substitution Lemma, we obtain

Γ,Γ1rx ÞÑ v, y ÞÑ 0s $0
Ck,Ch

Sm : ΘCkt
v{x0

urΓ0,Γ1  Γ,Γ1s . p8q

By definition, p8q is exactly S2 $ ΘCkt
v{x0

urΓ0,Γ1  Γ,Γ1s.
As regards Θ1, we observe that

Θ1 “ pmPChq Ch.mpΓ,Γ
1,0,v1,Ckq

` pm.payablePChq Ch.mpΓ,Γ
1,0,v1,Ckq

` pmRCh ^ m.payableRCh ^ fallbackPChq Γ1

` pmRCh ^ m.payableRCh ^ fallbackRChq Γ

and, by (4), the unique valid alternative in Θ1 is the first one. Therefore the evaluation
of Θ1 amounts to unfold the function invocation Ch.mpΓ,Γ

1,0,v1,Ckq, that is

Θ1ùñIùñIΘCkt
v{zurΓ0,Γ1  Γ,Γ1s

This concludes the proof.

Theorem 12 (Correctness of cost equation generation). Let P be a mSCL program,
S be an initial state and $ P : I and S $ C.mpΓ,Γ,v1,v,Hq and C.mpΓ,Γ,v1,v,Hqùñ˚

IΓ1.

Let us extend xxIyy (where we use either costC
1

gain or costC
1

loss during the translation) with
a main function that calls C.m. Then

1. Determinism: mainptΓu, v1, v,Hq has a unique ÑCoFloCo-normal-form
2. Correctness:

• mainptΓu, v1, v,HqÑCoFloCo
˚gainC

1

I,C,mpΓ, v
1, v,Hq if we selected costC

1

gain dur-
ing the translation,

• mainptΓu, v1, v,HqÑCoFloCo
˚lossC

1

I,C,mpΓ, v
1, v,Hq if we selected costC

1

loss dur-
ing the translation.

Proof. (Sketch) The proof is by accumulation of intermediate facts:

1. for every ground Presburger expression e whose value is v, xeyÑCoFloCov.
Proof: by inspection of the definition of xey.

2. for every ground guard ϕ, ϕ holds if and only if xϕy holds.
Proof: by inspection of the definition of xϕy, remembering that x¨y is injective over
functions and contract names.

3. for every code Θ1, if Θ1ùñIΘ2 in the intermediate language and xΘ1y “ Θ11 and
xΘ2y “ Θ12, then Θ11ùñIΘ12 in the simplified intermediate language.
Proof: Here we are abusing of the notation because the terms Θ11 and Θ12 are not
in the intermediate language but are in the simplified one (which does not use
environments at all). Similarly when we write Θ11ùñIΘ12. However, the simplified
language syntax and semantics are almost identical to those of the intermediate
language but for:
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(a) functions take in input only lists of variables (in the intermediate language
the first two arguments were environments);

(b) the final code is a list of values instead of an environment.

As regards the semantics, the rules of the simplified intermediate language are
exactly the same of the intermediate one. Said this, the proof is by inspection of
the definition of xΘy over codes, using the previous two points.

4. let mptΓ0u, xq “
ř

iPIp
Ž

jPJi ϕ
j
i qpΘiq in the simplified intermediate language. Then,

for every ground Γ10,Γ, e and n such that mptΓ10u, eqùñn
ItΓu with exactly one deriva-

tion, there is exactly one derivation mptΓ10u, eqÑCoFloCo
˚costptΓ10u, tΓuq (the deriva-

tion is deterministic).
Proof: by induction on n. Let

Ž

jPJi ϕ
j
i be the unique guard such that p

Ž

jPJi ϕ
j
i qt

tΓ10u{tΓ0uut
e{xu

holds. This can happen only if there is at least one j P J i such that ϕji t
tΓ10u{tΓ0uut

e{xu

holds. Then
mptΓ10u, eqùñIΘit

tΓ10u{tΓ0uut
e{xu

and
mptΓ10u, eqÑCoFloCocostptΓ

1
0u,Θit

tΓ10u{tΓ0uut
e{xuq

because of the equation

mptΓ0u, xq “ costptΓ0u,Θiq rϕji s

No other ÑCoFloCo-reduction is possible because:

(a) any other predicate ϕji1t
tΓ10u{tΓ0uut

e{xu for i1 ‰ i and j P J i
1

evaluates to

false. This follows by the fact that every other p
Ž

jPJi1 ϕi1qt
tΓ10u{tΓ0uut

e{xu

must be false, otherwise the reduction should not have been deterministic on
the intermediate terms (obtained translating mSCL programs);

(b) any other disjunct ϕj
1

i t
tΓ10u{tΓ0uut

e{xu of
Ž

jPJi ϕ
j
i t

tΓ10u{tΓ0uut
e{xu that evalu-

ates to true triggers the same reduction

mptΓ10u, eqÑCoFloCocostptΓ
1
0u,Θit

tΓ10u{tΓ0uut
e{xuq

because of the equation

mptΓ0u, xq “ costptΓ0u,Θiq rϕj
1

i s

By cases over n:

• if n “ 0 then Θit
tΓ10u{tΓ0uut

e{xu “ tΓu and we are done;

• otherwise Θit
tΓ10u{tΓ0uut

e{xu “ m1ptΓ0u, e1qùñn´1
I tΓu and costptΓ0u,m1ptΓ0u, e1qq “

m1ptΓ0u, e1q and we conclude by inductive hypothesis.

5. Determinism: mainpxΓy, xΓy, e, x, xHyq has a unique ÑCoFloCo-normal-form as a
corollary of all previous points and since the new equation main has only one
branch

6. Correctness:

• mainptΓu, v1, v,HqÑCoFloCo
˚gainC

1

I,C,mpΓ, v
1, v,Hq if we selected costC

1

gain dur-
ing the translation,
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• mainptΓu, v1, v,HqÑCoFloCo
˚lossC

1

I,C,mpΓ, v
1, v,Hq if we selected costC

1

loss dur-
ing the translation.

By the previous point, both gainC
1

I,C,m and lossC
1

I,C,m are defined. Combining the
first 5 points, we obtain mainpxΓy, xΓy, e, x, xHyqÑCoFloCo

˚costpxΓy, xΓ1yq where
mpΓ,Γ,e,x,Hqùñ˚

IΓ1. Therefore gainC
1

I,C,mpΓ, v
1, v,Hq “ maxp0,Γ1pC 1.balanceq ´

ΓpC 1.balanceqq, lossC
1

I,C,mpΓ, v
1, v,Hq “ maxp0,ΓpC 1.balanceq ´ Γ1pC 1.balanceqq,

costC
1

gainpxΓy, xΓ1yq “ maxp0,Γ1pC 1.balanceq ´ ΓpC 1.balanceqq and

costC
1

losspxΓy, xΓ1yq “ maxp0,ΓpC 1.balanceq ´ Γ1pC 1.balanceqq.
The thesis holds.
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