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Statistics for Gaussian Random Fields with Unknown Location and

Scale using Lipschitz-Killing Curvatures

Elena Di Bernardino*, Céline Duval�

Abstract

In the present paper we study the average of Lipschitz-Killing (LK) curvatures of the excur-

sion set of a stationary isotropic Gaussian field X on R2. The novelty is that the field can be

non-standard, i.e., with unknown mean and variance, which is more realistic from an applied

viewpoint. To cope with the unknown location and scale parameters of X, we introduce novel

fundamental quantities called effective level and effective spectral moment. We propose unbiased

and asymptotically normal estimators of these parameters. From these asymptotic results, we

build a test to determine if two images of excursion sets can be compared. This test is applied

on both synthesized and real mammograms. Meanwhile, we establish the consistency of the em-

pirical variance estimators of the third LK curvature under a weak condition on the correlation

function of X.

Key words: Geometric inference, Excursion sets, Image analysis

AMS Classification: 62H11, 62M40, 60G60

1 Introduction

Lipschitz-Killing (LK) curvatures are geometrical tools which permit to analyse d dimensional ob-

jects. Considering a black and white image in dimension d = 2, there are three LK curvatures:

the surface area, the half perimeter and the Euler characteristic. Each of them brings a distinct

information on the geometry of the black (resp. white) zone. The surface area is related to its

occupation density, the perimeter to its regularity and the Euler characteristic to its connectivity.

*Laboratoire J.A. Dieudonné, UMR CNRS 7351, Université Côte d’Azur, Nice, France
�MAP5 UMR 8145, Université de Paris, Paris, France
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In this paper, the images we consider are the excursion sets of the realization of a two-dimensional

Gaussian stationary and isotropic random field X above a given level u, i.e. a black and white

image indicating when the realization of X is above or below the level u. This work is part of a

growing field of research, at the intersection of stochastic geometry and statistical analysis, which

received an increasing attention in the recent years; see, for instance, Lachièze-Rey (2019), Azäıs

and Chassan (2020), Panigrahi et al. (2019), Cheng (2016), Azäıs and Pham (2016) or Pham (2013).

This literature investigates several geometrical stochastic objects and introduces consistent inference

procedures to estimate them.

Using random fields in the modelization and analyzing their excursions with LK curvatures has been

successfully exploited in many disciplines. In cosmology, to study the Cosmic Microwave Background

radiation (see, e.g., Casaponsa et al. (2016), Schmalzing and Górski (1998), Gott et al. (2007)) or

to analyze the distribution of galaxies (see, e.g., Gott et al. (2008)). The LK curvatures are also

exploited in brain imaging (see Adler and Taylor (2011), Section 5, and the references therein) or

to model sea waves (see, e.g., Longuet-Higgins (1957), Wschebor (2006), Lindgren (2000)).

The average LK curvatures of the excursion set have been studied in a wide variety of contexts (see

Adler and Taylor (2007, 2011), Adler et al. (2012) for a focus on the Gaussian kinematic formula

and Biermé and Desolneux (2016) in case X is a shot noise). Empirical LK curvatures have also

been studied and specific asymptotic results have been established. In the Gaussian framework,

Estrade and León (2016) or Di Bernardino et al. (2017) studied the Euler characteristic whereas

the area (also called sojourn times) is studied in Bulinski et al. (2012) or Pham (2013). See Kratz

and Vadlamani (2018) and Müller (2017) for a joint analysis of LK curvatures.

These results permit to derive estimators and tests for the underlying field X (see Di Bernardino

et al. (2017), Biermé et al. (2019), Berzin (2018)). Inference methods and tests using LK curvature

devices only rely on the sparse observation of one excursion set and not on the covariance function

nor on the marginal distribution of X, which require the observation of the entire field (see e.g.

Pantle et al. (2010), Nieto-Reyes et al. (2014)).

Removing the known mean and variance assumption Most results concern the case where

the field X is standard, i.e. centered and with unit variance. Furthermore the unit variance of its

derivative is commonly required in the literature, assumption that is also not imposed in the present

article. Imposing that the field is standard constrains the LK curvatures of the field. Indeed, from
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the image of one excursion set if the field is symmetric, which is the case of Gaussian fields, the

expected mean of the Euler characteristic of this set will be null at level u = 0 and the expected

mean of its area, will be 1/2 of the size of this image at this same level. More generally, the mean of

the field indicates where the excursion set shows black and white zones in comparable proportions,

whereas the variance conveys information on the range of levels where the excursion sets are non

degenerate (all white or all black images). If one only observes one excursion set –and not the whole

field X– it is often impossible to test whether the underlying field is centered or has unit variance.

It is impossible to estimate the mean and variance of X from the sole excursion set. Then, from a

statistical viewpoint, it is unrealistic to impose that the unobserved field X is standard.

The knowledge of the mean and variance of X is also crucial when it comes to compare the LK

curvatures of several excursion sets. To compare the geometries of two given excursion sets, this

information turns out to be crucial. Indeed, if the two excursion sets correspond to fields with

distant mean, observing them at the same level will generate different pictures, but it does not

mean that the underlying fields are necessarily different, e.g. one can be the translation of the

other. This nonstandard context has deserved only a limited attention in the literature, we can

mention, for instance, David and Worsley (1995) based on the Hadwiger characteristic.

In this article, in the case where X is a stationary and isotropic Gaussian random field, we introduce

two quantities that we call effective level and effective spectral moment of the field (see Definition

1.2) that contain simultaneously the knowledge of the variance and mean of the field for every

possible observation levels. Comparing excursion sets at the same effective level is meaningful as

illustrated in Figure 1. In the first row we observe three different digital mammograms at the

same fixed level. The obtained excursion sets look completely different; from this perspective the

mammograms are dissimilar. But on the second row, we change the perspective and look at these

objects at the same effective level, compared to the first row, the proportions of black and white

zones are visually alike.

We propose consistent and asymptotically normal estimators for these effective level and effective

spectral moment when X is a stationary and isotropic Gaussian random field (see Propositions 2.1

and 2.2). We relate these quantities to the model parameters and we show how these estimators

permit to recover some model parameters and to build testing procedures.

3



Image 1.F
50 150 250

50

100

150

200

250

Level u = 2200

Image 1.FG
50 150 250

50

100

150

200

250

Image 1.D
50 150 250

50

100

150

200

250

Image 1.F
50 150 250

50

100

150

200

250

Effective level ŝu = 0
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Figure 1: Excursion sets of 3 images of synthetic digital mammograms observed at the same level (first row)

and at the same effective level (second row).

Comparing images of exclusion sets To compare two different fields from the observation of

one excursion set of each using LK curvature devices, observing them at the same level u is irrelevant

if the underlying fields have distant mean and/or variance. It is meaningful to compare them only

if they are observed at the same effective level and effective spectral moment. This is why it is

important to develop a consistent test to decide whether two images of excursion sets have the same

effective level or not. This test is a mandatory preliminary step before putting in comparison two

images of excursion sets. Its construction makes a full use of the asymptotically normal estimator

of effective level as well as the consistent estimator of its limit variance, introduced in the present

work (see Corollary 4.1).

Asymptotic variance estimation Frequently, when calibrating testing procedures or studying

the deviations of the estimators, the proper calibration depends on the unknown asymptotic vari-

ances. Therefore, having consistent estimators of the asymptotic variances of the empirical LK

curvatures is essential for the statistical study of these objects. If estimation strategies are known

and used in practice in a wide range of contexts, there are few theoretical results concerning the

consistency of these procedures. Some results exist in the case of the area if X is a Gaussian random

field and under conditions on the correlation function of X that are difficult to check (see Mattfeldt

et al. (2011), Bulinski et al. (2012)).
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We establish in Theorem 3.1 the consistency of the empirical variance of the area when X is a sta-

tionary and isotropic Gaussian field whose correlation function decays polynomially (see Assumption

(A1) below). For that we use the decomposition of Itô-Wiener chaos of the LK curvatures jointly

with the diagram formula (see Taqqu (1977)). We also argue why this estimator should remain

consistent to estimate the Euler characteristic variance (see Corollary 3.1). We point out that in

this article, we are mainly interested in the Euler characteristic and area as they are numerically

more stable to compute (see, e.g., the discussion about the well known numerical instability of the

perimeter estimation in Biermé et al. (2019)). Moreover, as we prove results on the asymptotic

variance of the area, the numerical results in Section 4.1 rely only on this latter quantity.

Outline of the paper The paper is organized as follows. In the remaining of this section we

define the three objects of interest, i.e., the LK densities for the excursion sets of a two-dimensional

Gaussian random field which is non centered and whose variance is not necessarily one. These for-

mulae depend on two identifiable parameters, called effective level and effective spectral moment. In

Section 2 we estimate these parameters and establish asymptotic normality results. The associated

asymptotic variances are estimated in Section 3, using a subwindow technique. The consistency

of the proposed subwindow empirical variance estimators is studied in Section 3.1 as well as some

statistical implications in Section 3.2. In Section 4 we build a test based on the effective level to

compare two images of excursion sets. This test is put into practice in Section 4.1 on synthesized

2D digital mammograms provided by GE Healthcare France (department Mammography) and in

Section 4.2 on real digital mammograms provided by the Mammographic Image Analysis Society

(MIAS). The proofs of the technical results are gathered in Appendix A.

1.1 Definitions and preliminary notions

In the whole paper, | · | denotes equally the absolute value or the two dimensional Lebesgue measure

and by | · |1 its one-dimensional Hausdorff measure, ‖ · ‖ denotes the Euclidian norm. We consider

X being a Gaussian field defined on R2 satisfying the following hypothesis.

(A0) The Gaussian field X is stationary, isotropic with mean E[X(0)] = µ, variance V(X(0)) = σ2

and V(X ′(0)) = λI2 for λ > 0, the second spectral moment, σ > 0, µ ∈ R and I2 the 2 × 2

identity matrix. Moreover, the trajectories of X are almost surely of class C3.
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Denote by r the covariance function of X, i.e., for any fixed t, r(t) = Cov(X(0), X(t)) and by ρ

the correlation function ρ(t) = corr(X(0), X(t)). Under Assumption (A0) the field is suppose to

be C3, then the covariance function is C6. In some cases, e.g., to get the asymptotic normality

or consistency of our estimators, we impose additional assumptions on covariance and correlation

functions of X gathered in the following.

(A1) |ρ(t)| ≤ (1 + ‖t‖)−γ , γ > 2.

(A2) For any fixed t in R2, the covariance matrix of the random vector (X(t), X
′
(t), X

′′
(t)) has full

rank and the covariance function r of X is such that,∫
R2

r(s) ds > 0, Mr(t)→ 0 when ‖t‖ → +∞ and Mr ∈ L1(R2) ,

where

Mr(t) = max

(∣∣∣ ∂k
∂tk

r(t)
∣∣∣; k = (i1, . . . , i`) ∈ {1, 2}`, 0 ≤ ` ≤ 4

)
and ∂kr

∂tk
(t) = ∂`

∂xi1 ...∂xi`
r(t).

Assumptions (A0), (A1) and (A2) are standard when studying limit laws of non linear functionals

of stationary Gaussian random fields. Assumptions (A0) and (A1) are used when working with the

area, whereas for the Euler characteristic we rely on (A0) and (A2).

Rectangles, denoted by T , in R2 are bounded and with non empty interior. In the following notation

T ↗ R2 stands for the limit along any sequence of bounded rectangles that grows to R2. For that,

let T be a bounded closed rectangle in R2 with 0 ∈ T̊ and set N > 0 and define

T (N) :=
{
Nt : t ∈ T

}
the image of a fixed rectangle T by the dilatation t 7→ Nt and then letting T ↗ R2 is equivalent

to N →∞. Then, T (N) is a Van Hove-growing sequence (VH-growing sequence, see Definition 6 in

Bulinski et al. (2012)), i.e., |∂T (N)|1/|T (N)| → 0 as N →∞, where ∂T stands for the frontier of the

set T . In the sequel, we sometimes drop the dependency in N of the rectangle T to soften notation.

1.2 Lipschitz-Killing curvatures of a given excursion set

Let u ∈ R. For X a real-valued stationary random field defined on R2, we consider the excursion

set within T above level u:

{t ∈ T : X(t) ≥ u} = T ∩ EX(u), where EX(u) := X−1([u,+∞)).
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Definition 1.1 (LK curvatures of EX(u)). Let X be a Gaussian field satisfying Assumption (A0).

Define the following Lipschitz-Killing curvatures for the excursion set EX(u), for u ∈ R,

L2(X,u, T ) : = |T ∩ EX(u)| =
∫
T

1{EX(u)}(t) dt, (1)

L1(X,u, T ) : = |∂(T ∩ EX(u))|1 =
1

2
lim
ε→0

∫
T
δ]u−ε,u+ε[(X(t)) ‖∇X(t)‖ dt, (2)

L0(X,u, T ) : = ] connected components in T ∩ EX(u)− ] holes in T ∩ EX(u), (3)

=
1

|T |
(
](T ∩ Cextr.)− ](T ∩ Csaddle)

)
, (4)

where Cextr. =
{
t : X(t) ≥ u,∇X(t) = 0, t is a local extremum

}
, Csaddle =

{
t : X(t) ≥

u,∇X(t) = 0, t is a saddle point
}

, δu the Dirac mass at u and ∇X is the gradient field.

These three additive functionals, Lj for j = 0, 1, 2 in Definition 1.1, called Lipschitz-Killing curva-

tures, are also closely related to intrinsic volumes and Minkowski functionals. Roughly speaking, for

A a Borelian set in R2, L0(A) stands for the Euler characteristic of A, L1(A) for the half perimeter

of the boundary ofA and L2(A) is equal to the area ofA, i.e., the two-dimensional Lebesgue measure.

In particular, when T is a bounded rectangle in R2 with non empty interior,

L0(T ) = 1, L1(T ) =
1

2
|∂T |1, L2(T ) = |T |. (5)

Using the same formalism as in Biermé et al. (2019), the normalized LK curvatures are given by

C
/T
i (X,u) :=

Li(X,u, T )

|T |
, for i = 0, 1, 2,

and the associated LK densities by

C∗i (X,u) := lim
T↗R2

E[C
/T
i (X,u)], for i = 0, 1, 2. (6)

In the case i = 2, one can easily write C∗2 (X,u) = E[C
/T
2 (X,u)] = P(X(0) ≥ u). Computationally

C
/T
2 (X,u) C

/T
1 (X,u) and C

/T
0 (X,u) in (1), (2) and (3) can be evaluated in a given image by using

the Matlab functions bwarea, bwperim and bweuler respectively. The numerical evaluation of (4)

can be obtained for instance by finding local maxima, local minima and saddle points with the

Matlab function imextrema.
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Definition 1.2. Let X be a Gaussian random field satisfying Assumption (A0). We define the

effective observation level (effective level in the sequel)

su :=
u− µ
σ

and the effective second spectral moment (effective spectral moment in the sequel) of the field X

w :=
λ

σ2
.

Notice that, if the underlying Gaussian field X is centered with unit variance, the effective level

simply coincides with the observation level u and the effective spectral moment with the spectral

moment of X. Using su and w as in Definition 1.2, we compute the expected value of these empirical

LK curvatures of excursion sets of a Gaussian random field with unknown location and scale and

derive the corresponding LK densities by using the following adapted Gaussian Kinematic Formula.

Proposition 1.1. Let X be a Gaussian random field satisfying Assumption (A0), denote ψ(x) =

P(N (0, 1) ≥ x). Then, it holds that

E[C
/T
0 (X,u)] =

ψ (su)

|T |
+

√
w

2π
exp

{
−1

2
s2
u

}
|∂T |1
2|T |

+
w

(2π)3/2
exp

{
−1

2
s2
u

}
su,

E[C
/T
1 (X,u)] = ψ (su)

|∂T |1
2|T |

+

√
w

4
exp

{
−1

2
s2
u

}
,

E[C
/T
2 (X,u)] = ψ (su) .

Having T ↗ R2, it follows that the LK densities defined in (6) are given by

C∗0 (X,u) =
w

(2π)3/2
exp{−1

2
s2
u}su, C∗1 (X,u) =

√
w

4
exp{−1

2
s2
u}, C∗2 (X,u) = ψ (su) . (7)

Proof of Proposition 1.1 is postponed to Section A.2. The LK densities given by (7) enable to

identify su and w.

Remark 1 (Unbiased estimators for LK densities). Let u ∈ R and X as in Assumption (A0).

Assume we observe T ∩ EX(u) for T a rectangle in R2. The following quantities are unbiased

estimator of C∗i (X,u) in (7) (see also Biermé et al. (2019)):

Ĉ2,T (X,u) = C
/T
2 (X,u), (8)

Ĉ1,T (X,u) = C
/T
1 (X,u)− |∂T |1

2|T |
C
/T
2 (X,u), (9)

Ĉ0,T (X,u) = C
/T
0 (X,u)− |∂T |1

π|T |
C
/T
1 (X,u) +

(
1

2π

(
|∂T |1
|T |

)2

− 1

|T |

)
C
/T
2 (X,u). (10)
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2 Estimators of the effective level and effective spectral moment

We focus on stationary Gaussian random fields with unknown location and scale parameters. In

this section we build consistent estimators for su and w in Definition 1.2 relying on (8), (10) and

Proposition 1.1. The importance of estimating these quantities lies in the fact that a comparison

between two images of excursion sets of two fields (with unknown and eventually different location

and scale parameters) can be proposed only if the considered observation levels make sense in terms

of their respective mean and variance. These effective level and effective spectral moment can be

used to determine if such a comparison is meaningful.

Definition 2.1 (Estimators for su and w). Define the estimator of su built on the observation

T ∩ EX(u), u being fixed, by arg mins∈R |ψ(s)− Ĉ2,T (X,u)|, i.e.

ŝu,T := ψ−1(Ĉ2,T (X,u)). (11)

Let T1 and T2 be two rectangles in R2 such that dist(T1, T2) > 0 and |T1| = |T2| > 0. Define the

estimator of w, u being fixed and u 6= µ, by

ŵu,T1,T2 :=
Ĉ0,T1(X,u)(2π)3/2

ŝu,T2 exp{−1
2 (̂su,T2)2}

. (12)

Remark 2. Notice that in Equation (12) we use two disjoint rectangles with same Lebesgue mea-

sure. To get the asymptotic normality of this quantity, we rely on a joint central limit theorem

established for (Ĉ0,T1(X,u), Ĉ2,T2(X,u)). However, if T1 = T2 such a result is not known, it can only

be achieved for domains such that asymptotically dist(T1, T2) → ∞ (see the proof of Proposition

2.2). Indeed, we are not aware of any joint central limit theorem for the LK densities of excursion

sets of stationary random fields on R2, except in the case of a Boolean model in Hug et al. (2016)

or in the case of pixelated images in Reddy et al. (2018) and binary images in Ebner et al. (2018).

Such a constraint on T1 and T2 is satisfied for instance taking T1 ∪ T2 ⊂ T such that T1 ∩ T2 = ∅,

|T1| = |T2|, |T1| > c|T |, 0 < c < 1/2 and having T ↑ R2. From a practical point of view, one only has

one (large) image, the inference procedure can be implemented by partitioning it in sub-windows

T1 and T2 separated by a “large” band (for instance of width
√

size of the image) in order to build

the estimator ŵu,T1,T2 .

Remark 3 (Bias for ŝu,T and ŵu,T1,T2). Estimator ŝu,T in (11) is the quantile of the standard

Gaussian distribution at random level 1− Ĉ2,T (X,u), where Ĉ2,T (X,u) defined in (8) is unbiased.
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It follows that ŝu,T is biased, as the function ψ−1 is convex in (0, 0.5) (resp. concave in (0.5, 1)),

then it holds E[̂su,T ] > su if Ĉ
/T
2 (X,u) in (0,0.5) (resp. E[̂su,T ] < su if Ĉ

/T
2 (X,u) in (0.5,1)). The

bias of ŝu,T certainly generates a bias also in the estimation of w. This bias for ŝu,T can be assessed

in Figure 2.

Levels u
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Figure 2: Synthetic digital mammograms study. Boxplot for ŝu,T − su for different values of u (left

panel). Empirical variance σ2
su (red stars) and theoretical u 7→ σ2

su in (13) in blue line (right panel).

These samples have been obtained with Matlab using circulant embedding matrix.

Remark 4. Let X be a stationary random field, non necessarily Gaussian, with finite variance.

It holds E[C
/T
2 (X,u)] = P(X(0) ≥ u) = P

(X(0)−µ
σ ≥ su

)
=: F (su). Then, given a family for the

marginal distribution F of the field, known up two its first two moments, the effective level of the

field can always be recovered using ŝu = F−1(C
/T
2 (X,u)). This is not derived from the kinematic

formula contrary to the equation leading to the computing of w.

Proposition 2.1 (Asymptotic normality of (̂su1,T , . . . , ŝum,T )). Let X be a Gaussian random field

satisfying Assumptions (A0) and (A1). For a positive integer N , consider T (N) = {Nt : t ∈ T} and

ŝui,T (N) the estimator defined in (11) built on the observation T (N) ∩ EX(ui), where u1, . . . , um are

fixed. Then,
√
|T (N)|(̂su1,T (N)−su1 , . . . , ŝum,T (N)−sum) converges in distribution to a centered Gaus-

sian vector with covariance matrix (Σ2
s,(ui,uj)

)1≤i,j≤m, with Σ2
s,(ui,uj)

=
∫
R2

∫ ρ(t)
0 h(ui,uj)(r)dr dt ∈

(0,+∞), where
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h(ui,uj)(r) =
1√

1− r2
exp

{
2rsuisuj − r2s2

ui − r
2s2
uj

2(1− r2)

}
.

Proposition 2.1 is a consequence of Proposition A.2 and a multidimensional version of the delta

method.

In the sequel we denote by σ2
su := Σ2

s,(u,u) i.e.,

σ2
su =

∫
R2

∫ ρ(t)

0

1√
1− r2

exp

{
s2
u r

1 + r

}
dr dt ∈ (0,+∞). (13)

The function s2
u 7→ σ2

su is an increasing function, it is minimal when s2
u is minimal i.e. at u = µ.

This leads to the following result.

Corollary 2.1 (Asymptotic variance for ŝu=µ,T ). Under assumptions of Proposition 2.1, the vari-

ance σ2
su in (13) attains its minimum at u = µ, i.e., su = 0, and this minimum is

σ2
sµ =

∫
R2

arcsin(ρ(t)) dt.

Corollary 2.1 will be useful in Sections 4.1 and 4.2, where we frequently choose the observation

level u such that the associated effective level su is null. This procedure will guarantee that the

estimator has minimal variance. Corollary 2.1 is consistent with recent results on the so-called

Berry’s cancellation phenomenon, i.e., the fact that the variance of the LK curvatures at level su

reaches a minimum, because of the disappearance of a large number of chaotic terms (see Cammarota

and Marinucci (2020)).

Proposition 2.2 (Asymptotic normality of (ŵu1 , . . . , ŵum)). Let X be a Gaussian random field

satisfying Assumptions (A0), (A1) and (A2). Let T1 and T2 be two rectangles in R2 such that

dist(T1, T2) > 0 and |T1| = |T2| > 0. For a positive integer N , let T
(N)
i = {Nt : t ∈ Ti}, i ∈ {1, 2}.

Consider ŵ
ui,T

(N)
1 ,T

(N)
2

the estimator defined in (12) with ui 6= µ being fixed, for i = 1, . . . ,m. Then,√
|T (N)

1 |
(
ŵ
u1,T

(N)
1 ,T

(N)
2

−w, . . . , ŵ
um,T

(N)
1 ,T

(N)
2

−w
)

converges in distribution to a centered Gaussian

vector with covariance matrix (Σ2
w,(ui,uj)

)1≤i,j≤m given by

Σ2
w,(ui,uj)

=
(2π)3

(
Σ2
C∗0 ,(ui,uj)

+ Σ2
s,(ui,uj)

(s2
ui − 1)(s2

uj − 1)C∗0 (X,ui)C
∗
0 (X,uj)

)
s2
uis

2
uj exp{−

(
s2
ui
2 +

s2
uj

2

)
}

< +∞,

with Σ2
C∗0 ,(ui,uj)

as in Proposition A.1 and Σ2
s,(ui,uj)

as in Proposition 2.1.

11



Proof of Proposition 2.2 is postponed to Section A.2.

Remark 5. The fact that Σ2
C∗0 ,(u,u) is nonzero for all levels u still is an open problem. In Estrade

and León (2016) the first Itô-Wiener chaos element of the series of Σ2
C∗0 ,(u,u) has been calculated for

all levels u. However, to guarantee that it is nonzero, higher order elements of this series need to

be explored. Conversely, the first Itô-Wiener chaos element of the series of σ2
C∗2 ,u

(see, e.g., Müller

(2017) and Kratz and Vadlamani (2018)) guarantees it is non degenerate for all u ∈ R.

Numerical illustrations In the following we provide an illustration of the finite sample per-

formance of the proposed estimator ŝu,T for several values of u (see Figure 2). We consider here

M = 100 sample simulations of Gaussian random fields as in Assumption (A0) with µ = 12, σ2 = 4

and covariance r(x) = e−κ
2‖x‖2 , for κ = 100/210 in domains of size 210 × 210 pixels.

As expected from Proposition 2.1, the quality of the consistency can be evaluated in the displayed

boxplots. Furthermore the associated asymptotic empirical variance is analysed and compared with

the theoretical one in the case of u 7→ σ2
su in (13) (see right panel in Figure 2). Furthermore a bias

in the estimation of su can be observed for values of level u far form µ (see Remark 3). Similar

results have been obtained for the estimator of ŵu,T1,T2 but they are omitted here for the sake of

brevity.

3 Subwindow empirical variance estimation

3.1 Consistent variance estimator

Having asymptotically normal estimators for su or w is insufficient if we cannot estimate their limit

variance. Indeed, this variance plays a central role for instance to calibrate testing procedures,

such as a test to determine if two images of excursion sets are comparable (see Section 4). Due to

the specificity of our observations, which are excursion sets, proving that a variance estimator is

consistent turns out to be a delicate, while fundamental, problem

Definition of the subwindow estimators We introduce a technique to estimate the asymptotic

variances appearing in Propositions 2.1 and 2.2. Inspired by the cutting of T (N) introduced in Pantle

et al. (2010) (see also Bulinski et al. (2012), Section 5) we consider a classical empirical variance

12



estimator. To establish its consistency, we decompose this estimator on domains that are infinitely

distant, mimicking the classical context of independent and identically distributed random variables.

Consider the following cutting of T (N): set MN ∈ N such that MN → ∞ as N → ∞ and consider

the grid pattern of T (N) defined by (V (N,(i,j)))1≤i,j≤MN
- such that ∪1≤i,j≤MN

V (N,(i,j)) = T (N), for

(i, j) 6= (i′, j′), V (N,(j,j)) ∩ V (N,(i′,j′)) = ∅ and |V (N,(i,j))| := rN , ∀ 1 ≤ i, j ≤ MN where rN → ∞

as N →∞. Observe that, whenever max{|i− i′|, |j − j′|} ≥ 2 then dist(V (N,(i,j)), V (N,(i′,j′)))→∞

as N → ∞. Then, by Propositions A.1 and A.2 the estimators Ĉ
/V (N,(i,j))

` (X,u), for ` ∈ {0, 2},

are consistent and asymptotically independent. Therefore, we estimate the asymptotic variances

appearing in Propositions A.1 and A.2 by

Σ̂2
C∗` ,(u,v) =

1

M2
N − 1

MN∑
i,j=1

ξ̂
(i,j)
N (u)ξ̂

(i,j)
N (v)−

( 1

M2
N − 1

MN∑
i,j=1

ξ̂
(i,j)
N (u)

)( 1

M2
N − 1

MN∑
i,j=1

ξ̂
(i,j)
N (v)

)
, (14)

where we define ξ̂
(i,j)
N (u) := Ĉ

/V (N,(i,j))

` (X,u), for all u ∈ R, ` ∈ {0, 2}, 1 ≤ i, j ≤ MN . The

key point is that these estimators are identically distributed, as the field X is stationary, and are

asymptotically independent whenever max{|i− i′|, |j− j′|} ≥ 2 in view of Propositions A.1 and A.2

and the fact that dist(V (N,(i,j)), V (N,(i′,j′)))→∞, as N →∞.

Case of the area (` = 2 in Equation (14)) To the knowledge of the authors, the only result

establishing the consistency of (14), is Theorem 6 of Bulinski et al. (2012) in the case of the area

(` = 2). However, this results imposes a condition (39) on the fourth-order cumulant that is difficult

to check and for which the example provided is “a random field X with finite dependence range”,

which means that ρ = ρ1D for some finite domain D. In the following Theorem 3.1 we prove

consistency of the estimator Σ̂2
C∗2 ,(u,v) defined in (14) under Assumption (A1).

Theorem 3.1. Let X be a Gaussian random field satisfying Assumptions (A0) and (A1). Let

Σ̂2
C∗2 ,(uq ,uk) be as in (14) with q, k ∈ {1, . . . ,m}. Then, it holds that Σ̂2

C∗2 ,(uq ,uk)
P−→

N→∞
Σ2
C∗2 ,(uq ,uk).

Proof of Theorem 3.1. We show the consistency of estimators Σ̂2
C∗2 ,(uq ,uk) in (14), for all q, k ∈

{1, . . . ,m}. First, note that Σ̂2
C∗2 ,(uq ,uk) is given by the difference of two terms, write

Σ̂2
C∗2 ,(uq ,uk) := S1(u, v)− S2(u)S2(v). (15)

By Proposition 2.1 and the additivity of T 7→ C
/T
2 (X,u), we get that for all u, S2(u)

P−−−−→
N→∞

C∗2 (X,u).

13



(2i, 2j) (2i, 2j + 1) (2i, 2j + 2) (2i, 2j + 3)

(2i+ 1, 2j) (2i+ 1, 2j + 1) (2i+ 1, 2j + 2) (2i+ 1, 2j + 3)

(2i+ 2, 2j) (2i+ 2, 2j + 1) (2i+ 2, 2j + 2) (2i+ 2, 2j + 3)

S1,1

S1,1 S1,1

S1,1S1,2 S1,2

S1,2 S1,2

S1,3 S1,3S1,4 S1,4

Figure 3: Decomposition of the sum S1 in (15) in four sums.

The remaining of the proof consists is noticing that the sum S1 can be rewritten as four sums each

composed of identically distributed terms that are asymptotically independent. Decompose S1 as

follows (see Figure 3) and without loss of generality assume that MN is even, then

S1 =
1

M2
N − 1

MN∑
i,j=1

ξ̂
(2i,2j)
N (uq)ξ̂

(2i,2j)
N (uk) +

1

M2
N − 1

MN∑
i,j=1

ξ̂
(2i,2j+1)
N (uq)ξ̂

(2i,2j+1)
N (uk)

+
1

M2
N − 1

MN∑
i,j=1

ξ̂
(2i+1,2j)
N (uq)ξ̂

(2i+1,2j)
N (uk) +

1

M2
N − 1

MN∑
i,j=1

ξ̂
(2i+1,2j+1)
N (uq)ξ̂

(2i+1,2j+1)
N (uk)

: = S1,1 + S1,2 + S1,3 + S1,4.

To show that S1,p − 1
4 E[ξ̂

(1,1)
N (u)ξ̂

(1,1)
N (v)]

P−−−−→
N→∞

0, 1 ≤ p ≤ 4, we show that the convergence holds

in L2. We perform computations for S1,1, other sums are treated similarly. It holds, using the

stationarity of the field, that

V(S1,1) =
1

(M2
N − 1)2

MN∑
i,i′,j,j′=1

Cov
(
ξ̂

(2i,2j)
N (uq)ξ̂

(2i,2j)
N (uk), ξ̂

(2i′,2j′)
N (uq)ξ̂

(2i′,2j′)
N (uk)

)
=

1

(M2
N − 1)2

MN∑
(i,j)6=(i′,j′)=1

Cov
(
ξ̂

(2i,2j)
N (uq)ξ̂

(2i,2j)
N (uk), ξ̂

(2i′,2j′)
N (uq)ξ̂

(2i′,2j′)
N (uk)

)
(16)

+
1

(M2
N − 1)2

MN∑
i,j=1

Cov
(
ξ̂

(2i,2j)
N (uq)ξ̂

(2i,2j)
N (uk), ξ̂

(2i,2j)
N (uq)ξ̂

(2i,2j)
N (uk)

)
. (17)

For all (i, j) ∈ {1, . . . ,MN}2, if we set G = (X − µ)/σ it holds that

ξ̂
(i,j)
N (u) = Ĉ

/V (N,(i,j))

2 (X,u) = Ĉ
/V (N,(i,j))

2 (G, su) =
L2(G, su, V

(N,(i,j)))

|V (N,(i,j))|
.

14



The remaining of the proof is a direct consequence of the following result.

Proposition 3.1. Let X be a Gaussian random field satisfying Assumptions (A0) and (A1) and

set G = (X − µ)/σ. Let u1, u2, u3, u4 be four fixed levels in R and associated effective levels

sui = (ui − µ)/σ, for i ∈ {1, 2, 3, 4}. Let T and T ′ be such that |T | = |T ′| and dist(T, T ′) → ∞.

Then, it holds that,

E[L2(G, su1 , T )L2(G, su2 , T )L2(G, su3 , T
′)L2(G, su4 , T

′)] = ψ(su1)ψ(su2)ψ(su3)ψ(su4)|T |4 + o(|T |3).

Proof of Proposition 3.1 is postponed to Section A.3. Proposition 3.1 ensures that (16) goes to 0.

Let (i, j) 6= (i′, j′) ∈ {1, . . . ,MN}4 and T = V (N,(i,j)) and T ′ = V (N,(i′,j′)), for which for N large

enough it holds dist(V (N,(i,j)), V (N,(i′,j′))) > 1 and |V (N,(i,j))| = |V (N,(i′,j′))| → ∞ as N → ∞, then

we derive

lim
n→∞

Cov
(
ξ̂

(2i,2j)
N (uq)ξ̂

(2i,2j)
N (uk), ξ̂

(2i′,2j′)
N (uq)ξ̂

(2i′,2j′)
N (uk)

)
= 0.

This implies that (16) goes to 0 as N →∞ using Cesàro Lemma. Moreover, Equation (17) vanishes

using that |ξ̂N | ≤ 1 almost surely, implying (17) is bounded by M2
N/(M

2
N − 1)2 → 0, as N → ∞.

This implies that V(S1,1)→ 0 as N →∞ using Cesàro Lemma. The same behaviour holds true for

V(S1,p) for all p ∈ {1, 2, 3, 4}, implying the desired result in Theorem 3.1.

Discussion Theorem 3.1 establishes consistency of this subwindow variance estimator in the case

of the area under Assumption (A1). This assumption seems weak as it is the same assumption

as the one imposed to get the asymptotic normality of Ĉ2(X,u) (see Theorem 4 of Bulinski et al.

(2012)).

A key element in the proof of Theorem 3.1 is Proposition 3.1 which is similar to the constraint (39) of

Bulinski et al. (2012). More precisely, in Proposition 3.1 we control covariance terms between distant

domains. Proof of Proposition 3.1 relies on two ingredients: i. the Itô-Wiener chaos decomposition of

L2(X,u, T ) and ii. the diagram formula (see Taqqu (1977), Lemma 3.2) applied up to the dimension

4. This diagram formula in dimensions 3 and 4 leads to technical and lengthly computations where

the constraint dist(V (N,(i,j)), V (N,(i′,j′))) → ∞ as N → ∞, and the cutting of T (N), plays a crucial

part.

A key question from an applied point of view is the choice of MN and |V (N,(1,1)| (see Section 5

of Bulinski et al. (2012)). Theoretically, it is only required is that MN and |V (N,(1,1)| increase to
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infinity, but in practice, we need a cutting of T in infinitely many rectangles such that in each sub-

rectangle the excursion set is sufficiently rich to properly estimate ξ̂
(i,j)
N . A coarse comparison of

the different order of magnitudes required to get a normalized central limit theorem using Σ̂2
C∗2 (u,v)

is to consider MN � b|T |1/4c and |V (N,(1,1)| �
√
|T |.

The result below is a direct consequence of Theorem 3.1: the consistency of the estimator for

Σ2
s,(ui,uj)

, introduced in Proposition 2.1.

Corollary 3.1. Let X be a Gaussian random field satisfying Assumptions (A0) and (A1). Define,

the estimator of Σ2
s,(ui,uk), where (i, k) ∈ {1, . . . ,m}2, by

Σ̂2
s,(ui,uk) = 2π exp

{1

2
(̂s2
ui + ŝ2

uk
)
}

Σ̂2
C∗2 ,(ui,uk), (18)

with ŝu := ŝu,T (N) as in Proposition 2.1. Then, it holds that, for (i, k) ∈ {1, . . . ,m}2,

Σ̂2
s,(ui,uk)

P−→
N→∞

Σ2
s,(ui,uk).

Case of the Euler characteristic (` = 0 in Equation (14)) In the case of the Euler charac-

teristic (` = 0), the same proof should generalize under the following additional assumption.

(A3) Suppose that Assumption (A2) holds true with |Mr(t)| ≤ CM/(1 + ‖t‖)τ where CM is a

positive constant and τ > 2.

Indeed there is a Itô-Wiener chaos decomposition of L0(X,u, T ) (see the Additional Supporting

Information) with similar properties on the coefficients. However, computing the fourth moment

with this chaos decomposition would imply to use the diagram formula in dimensions 18 and 24,

which become extremely technical and burdensome. Therefore, we give in the Additional Supporting

Information some ingredients to establish the following Conjecture 3.1 which is an equivalent of

Proposition 3.1 in the case of the Euler characteristic having for all (i, j) ∈ {1, . . . ,MN}2,

ξ̂
(i,j)
N (u) = Ĉ

/V (N,(i,j))

0 (X,u) =
L0(X,u, V (N,(i,j)))

|V (N,(i,j))|
.

The missing step in the proof to have the result is the computation of the diagram formula in

dimensions 18 and 24.
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Conjecture 3.1. Let X be a Gaussian random field satisfying Assumptions (A0) and (A3). Let

T and T ′ be such that |T | = |T ′| and dist(T, T ′) → ∞. Let u1, u2, u3, u4 be four fixed levels in R.

Then it holds that

E[L0(X,u1, T )L0(X,u2, T )L0(X,u3, T
′)L0(X,u4, T

′)]

=
w4

(2π)6
exp{−1

2
(s2
u1

+ s2
u2

+ s2
u3

+ s2
u4

)}su1su2su3su4 |T |4 +O(|T |3),

where w denotes the effective spectral moment of X in Definition 1.2.

Mimicking the proof of Theorem 3.1, we derive that a consequence of Conjecture 3.1 is that

Σ̂2
C∗0 ,(uq ,uk)

P−→
N→∞

Σ2
C∗0 ,(uq ,uk). (Conjecture)

Then, using (Conjecture), one can conjecture the consistency of the estimator for Σ2
w,(ui,uj)

, intro-

duced in Proposition 2.2.

Conjecture 3.2. Let X be a Gaussian random field satisfying Assumptions (A0), (A1) and (A3).

Define the estimator of Σ2
w,(ui,uk), where (i, k) ∈ {1, . . . ,m}2,

Σ̂2
w,(ui,uk) =

(2π)3
(

Σ̂2
C∗0 ,(ui,uk) + Σ̂2

s,(ui,uk)(̂s
2
ui − 1)(̂s2

uk
− 1)Ĉ0,T (N)(X,ui)Ĉ0,T (N)(X,uk)

)
ŝ2
ui ŝ

2
uk

exp
{
−
( ŝ2
ui
2 +

ŝ2
uk
2

)} ,

with ŝu := ŝu,T (N) as in Proposition 2.1, Σ̂2
s,(ui,uk) as in (18) and Ĉ0,T (N)(X,uk) as in (10). Then,

Σ̂2
w,(ui,uk)

P−→
N→∞

Σ2
w,(ui,uk).

3.2 Statistical implications and numerical illustrations

In this section we consider several useful applications of theoretical results provided in Sections

2 and 3.1. Indeed, the asymptotically Gaussian estimators of the unknown location and scale

parameters and the subwindow empirical variance estimators are used in the following to build a

test of Gaussianity using LK densities (see Section 3.2.1). A procedure to build an interval for the

unknown location µ of the field is given in Section 3.2.2.

3.2.1 A Gaussianity test for non standard fields

Here we generalize the test in Section 3.1 of Biermé et al. (2019) in cases where the field is not

supposed to be centered and with unit variance. In this section we are interested in testing

H0 : X is a Gaussian field with unknown mean and unknown variance.
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Consider the quantities

R(u1, u2) :=
C∗0 (X,u2)

C∗0 (X,u1)

under H0=
su2

su1

exp

{
−1

2
(s2
u2
− s2

u1
)

}
:= RH0(u1, u2).

This ratio is empirically accessible provided the field is observed at two distinct levels u1 and u2,

R̂T (u1, u2) :=
Ĉ0,T (X,u2)

Ĉ0,T (X,u1)
. (19)

We establish below a central limit theorem for R̂T (u1, u2). Notice that one can readily establish

a CLT for
√
|T |
(
R̂T (u1, u2)−RH0(u1, u2)

)
using, for instance, Proposition A.1, but conversely to

Section 3.1 of Biermé et al. (2019), as RH0(u1, u2) is now unknown, this CLT does not allow to

determine a rejection level. To overcome that problem, define

R̂H0
T (u1, u2) :=

ŝu2

ŝu1

exp

{
−1

2

(̂
s2
u2
− ŝ2

u1

)}
. (20)

For technical reasons, we estimate R̂T1(u1, u2) and R̂H0
T2

(u1, u2) on rectangles T1 and T2 that are

asymptotically infinitely distant so that both excursion sets are asymptotically independent and

lead to independent estimators (see also Remark 2).

Proposition 3.2. Assume that X is a Gaussian field satisfying Assumptions (A0), (A1) and (A2).

Let u1, u2 6= µ being fixed. Let T1 and T2 be two rectangles in R2 such that dist(T1, T2) > 0 and

|T1| = |T2| > 0. For any positive integer N , we define T
(N)
i = {Nt : t ∈ Ti}, for i = 1, 2. Then,

under H0 it holds that√
|T (N)

1 |
(
R̂
T

(N)
1

(u1, u2)− R̂H0

T
(N)
2

(u1, u2)
) d−−−−→
N→∞

N (0, σ2
Ru1,u2

),

where σ2
Ru1,u2

<∞ and R̂
T

(N)
1

(u1, u2) (resp. R̂H0

T
(N)
2

(u1, u2)) is defined as in (19) (resp. in (20)) built

on the observation T
(N)
1 ∩ EX(u1) and T

(N)
1 ∩ EX(u2) (resp. T

(N)
2 ∩ EX(u1) and T

(N)
2 ∩ EX(u2)).

Proof of Proposition 3.2 is postponed to Section A.2.

Subwindow empirical estimation of variance σ2
Ru1,u2

We provide a normalized version of

Proposition 3.2, we build a consistent estimator for σ2
Ru1,u2

, i.e.,

σ̂2
Ru1,u2

= σ̂2
g(C∗0 ),(u1,u2) + σ̂2

h(s),(u1,u2) := V̂(R̂
T

(N)
1

(u1, u2)) |T (N)
1 |+ V̂(R̂H0

T
(N)
2

(u1, u2)) |T (N)
2 |. (21)
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Consistent estimators for V(R̂T (N)(u1, u2)) and V(R̂H0

T (N)(u1, u2)) are obtained using the subwindows

technique of Section 3.1. Define σ̂2
h(s),(u1,u2) in (21) by

σ̂2
h(s),(u1,u2) = e−(̂s2

u2
−ŝ2

u1
)
[
σ̂2

su2

(
1−ŝ2

u2
ŝu1

)2
+ 2 Σ̂2

s,(u1,u2)

(
1−ŝ2

u2
ŝu1

)(
ŝu2 −

ŝu2

ŝ2
u1

)
+ σ̂2

su1

(
ŝu2 −

ŝu2
ŝu1

2)2]
,

with ŝui := ŝ2

ui,T
(N)
2

defined in (11), Σ̂2
s,(u1,u2) and σ̂2

sui
as in Corollary 3.1. From Proposition 2.1 and

Corollary 3.1, it holds that σ̂2
h(s),(u1,u2)

P−→
N→∞

σ2
h(s),(u1,u2).

Similarly, define σ̂2
g(C∗0 ),(u1,u2)

σ̂2
g(C∗

0 ),(u1,u2)
=

σ̂2
C∗

0 ,u2

Ĉ
0,T

(N)
1

(X,u1)2
− 2

Ĉ
0,T

(N)
1

(X,u2)

Ĉ
0,T

(N)
1

(X,u1)3
Σ̂2

C∗
0 ,(u1,u2)

+
Ĉ

0,T
(N)
1

(X,u2)2

Ĉ
0,T

(N)
1

(X,u1)4
σ̂2
C∗

0 ,u1
,

with Ĉ
0,T

(N)
1

(X,ui) as in (10) and Σ̂2
C∗0 ,(u1,u2) as in (Conjecture).

Take a confidence level α ∈ (0, 1) and set q1−α
2

such that P(|N(0, 1)| ≤ q1−α
2
) = 1 − α

2 . We define

the symmetric test φT (N) with asymptotic level α as

φ
T

(N)
1 ,T

(N)
2

= 1
√√√√ |T (N)

1 |
σ̂2
Ru1,u2

∣∣∣R̂
T

(N)
1

(u1,u2)−R̂H0

T
(N)
2

(u1,u2)

∣∣∣≥q1−α2

, (22)

where σ̂2
Ru1,u2

is the consistent variance estimator built before.

Comments The test statistic is well defined for all levels u 6= µ, similarly to Biermé et al. (2019)

where we could not use the level u = 0. Here µ is unknown and choosing u1 close to µ will

make the ratio R̂T (u1, u2) unstable. A solution is to modify the test statistics and consider the

difference R̃T (u1, u2) = Ĉ0,T (X,u2)− Ĉ0,T (X,u1) instead. The test could be modified accordingly

at the expense of more tedious calculations, in particular due to the fact that the unknown quantity

w := λ
σ2 will appear in the test statistics R̃T (u1, u2) under H0.

Furthermore, under H0 we do not impose any constraint on the shape of the covariance function

nor on the spectral moment other than Assumptions (A1) and (A2). However, contrary to the case

where the field is centered with unit variance (see Biermé et al. (2019)), the test statistic under H0

depends on unknown quantities (µ, σ2).

Establishing the consistency of the test, even for particular alternatives H1, is a delicate problem

as it requires the knowledge of a limit theorem for Ĉ0,T (X,u) as well as a good understanding of

the value R(u1, u2) under the alternative. One possible hypothesis H1 is

H1 : ∃ k ≥ 3, X is Student random field with k unknown degrees of freedom.
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Under H1, we can derive the ratio

R(u1, u2) :=
C∗0 (X,u2)

C∗0 (X,u1)

under H1=
u2

u1

(
k + u2

2

k + u2
1

) 1−k
2

:= RH1(u1, u2).

As explained in Section 3.1 in Biermé et al. (2019), if a joint central limit theorem for Lipschitz-

Killing curvatures for Student fields was known this would entail the consistency of the test in (22),

i.e., PH1(φ
T

(N)
1 ,T

(N)
2

= 1) −→
N→∞

1.

3.2.2 Interval containing the unknown location µ

We propose the following construction for an interval containing the unknown location µ of the field

based on the observations T ∩ EX(u1), for J fixed levels u1 < . . . < uJ .

Procedure to build interval for the unknown location of the field

Input :

Let J ∈ N be fixed, the field X is observed at levels u1 < . . . < uJ .

Estimation :

Let σ̂2
suj

:= Σ̂2
s,(ui,ui)

, with j ∈ {1, . . . , J} and Σ̂2
s,(ui,ui)

as in (18).

Define ĵ = argmin
j∈{1,...,J}

σ̂2
suj

and

ĵ±1 =


ĵ + 1 if σ̂2

su
ĵ+1
≤ σ̂2

su
ĵ−1

ĵ − 1 if σ̂2
su
ĵ−1
≤ σ̂2

su
ĵ+1

,

Final output :

The following interval contains µ with large probability: Iµ :=
[

min{uĵ , uĵ±1},max{uĵ , uĵ±1}
]

with convention that if ĵ = 0, Iµ := [−u1, u0] and if ĵ = J , Iµ := [uJ ,−uJ−1].

Proposition 3.3. It holds that P
(
µ ∈

[
min{uĵ , uĵ±1},max{uĵ , uĵ±1}

])
−→
T↗R2

1.

Proof of Proposition 3.3 is postponed to Section A.2.
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4 Test to compare two images of excursion sets

Let Y and Z be two Gaussian fields satisfying Assumptions (A0) and (A1) with possibly different

mean, variance, spectral moment or correlation function. Suppose one has two images of the

excursion sets of these fields observed at the respective levels uY and uZ and wants to know if it

is possible to compare the Lipschitz-Killing curvatures of theses two images, i.e. one want to test

whether the effective level of Y (denoted by suY (Y )) is equal to the effective level of Z (denoted by

suZ (Z)):

H0 : suY (Y ) = suZ (Z) H1 : suY (Y ) 6= suZ (Z).

Introduce the quantity S(Y, Z) := suY − suZ and ŜT (N)(Y, Z) := ŝuY ,T (N) − ŝuZ ,T (N) its empirical

counterpart. Notice that S(Y,Z) = 0 under the null hypothesis. We can now state the auto-

normalised central limit theorem for the test statistics ŜT (N)(Y,Z).

Corollary 4.1. Let X be a Gaussian random field satisfying Assumptions (A0) and (A1). It holds

that √
1

Σ̂Y,Z

ŜT (N)(Y, Z)
d,H0−−−−→
N→∞

N (0, 1), where Σ̂Y,Z = σ̂2
s,uY

+ σ̂2
s,uZ

,

with σ̂2
s,uY

:= Σ̂2
s,(uY ,uY ) ( resp. σ̂2

s,uZ
:= Σ̂2

s,(uZ ,uZ)), the consistent estimator of the variance in (18).

Corollary 4.1 is proved by using Proposition 2.1, Corollary 3.1 and Theorem 3.1. Notice that due

to the independence of the two considered images, we get a simplified expression for the asymptotic

variance.

Let q1−α
2

be such that P(|N(0, 1)| ≤ q1−α
2
) = 1− α

2 . Finally, we introduce the symmetric test φT (N)

with asymptotic level α:

φT (N) = 1{√
1

Σ̂Y,Z

∣∣∣Ŝ
T (N) (Y,Z)

∣∣∣≥ q1−α2 }. (23)

Clearly the test proposed in Equation (23) is consistent: under H1 : suY (Y ) 6= suZ (Z), the test

statistics ŜT (N)(Y,Z) diverges.

In the following, we evaluate the performances of the proposed test φT (N) in (23) on simulated

mammograms (from a digital texture model, see Section 4.1) and on real mammograms (from mini-

MIAS database, see Section 4.2). In particular, we aim to test whether the effective level of an

image is equal to the effective level of another one.
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4.1 Comparing images of excursion sets: a synthetic mammograms study

The data-set In this section we consider images from a recent solid breast texture model inspired

by the morphology of medium and small scale fibro-glandular and adipose tissue observed in clinical

breast computed tomography (bCT) images (UC Davis database). Each adipose compartment is

modeled as a union of overlapping ellipsoids and the underlying dynamic is dictated by a spatial

marked point process. The contour of each ellipsoid is blurred to render the model more realistic

(for details see Li et al. (2016), Section 2.2 and Figure 1). Finally, the synthetic mammograms

images were simulated by x-ray projection. Evaluation provided in Li et al. (2016) has shown that

simulated mammograms and digital breast tomosynthesis images are visually similar, according to

medical experts.

We consider 15 simulated 2D images generated by this texture model. The images were kindly

provided by GE Healthcare France, department Mammography. From a clinical point of view,

radiologists use the Breast Imaging Reporting and Data System (or BI-RADS) to classify breast

density into four categories. They go from almost all fatty tissue to extremely dense tissue with

very little fat. In this latter category, it can be hard to see small tumors in or around the dense

tissue. The images we studied belong to three morphologic situation groups :

(F) Almost entirely adipose breasts;

(FG) Scattered fibro-glandular dense breasts;

(D) Heterogeneously dense breasts.

Almost entirely adipose breasts

50 100 150 200 250

50

100

150

200

250

Scattered fibro-glandular dense breasts

50 100 150 200 250

50

100

150

200

250

Heterogeneously dense breasts

50 100 150 200 250

50

100

150

200

250

Figure 4: Synthetic digital mammograms study. Image 1.F from group (F) (left), 1.FG from group

(FG) (center) and 1.D from group (D) (right). Image size: 251× 251.

The first image from each group is reported in Figure 4. As observed in Section 3 in Li et al. (2016),
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these simulated digital mammograms from groups (F), (FG) and (D) show a high visual realism

compared to real images in these 3 different clinical situations (see also Figure 8).

Importance of the effective level In Figure 5 (left) we estimate the effective levels ŝu for

different values of u. One can appreciate that the estimated effective levels are different for each

group of mammograms. Moreover, it seems there exists an order between the three groups of

mammograms in terms of effective levels. This means that if one want to compare images from

different groups, one cannot use the same value of u to perform the comparison. Indeed, in Figure 5

(right-up) we display the excursion sets of the first image of each groups (denoted image 1.F, 1.FG

and 1.D in Figure 4) for the same fixed level u = 2200. The resulting excursion sets look completely

different from one group to the other. However this difference is not necessarily the result of a

intrinsic difference between the images, but a problem in the calibration of the level u used for the

comparison. On this example, as we observed in Figure 5 (left) a difference between the groups of

effective levels, we calibrate a level u for each group such that they all have an effective level close

to 0, i.e., adaptive levels ũ, such that |̂sũ| < ε, for ε = 10−2. Notice that this choice guarantees

a minimal variance for the estimated effectively level (see Corollary 2.1). Figure 5 (right-down) is

obtained by considering ũ1.F = 2133, ũ1.FG = 2291, ũ1.D = 2518.

We observe now that the excursion sets in Figure 5 (right-down) look visually similar. Moreover,

at these levels ũ, we theoretically expect to get estimated Euler characteristic values close to zero

(see Equation (7)). This behavior is illustrated in the boxplots gathered in Figure 6.
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Figure 5: Synthetic digital mammograms study. Left: Estimated ŝu for several values of u for each

image: group (F) in blue curves, (FG) in green curves and (D) in red ones. Right: Excursion sets

for a fixed level u = 2200 (first row) and for the three adaptive levels ũ, such that for each ũ it

holds that |̂sũ| < ε, for ε = 10−2 (second row).
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Figure 6: Synthetic digital mammograms study. Boxplots of the estimates Ĉ0,T (ũ) in (10), for each

group of images (group (F) in left panel, (FG) in center and (D) in right one) with adaptive levels

ũ, such that for each ũ it holds that |̂sũ| < ε, for ε = 10−2.

Then, any geometric estimated quantity (as for instance the Lipschitz-Killing curvatures) on these

excursion sets cannot be compared at the same levels but at the same effective levels.
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Testing two images of excursion sets We now test for the 1.F, 1.FG, 1.D images in Figure 4:

H0 : sũY (Y ) = sũZ (Z) versus H1 : sũY (Y ) 6= sũZ (Z), (24)

for Y,Z ∈ {1.F,1.FG, 1.D}, where ũY and ũZ are the adaptive levels previously defined and such

that |̂sũ| < 10−2, i.e., the associated Ĉ0,T (ũ) is zero (see right panel of Figure 5 and boxplots in

Figure 6).

Indeed, for these levels ũ1.F , ũ1.FG, ũ1.D, the p−values of the test (24), gathered in Table 1 below,

lead to accept the H0 hypothesis. This preliminary adjustment of the image level is necessary to

properly compare the excursion sets. In case only two excursion sets are available and not the whole

images, this test (24) can be a preliminary prerequisite to determine whether or not it is legitimate

to perform a comparison between these images.

1.F versus 1.FG 1.F versus 1.D 1.FG versus 1.D

0.9858 0.9511 0.9642

Table 1: Synthetic digital mammograms study. p−values associated to the test H0 : sũY (Y ) =

sũZ (Z) for excursion sets in Figure 5 (right, second row) with ũ1.F = 2133, ũ1.FG = 2291, ũ1.D =

2518.

We now consider 1000 different values of u and for each u we perform the following test

H0 : su(Y ) = su(Z) versus H1 : su(Y ) 6= su(Z), (25)

for Y, Z images of this synthetic mammograms data-set. Notice that, contrary to the test (24), we

did not previously choose adaptive levels. Then the test (25) is performed for possible different

effective levels su. In Table 2 we display the number of p−values associated to the 1000 values of u

that are smaller than the significant level α = 0.2. In particular we perform an intra-class analysis

(left panel in Table 2) and an inter-classes analysis (right panel in Table 2).
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Groups α = 0.2 Intra-class Analysis

Image 2.F 3.F 4.F 5.F

F

1.F 118 153 153 204

2.F 89 126 226

3.F 117 211

4.F 250

Image 2.FG 3.FG 4.FG 5.FG

FG

1.FG 14 105 2 4

2.FG 74 58 21

3.FG 129 123

4.FG 5

Image 2.D 3.D 4.D 5.D

D

1.D 3 8 168 110

2.D 82 190 188

3.D 70 5

4.D 48

α = 0.2 Inter-classes Analysis

Image 1.FG 2.FG 3.FG 4.FG 5.FG

1.F 1000 1000 1000 1000 1000

2.F 694 1000 1000 712 1000

3.F 686 1000 1000 715 1000

4.F 641 1000 1000 633 818

5.F 1000 1000 1000 1000 1000

Image 1.FG 2.FG 3.FG 4.FG 5.FG

1.D 1000 1000 1000 1000 1000

2.D 1000 774 1000 1000 890

3.D 1000 1000 1000 1000 1000

4.D 1000 1000 1000 1000 1000

5.D 1000 1000 1000 1000 1000

Image 1.D 2.D 3.D 4.D 5.D

1.F 1000 1000 1000 1000 1000

2.F 1000 1000 1000 1000 1000

3.F 1000 1000 1000 1000 1000

4.F 1000 1000 1000 1000 1000

5.F 1000 1000 1000 1000 1000

Table 2: Synthetic digital mammograms study. Number of p−values associated to the 1000 different

values of u that are smaller than the significant level α = 0.2. The numbers larger than α× 1000 =

200 for which H0 is rejected.

In the intra-class analysis only tests involving the image 5.F lead to a number of p−values slightly

larger than α×1000 = 200, for which H0 is rejected1. In all the other cases, the test accepts the H0

hypothesis (see left-side Table 2). Conversely in the inter-classes analysis all the obtained numbers

of p−values are much higher than 200 (right-side table). This means that, to properly compare

excursion set of a given level u for images belonging to different classes, a previous effective level

1The same atypical behavior for figure 5.F has been previously observed in Biermé et al. (2019), where the same

data-set is studied.
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scaling is necessary.

Finally, we provide a graphical illustration of the test in (25) for three couple of images (2.F and

3.F, first panel; 1.F versus 5.D, second panel; 1.F and 3.FG, third panel). In bold marked points

we represent the cases when the test (25) rejects H0 for at level α = 0.2. These points are drawn

on the estimates ŝu, for 1000 values of u. Coherently, the test accepts H0 (see Table 2) in the first

panel of Figure 7 (intra-classes analysis) except for some extreme values of level u. Conversely, the

test (25) rejects the H0 hypothesis for the values of u in the considered grid in the last two panels

of Figure 7 (inter-classes analysis).
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ŝ
u

-3

-2

-1

0

1

2

3

Figure 7: Synthetic digital mammograms study. Estimation of ŝu for 1000 different values of u and

couples of images: 2.F and 3.F (first panel); 1.F versus 5.D (second panel); 1.F and 3.FG (third

panel). In bold marked points we represent the cases where the test (25) rejects H0 for a significant

level α = 0.2. Group (F) is displayed using blue curves, (FG) green curves and (D) red ones.

4.2 Comparing images of excursion sets: a real digital mammograms study

The data-set The Mammographic Image Analysis Society (MIAS) is an organisation of UK

research groups interested in the understanding of mammograms and has produced a database of

real digital mammograms. The range of intensity in all images is represented from 0 to 255 and

we consider images size of 250 × 250 pixels. We study 211 mammograms classified in terms of the

character of background tissue: fatty tissue group (F) (66 images), fatty-glandular (FG) (67 images),

and dense (D) (77 images). Mammographic images are available online: http://peipa.essex.ac.

uk/info/mias.html (see also Suckling et al. (1994)). One image of each group is displayed in

Figure 8.
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Figure 8: Real digital mammograms study. Image from group fatty background tissue (F) (left),

from group fatty-glandular (FG) (center) and from group dense (D) (right). Image size: 251× 251.

Inference and testing for effective level For this real mammograms data-set, similarly to

Figure 7, we perform the test in (25) and we display in bold marked points the cases when the

test rejects H0 for a significant level α = 0.2 (see Figure 9 below). These points are drawn on

the estimates ŝu, for the considered values of u. For the sake of brevity we only display here the

inter-classes analysis. Notice that in the first panel of Figure 9 we choose the difficult comparison

between the two closest images between groups F and FG.
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Figure 9: Real digital mammograms study. Estimation of ŝu for several levels u and a couple of

images. From left to right: 1.F versus 1.FG, 1.F versus 1.D, 1.FG versus 1.D, 27.F versus 19.FG,

27.F versus 20.D, 19.FG versus 20.D. In bold marked points we represent the relative u values such

that the test (25) rejects H0 for a significant level α = 0.2. Group (F) is displayed using blue curves,

(FG) green curves and (D) red ones.

Remark that the H0 hypothesis is accepted for almost all the levels u in the considered grid in the

first and the last panels of Figure 9, due to the visible proximity of the effective levels ŝu. In the

second, third and fourth panel, the H0 hypothesis is rejected for all u and the associated excursion
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sets can not be compared without a preliminary image processing. The fifth panel in Figure 9

represents an interesting hybrid situation. Almost everywhere H0 is rejected except for a small

interval of u’s values where H0 is accepted. In this small range of u, the relative excursion sets can

be considered visually similar.

Analogously to Table 2, we now perform the test (25) to compare all possible combinations of

excursion sets of images in this data-set in a grid of 200 values of level u ∈ [100, 240]. In boxplots of

Figure 10 we display the number of p−values associated to intra and inter-classes analyses for 200

different values of u ∈ [100, 240] that are smaller than the significant level α = 0.2. The reference

value is represented by the horizontal line at level α× 200 = 40, above which H0 is rejected.
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Figure 10: Real digital mammograms study. Intra and inter-classes analysis for the test to

comparing images from the considered 3 groups. We display the boxplots of number of p−values

associated to the 200 different values of u ∈ [100, 240] that are smaller than the significant level

α = 0.2. In horizontal line we display the reference threshold α × 200 = 40, above which H0 is

rejected.

As one can expect, in Figure 10 we observe differences in terms of the medians and of the variances:

the intra-classes boxplots (first three boxplots) have smaller median and variance values with respect

to the inter-classes ones (last three boxplots). As in Section 4.1, this study suggests that the effective

level scaling procedure seems to be necessary especially in the comparison of two images of excursion

sets belonging to two different background tissue groups.

29



5 Conclusions and discussion

In this paper, we have presented new statistics based on the average LK curvatures of the excursion

set of a stationary non-standard isotropic Gaussian field X on R2, in particular on the Euler

characteristic, the half perimeter and the area. These tools allow to build consistent inference

procedures based only on a sparse observation of the Gaussian 2D random field with unknown

location and scale parameters. A byproduct is the construction of a test to determine if two images

of excursion sets can be compared. Here we discuss some potential improvements of the results

proposed in this work.

Firstly, notice that in Sections 3.2 and 4, our testing procedure results relied mostly on the area and

not on the Euler characteristic devise. The reason being that for the Euler characteristic we did not

fully establish the consistency of its asymptotic variance estimator, therefore limiting the possibility

to properly calibrate statistical procedures. If Conjecture 3.1 was proved, this would enlarge the

options for testing and inference. Besides, if a joint auto-normalized central limit theorem for(
C
/T
0 (X,u), C

/T
2 (X,u)

)
was available, this would imply results on the joint behavior of (̂su,T , ŵu,T )

in Definition 2.1 and the possibility to build consolidated tests using both quantities.

Secondly, inspired by the analysis of Sections 4.1 and 4.2, the effective level could be useful to build

a “classification criterion” between the three groups (F), (FG) and (D). Indeed, the estimated ŝu

seems globally able to distinguish images coming from different groups relying exclusively on the

sparse information of the excursion set with a same level u.

To explore this idea, in Figure 11 we represent for the real digital data-set the adaptive level u (y

axis) for all considered 211 images such that the estimated effective level ŝu is approximated equal

to δ, for several values of δ and where the different groups are distinguished in notation.
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Figure 11: Real digital mammograms study. Adaptive level u (i.e., level u such that su is close to

a given value δ, y axis) for all images (x axis), such that |̂su − δ| < ε, for ε = 10−2 and δ = 0 (first

panel) δ = 0.5 (second panel), δ = 1 (third panel) and δ = 3 (fourth panel). Images from group

fatty (F) are displayed by blue starts, fatty-glandular group (FG) by green crosses and dense group

(D) by red points.

Visually, it appears that for small values of δ (i.e., for intermediate values of u) the groups might

be classified from their effective level. Obviously, for large values of δ (i.e., for extreme values of

u) the quality of the separation of groups is less good, as one can expect (see last panel of Figure

11). Moreover, one can expect that for large values of the level u, the obtained classes will be more

distant also due to the large variance of the effective level estimator (see Corollary 2.1). However

globally, this tool seems adequate to recognize the underlying background breast tissue. However an

investigation on a rigorous classification procedure based on effective levels remains an open point

and is left for future works.

Finally, in the present paper, the empirical estimator of the variance is obtained from the cutting

of the domain T (N), as described in Section 3.1 and illustrated in Figure 3. While the theoretical

constraints of the cutting procedure are clear, its practical and numerical implementation has to be

treated carefully. Indeed we need simultaneously that MN →∞ (i.e., a large number of subwindow

domains) and that dist(V (N,(i,j)), V (N,(i′,j′)))→∞ (i.e., the size of each subwindow domain is large).

As previously described in Bulinski et al. (2012), this is the crucial and well known compromise

between variance and bias. Indeed, Bulinski et al. (2012) provide a numerical study in the very

specific case of a spherical covariance model to find the best subwindow size in order to minimize

the mean error for the variance estimator for three intermediate levels u. The appropriate size and

the form (e.g., square, rectangular, . . . ) of the subwindow is a crucial issue in applications (see
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Section 4). Furthermore, the cutting of T (N) has to guarantee that in each subwindow one can find

observations of the excursion set at the chosen level u ∈ R. Then, the subwindow procedure is also

implicitly related to the choice of the (intermediate, large or extremes) value of observation level u.
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A Proofs

A.1 Preliminary results

In the following we prove two auxiliary consistency results for Ĉ0,T (N)(X,u) and Ĉ2,T (N)(X,u).

Proposition A.1. Let X be a Gaussian random field satisfying Assumptions (A0) and (A2).

(i) Let T1, . . . , Tm be m cubes in Rd such that |T1| = . . . = |Tm| and dist(Ti, Tj) > 0 for all

i 6= j ∈ {1, . . . ,m}2. Let u1, . . . , um be m levels in R, for any integer N > 0 and Ĉ
0,T

(N)
i

(X,ui) as

in (10), let

Q
(N)
i :=

√
|T (N)
i | (Ĉ

0,T
(N)
i

(X,ui)− C∗0 (X,ui)), for i ∈ {1, . . . ,m}.

As N → +∞,
(
Q

(N)
i , . . . , Q

(N)
m

)
converges in distribution to a centered Gaussian vector with co-

variance matrix diag(σ2
C∗0 ,u1

, . . . , σ2
C∗0 ,um

) where σ2
C∗0 ,ui

< +∞, ∀i ∈ {1, . . . ,m}.

(ii) Let T be a cube in Rd, u1, . . . , um be m levels in R. For any integer N > 0 and Ĉ0,T (N)(X,ui)

as in (10), let

S
(N)
i :=

√
|T (N)| (Ĉ0,T (N)(X,ui)− C∗0 (X,ui)), for i ∈ {1, . . . ,m}.

As N → +∞,
(
S

(N)
1 , . . . , S

(N)
m

)
converges in distribution to a centered Gaussian vector with co-

variance matrix
(
Σ2
C∗0 ,(ui,uj)

)
1≤i,j≤m with Σ2

C∗0 ,(ui,uj)
< +∞, for i, j ∈ {1, . . . ,m}.

Proof. Let i ∈ {1, . . . ,m}. The ith coordinate of the considered multivariate central limit theorem
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can be written using the following decomposition

Q
(N)
i =

√
|T (N)
i |(Ĉ

0,T
(N)
i

(X,ui)− C∗0 (X,ui)) =

√
|T (N)
i |

(
C
/T

(N)
i

0 (X,ui)− E[C
/T

(N)
i

0 (X,ui)]
)

− 1

π

√
|T |
(
C
/T

(N)
i

1 (X,ui)− E[C
/T

(N)
i

1 (X,ui)]
) |∂T (N)

i |1
|T (N)
i |

+

√
|T (N)
i |

(
C
/T

(N)
i

2 (X,ui)− E[C
/T

(N)
i

2 (X,ui)]
)( 1

2π

|∂T (N)
i |21

|T (N)
i |2

− 1

|T (N)
i |

)
:= I0(T

(N)
i ) + I1(T

(N)
i ) + I2(T

(N)
i ).

For a Gaussian random field satisfying Assumptions (A0) and (A2), Theorem 1.1 in Kratz and

Vadlamani (2018) and Theorem 2.1 in Müller (2017) give

√
|T (N)
i |

(
C
/T

(N)
i

1 (X,ui)−E[C
/T

(N)
i

1 (X,ui)]
)

admits a Gaussian centered limit distribution and therefore I1(T
(N)
i )

P−−−−→
T↗R2

0. The same discussion

holds for I2(T
(N)
i ). Let

Z
(N)
i =

√
|T (N)
i |(C/T

(N)
i

0 (X,ui)− E[C
/T

(N)
i

0 (X,ui)]) for i ∈ {1, . . . ,m}.

One can adapt the proof of the CLT in Proposition 5 (a) in Di Bernardino et al. (2017) to prove that

for X satisfying Assumptions (A0) and (A2), X(0) ∼ N (µ, σ2) and as N → +∞, (Z
(N)
1 , . . . , Z

(N)
m )

converges in distribution to a centered Gaussian vector with diagonal covariance matrix and finite

elements. Finally, applying the multivariate Slutsky’s theorem we get the item (i). The proof of

(ii) comes down in a similar way using item (b) of Theorem 2.5 in Estrade and León (2016).

Proposition A.2 (Asymptotic normality of (Ĉ2,T (N)(X,u1), . . . , Ĉ2,T (N)(X,um))). Let X be a

Gaussian random field satisfying Assumptions (A0) and (A1). For a positive integer N , con-

sider T (N) = {Nt : t ∈ T} and Ĉ2,T (N)(X,u) the estimator defined in (8) built on the observation

T (N) ∩ EX(ui), where u1, . . . , um are fixed. Then,√
|T (N)|(Ĉ2,T (N)(X,u1)− C∗2 (X,u1), . . . , Ĉ2,T (N)(X,um)− C∗2 (X,um))

converges in distribution to a centered Gaussian vector with m×m covariance matrix (Σ2
C∗2 ,(ui,uj)

)1≤i,j≤m

given by Σ2
C∗2 ,(ui,uj)

= 1
2π

∫
R2

∫ ρ(t)
0 g(ui,uj)(r)dr dt ∈ (0,+∞) where

g(ui,uj)(r) =
1√

1− r2
exp

{
−(ui − µ)2 − 2r(ui − µ)(uj − µ) + (uj − µ)2

2σ2(1− r2)

}
.

The proof of Proposition A.2 comes down from Theorem 4 in Bulinski et al. (2012), together with

Shashkin (2002) ensuring Gaussian fields are quasi-associated.
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A.2 Proofs of the obtained results

Proof of Proposition 1.1

The Gaussian kinematic formula provides the mean LK curvatures of excursion sets of X within a

rectangle T (see, e.g., Theorem 15.9.5 in Adler and Taylor (2007) or Theorem 4.8.1, 4.3.1 in Adler

and Taylor (2011)), for u ∈ R and i = 0, 1, 2,

E [Li(X,T, u)] =

2−i∑
l=0

 i+ l

l

 (2π)−l/2
(
λ

σ2

)l/2
Ml(X,u)Li+l(T )

where Lj(T ), j = 0, 1, 2 are defined in (5),

 i+ l

l

 =

(
i+ l

l

)
ωl+i
ωlωi

with ωk the Lebesgue measure

of the k-dimensional unit ball (w0 = 1, w1 = 2 and w2 = π), and, following Formula (3.5.2) in Adler

and Taylor (2011), the coefficients Ml(X,u), l = 0, 1, 2 are obtained having an expansion in θ at

order 2 of

P
(
G(0) ≥ u− µ

σ
− θ
)

= ψ

(
u− µ
σ

)
− θψ′

(
u− µ
σ

)
+

1

2
θ2ψ′′

(
u− µ
σ

)
+O(θ3)

= M0(X,u) + θM1(X,u) +
1

2
θ2M2(X,u) +O(θ3),

where G(0) is a Gaussian random variable with zero mean and unit variance and ψ its tail distri-

bution. This concludes the proof. �

Proof of Proposition 2.2

Set h : s 7→ s exp{−s2/2})/(2π)3/2 and note that |T (N)
1 | = |T (N)

2 |. The ith coordinate of the vector

|T (N)
1 |1/2(ŵ

ui,T
(N)
1 ,T

(N)
2

− w) can be decomposed as follows

√
|T (N)

1 |

[
h(sui)

h(̂su,2)

(
Ĉ

0,T
(N)
1

(X,ui)

h(sui)
− C∗0 (X,ui)

h(sui)

)
+ C∗0 (X,ui)

(
1

h(̂su,2)
− 1

h(sui)

)]
,

where ŝu,2 := ŝ
u,T

(N)
2

. Since h is continuous, using Proposition 2.1 we get h(sui)/h(̂s
ui,T

(N)
2

)
P−→

N→∞
1,

for all 1 ≤ i ≤ m. Then, by using Propositions 2.1 and A.1, the multivariate delta method and that

dist(T
(N)
1 , T

(N)
2 )→∞ as N →∞, we obtain that

√
|T (N)

1 |
(
ŵ
u1,T

(N)
1 ,T

(N)
2

−w, . . . , ŵ
um,T

(N)
1 ,T

(N)
2

−a
)

converges in distribution to a centered Gaussian vector with covariance matrix given by AΣ2
C∗0
At +

BΣ2
1
h

Bt, where .t denotes the matrix transposition, A and B are the diagonal matrices

A = diag

(
1

h(su1)
, . . . ,

1

h(sum)

)
, B = diag

(
C∗0 (X,u1), . . . , C∗0 (X,um)

)
,
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Σ2
C∗0

=
(
Σ2
C∗0 ,(ui,uj)

)
1≤i,j≤m is defined in Proposition A.1, Σ2

1
h

= J 1
h
Σ2
sJ

t
1
h

with Σ2
s =

(
Σ2

s,(ui,uj)

)
1≤i,j≤m

defined in Proposition 2.1 and J 1
h

the m×m Jacobian matrix

J 1
h

= (2π)
3
2 diag

(
(s2
u1
− 1)

s2
u1

exp

{
s2
u1

2

}
, . . . ,

(s2
um − 1)

s2
um

exp

{
s2
um

2

})
.

After computations we get AΣ2
C∗0
At =

( Σ2
C∗0 ,(ui,uj)

h(sui )h(suj )

)
1≤i,j≤m

and

BΣ2
1
h

Bt =

(
(2π)3C∗0 (X,ui)C

∗
0 (X,uj)

(s2
ui − 1)(s2

uj − 1)

s2
uis

2
uj

exp

{
1

2
(s2
ui + s2

uj )

}
Σ2

s,(ui,uj)

)
1≤i,j≤m

.

Adding these expressions provides the desired formula. �

Proof of Proposition 3.2

First, write√
|T (N)

1 |
(
R̂
T

(N)
1

(u1, u2)− R̂H0

T
(N)
2

(u1, u2)
)

=

√
|T (N)

1 |
(
R̂
T

(N)
1

(u1, u2)−RH0(u1, u2)
)

(26)

+

√
|T (N)

2 |
(
RH0(u1, u2)− R̂H0

T
(N)
2

(u1, u2)
)
.

For the first term in (26) we use Proposition A.1 (ii) and the delta method with the function

g : (x, y) 7→ x
y . We get after computations, using that R̂T1(u1, u2) = g

(
Ĉ0,T1(X,u2), Ĉ0,T1(X,u1)

)
,√

|T (N)
1 |

(
g
(
Ĉ

0,T
(N)
1

(X,u2), Ĉ
0,T

(N)
1

(X,u1)
)
− g
(
C∗0 (X,u2), C∗0 (X,u1)

)) d, H0−−−−→
N→∞

N
(

0, σ2
g(C∗0 ),(u1,u2)

)
where

σ2
g(C∗0 ),(u1,u2) =

σ2
C∗0 ,u2

C∗0 (X,u1)2
− 2

C∗0 (X,u2)

C∗0 (X,u1)3
Σ2
C∗0 ,(u1,u2) +

C∗0 (X,u2)2

C∗0 (X,u1)4
σ2
C∗0 ,u1

.

For the second term in (26) we use Proposition 2.1 and apply the delta method with the func-

tion h : (x, y) 7→ x
y exp{−1

2(x2 − y2)}. We get after computations, using that R̂H0

T
(N)
2

(u1, u2) =

h(̂s
u2,T

(N)
2

, ŝ
u1,T

(N)
2

),√
|T (N)

2 |
(
h(su2 , su1)− h(̂s

u2,T
(N)
2

, ŝ
u1,T

(N)
2

)
)

d, H0−−−−→
N→∞

N
(

0, σ2
h(s),(u1,u2)

)
where σ2

h(s),(u1,u2) = ∇h(su2 , su1)′Σ2
s,(u1,u2)∇h(su2 , su1), Σ2

s,(u1,u2) is defined as in Proposition 2.1,

σ2
h(s),(u1,u2) = e−(s2u2

−s2u1
)
[
σ2
su2

(1− s2u2

su1

)2
+ 2Σ2

s,(u1,u2)

(1− s2u2

su1

)(
− su2

s2u1

+ su2

)
+ σ2

su1

(
− su2

s2u1

+ su2

)2]
.

Using dist(T
(N)
1 , T

(N)
2 )→∞ as N →∞ and σ2

Ru1,u2
= σ2

g(C∗0 ),(u1,u2) + σ2
h(s),(u1,u2) we get the result.

�
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Proof of Proposition 3.3

Since J is a finite set and using Corollary 3.1, it immediately holds that(
σ̂2

su1
, . . . , σ̂2

suJ

)
P−−−−→

T↗R2

(
σ2

su1
, . . . , σ2

suJ

)
.

Denote by j∗ = argminj∈{1,...,J}σ
2
suj

, it follows

P(ĵ 6= j∗) = P
( ⋃
j 6=j∗
{σ̂2

suj
≤ σ̂2

suj∗
}
)
≤
∑
j 6=j∗

P(σ̂2
suj
− σ2

suj
+ (σ2

suj
− σ2

suj∗
) ≤ σ̂2

suj∗
− σ2

suj∗
)

≤
∑
j 6=j∗

P(|σ2
suj
− σ2

suj∗
| ≤ |σ̂2

suj∗
− σ2

suj∗
|+ |σ̂2

suj
− σ2

suj
|)

≤
∑
j 6=j∗

(
P(1

2 |σ
2
suj
− σ2

suj∗
| ≤ |σ̂2

suj∗
− σ2

suj∗
|) + P(1

2 |σ
2
suj
− σ2

suj∗
| ≤ |σ̂2

suj
− σ2

suj
|)
)
−−−−→
T↗R2

0,

where we used that J is finite, ∀j 6= j∗, |σ2
suj
− σ2

suj∗
| > 0 and Corollary 3.1. Finally, we derive that

ĵ
P−→ j∗, for T ↗ R2, together with the definition of j∗ and the fact that u 7→ σ2

su is decreasing on

(−∞, µ) and increasing on (µ,∞), the result follows. �

A.3 Proof of Proposition 3.1

Preliminaries on the Itô-Wiener chaos decomposition for L2 Let G := (X − µ)/σ be the

centered and unit variance Gaussian random field associated to X, for all fixed levels u. Recall

that su = (u − µ)/σ, then L2,T (X,u) = L2,T (G, su), which is a square-integrable functional of the

Gaussian field G. It admits an orthogonal decomposition into Itô-Wiener chaos in the L2 sense (see,

e.g., Marinucci and Rossi (2015), Nourdin and Peccati (2012)):

L2(G, su, T ) =

+∞∑
q=0

βq(su)

q!

∫
T
Hq(G(t)) dt,

where Hq is the q-th Hermite polynomial, i.e., for z ∈ R, H0(z) = 1 and

Hq(z) = (−1)q exp{z2/2} dq

dzq
exp{−z2/2}, if q ≥ 1.

The above series converges in L2(P) and for Z ∼ N (0, 1), βq(su) := E
[
1{Z≥su}Hq(Z)

]
. The chaotic

coefficients (βq(su))q≥0 for L2(G, su, T ) are given by: β0(su) = ψ(su) and

βq(su) =

∫ +∞

su

ϕ(z)
(−1)q

ϕ(z)

dq

dzq
ϕ(z)dz = (−1)q−1 dq−1

dzq−1
ϕ(su) = ϕ(su)Hq−1(su),
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for q ≥ 1, where ϕ is the probability density function of Z. Denoting Hφ
q the “physicist Her-

mite polynomials” we have Hφ
q (x) = 2q/2Hq(

√
2x) and it holds ∀x, |(2qq!

√
π)−1/2Hφ

q (x)e−x
2/2| ≤

C∞/(q + 1)1/12 (see Szegő (1959) for the the value of the constant C∞). As, it holds ∀x ∈ R

Hφ
q (x)e−x

2/2 = 2q/2Hq(
√

2x)e−x
2/2 = ex

2/22q/2Hq(
√

2x)e−(
√

2x)2/2,

it follows ∀x ∈ R

|βq+1(
√

2x)| = |Hq(
√

2x)e−(
√

2x)2/2| ≤ e−x2/2
√
q!
√
πC∞/(q + 1)

1
12 ≤ C∞π

1
4

√
q!

(q + 1)
1
12

.

We derive the following inequality, frequently used in the sequel

‖β0‖∞ ≤ 1 and ‖βq‖∞ ≤ cβ

√
(q − 1)!

q
1
12

, q ≥ 1. (27)

The mean of L2(G, su, T ) is its projection onto the 0-th Itô-Wiener chaos E [L2(G, su, T )] = ψ(su)|T |.

The remaining of the proof consists in controlling the order of the fourth moment of L2(G, s., T ),

computed using the chaos decomposition as follows

E[L2(G, su1 , T )L2(G, su2 , T )L2(G, su3 , T
′)L2(G, su4 , T

′)]

=

+∞∑
k1,k2,k3,k4=0

βk1(su1)βk2(su2)βk3(su3)βk4(su4)

k1!k2!k3!k4!

×
∫
T

∫
T

∫
T ′

∫
T ′

E[Hk1(G(t1))Hk2(G(t2))Hk3(G(t3))Hk4(G(t4))] dt1 dt2 dt3 dt4.

Control of a fourth moment of L2(G, s., T ) We sometimes denote T1 = T2 := T and T3 =

T4 := T ′ and use that |T | = |T ′|. We write,

E[L2(G, su1 , T )L2(G, su2 , T )L2(G, su3 , T
′)L2(G, su4 , T

′)] = V0 + V1 + V2 + V3 + V4, (28)

where

V0 : = |T |4β0(su1)β0(su2)β0(su3)β0(su4)

V1 : = |T |3
4∑
j=1

β0(su1)β0(su2)β0(su3)β0(su4)

β0(suj )

+∞∑
kj=1

βkj (suj )

kj !

∫
Tj

E[Hkj (G(tj))] dtj
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V2 : = |T |2
∑

j1 6=j2∈{1,...,4}

+∞∑
ki1

,ki2
=1

i1,i2 6=j1,j2

βki1 (sui1 )βki2 (sui2 )β0(suj1 )β0(suj2 )

ki1 !ki2 !

∫
Ti1

∫
Ti2

E[Hki1
(G(ti1))Hki2

(G(ti2))] dti1 dti2

V3 : = |T |
4∑
j=1

β0(suj )

+∞∑
ki1

,ki2
,ki3

=1

i1 6=j,i2 6=j,i3 6=j

βki1 (sui1 )βki2 (sui2 )βki3 (sui3 )

ki1 !ki2 !ki3 !

×
∫
Ti1

∫
Ti2

∫
Ti3

E[Hki1
(G(ti1))Hki2

(G(ti2))Hki3
(G(ti3))] dti1 dti2 dti3

V4 : =
+∞∑

k1,k2,k3,k4=1

βk1(su1)βk2(su2)βk3(su3)βk4(su4)

k1!k2!k3!k4!

×
∫
T

∫
T

∫
T ′

∫
T ′

E[Hk1(G(t1))Hk2(G(t2))Hk3(G(t3))Hk4(G(t4))] dt1 dt2 dt3 dt4.

It holds V0 = ψ(su1)ψ(su2)ψ(su3)ψ(su4)|T |4 and by orthogonality of Hk1 with H0 = 1, ∀ k1 ≥ 1, we

get V1 = 0. It remains to control the terms V2, V3 and V4.

Control of V2. Using the fact that E[Hk(G(t))Hl(G(s))] = δk,lk!ρ(t − s)k (see e.g. Equation (2.1)

in Breuer and Major (1983)), we get

V2 = |T |2
∑

j1 6=j2∈{1,...,4}

β0(suj1 )β0(suj2 )
+∞∑
k=1

i1,i2 6=j1,j2

βk(sui1 )βk(sui2 )

k!

∫
Ti1

∫
Ti2

ρ(ti1 − ti2)k dti1 dti2

= |T |2
( ∑
j1 6=j2∈I2,1

+
∑

j1 6=j2∈I2,2

)
β0(suj1 )β0(suj2 )

+∞∑
k=1

i1,i2 6=j1,j2

βk(sui1 )βk(sui2 )

k!

∫
Ti1

∫
Ti2

ρ(ti1 − ti2)k dti1 dti2

=: V2,1 + V2,2,

where I2,1 := {(1, 3), (1, 4), (2, 3), (2, 4)} and I2,2 := {(1, 2), (3, 4)}. Using (27), (A1) together with

the fact that on I2,1 the integration is made on distinct rectangles T and T ′, we get

|V2,1| ≤ 4c2
β|T |2

+∞∑
k=1

(k − 1)!

k!k1/6

∫
T

∫
T ′

|ρ(t− t′)|k dt dt′ ≤ 4c2
β|T |2

+∞∑
k=1

1

k1+1/6

∫
T

∫
T ′

1

(1 + ‖t− t′‖)γk
dt dt′

≤ 4c2
β|T |2

+∞∑
k=1

1

k1+1/6

1

dist(T, T ′)γk−2

∫
T

∫
T ′

1

(1 + ‖t− t′‖)2
dt dt′

≤ 4c2
β|T |2

+∞∑
k=1

1

dist(T, T ′)γk−2

∫
R2

1

(1 + ‖t− t′‖)2
dt dt′ ≤ C2,1

|T |2

dist(T, T ′)γ−2
,

where we used Assumption (A1) and dist(T, T ′) > 2, then C2,1 is given by 8c2
β

∫
R2(1+‖t−t′‖)−2dtdt′.
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For V2,2, using (27) and Assumption (A1), we have

|V2,2| ≤ |T |2
(
|β0(su1)β0(su2)|

∞∑
k=1

|βk(su3)βk(su4)|
k!

∫
T ′

∫
T ′
|ρ(t− s)|kdt ds

+ |β0(su3)β0(su4)|
∞∑
k=1

|βk(su1)βk(su2)|
k!

∫
T

∫
T
|ρ(t− s)|kdtds

)
≤ 2c2

β|T |2
∞∑
k=1

1

k1+1/6

∫
T

∫
T

dt ds

(1 + ‖t− s‖)γ
≤ C2,2|T |2,

where C2,2 = 2c2
β

∫
R2(1 + ‖t − t′‖)−2dt dt′

∑
k≥1 k

−1− 1
6 is a constant independent of T . It follows

that V2 = O(|T |2).

Control of V3. To control this term we rely on the diagram formula and the following decomposition

V3 = |T |
4∑
j=1

β0(suj )

+∞∑
ki1

,ki2
,ki3

=1

i1 6=j,i2 6=j,i3 6=j

βki1 (sui1 )βki2 (sui2 )βki3 (sui3 )

ki1 !ki2 !ki3 !

×
∫
Ti1

∫
Ti2

∫
Ti3

E[Hki1
(G(ti1))Hki2

(G(ti2))Hki3
(G(ti3))] dti1 dti2 dti3

= |T |
4∑
j=1

β0(suj )

(
+∞∑

ki1
,ki2

,ki3
=1

i1 6=j,i2 6=j,i3 6=j
ki1

+ki2
+ki3

≤2NT,T ′

+
+∞∑

ki1
,ki2

,ki3
=1

i1 6=j,i2 6=j,i3 6=j
ki1

+ki2
+ki3

>2NT,T ′

)
βki1 (sui1 )βki2 (sui2 )βki3 (sui3 )

ki1 !ki2 !ki3 !

×
∫
Ti1

∫
Ti2

∫
Ti3

E[Hki1
(G(ti1))Hki2

(G(ti2))Hki3
(G(ti3))] dti1 dti2 dti3

= V3,≤NT,T ′ + V3,>NT,T ′ ,

for some positive integer NT,T ′ depending on T and T ′ and such that NT,T ′ →∞ as dist(T, T ′)→∞.

First, note that V3,>NT,T ′ = o(|T |2) as dist(T, T ′)→∞: using that L2(G, su, T ) ≤ |T | a.s. and that

the Itô-Wiener chaos decomposition holds in the L2 sense, we write

V3,>NT,T ′ ≤ C|T |
2 max
u∈{u1,u2,u3,u4}

E
[( ∑

q≥NT,T ′

βq(su)

q!

∫
T
Hq(G(t))dt

)2]
,

which tends to 0 as the remainder of a convergent series. To control this term, we take advantage

of the cutting described in Figure 3.

We now focus on V3,≤NT,T ′ , by symmetry we set k4 = 0 and compute Tk1,k2,k3 := E[Hk1(G1)Hk2(G2)Hk3(G3)]

for kj ≥ 1, j ∈ {1, 2, 3} and (G1, G2, G3) a standard Gaussian (see Taqqu (1977) Definition 3.1), i.e.
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a centered Gaussian vector with E[G2
i ] = 1 and ρi,j := E[GiGj ] such that |ρi,j | ≤ 1, 1 ≤ i, j ≤ 3.

The diagram formula (see Taqqu (1977), Lemma 3.2) gives

Tk1,k2,k3 =


k1!k2!k3!

2qq!

∑
I(k1,k2,k3)

ρi1,j1 . . . ρiq ,jq if k1 + k2 + k3 = 2q, 1 ≤ k1, k2, k3 ≤ q

0 otherwise

(29)

where the set of indices I(k1, k2, k3) is the set of all indices (i1, j1, . . . , iq, jq) such that

i) (i1, j1, . . . , iq, jq) ∈ {1, 2, 3}2q,

ii) i1 6= j1, . . . , iq 6= jq,

iii) there are k1 indices 1, k2 indices 2 and k3 indices 3.

As ρi,j = ρj,i, after multiplying Tk1,k2,k3 by 2q, I(k1, k2, k3) simplifies in Ĩ(k1, k2, k3) the set of all

indices (i1, j1, . . . , iq, jq) such that

i+ii) ((i1, j1), . . . , (iq, jq)) ∈ {(1, 2), (1, 3), (2, 3)}q,

iii) there are q1 times (1, 2), q2 times (1, 3) and q3 times (2, 3) with q1 = k1 + k2 − q = q − k3,

q2 = k1 + k3 − q = q − k2 and q3 = k2 + k3 − q = q − k1.

The cardinality of Ĩ(k1, k2, k3) is

 q

q1, q2, q3

 = q!
q1!q2!q3! . Set J3(q) = {(k1, k2, k3) ∈ {1, . . . , q}3, k1+

k2 + k3 = 2q}, the set of indices where Tk1,k2,k3 is nonzero. Using (27), Assumption (A1) and the

cardinality of Ĩ(k1, k2, k3), it follows from (29) that,

|V3,≤NT,T ′ | ≤ 4 |T | max
u∗∈(u1,u2,u3,u4)

|β0(su∗)|4
NT,T ′∑
q=4

∑
(k1,k2,k3)∈J3(q)

|βk1(su∗)βk2(su∗)βk3(su∗)|
q1!q2!q3!

×
∫
T

∫
T

∫
T ′

|ρ(t1 − t2)|q−k3 |ρ(t1 − t3)|q−k2 |ρ(t2 − t3)|q−k1 dt1 dt2 dt3

≤ 4c3
β |T |

NT,T ′∑
q=4

∑
(k1,k2,k3)∈J3(q)

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!

(k1k2k3)
1
12 (q − k3)!(q − k2)!(q − k1)!

×
∫
T

∫
T

∫
T ′

dt1 dt2 dt3

(1 + ‖t1 − t2‖)γ(q−k3)(1 + ‖t1 − t3‖)γ(q−k2)(1 + ‖t2 − t3‖)γ(q−k1)
.

Set

Aq(k1, k2, k3) :=

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!

(k1k2k3)
1
12 (q − k1)!(q − k2)!(q − k3)!

, k1 + k2 + k3 = 2q.
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Consider the decomposition,

|V3,≤NT,T ′ | ≤ 4c3
β |T |

NT,T ′∑
q=4

( bq/4c∑
k3=1

+

q∑
k3=bq/4c+1

) ∑
k1,k2∈{1,...,q}
k1+k2+k3=2q

Aq(k1, k2, k3)

×
∫
T

∫
T

∫
T ′

dt1 dt2 dt3

(1 + ‖t1 − t2‖)γ(q−k3)(1 + ‖t1 − t3‖)γ(q−k2)(1 + ‖t2 − t3‖)γ(q−k1)

=: 4c3
β |T |

(
V3,1 + V3,2

)
. (30)

First, we consider V3,1, i.e. the set {1 ≤ k3 ≤ bq/4c}. Straightforward computations and the fact

that k3 = 2q − k1 − k2, lead to

V3,1 ≤ |T |
NT,T ′∑
q=4

bq/4c∑
k3=1

1

(dist(T, T ′))γk3

∑
k1,k2∈{1,...,q}
k1+k2=2q−k3

Aq(k1, k2, k3)

∫
T

∫
T

dt1 dt2

(1 + ‖t1 − t2‖)γ(q−k3)
. (31)

For the integral in (31), after two successive changes of variables we get, for all Q > 1 that∫
T

∫
T

dt1 dt2
(1 + ‖t1 − t2‖)Q

=

∫
R

1t1∈T

∫
R

1u∈T−t1
(1 + ‖u‖)Q

dudt1 =

∫
T

(∫ 2π

0

∫
R+

1reiθ∈T−t1
(1 + r)Q

rdrdθ
)

dt1

≤ 2π|T |
∫ ∞

0

rdr

(1 + r)Q
≤ C|T | 1

Q2
, ∀Q > 1, (32)

where the last inequality follows from an integration by part and C is a positive constant. Next,

for all k3 ≤ bq/4c, it holds∑
k1,k2∈{1,...,q}
k1+k2=2q−k3

Aq(k1, k2, k3) =

√
(k3 − 1)!

k
1
12
3 (q − k3)!

∑
k1,k2∈{1,...,q}
k1+k2=2q−k3

√
(k1 − 1)!(k2 − 1)!

(k1k2)
1
12 (q − k1)!(q − k2)!

≤ 2

√
(k3 − 1)!

k
1
12
3 (q − k3)!

q∑
k=q−k3

√
(k − 1)!(2q − k − k3 − 1)!

(k(2q − k − k3))
1
12 (q − k)!(k + k3 − q)!

= 2

√
(k3 − 1)!

k
1
12
3 (q − k3)!

k3∑
`=0

√
(`+ q − k3 − 1)!(q − `− 1)!

((`+ q − k3)(q − `))
1
12 (k3 − `)!`!

≤ 2
(4

3

) 1
12

√
(k3 − 1)!(q − k3 − 1)!(q − 1)!

q
1
6k

1
12
3 (q − k3)!k3!

k3∑
`=0

(
k3

`

)
≤ 2
(4

3

) 7
12 2k3

q1+ 1
6k

7
12
3

√(
q

k3

)
, (33)

where we used that k3 ≤ bq/4c and that ` 7→
√

(`+ q − k3 − 1)!(q − `− 1)! is symmetric and

maximal for ` = 0 (or ` = k3). Injecting (32) and (33) in (31) and using that 1 ≤ k3 ≤ bq/4c, lead

–for a positive constant C whose value may change from line to line– to

V3,1 ≤ C|T |2
NT,T ′∑
q=4

1

q3+ 1
6

bq/4c∑
k3=1

2k3

(dist(T, T ′))γk3

√(
q

k3

)
.
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Set ηT,T ′ :=
(
2/(dist(T, T ′))γ

)
and note that uk : k 7→ ηkT,T ′

√(
q
k

)
is decreasing and bounded by

√
q

iff
uk+1

uk
= ηT,T ′

√
q + 1

k + 1
− 1 ≤ 1 ⇐⇒ k ≥ q + 1

η2
T,T ′ + 1

η2
T,T ′ − 1

which always holds if q ≤ (ηT,T ′)
−2. Finally, fix NT,T ′ := b(ηT,T ′)−2c, note that we have NT,T ′ →∞

as dist(T, T ′)→∞. It follows that

V3,1 ≤ C
|T |2

(dist(T, T ′))γ

NT,T ′∑
q=4

q
√
q

q3+ 1
6

≤ C |T |2

(dist(T, T ′))γ

∞∑
q=4

q−
5
3 = o

(
|T |2

)
. (34)

Second, we study the set {bq/4c+ 1 ≤ k3 ≤ q}, similarly we get

V3,2 ≤ |T |
NT,T ′∑
q=4

q∑
k3=bq/4c+1

∑
k1,k2∈{1,...,q}
k1+k2+k3=2q

Aq(k1, k2, k3)

(dist(T, T ′))γk3

∫
T

∫
T

dt1 dt2

(1 + ‖t1 − t2‖)γ(q−k3)
.

Note that (k1, k2, k3, subject to k1 + k2 + k3 = 2q) 7→ Aq(k1, k2, k3) is maximal for k1 � k2 �

k3 � b2q/3c, and the Stirling formula gives Aq(b2q/3c, b2q/3c, b2q/3c) = O(q−12q). Moreover,

Card
(
(k1, k2, k3), 1 ≤ k1, k2 ≤ q, k3 ≥ bq/4c, k1 + k2 + k3 = 2q

)
≤ q2. It follows that for some

positive constant C,

V3,2 ≤ C |T |
∫
R2

dt1 dt2
(1 + ‖t1 − t2‖)γ

NT,T ′∑
q=4

2q

q
q2 1

(dist(T, T ′))γq/4
. (35)

It follows that for dist(T, T ′) > 24/γ , V3,2 = o(|T |). Observe that the condition for convergence of

this term depends on γ: the larger γ, the weaker is the condition on dist(T, T ′) is. Gathering (34)

and (35) in (30), we derive that V3,≤NT,T ′ = o(|T |3), this together with V3,>NT,T ′ = o(|T |) implies

that V3 = o(|T |3).

Control of V4. Similarly to V3, we rely on the diagram formula and the following decomposition

V4 =

(NT,T ′∑
q≥4

+

∞∑
q=NT,T ′+1

) ∑
(k1,k2,k3,k4)∈N\{0}

βk1(su1)βk2(su2)βk3(su3)βk4(su4)

k1!k2!k3!k4!

×
∫
T

∫
T

∫
T ′

∫
T ′

E[Hk1(G(t1))Hk2(G(t2))Hk3(G(t3))Hk4(G(t4))] dt1 dt2 dt3 dt4

= V4,≤NT,T ′ + V4,>NT,T ′ ,
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for some positive integer NT,T ′ depending on T and T ′ and such that NT,T ′ →∞ as dist(T, T ′)→∞.

Using similar arguments as for V3,>NT,T ′ , we derive that V4,>NT,T ′ = O(|T |2) as dist(T, T ′)→∞.

We focus on V4,≤NT,T ′ and compute Tk1,k2,k3,k4 := E[Hk1(G1)Hk2(G2)Hk3(G3)Hk4(G4)] for kj ≥ 1,

j ∈ {1, 2, 3, 4} and (G1, G2, G3, G4) a standard Gaussian (see Taqqu (1977) Definition 3.1) with

ρi,j := E[GiGj ] = ρj,i such that |ρi,j | ≤ 1, for 1 ≤ i, j ≤ 4. The diagram formula –taking into

account that ρi,j = ρj,i, which comes down to multiplying the one given in Taqqu (1977), Lemma

3.2, by 2q (see also proof of Lemma 10.7 in Azäıs and Wschebor (2009)– gives

Tk1,k2,k3,k4 =


k1!k2!k3!k4!

q!

∑
I(k1,k2,k3,k4)

ρi1,j1 . . . ρiq ,jq if k1 + . . .+ k4 = 2q, 1 ≤ k1, k2, k3, k4 ≤ q,

0 otherwise,

(36)

where the set of indices I(k1, k2, k3, k4) is the set of all indices (i1, j1, . . . , iq, jq) such that

i+ii) ((i1, j1), . . . , (iq, jq)) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}q =: Ipairq,

iii) there are k1 indices 1, k2 indices 2, k3 indices 3 and k4 indices 4.

For q ∈ N, q ≥ 4 define the set of indices J4(q) = {(k1, k2, k3, k4) ∈ {1, . . . , q}4, k1+k2+k3+k4 = 2q}.

Formulae (36) and (27) lead to, for a positive constant C whose value may change from line to line,

V4,≤NT,T ′ =

NT,T ′∑
q=4

∑
(k1,k2,k3,k4)∈J4(q)

βk1(su1)βk2(su2)βk3(su3)βk4(su4)

k1!k2!k3!k4!
Tk1,k2,k3,k4

≤ C

NT,T ′∑
q=4

1

q!

∑
(k1,k2,k3,k4)∈J4(q)

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!(k4 − 1)!

(k1k2k3k4)
1
12

×
∑

I(k1,k2,k3,k4)

∫
T

∫
T

∫
T ′

∫
T ′

∏
a∈Ipair

(
1 + ‖ti − tj‖

)−γqa dt1 dt2 dt3 dt4,

where qa for is the number of occurrences of the pair w and I(k1, k2, k3, k4) reduces to the set of

indices such that 

q(1,2) + q(1,3) + q(1,4) + q(2,3) + q(2,4) + q(3,4) = q,

q(1,2) + q(1,3) + q(1,4) = k1,

q(1,2) + q(2,3) + q(2,4) = k2,

q(1,3) + q(2,3) + q(3,4) = k3,

q(1,4) + q(2,4) + q(3,4) = k4.

(37)
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Denote Ipair(q) =
{
qa, a ∈ Ipair,

∑
a∈Ipair qa = q,

∑
(i,j) q(i,j)1{i=l}∪{j=l} = kl

}
, the latter can be

rewritten as

V4,≤NT,T ′ ≤ C

NT,T ′∑
q=4

1

q!

∑
Ipair(q)

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!(k4 − 1)!

(k1k2k3k4)
1
12(

q

q(1,2), q(1,3), q(1,4), q(2,3), q(2,4), q(3,4)

)∫
T

∫
T

∫
T ′

∫
T ′

∏
a∈Ipair

(
1 + ‖ti − tj‖

)−γqa dt1 dt2 dt3 dt4

= C

NT,T ′∑
q=4

∑
Ipair(q)

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!(k4 − 1)!

(k1k2k3k4)
1
12 q(1,2)!q(1,3)!q(1,4)!q(2,3)!q(2,4)!q(3,4)!∫

T

∫
T

∫
T ′

∫
T ′

∏
a∈Ipair

(
1 + ‖ti − tj‖

)−γqa dt1 dt2 dt3 dt4.

Similarly to V3,≤NT,T ′ , we decompose this majorant of V4,≤NT,T ′ in V4,1 + V4,2 according to {q(1,2) +

q(3,4) ≤ b3q/4c} (which plays the same role as q − k3 in V3,≤NT,T ′ ) and its complementary set.

First, we study the set {q(1,2) + q(3,4) ≤ b3q/4c}, where q(1,3) + q(1,4) + q(2,3) + q(2,4) ≥ q
4 , it follows

V4,1 ≤ C

(∫
T

∫
T

dt1dt2
(1 + ‖t1 − t2‖)γ

)2 NT,T ′∑
q=4

1(
dist(T, T ′)

)γq/4
×

∑
Ipair(q)

q(1,2)+q(3,4)≤b3q/4c

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!(k4 − 1)!

(k1k2k3k4)
1
12 q(1,2)!q(1,3)!q(1,4)!q(2,3)!q(2,4)!q(3,4)!

(38)

≤ C

(∫
T

∫
T

dt1dt2
(1 + ‖t1 − t2‖)γ

)2 NT,T ′∑
q=4

1(
dist(T, T ′)

)γq/4 q5

(
3q
6 − 1

)
!2(

q
6

)
!6

,

where we used that k. ≥ 1, the cardinality of Ipair(q) is bounded by q5 and that the ratio in (38)

is maximal for qa = bq/6c, ∀a ∈ Ipair. Using that
√

2πm
(
m
e

)m ≤ m! ≤ 2
√

2πm
(
m
e

)m
provides the

bound
(3q

6

)
!2
/( q

6

)
!6 ≤ C3q/q2 and we get for dist(T, T ′) > 34/γ that

V4,1 ≤ C

(∫
R2

dt1dt2
(1 + ‖t1 − t2‖)γ

)2 +∞∑
q=4

q
3q(

dist(T, T ′)
)γq/4 = O(1). (39)

Second, consider the set {q(1,2) + q(3,4) > b3q/4c},

V4,2 ≤ C

NT,T ′∑
q=4

∑
Ipair(q)

q(1,2)+q(3,4)>b3q/4c

√
(k1 − 1)!(k2 − 1)!(k3 − 1)!(k4 − 1)!

(k1k2k3k4)
1
12 q(1,2)!q(1,3)!q(1,4)!q(2,3)!q(2,4)!q(3,4)!∫

T

∫
T

∫
T ′

∫
T ′

∏
a∈Ipair

(
1 + ‖ti − tj‖

)−γqa dt1 dt2 dt3 dt4.
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Note that, if q(1,2) + q(3,4) > b3q/4c, it follows that max{q(1,2), q(3,4)} > b3q/8c, then using (37) we

derive that on this set (k1k2k3k4)−1/12 ≤ Cq−1/6, for some positive constant C. Next, we decompose

V4,2 according to the values of k = q(1,3) + q(1,4) + q(2,3) + q(2,4) ≤ bq/4c and use Assumption (A1),

(32) and (37) to get

V4,2 ≤ C|T |2
NT,T ′∑
q=4

q−1/6

bq/4c∑
k=0

1

(dist(T, T ′))γk

∑
q(1,3)+q(1,4)+q(2,3)+q(2,4)=k

1

q(1,3)!q(1,4)!q(2,3)!q(2,4)!

×
q−k−1∑
q(1,2)=1

√
(q(1,2) + q(1,3) + q(1,4) − 1)!(q(1,2) + q(2,3) + q(2,4) − 1)!

q(1,2)!q
2
(1,2)

×

√
(q(1,3) + q(2,3) + q − k − q(1,2) − 1)!(q(1,4) + q(2,4) + q − k − q(1,2) − 1)!

(q − k − q(1,2))!(q − k − q(1,2))2
,

where the constant C contains
∫
R2(1 + ‖t − s‖)−2dtds. Observe that the function in q(1,2) in the

last summand is symmetric with respect to (q − k)/2 and is maximal for q(1,2) ∈ {1, q − k − 1}. It

follows that

V4,2 ≤ C|T |2
NT,T ′∑
q=4

q−1/6

bq/4c∑
k=0

1

(dist(T, T ′))γk

∑
q(1,3)+q(1,4)+q(2,3)+q(2,4)=k

1

q(1,3)!q(1,4)!q(2,3)!q(2,4)!

×

√
(q(1,3) + q(1,4))!(q(2,3) + q(2,4))!(q(1,3) + q(2,3) + q − k − 2)!(q(1,4) + q(2,4) + q − k − 2)!

(q − k − 1)!(q − k − 1)
.

Considering the function in
(
q(1,3), q(1,4), q(2,3), q(2,4)

)
under the square root in the last display, it is

easy —considering all possible cases— to derive that it is maximal at (k, 0, 0, 0) (the maximum is

not unique). We obtain

V4,2 ≤ C|T |2
NT,T ′∑
q=4

q−
1
6

bq/4c∑
k=0

1

(dist(T, T ′))γkk!

∑
q(1,3)+q(1,4)+

q(2,3)+q(2,4)=k

k!

q(1,3)!q(1,4)!q(2,3)!q(2,4)!

√
k!(q − 2)!(q − k − 2)!

(q − k − 1)!(q − k − 1)

= C|T |2
NT,T ′∑
q=4

q−
1
6

bq/4c∑
k=0

4k

(dist(T, T ′))γk

√
(q − 2)!

(q − k − 1)2
√
k!(q − k − 2)!

,

where we used the multinomial theorem. Therefore, we derive that

V4,2 ≤ C|T |2
NT,T ′∑
q=4

q−2− 1
6

bq/4c∑
k=0

4k

(dist(T, T ′))γk

√(
q

k

)

Finally, as for V3,2 if we set ηT,T ′ :=
(
4/(dist(T, T ′))γ

)
the function k 7→ ηkT,T ′

√(
q
k

)
is decreasing

if q ≤ (ηT,T ′)
−2. Fix NT,T ′ := b(ηT,T ′)−2c, note that we have NT,T ′ → ∞ as dist(T, T ′) → ∞. It
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follows that

V4,2 ≤ C|T |2
NT,T ′∑
q=4

q

q2+ 1
6

≤ C|T |2. (40)

Gathering (39) and (40) shows that V4,≤NT,T4
= O(|T |2) and finally that V4 = O(|T |2).

Gathering the control of four terms, V0 to V4, leads to the announced result in Proposition 3.1. �

50


	Introduction
	Definitions and preliminary notions
	Lipschitz-Killing curvatures of a given excursion set

	Estimators of the effective level and effective spectral moment
	Subwindow empirical variance estimation
	Consistent variance estimator
	Statistical implications and numerical illustrations
	A Gaussianity test for non standard fields
	Interval containing the unknown location 


	Test to compare two images of excursion sets 
	Comparing images of excursion sets: a synthetic mammograms study
	Comparing images of excursion sets: a real digital mammograms study

	Conclusions and discussion
	Proofs
	Preliminary results
	Proofs of the obtained results
	Proof of Proposition 3.1


