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ABSTRACT Part I of this paper formulated a multitask optimization problem where agents in the network
have individual objectives to meet, or individual parameter vectors to estimate, subject to a smoothness
condition over the graph. A diffusion strategy was devised that responds to streaming data and employs
stochastic approximations in place of actual gradient vectors, which are generally unavailable. The approach
relied on minimizing a global cost consisting of the aggregate sum of individual costs regularized by a term
that promotes smoothness. We examined the first-order, the second-order, and the fourth-order stability of
the multitask learning algorithm. The results identified conditions on the step-size parameter, regularization
strength, and data characteristics in order to ensure stability. This Part II examines steady-state performance
of the strategy. The results reveal explicitly the influence of the network topology and the regularization
strength on the network performance and provide insights into the design of effective multitask strategies for
distributed inference over networks.

INDEX TERMS Multitask distributed inference, diffusion strategy, smoothness prior, graph Laplacian regu-
larization, gradient noise, steady-state performance.

I. INTRODUCTION
As pointed out in Part I [2] of this work, most prior literature
on distributed inference over networks focuses on single-task
problems, where agents with separable objective functions
need to agree on a common parameter vector corresponding
to the minimizer of an aggregate sum of individual costs [3]–
[13]. In this paper, and its accompanying Part I [2], we focus
instead on multitask networks where the agents may need to
estimate and track multiple objectives simultaneously [14]–
[27]. Although agents may generally have distinct though
related tasks to perform, they may still be able to capitalize
on inductive transfer between them to improve their perfor-
mance. Based on the type of prior information that may be
available about how the tasks are related to each other, mul-
titask learning algorithms can be derived by translating the

prior information into constraints on the parameter vectors to
be inferred.

In Part I [2], we considered multitask inference problems
where each agent in the network seeks to minimize an individ-
ual cost expressed as the expectation of some loss function.
The minimizers of the individual costs are assumed to vary
smoothly over the topology, as dictated by the graph Lapla-
cian matrix. The smoothness property softens the transitions
in the tasks among adjacent nodes and allows incorporating
information about the graph structure into the solution of the
inference problem. In order to exploit the smoothness prior,
we formulated the inference problem as the minimization of
the aggregate sum of individual costs regularized by a term
promoting smoothness, known as the graph-Laplacian reg-
ularizer [28], [29]. A diffusion strategy was proposed that

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

46 VOLUME 1, 2020

https://orcid.org/0000-0001-9663-8559
https://orcid.org/0000-0002-0616-3076
https://orcid.org/0000-0003-2890-141X
https://orcid.org/0000-0002-5125-5519
mailto:roula.nassif@aub.edu.lb


responds to streaming data and employs stochastic approxi-
mations in place of actual gradient vectors, which are gener-
ally unavailable.

The analysis from Part I [2] revealed how the regular-
ization strength η can steer the convergence point of the
network toward many modes of operation starting from the
non-cooperative mode (η = 0) where each agent converges
to the minimizer of its individual cost and ending with the
single-task mode (η → ∞) where all agents converge to a
common parameter vector corresponding to the minimizer of
the aggregate sum of individual costs. For any values of η

in the range 0 < η < ∞, the network behaves in a multitask
mode where agents seek their individual models while at the
same time ensuring that these models satisfy certain smooth-
ness and closeness conditions dictated by the value of η. We
carried out in Part I [2] a detailed stability analysis of the
proposed strategy. We showed, under conditions on the step-
size learning parameter μ, that the adaptive strategy induces a
contraction mapping and that despite gradient noise, it is able
to converge in the mean-square-error sense within O(μ) from
the solution of the regularized problem, for sufficiently small
μ. We also established the first and fourth-order moments
stability of the network error process and showed that they
tend asymptotically to bounded region on the order of O(μ)
and O(μ2), respectively.

Based on the results established in Part I [2], we shall derive
in this paper a closed-form expression for the steady-state
network mean-square-error relative to the minimizer of the
regularized cost. This closed form expression will reveal ex-
plicitly the influence of the regularization strength, network
topology (through the eigenvalues and eigenvectors of the
Laplacian matrix), gradient noise, and data characteristics,
on the network performance. Additionally, a closed-form ex-
pression for the steady-state network mean-square-error rel-
ative to the minimizers of the individual costs is also de-
rived. This expression will provide insights on the design
of effective multitask strategies for distributed inference over
networks.

Notation: We adopt the same notation from Part I [2]. All
vectors are column vectors. Random quantities are denoted
in boldface. Matrices are denoted in capital letters while
vectors and scalars are denoted in lower-case letters. The
operator � denotes an element-wise inequality; i.e., a � b
implies that each entry of the vector a is less than or equal
to the corresponding entry of b. The symbol diag{·} forms
a matrix from block arguments by placing each block im-
mediately below and to the right of its predecessor. The
operator col{·} stacks the column vector entries on top of
each other. The symbols ⊗ and ⊗b denote the Kronecker
product and the block Kronecker product, respectively. The
symbol vec(·) refers to the standard vectorization operator
that stacks the columns of a matrix on top of each other and
the symbol bvec(·) refers to the block vectorization operation
that vectorizes each block and stacks the vectors on top of
each other.

II. DISTRIBUTED INFERENCE UNDER
SMOOTHNESS PRIORS
A. PROBLEM FORMULATION AND ADAPTIVE STRATEGY
Consider a connected network (or graph) G = {N , E, A},
where N is a set of N agents (nodes), E is a set of edges con-
necting agents with particular relations, and A is a symmetric,
weighted adjacency matrix. If there is an edge connecting
agents k and �, then [A]k� = ak� > 0 reflects the strength of
the relation between k and �; otherwise, [A]k� = 0. We intro-
duce the graph Laplacian L, which is a differential operator
defined as L = D − A, where the degree matrix D is a diago-
nal matrix with k-th entry [D]kk = ∑N

�=1 ak�. Since L is sym-
metric positive semi-definite, it possesses a complete set of or-
thonormal eigenvectors. We denote them by {v1, . . . , vN }. For
convenience, we order the set of real, non-negative eigenval-
ues of L as 0 = λ1 < λ2 ≤ . . . ≤ λN = λmax(L), where, since
the network is connected, there is only one zero eigenvalue
with corresponding eigenvector v1 = 1√

N
1N [30]. Thus, the

Laplacian can be decomposed as:

L = V �V �, (1)

where � = diag{λ1, . . . , λN } and V = [v1, . . . , vN ].
Let wk ∈ RM denote some parameter vector at agent k and

let W = col{w1, . . . ,wN } denote the collection of parameter
vectors from across the network. We associate with each agent
k a risk function Jk (wk ) : RM → R assumed to be strongly
convex. In most learning and adaptation problems, the risk
function is expressed as the expectation of a loss function
Qk (·) and is written as Jk (wk ) = E Qk (wk; xk ), where xk de-
notes the random data. The expectation is computed over the
distribution of this data. We denote the unique minimizer
of Jk (wk ) by wo

k . Let us recall the assumption on the risks
{Jk (wk )} used in Part I [2].

Assumption 1 (Strong convexity): It is assumed that the
individual costs Jk (wk ) are each twice differentiable and
strongly convex such that the Hessian matrix function
Hk (wk ) = ∇2

wk
Jk (wk ) is uniformly bounded from below and

above, say, as:

0 < λk,minIM ≤ Hk (wk ) ≤ λk,maxIM , (2)

where λk,min > 0 for k = 1, . . . , N . �
In many situations, there is prior information available

about Wo = col{wo
1, . . . ,w

o
N }. In the current Part II, and its

accompanying Part I [2], the prior belief we want to enforce is
that the target signal Wo is smooth with respect to the underly-
ing weighted graph. References [16], [17] provide variations
for such problems for the special case of mean-square-error
costs. Here we treat general convex costs. Let L = L ⊗ IM .
The smoothness of W can be measured in terms of a quadratic
form of the graph Laplacian [28], [29], [31]–[33]:

S(W ) = W�LW = 1

2

N∑

k=1

∑

�∈Nk

ak�‖wk − w�‖2, (3)
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where Nk is the set of neighbors of k, i.e., the set of nodes
connected to agent k by an edge. The smaller S(W ) is, the
smoother the signal W on the graph is. Intuitively, given that
the weights are non-negative, S(W ) shows that W is considered
to be smooth if nodes with a large ak� on the edge connecting
them have similar weight values {wk,w�}. Our objective is to
devise and study a strategy that solves the following regular-
ized problem:

Wo
η = arg min

W
Jglob(W ) =

N∑

k=1

Jk (wk ) + η

2
W�LW, (4)

in a distributed manner where each agent is interested in esti-
mating the k-th sub-vector of Wo

η = col{wo
1,η, . . . ,w

o
N,η}. The

tuning parameter η ≥ 0 controls the trade-off between the two
components of the objective function. We are particularly in-
terested in solving the problem in the stochastic setting when
the distribution of the data xk in Jk (wk ) = E Qk (wk; xk ) is
generally unknown. This means that the risks Jk (wk ) and their
gradients ∇wk Jk (wk ) are unknown. As such, approximate gra-
dient vectors need to be employed. A common construction
in stochastic approximation theory is to employ the following
approximation at iteration i:

̂∇wk Jk (wk ) = ∇wk Qk (wk; xk,i ), (5)

where xk,i represents the data observed at iteration i. The
difference between the true gradient and its approximation is
called the gradient noise sk,i(·):

sk,i(w) � ∇wk Jk (w) − ̂∇wk Jk (w). (6)

Let wk,i denote the estimate of wo
k,η at iteration i and node

k. In order to solve (4) in a fully distributed and adaptive
manner, we proposed in Part I [2] the following diffusion-type
algorithm:

{
ψk,i = wk,i−1 − μ̂∇wk Jk (wk,i−1)

wk,i = ψk,i − μη
∑

�∈Nk
ak�(ψk,i − ψ�,i ),

(7)

where μ > 0 is a small step-size parameter and ψk,i is an
intermediate variable.

B. SUMMARY OF MAIN RESULTS
One key observation that followed from the analysis in Part I
[2] is that the smoothing parameter η can be regarded as an
effective tuning parameter that controls the nature of the learn-
ing process. The value of η can vary from η = 0 to η → ∞.
At one end, when η = 0, the learning algorithm reduces to
a non-cooperative mode of operation where each agent acts
individually and estimates its own local model, wo

k . On the
other hand, when η → ∞, the learning algorithm moves to
a single-mode of operation where all agents cooperate to
estimate a single parameter (namely, the Pareto solution of
the aggregate cost function). For any values of η in the range
0 < η < ∞, the network behaves in a multitask mode where
agents seek their individual models while at the same time
ensuring that these models satisfy certain smoothness and
closeness conditions dictated by the value of η.

In Part I [2], we carried out a detailed stability analysis of
the proposed strategy (7). We showed, under some conditions
on the step-size parameter μ, that:

lim sup
i→∞

‖E(Wo
η − W i )‖ = O(μ), (see [2, Theorem 4])

(8)

lim sup
i→∞

E‖Wo
η − W i‖2 = O(μ), (see [2, Theorem 2])

(9)

lim sup
i→∞

E‖Wo
η − W i‖4 = O(μ2), (see [2, Theorem 3])

(10)

where Wo
η is the solution of the regularized problem (4) and

W i = col{w1,i, . . . ,wN,i} denotes the network block weight
vector at iteration i. Expression (9) indicates that the mean-
square error E‖Wo

η − W i‖2 is on the order of μ. However,
in this Part II, we are interested in characterizing how close
the W i gets to the network limit point Wo

η. In particular, we
will be able to characterize the network mean-square deviation
(MSD) (defined below in (51)) value in terms of the step-
size μ, the regularization strength η, the network topology
(captured by the eigenvalues λm and eigenvectors vm of the
Laplacian L), and the data characteristics (captured by the
second-order properties of the costs Hk,η and second-order
moments of the gradient noise Rs,k,η) as follows:

MSD =

μ

2 N

N∑

m=1

Tr

⎛

⎝

(
N∑

k=1

[vm]2
kHk,η + ηλmI

)−1( N∑

k=1

[vm]2
kRs,k,η

)⎞

⎠

+ O(μ)

(O(1) + O(η))
,

(11)

where [vm]k denotes the k-th entry of the eigenvector vm. The
interpretation of (11) is explained in more detail in Section IV
where it is shown, by coupling η and μ in an appropriate
manner, that the term O(μ)

(O(1)+O(η)) will be a strictly higher order
term of μ. As we will explain later in Sections IV and V,
by properly setting the parameters, expression (11) allows us
to recover the mean-square-deviation of stand-alone adaptive
agents (η = 0) and single-task diffusion networks (η → ∞).

Recall that the objective of the multitask strategy (7) is to
exploit similarities among neighboring agents in an attempt to
improve the overall network performance in approaching the
collection of individual minimizer Wo by means of local com-
munications. Section V in this paper is devoted to quantify
the benefit of cooperation, namely, the objective of improving
the mean-square deviation around the limiting point of the
algorithm. In particular, we will be able to characterize the
mean-square-deviation (MSD) value relative to the multitask
objective Wo in terms of the MSD in (11) and the mismatch
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Wo
η − Wo as follows:

MSD = MSD︸ ︷︷ ︸
O(μ),η

+‖Wo
η − Wo‖2

︸ ︷︷ ︸
smoothness,η

+2(Wo
η − Wo)� bias︸︷︷︸

O(μ),η

, (12)

where “bias” is the bias of algorithm (7) relative to Wo
η given

in future expression (40). By increasing η, the MSD in (11)
is more likely to decrease. However, by increasing η, from
expression (31) in Part I [2], ‖Wo

η − Wo‖2 is more likely to
increase and the size of this increase is determined by the
smoothness of Wo. From future Lemma 2, it turns out that
the third term on the RHS in (12) is a function of μ, η, and
the smoothness of the multitask objective Wo. By increasing η,
this term is more likely to increase. The key conclusion will be
that, while the second and third terms on the RHS in (12) will
in general increase as the regularization strength η increases,
the size of this increase is determined by the smoothness of
Wo which is in turn function of the network topology captured
by L. The more similar the tasks at neighboring agents are,
the smaller these terms will be. This implies that as long as
Wo is sufficiently smooth, moderate regularization strengths
η in the range ]0,∞[ exist such that MSD at these values
of η will be less than MSD at η = 0 which corresponds to
the non-cooperative mode of operation. The best choice for η

would be the one minimizing MSD in (12). We refer the reader
to Fig. 2 in [2, Section II-B] for an illustration of this concept
of multitask learning benefit. This example will be considered
further in the numerical experiments section.

C. MODELING ASSUMPTIONS FROM PART I [2]
In this section, we recall the assumptions used in Part I [2] to
establish the network mean-square error stability (9).

Assumption 2 (Gradient noise process): The gradient
noise process defined in (6) satisfies for any w ∈ F i−1 and
for all k, � = 1, 2, . . . , N :

E[sk,i(w)|F i−1] = 0, (13)

E[‖sk,i(w)‖2|F i−1] ≤ β2
k ‖w‖2 + σ 2

s,k, (14)

E[sk,i(w)s�
�,i(w)|F i−1] = 0, k 
= �, (15)

for some β2
k ≥ 0, σ 2

s,k ≥ 0, and where F i−1 denotes the fil-
tration generated by the random processes {w�, j} for all � =
1, . . . , N and j ≤ i − 1. �

Let us introduce the network block vector W i =
col{w1,i, . . . ,wN,i}. Recall from Part I [2] that at each iter-
ation, we can view (7) as a mapping from W i−1 to W i:

W i = (IMN − μηL)

(

W i−1 − μ col
{
̂∇wk Jk (wk,i−1)

}N

k=1

)

(16)
We introduced the following condition on the combination
matrix (IMN − μηL).

Assumption 3: (Combination matrix) The symmetric com-
bination matrix (IMN − μηL) has nonnegative entries and its
spectral radius is equal to one. Since L has an eigenvalue at
zero, these conditions are satisfied when the step-size μ > 0

and the regularization strength η ≥ 0 satisfy:

0 ≤ μη ≤ 2

λmax(L)
, (17)

0 ≤ μη ≤ min
1≤k≤N

{
1

∑N
�=1 ak�

}

, (18)

where condition (17) ensures stability and condition (18) en-
sures non-negative entries. �

The results in Part I [2] established that the iterates wk,i

converge in the mean-square-error sense to a small O(μ)−
neighborhood around the regularized solution wo

k,η. In this
part of the work, we will be more precise and determine the
size of this neighborhood, i.e., assess the size of the constant
multiplying μ in the O(μ)−term. To do so, we shall derive an
accurate first-order expression for the mean-square error (9);
the expression will be accurate to first-order in μ.

To arrive at the desired expression, we first need to intro-
duce a long-term approximation model and assess how close it
is to the actual model. We then derive the performance for the
long-term model and use this closeness to transform this result
into an accurate expression for the performance of the original
learning algorithm. To derive the long-term model, we follow
the approach developed in [9]. The first step is to establish
the asymptotic stability of the fourth-order moment of the
error vector, E‖Wo

η − W i‖4, which has already been done in
Part I [2]. This property is needed to justify the validity of
the long-term approximate model. Recall that to establish the
fourth-order stability, we introduced the following assumption
on the gradient noise process.

Assumption 4. (Fourth-order moment of the gradient
noise): The gradient noise process defined in (6) satisfies for
any w ∈ F i−1 and for all k, � = 1, 2, . . . , N :

E
[‖sk,i(wk )‖4|F i−1

] ≤ β
4
k‖wk‖4 + σ 4

s,k, (19)

for some β
4
k ≥ 0, and σ 4

s,k ≥ 0.
As explained in [9], condition (19) implies (14). To es-

tablish the mean-stability (8), we introduced a smoothness
condition on the Hessian matrices of the individual costs. This
smoothness condition will be adopted in the next section when
we study the long term behavior of the network.

Assumption 5. (Smoothness condition on individual cost
functions): It is assumed that each Jk (wk ) satisfies a smooth-
ness condition close to wo

k,η, in that the corresponding Hessian
matrix is Lipchitz continuous in the proximity of wo

k,η with
some parameter κd ≥ 0, i.e.,

‖∇2
wk

Jk (wo
k,η + 	wk ) − ∇2

wk
Jk (wo

k,η )‖ ≤ κd‖	wk‖, (20)

for small perturbations ‖	wk‖ ≤ ε. �
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III. LONG-TERM NETWORK DYNAMICS
Let W̃ i = Wo

η − W i. Subtracting the vector (IMN − μηL)Wo
η

from both sides of recursion (16), and using (6), we obtain:

W̃ i − μηLWo
η = (IMN − μηL)·

(
W̃ i−1 + μ col

{∇wk Jk (wk,i−1) − sk,i(wk,i−1)
}N

k=1

)
,

(21)

From the mean-value theorem [34, pp. 24], [9, Appendix D],
we have:

∇wk Jk (wk,i−1) = ∇wk Jk (wo
k,η ) − Hk,i−1(wo

k,η − wk,i−1),
(22)

where

Hk,i−1 �
∫ 1

0
∇2

wk
Jk (wo

k,η − t (wo
k,η − wk,i−1))dt, (23)

and from the optimality condition of (4), we have:

col
{
∇wk Jk (wo

k,η )
}N

k=1
= −ηLWo

η. (24)

Replacing (22) into (21) and using (24), we arrive at the
following recursion for W̃ i:

W̃ i = (IMN − μηL)(IMN − μHi−1)W̃ i−1−
μ(IMN − μηL)si(W i−1) + μ2η2L2Wo

η, (25)

where

si(W i−1) � col{sk,i(wk,i−1)}N
k=1, (26)

Hi−1 � diag{Hk,i−1}N
k=1. (27)

We move on to motivate a long-term model for the evolu-
tion of the network error dynamics, W̃ i, after sufficient itera-
tions, i.e., for i � 1. We examine the stability property of the
model, the proximity of its trajectory to that of the original
network dynamics (25), and subsequently employ the model
to assess network performance.

A. LONG-TERM ERROR MODEL
We introduce the error matrix H̃i−1 � Hη − Hi−1, which
measures the deviation of Hi−1 from the constant matrix:

Hη � diag{Hk,η}N
k=1, (28)

with each Hk,η given by the value of the Hessian matrix at the
regularized solution, namely, Hk,η � ∇2

wk
Jk (wo

k,η ). Let

Bi−1 � (IMN − μηL)(IMN − μHi−1), (29)

Bη � (IMN − μηL)(IMN − μHη ). (30)

Then, we can write:

Bi−1 = Bη + μ(IMN − μηL)H̃i−1. (31)

Using (31), we can rewrite the error recursion (25) as:

W̃ i = BηW̃ i−1 − μ(IMN − μηL)si(W i−1)

+ μ2η2L2Wo
η + μ(IMN − μηL)ci−1, (32)

in terms of the random perturbation sequence:

ci−1 � H̃i−1W̃ i−1. (33)

Under Assumptions 1 and 5, and for small μ, it can be
shown that lim supi→∞ E‖ci−1‖ = O(μ), and that ‖ci−1‖ =
O(μ) asymptotically with high probability (see Appendix A
in [35]). Motivated by this result, we introduce the following
approximate model, where the last term involving ci−1 in (32),
which is O(μ2), is removed:

W̃ ′
i = BηW̃ ′

i−1 − μ(IMN − μηL)si(W i−1) + μ2η2L2Wo
η,

(34)
for i � 1. Obviously, the iterates that are generated by (34) are
generally different from the iterates generated by the original
recursion (25). To highlight this fact, we are using the prime
notation for the state of the long-term model. Note that the
driving process si(W i−1) in (34) is the same gradient noise
process from the original recursion (25) and is evaluated at
W i−1. In the following, we show that, after sufficient itera-
tions i � 1, the error dynamics of the network relative to the
solution Wo

η is well-approximated by the model (34).

B. SIZE OF APPROXIMATION ERROR
We start by showing that the mean-square difference between
the trajectories {W̃ i, W̃ ′

i} is asymptotically bounded by O(μ2)
and that the mean-square error performance of the long term
model (34) is within O(μ

3
2 ) from the performance of the

original recursion (25). Working with recursion (34) is much
more tractable for performance analysis because its dynamics
is driven by the constant matrix Bη as opposed to the random
matrix Bi−1 in the original error recursion (25). Therefore,
we shall work with the long-term model (34) and evaluate its
performance, which will provide an accurate representation
for the performance of the original distributed strategy (7) to
first order in the step-size μ.

Lemma 1: (Size of approximation error) Under Assump-
tions 1, 2, 3, and 5, and condition (19), it holds that:

lim sup
i→∞

E‖W̃ i − W̃ ′
i‖2 = O(μ2), (35)

lim sup
i→∞

E‖W̃ i‖2 = lim sup
i→∞

E‖W̃ ′
i‖2 + O(μ

3
2 ). (36)

Proof: See Appendix A. �
We shall discuss now the mean and mean-square error sta-

bility of the long-term approximate model (34).

C. STABILITY OF FIRST-ORDER ERROR MOMENT
Conditioning both sides of (34), invoking the conditions on
the gradient noise from Assumption 2, and computing the
conditional expectations, we obtain:

E[W̃ ′
i|F i−1] = BηW̃ ′

i−1 + μ2η2L2Wo
η. (37)

Taking expectation again, we arrive at:

EW̃ ′
i = BηEW̃ ′

i−1 + μ2η2L2Wo
η. (38)
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The above recursion is stable if the matrix Bη in (30) is
stable. This matrix has a similar form to the matrix (IMN −
μηL)(IMN − μH∞) encountered in Part I [2, Section III-A2].
Similarly, it can be verified that Bη is stable when condi-
tion (17) and condition

0 < μ < min
1≤k≤N

{
2

λk,max

}

. (39)

are satisfied. In this case, we obtain

W̃ ′
∞ � lim

i→∞
EW̃ ′

i

= μ2η2(IMN − (IMN − μηL)(IMN − μHη ))−1L2Wo
η,

(40)

where the RHS in the above expression is similar to the RHS
in equation (50) [2] with H∞ replaced by Hη.

Lemma 2: (Mean stability of long-term model) Under As-
sumptions 1, 2, 3, and 5, and for sufficiently small μ,
the steady-state bias W̃ ′

∞ = limi→∞ EW̃ ′
i of the long-term

model (34) given by (40) satisfies:

μ lim
μ→0

(
1

μ
lim

i→∞
‖EW̃ ′

i‖
)

≤ μ
O(η2)

(O(1) + O(η))2
. (41)

Proof: The proof is similar to the proof of Theorem 1 in
Part I [2] with H∞ replaced by Hη. �

D. STABILITY OF SECOND-ORDER ERROR MOMENT
In the following, we show that the long term approximate
model (34) is also mean-square stable in the sense that
E‖w̃′

k,i‖2 tends asymptotically to a region that is bounded by
O(μ). We follow the same line of reasoning as in Part I [2,
Section III-A] where we studied the mean-square stability of
the original model (25). Based on the inequality:

lim sup
i→∞

E‖Wo
η − W ′

i‖2

= lim sup
i→∞

E‖Wo
η − W ′

∞ + W ′
∞ − W ′

i‖2

≤ 2‖Wo
η − W ′

∞‖2 + 2 lim sup
i→∞

E‖W ′
∞ − W ′

i‖2, (42)

where Wo
η − W ′∞ = W̃ ′

∞ is the steady-state bias of the long
term model given by (40) and where W ′∞ − W ′

i follows the
recursion:

W ′
∞ − W ′

i = Bη(W ′
∞ − W ′

i−1) − μ(IMN − μηL)si(W i−1),
(43)

and from Theorems 1 and 2 in Part I [2] and previous
Lemma 2, we can establish the mean-square stability of (34).
Let us introduce the mean-square perturbation vector (MSP′)
at time i relative to W ′∞:

MSP′
i � col

{
E‖w′

k,∞ − w′
k,i‖2}N

k=1
. (44)

Lemma 3. (Mean-square stability of the long-term model):
Under Assumptions 1, 2, 3, and 5, the MSP′ at time i can be

recursively bounded as:

MSP′
i � (IN − μηL)(G′′)2MSP′

i−1

+ 3μ2(IN − μηL)diag{β2
k }N

k=1MSPi−1 + μ2(IN − μηL)b

(45)

where:

G′′ � diag {γk}N
k=1 , (46)

b � col
{
σ 2

s,k + 3β2
k ‖wo

k,η‖2 + 3β2
k ‖wo

k,η − wk,∞‖2
}N

k=1
,

(47)

γk � max{|1 − μλk,min|, |1 − μλk,max|}. (48)

and MSPi is the mean-square perturbation vector at time i rel-
ative to the fixed point W∞ = col{wk,∞}N

k=1 of algorithm (7)
in the absence of gradient noise (see [2, Section III-A3]). A
sufficiently small μ ensures the stability of the above recur-
sion. It follows that

‖ lim sup
i→∞

MSP′
i‖∞ = O(μ), (49)

and that

lim sup
i→∞

E‖W̃ ′
i‖2 = O(μ) + O(μ2η4)

(O(1) + O(η))4
= O(μ). (50)

Proof: See Appendix B. �

IV. MEAN-SQUARE-ERROR PERFORMANCE
We established in Theorem 2 in Part I [2] that a network run-
ning strategy (7) is mean-square-error stable for sufficiently
small μ. Specifically, we showed that lim supi→∞ E‖Wo

η −
W i‖2 = O(μ). In the following, we assess the size of the net-
work mean-square-deviation (MSD) using the definition [9,
Chapter 11]:

MSD � μ lim
μ→0

(

lim sup
i→∞

1

μ
E

(
1

N
‖Wo

η − W i‖2
))

. (51)

In addition to Assumptions 1, 2, 3, 5, and condition (19)
on the individual costs, Jk (wk ), the gradient noise process,
sk,i(wk ), and the combination matrix, IN − μηL, we introduce
a smoothness condition on the noise covariance matrices.

For any wk ∈ F i−1, we let

Rs,k,i(wk ) � E[sk,i(wk )s�
k,i(wk )|F i−1] (52)

denote the conditional second-order moment of the gradient
noise process, which generally depends on i because the statis-
tical distribution of sk,i(wk ) can be iteration-dependent, and is
random since it depends on the random iterate wk . We assume
that, in the limit, this covariance matrix tends to a constant
value when evaluated at wo

k,η and we denote the limit by:

Rs,k,η � lim
i→∞

E[sk,i(w
o
k,η )s�

k,i(w
o
k,η )|F i−1]. (53)

Assumption 6. (Smoothness condition on the noise covari-
ance): It is assumed that the conditional second-order moment
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of the noise process is locally Lipschitz continuous in a small
neighborhood around wo

k,η, namely,

‖Rs,k,i(w
o
k,η + 	wk ) − Rs,k,i(w

o
k,η )‖ ≤ κd‖	wk‖θ , (54)

for small perturbations ‖	wk‖ ≤ ε, and for some constant
κd ≥ 0 and exponent 0 < θ ≤ 4. �

One useful conclusion that follows from Assumption 6 is
that, after sufficient iterations, we can express the covariance
matrix of the gradient noise process, sk,i(wk ), in terms of the
limiting matrix Rs,k,η defined in (53). Specifically, following
the same proof used to establish Lemma 11.1 in [9], we can
show that under the smoothness condition (54) and for small
step-size, the covariance matrix of the gradient noise process,
sk,i(wk,i−1), at each agent k satisfies for i � 1:

Esk,i(wk,i−1)s�
k,i(wk,i−1) = Rs,k,η + O

(

μ
min

{
1, θ

2

})

. (55)

For clarity of presentation, we sketch the proof in Appendix D
in [35] where we used results from Theorems 2 and 3 in
Part I [2].

Before studying the steady-state network performance, we
establish some properties of the matrix:

Fη � B�
η ⊗b B�

η , (56)

which is defined in terms of the block Kronecker operation
using blocks of size M × M. In the derivation that follows,
we shall use the block Kronecker product ⊗b operator [36]
and the block vectorization operator bvec(·). As explained
in [9], these operations preserve the locality of the blocks
in the original matrix arguments. Since ρ(Fη ) = (ρ(Bη ))2,
the matrix Fη is stable under conditions (17) and (39). This
matrix plays a critical role in characterizing the performance
of the distributed multitask algorithm. In our derivations, the
matrix Fη will also appear transformed under the orthonormal
transformation:

Fη � (V ⊗b V )�Fη(V ⊗b V ), (57)

where V � V ⊗ IM .
Lemma 4: (Coefficient matrix Fη) For sufficiently small

step-size, it holds that

(I − Fη )−1 = O(μ−1), (58)

and

(I − Fη )−1

= X−1 + W (59)

= μ−1 ·
[

O(1) 0

0 (O(1) + O(η))−1

]

+ μ−1 ·
[

(O(1) + O(η))−1 (O(1) + O(η))−1

(O(1) + O(η))−1 (O(1) + O(η))−2

]

(60)

where X is an N2 × N2 block diagonal matrix with each block
of dimension M2 × M2:

X = μ · diag
{

diag
{

(1 − μηλm)(1 − μηλp)(Hmm ⊕ Hpp)

+ η(λm + λp − μηλmλp)IM2

}N
p=1

}N

m=1
, (61)

with ⊕ denoting the Kronecker sum operator [37]:

Hmm ⊕ Hpp = Hmm ⊗ IM + IM ⊗ Hpp, (62)

Hmn � (v�
m ⊗ IM )Hη(vn ⊗ IM ). (63)

The matrix W is an N2 × N2 block matrix arising from the
matrices {Hmn|m 
= n}. Moreover, we can also write:

(I − Fη )−1 = (V ⊗b V )X−1(V ⊗b V )�

+ μ−1(O(1) + O(η))−1. (64)

Proof: See Appendix C. �
As we shall see in Theorem 1, it turns out that the decom-

position in (59) is very useful to highlight some important
facts arising in the steady-state performance of the multitask
algorithm.

Lemma 5: (Steady-state network performance) Under As-
sumptions 1, 2, 3, 4, 5, and 6, it holds that:

lim sup
i→∞

1

N
E‖Wo

η − W i‖2

= 1

N

∞∑

n=0

Tr
(Bn

ηY (B�
η )n) + O(μ1+θm )

= 1

N
(bvec(Y�))�(I − Fη )−1bvec (IMN ) + O(μ1+θm ),

(65)

where θm = 1
2 min{1, θ}, Bη and Fη are defined in (30)

and (56), and

Y � μ2(IMN − μηL)Sη(IMN − μηL), (66)

Sη � diag
{
Rs,k,η

}N
k=1 , (67)

Proof: The proof is a direct extension of the arguments
used to establish Theorem 11.2 in [9] for single-task diffusion
adaptation. See Appendix F in [35]. �

Theorem 1. (Network MSD performance): Under the same
conditions of Lemma 5, it holds from Lemma 4 that the
steady-state network MSD defined in (51) can be written as:

MSD =

μ

2 N

N∑

m=1

Tr

⎛

⎝

(
N∑

k=1

[vm]2
kHk,η + ηλmI

)−1( N∑

k=1

[vm]2
kRs,k,η

)⎞

⎠

+ O(μ)

(O(1) + O(η))
.

(68)

Proof: See Appendix D. �
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As the derivation in Appendix D reveals, the second term
on the RHS of (68) results from the matrix W in (59) which is
zero when {Hmn = 0, m 
= n}. When the Hessian matrices are
uniform across the agents:

Hk,η ≡ Hη, k = 1, . . . , N, (69)

we have Hmn = 0 for m 
= n. In this case, the network MSD
in (68) simplifies to:

MSD = μ

2 N

N∑

m=1

Tr

(
(
Hη + ηλmI

)−1

(
N∑

k=1

[vm]2
kRs,k,η

))

.

(70)

Moreover, in the non-uniform Hessian matrices scenario, by
letting η = μ−ε with ε > 0 chosen such that Assumption 3 is
satisfied, we obtain:

O(μ)

(O(1) + O(η))
= O(μ1+ε ). (71)

In this case, the first term on the RHS of (68) dominates
the factor O(μ1+ε ) and when we evaluate the network MSD
according to definition (51), the last term on the RHS of (68)
disappears when computing the limit as μ → 0. As we will
see by simulations, the first term on the RHS of (68) provides
a good approximation for the network MSD for any η ≥ 0.

The first term on the RHS of (68) reveals explicitly the
influence of the step-size μ, regularization strength η, net-
work topology (through the eigenvalues λm and eigenvectors
vm of the Laplacian), gradient noise (through the covariance
matrices Rs,k,η), and data characteristics (through the Hessian
matrices Hk,η) on the network MSD performance. Observe
that this term consists of the sum of N individual terms, each
associated with an eigenvalue λm of the Laplacian matrix, and
given by:

μ

2 N
Tr

((
Hm,η + ηλmI

)−1
Rm,η

)
, (72)

where Hm,η and Rm,η are transformed versions of Hη in (28)
and Sη in (67) at the m-th eigenvalue λm, respectively:

Hm,η �
N∑

k=1

[vm]2
kHk,η = (v�

m ⊗ IM )Hη(vm ⊗ IM ), (73)

Rm,η �
N∑

k=1

[vm]2
kRs,k,η = (v�

m ⊗ IM )Sη(vm ⊗ IM ). (74)

As shown in Section VI-A, under some assumptions on the
data and noise characteristics, the individual terms in (72) are
decaying functions of η or λm.

Before proceeding, we note that expression (68) can be
written alternatively as:

MSD = μ

2 N
Tr

⎛

⎝

(
N∑

k=1

Hk,η

)−1 (
N∑

k=1

Rs,k,η

)⎞

⎠+

μ

2 N

N∑

m=2

Tr

⎛

⎝

(
N∑

k=1

[vm]2
kHk,η + ηλmI

)−1( N∑

k=1

[vm]2
kRs,k,η

)⎞

⎠

+ O(μ)

(O(1) + O(η))
,

(75)

where we used the fact that λ1 = 0 and v1 = 1√
N
1N . Expres-

sion (75) allows us to recover the network MSD performance
of the single-task diffusion adaptation employed to estimate
w� given by:

w� � arg min
w

N∑

k=1

Jk (w). (76)

To see this, we recall the expression for the network MSD
performance of single-task diffusion adaptation derived in [9,
pp. 594]:

MSD = μ

2 N
Tr

⎛

⎝

(
N∑

k=1

Hk,�

)−1 (
N∑

k=1

Rs,k,�

)⎞

⎠ , (77)

where Hk,� � ∇2
wk

Jk (w�) and Rs,k,� is the covariance of the
gradient noise in (53) at w�. In order to estimate w� using the
multitask strategy (7), a very large η needs to be chosen. In
this case, we have Hk,η = Hk,� and Rs,k,η = Rs,k,�. Moreover,
the second and third terms on the RHS of expression (75) will
be O(μ/η) which are negligible for a very large η. Thus, we
obtain (77).

V. MULTITASK LEARNING BENEFIT
Now that we have studied in detail the mean-square perfor-
mance of the multitask strategy (7) relative to Wo

η, the min-
imizer of the regularized cost (4), we will use the results to
examine the benefit of multitask learning compared to the
non-cooperative solution under the smoothness assumption.

Since each cost is strongly convex, each agent k is able
to estimate wo

k on its own, if desired, in a non-cooperative
manner by running strategy (7) with η = 0. We know from
previous established results on single-agent adaptation [9,
pp. 390] that the network MSD in that case will be given by:

MSDncop = μ

2 N
Tr

(
N∑

k=1

H−1
k,o Rs,k,o

)

, (78)

where Hk,o � ∇2
wk

Jk (wo
k ) and Rs,k,o is the covariance of the

gradient noise in (53) at wo
k . Note that expression (68) allows

us to recover the mean-square-error performance of stand-
alone adaptive agents. In particular, it can be easily verified
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that (68) reduces to expression μ
2 Tr(H−1

k,o Rs,k,o) for the mean-
square deviation of single agent learner [9, pp. 390] when the
network size is set to N = 1 and the topology is removed.

When η > 0 is used, the graph Laplacian regularizer (4)
induces a bias relative to Wo. However, when Wo is smooth,
we expect that promoting the smoothness of Wo through regu-
larization can improve the network MSD performance despite
the bias induced in the estimation.

A. INDUCED BIAS RELATIVE TO Wo

The bias of the strategy (7) is given by:

E
(
Wo − W i

) = (Wo − Wo
η ) + E

(
Wo

η − W i
)
. (79)

From the triangle inequality we have:

lim sup
i→∞

‖E
(
Wo − W i

) ‖

≤ ‖Wo − Wo
η‖ + lim sup

i→∞
‖E

(
Wo

η − W i
) ‖, (80)

where lim supi→∞ ‖E(Wo
η − W i )‖ can be replaced by ‖W̃ ′

∞‖
in (40). From expression (32) in Part I [2] we know that
the smoother Wo is, the smaller ‖Wo − Wo

η‖ will be. Fur-
thermore, we know from Theorem 4 in Part I [2] that
lim supi→∞ ‖E(Wo

η − W i )‖ is O(μ). Thus, for a smooth sig-
nal Wo and a small μ, the bias in (79) will be small.

B. NETWORK MSD RELATIVE TO Wo

The mean-square-error performance of the strategy (7) rela-
tive to Wo is given by:

E
∥
∥Wo − W i

∥
∥2 = ‖Wo − Wo

η‖2 + E
∥
∥Wo

η − W i
∥
∥2

+ 2(Wo − Wo
η )�E

(
Wo

η − W i
)
, (81)

and the network MSD can be expressed as:

MSD = 1

N
lim sup

i→∞
E

∥
∥Wo − W i

∥
∥2

= MSD + 1

N
‖Wo − Wo

η‖2+
2

N
(Wo − Wo

η )� lim sup
i→∞

E
(
Wo

η − W i
)
, (82)

where we used the bar notation to denote the network MSD
relative to Wo and where MSD is given in (65) or (68). Note
that lim supi→∞ E(Wo

η − W i ) can be replaced by W̃ ′
∞ in (40).

In order to improve the network MSD compared to the non-
cooperative case (78), the regularization strength η must be
chosen such that:

MSD ≤ MSDncop, (83)

and the optimal choice of η is the one minimizing MSD in (82)
subject to η ≥ 0.

VI. SIMULATION RESULTS
We consider a connected network of N = 15 nodes and M =
5 with the topology shown in Fig. 1 (left). Each agent is
subjected to streaming data {dk (i), uk,i} that are assumed to
satisfy a linear regression model [9], [16]:

dk (i) = uk,iw
o
k + vk (i), k = 1, . . . , N, (84)

for some unknown M × 1 vector wo
k with vk (i) a measurement

noise. A mean-square-error cost is associated with agent k:

Jk (wk ) = 1

2
E|dk (i) − uk,iwk|2, k = 1, . . . , N. (85)

The processes {dk (i), uk,i, vk (i)} are assumed to represent
zero-mean jointly wide-sense stationary random processes
satisfying: i) Eu�

k,iu�, j = Ru,kδk,�δi, j where Ru,k > 0 and the
Kronecker delta δm,n = 1 if m = n and zero otherwise; ii)
Evk (i)v�( j) = σ 2

v,kδk,�δi, j ; iii) the regression and noise pro-
cesses {u�, j, vk (i)} are independent of each other. We set
ak� = 0.1 if � ∈ Nk and 0 otherwise. It turns out that the
Laplacian matrix has 15 distinct eigenvalues. We generate Wo

according to Wo = VWo = col{wo
m}N

m=1 with:

wo
m = 1√

M
· col

{
e−τ jλm

}M
j=1 . (86)

Recall from Part I [2] that S(W ) in (3) can be written as:

S(W ) = W�LW =
N∑

m=2

λm‖wm‖2, (87)

where wm = (v�
m ⊗ IM )W. From (87), we observe that the

larger {τ j ≥ 0} are, the smoother the signal Wo is. Note
that, for MSE networks, it holds that Hk (wk ) = ∇2

wk
Jk (wk ) =

Ru,k ∀wk . Thus, the fixed point bias W̃∞ = Wo
η − W∞ given

by (49) in Part I [2] is equal to the long-term model bias
W̃ ′

∞ in (40). Furthermore, from the definition (6), the gradient
noise process at agent k is given by:

sk,i(wk ) = (u�
k,iuk,i − Ru,k )(wo

k − wk ) + u�
k,ivk (i). (88)

Consider the covariance Rs,k,η defined in (53). From (88), we
have:

Rs,k,η = E[(u�
k,iuk,i − Ru,k )Wk,η(u�

k,iuk,i − Ru,k )] + σ 2
v,kRu,k

(89)
where

Wk,η = (wo
k − wo

k,η )(wo
k − wo

k,η )�. (90)

To evaluate (89), we need the fourth order moment of the re-
gressors. Let us assume that the regressors are zero-mean real
Gaussian. In this case, using the fact that Wk,η is symmetric,
we obtain [38]:

E[u�
k,iuk,iWk,ηu�

k,iuk,i]

= 2Ru,kWk,ηRu,k + Ru,kTr(Ru,kWk,η ). (91)

Replacing the above expression in (89), we obtain:

Rs,k,η = Ru,kWk,ηRu,k + Ru,kTr(Ru,kWk,η ) + σ 2
v,kRu,k . (92)
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FIGURE 1. Illustrative example. (Left) Network topology. (Right) Data and noise variances.

A. UNIFORM DATA PROFILE
In this setting, we assume uniform covariance matrices sce-
nario where Ru,k = Ru ∀k. This scenario is encountered for
example in distributed denoising problems in wireless sensor
networks (or image denoising) [29], [39]. In this case, Ru is
equal to one. In such problems, the N sensors in the network
are observing N-dimensional signal, with each entry of the
signal corresponding to one sensor. Using the prior knowledge
that the signal is smooth w.r.t. the underlying topology, the
sensor task is to denoise the corresponding entry of the signal
by performing local computations and cooperating with its
neighbor in order to improve the error variance.

It turns out that in this scenario, the output of the network
Wo

η can be interpreted as the output of a low-pass graph
filter applied to the graph signal Wo [1], [29], [40]. To see
this, let us first recall the notion of graph frequencies, graph
Fourier transform, and graph filters [29], [39]–[41]. Consider
the connected graph G = {N , E, A} equipped with a Lapla-
cian matrix L, which can be decomposed as L = V �V �. A
graph signal supported on the set N is defined as a vector
x ∈ RN whose k-th component xk ∈ R represents the value
of the signal at the k-th node. By analogy to the classical
Fourier analysis, the eigenvectors of the Laplacian matrix L
are used to define a graph Fourier basis V and the eigenvalues
are considered as the graph frequencies. The graph Fourier
transform (GFT) transforms a graph signal x into the graph
frequency domain according to x = V �x where {x1, . . . , xN }
are called the spectrum of x. A graph filter � is an operator
that acts upon a graph signal x by amplifying or attenuating
its spectrum as: � = ∑N

m=1 �(λm)xmvm. The frequency re-
sponse of the filter �(λ) controls how much � amplifies the
signal spectrum. Low frequencies correspond to small eigen-
values, and low-pass or smooth filters correspond to decaying
functions �(λ). Since we are dealing with vectors wk ∈ RM

instead of scalars xk , the graph transformation x = V �x be-
comes W = (V � ⊗ IM )W. In the uniform covariance matrices

scenario, we have Ho
η = IN ⊗ Ru and relation (25) in Part I [2]

reduces to:

wo
m,η = (

IM − ηλm (ηλmIM + Ru)−1)wo
m, m = 1, . . . , N.

(93)
since (v�

m ⊗ IM )Ho
η(vn ⊗ IM ) = Ru if m = n and zero other-

wise. By applying the matrix inversion identity [42], it holds
that the m-th subvector corresponding to the m-th eigenvalue
(or graph frequency) of Wo

η = (V � ⊗ IM )Wo satisfies:

wo
m,η = (ηλmIM + Ru)−1 Ruw

o
m, (94)

‖wo
m,η‖ ≤ 1

1 + η λm
λmax(Ru )

‖wo
m‖, (95)

If η = 0, we are in the case of an all-pass graph filter since
the frequency content of the output signal Wo

η, is the same as
the frequency content of the input signal Wo. For η > 0, we
are in the case of a low-pass graph filter since the norm of
the m-th frequency content of the output signal Wo

η, namely,
‖wo

m,η‖, is less than or equal to the norm of the m-th frequency
content of the input signal Wo, namely, ‖wo

m‖. For fixed η,
as m increases, the ratio in (95) decreases. This validates the
low-pass filter interpretation. The regularization parameter η

controls the sharpness of the low-pass filter. We illustrate this
in Fig. 2 (left). In the experiment, we set Ru = IM and τ j = 0
in (86) so that ‖wo

m‖2 = 1 ∀m and we illustrate in Fig. 2
(left) the squared �2-norm of wo

m,η for different values of η

from (94). In order to visualize the frequency response of

the graph filter, we also plot in dashed lines the ratio
‖wo

m,η‖2

‖wo
m‖2

from (94) for λm ∈ [0, 1.2] with ‖wo
m‖2 = 1 ∀m.

We observe that a similar behavior arises when studying the
network MSD for smooth signal Wo. When Wo is smooth, Wk,η

in (90) is small and in this case, the covariance matrix Rs,k,η

in (92) can be approximated by Rs,k,η ≈ σ 2
v,kRu. In this case,
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FIGURE 2. Uniform data profile scenario. (Left) Spectral content of Wo
η from (94) for different η. Dashed lines correspond to the ratio

‖wo
m,η‖2

‖wo
m‖2 for

λm ∈ [0,1.2]. (Right) Network MSD at λm from (98) (relative to Wo
η with Wo a smooth signal) for different η at μ = 0.005.

the network MSD expression in (70) can be approximated as:

MSD ≈ μM

2

1

N2

(
N∑

k=1

σ 2
v,k

)

+ μ

2 N

N∑

m=2

(
N∑

k=1

[vm]2
kσ

2
v,k

)

Tr
((

IM + ηλmR−1
u

)−1
)

.

(96)

Since the trace of a matrix is equal to the sum of its eigenval-
ues, we have:

Tr
((

IM + ηλmR−1
u

)−1
)

=
M∑

q=1

1

1 + ηλm
λq (Ru )

. (97)

The above expression shows that for a fixed λm, as η in-
creases, the above trace decreases. We conclude that, when
η increases, the sum on the RHS of (96) decreases. By further
assuming uniform noise profile, i.e., σ 2

v,k = σ 2
v ∀k, expres-

sion (96) reduces to:

MSD =
N∑

m=1

MSD(λm) with

MSD(λm) ≈ μ

2 N
σ 2

v Tr
((

IM + ηλmR−1
u

)−1
)

. (98)

From (97), we conclude that, for a fixed η, as λm increases,
the corresponding trace term in (98) decreases. This case is
illustrated numerically in Fig. 2 (right). In the experiment,
we set Ru = IM , σ 2

v = 0.1, μ = 0.005, and τ j = 7 + j in (86)
so that Wo is smooth and we illustrate MSD(λm) in (98) for
different values of η.

B. VARYING DATA PROFILE
We assume that Ru,k = σ 2

u,kIM for all k. In this case, expres-
sion (92) reduces to:

Rs,k,η = σ 4
u,k (Wk,η + ‖wo

k − wo
k,η‖2IM ) + σ 2

v,kσ
2
u,kIM . (99)

The variances σ 2
u,k and σ 2

v,k are given in Fig. 1 (right). We set
τ j = j in (86).

In order to characterize the influence of the step-size μ

and the regularization parameter η on the performance of the
algorithm relative to Wo

η, we report in Fig. 3 (left) the squared
norm of the fixed point bias W̃∞ = Wo

η − W∞ given by (50)
in Part I [2] (which is equal to the long-term model bias
W̃ ′

∞ in (40)) as a function of η where η = μ−ε with ε ≥ −1
for μ = {10−3, 10−4, 10−5}. We observe that for small η, the
squared norm of the bias increases 40 dB per decade (when η

goes from η1 to 10η1). This means that the squared norm of
the bias is on the order of η4 for fixed μ. For large η, the bias
becomes constant and we see that, when μ goes from μ1 to
10μ1, it increases 20 dB. This means that the squared norm of
the bias is on the order of μ2. Finally, we observe that for fixed
η, the squared norm of the bias is on the order of μ2. In Fig. 3
(middle), we report the network MSD learning curves relative
to Wo

η obtained by running strategy (7) for η = 5 and for two
different values of μ. The curves are obtained by averaging the
trajectories { 1

N E‖Wo
η − W i‖2} over 200 repeated experiments.

In the simulations, we use the following approximation for the
network MSD expression in (68):

MSDapp

= μ

2 N

N∑

m=1

(
N∑

k=1

[vm]2
kσ

2
u,k + ηλm

)−1

Tr

(
N∑

k=1

[vm]2
kRs,k,η

)

(100)

where we use the subscript “app” to indicate that it is an
approximation. Compared with (68), we see that the term

O(μ)
(O(1)+O(η)) has been removed in (100). It is observed that
the learning curves tend to the same MSD value predicted
by the theoretical expression (65) (with O(μ1+θm ) removed).
Furthermore, we observe that the MSD predicted by expres-
sion (100) provides a good approximation for the performance
of strategy (7). Finally, it can be observed that the MSD is on
the order of μ. In Fig. 1 (right), we report the MSD learning
curves relative to Wo

η obtained by running strategy (7) for
μ = 10−3 and for six different values of η. As it can be seen,
by increasing η, the network MSD decreases. Furthermore, it
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FIGURE 3. Network performance relative to Wo
η . (Left) Squared �2-norm of the bias (40). (Middle) Evolution of the learning curves for fixed regularization

strength η = 5, varying step-size μ. (Right) Evolution of the learning curves for fixed μ = 0.001, varying η.

FIGURE 4. Network performance relative to Wo with a smooth signal Wo at μ = 0.005. (Left) Network MSD as a function of the regularization strength
η ∈ [0,350]. (Right) Evolution of the network MSD learning curve for three different values of η.

is observed that expression (100) provides a good approxima-
tion for the network MSD for any η ≥ 0.

In Fig. 4, we characterize the influence of η on the perfor-
mance of strategy (7) relative to Wo with Wo a smooth signal
generated according to (86) with τ j = 7 + j. We set μ = 5 ·
10−3. In Fig. 4 (left), we plot MSD for η ∈ [0, 350]. To gener-
ate MSD we use (82) with MSD replaced by MSDapp in (100)
which has a low computational complexity. As it can be seen
from this plot, η = 4 gives the best MSD. In Fig. 4 (right),
we report the network learning curves 1

N E‖Wo − W i‖2 for
η = {0, 4, 350}. It is observed that the learning curves tend
to the same MSD value predicted by the theoretical expres-
sion (82) with MSD replaced by (65) (with O(μ1+θm ) re-
moved) or (100).

VII. CONCLUSION
In this paper, and its accompanying Part I [2], we consid-
ered multitask inference problems where agents in the net-
work have individual parameter vectors to estimate subject to
a smoothness condition over the graph. Based on diffusion
adaptation, we proposed a strategy that allows the network to
minimize a global cost consisting of the aggregate sum of the
individual costs regularized by a term promoting smoothness.

We showed that, for small step-size parameter, the network
is able to approach the minimizer of the regularized problem
to arbitrarily good accuracy levels. Furthermore, we showed
how the regularization strength influences the limit point and
the steady-state mean-square-error (MSE) performance of the
algorithm. Analytical expressions illustrating these effects are
derived. These expressions revealed explicitly the influence
of the network topology, data settings, step-size parameter,
and regularization strength on the network MSE performance
and provided insights into the design of effective multitask
strategies for distributed inference over networks. Illustrative
examples were considered and links to spectral graph filtering
were also provided.

APPENDIX A
PROOF OF LEMMA 1
To simplify the notation, we introduce the difference:

zi � W̃ i − W̃ ′
i. (101)

Subtracting recursions (32) and (34), we get:

zi = Bηzi−1 + μ(IMN − μηL)ci−1. (102)
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in terms of the random perturbation sequence ci−1 given
in (33). For each agent k, we have from eq. (176) in Part I [2]:

‖H̃k,i−1‖
� ‖Hk,η − Hk,i−1‖

≤
∫ 1

0
‖∇2

wk
Jk (wo

k,η ) − ∇2
wk

Jk (wo
k,η − tw̃k,i−1)‖dt

≤
∫ 1

0
κ ′

d‖tw̃k,i−1‖dt = 1

2
κ ′

d‖w̃k,i−1‖, (103)

It follows that

‖ck,i−1‖ ≤ ‖H̃k,i−1‖‖wo
k,η − wk,i−1‖

≤ 1

2
κ ′

d‖wo
k,η − wk,i−1‖2

≤ 1

2
κ ′

d‖Wo
η − W i−1‖2.

(104)

and

‖ck,i−1‖2 ≤ 1

4
(κ ′

d )2‖Wo
η − W i−1‖4. (105)

Applying Jensen’s inequality [43, pp. 77] to the convex func-
tion ‖ · ‖2, we obtain from (102):

E‖zk,i‖2 ≤
∑

�∈Nk

[C]k,�E‖(I − μH�,η )z�,i−1 + μc�,i−1‖2.

(106)
where C is given by:

C � IN − μηL. (107)

Next note that

E‖(I − μHk,η )zk,i−1 + μck,i−1‖2

= E

∥
∥
∥
∥t

1

t
(IM − μHk,η )zk,i−1 + μ(1 − t )

1

1 − t
ck,i−1

∥
∥
∥
∥

2

≤ 1

t
E‖(IM − μHk,η )zk,i−1‖2 + μ2 1

1 − t
E‖ck,i−1‖2, (108)

for any arbitrary positive number t ∈ (0, 1). We select t = γk

with γk defined in (48). This gives

E‖(I − μHk,η )zk,i−1 + μck,i−1‖2

≤ γkE‖zk,i−1‖2 + μ2 1

1 − γk
E‖ck,i−1‖2,

(109)

Let us introduce the mean-square perturbation vector at time
i:

MSPz,i � col
{
E‖zk,i‖2}N

k=1 . (110)

Replacing (109) into (106), and using (105), we obtain:

MSPz,i � CG′′MSPz,i−1

+ μ2 1

4
(κ ′

d )2C(IN − G′′)−1(1N ⊗ E‖Wo
η − W i−1‖4), (111)

with G′′ = diag{γk}N
k=1. Iterating the above recursion starting

from i = 1, we obtain:

MSPz,i � (CG′′)iMSPz,0+

μ2

4
(κ ′

d )2
i−1∑

j=0

(CG′′) jC(IN − G′′)−1(1N ⊗ E‖Wo
η − W i−1− j‖4)

(112)

Under Assumption 3 and condition (39), the matrix CG′′ is
guaranteed to be stable. Following similar arguments to the
ones used to establish eq. (70) in Part I (Appendix E) [2], and
from Theorem 3 in Part I [2], we conclude that:

‖ lim sup
i→∞

MSPz,i‖∞ = O(μ2), (113)

where we used the fact that ‖(IN − G′′)−1‖∞ ≤ O(μ−1). It
follows that

lim sup
i→∞

E‖W̃ i − W̃ ′
i‖2 = O(μ2). (114)

Finally note that

E‖W̃ ′
i‖2

= E‖W̃ ′
i − W̃ i + W̃ i‖2

≤ E‖W̃ ′
i − W̃ i‖2 + E‖W̃ i‖2 + 2|E(W̃ ′

i − W̃ i )
�W̃ i|

≤ E‖W̃ ′
i − W̃ i‖2 + E‖W̃ i‖2 + 2

√
E‖W̃ ′

i − W̃ i‖2E‖W̃ i‖2

(115)

where we used |Ex| ≤ E|x| from Jensen’s inequality and
where we applied Hölder’s inequality:

E|x�y| ≤ (
E|x|p) 1

p
(
E|x|q) 1

q , when 1/p + 1/q = 1.

Hence we get:

lim sup
i→∞

(
E‖W̃ ′

i‖2 − E‖W̃ i‖2) ≤ O(μ2) +
√

O(μ3) = O(μ
3
2 ),

(116)
since μ2 < μ

3
2 for small μ � 1.

APPENDIX B
PROOF OF LEMMA 3
From (43), we have:

w′
k,∞ − w′

k,i =
N∑

�=1

[C]k�φ
′
�,i, (117)

where C is defined in (107) and where φ′
k,i is given by:

φ′
k,i = (IM − μHk,η )(w′

k,∞ − w′
k,i−1) − μsk,i(wk,i−1).

(118)
Applying Jensen’s inequality [43, pp. 77] to the convex func-
tion ‖ · ‖2, we obtain:

E‖w′
k,∞ − w′

k,i‖2 ≤
N∑

�=1

[C]k�E‖φ′
�,i‖2. (119)
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Under Assumption 2, we have:

E[‖φ′
k,i‖2|F i−1]

= ‖w′
k,∞ − w′

k,i−1‖2
�k

+ μ2E[‖sk,i(wk,i−1)‖2|F i−1],
(120)

where �k � (IM − μHk,η )2, which due to Assumption 1, can
be bounded as follows:

0 < �k ≤ γ 2
k IM , (121)

where γk is given by (48). Taking expectation again in (120),
and using the bound (138) on E[‖sk,i(wk,i−1)‖2|F i−1] from
Part I [2], we obtain:

E‖φ′
k,i‖2

= E‖w′
k,∞ − w′

k,i−1‖2
�k

+ μ2E‖sk,i(wk,i−1)‖2

≤ γ 2
k E‖w′

k,∞ − w′
k,i−1‖2 + 3μ2β2

k E‖wk,∞ − wk,i−1‖2

+ μ2
(

3β2
k ‖wo

k,η − wk,∞‖2 + 3β2
k ‖wo

k,η‖2 + σ 2
s,k

)
.

(122)

Now, combining (122) and (119), we obtain (45).
Iterating (45) starting from i = 1, we get:

MSP′
i � (C(G′′)2)iMSP′

0

+ μ2
i−1∑

j=0

(C(G′′)2) jC(3diag{β2
k }MSPi−1− j + b).

(123)

Under Assumption 3 and condition (39), the matrix C(G′′)2 is
guaranteed to be stable. Using the fact that b = O(1) from
Theorem 1 in Part I [2], 1 − ‖(G′′)2‖∞ = O(μ), and that
‖ limi→∞ MSPi‖∞ = O(μ) from Theorem 2 in Part I [2],
and following similar arguments as the one used to establish
eq. (70) in Part I (Appendix E) [2], we conclude (49).

From (42), Lemma 2, and (49), we conclude (50).

APPENDIX C
PROOF OF LEMMA 4
Consider the matrix Fη in (57). Using the block Kronecker
product property:

(A ⊗b B)(C ⊗b D) = (AC ⊗b BD), (124)

it can be verified that:

Fη = B�
η ⊗b B�

η , (125)

where

Bη = V�BηV = (IMN − μηJ )(IMN − μV�HηV ) (126)

so that:

B�
η =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I − μH11 −μ(1 − μηλ2) . . . −μ(1 − μηλN )
H21 HN1

−μH12 (1 − μηλ2) . . . −μ(1 − μηλN )
(I − μH22) HN2

...
...

...
−μH1 N −μ(1 − μηλ2) . . . (1 − μηλN )

H2 N (I − μHNN )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(127)

where Hmn is defined in (63). It can be verified that the matrix
Z = I − Fη is N × N blocks Zmn with each block of size
M2N × M2 N :

Z = I − Fη =

⎡

⎢
⎢
⎢
⎢
⎣

Z11 Z12 . . . Z1 N

Z21 Z22 . . . Z2 N
...

...
...

ZN1 ZN2 . . . ZNN

⎤

⎥
⎥
⎥
⎥
⎦

, (128)

We denote by [Zmn]pq the M2 × M2 (p, q)-th block of Zmn.
We have:

[Zmn]pq =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I − (1 − μηλm)(1 − μηλp)[(I − μHmm) ⊗ (I − μHpp)],

if m = n, p = q

μ(1 − μηλm)(1 − μηλq )[(I − μHmm) ⊗ Hqp],

if m = n, p 
= q

μ(1 − μηλn)(1 − μηλp)[Hnm ⊗ (I − μHpp)],

if m 
= n, p = q

−μ2(1 − μηλn)(1 − μηλq )[Hnm ⊗ Hqp],

if m 
= n, p 
= q.

(129)

We have:

(I − μHmm) ⊗ (I − μHpp)

= I − μHmm ⊕ Hpp + μ2Hmm ⊗ Hpp, (130)

where Hmm ⊕ Hpp is given by (62) and

1 − (1 − μηλm)(1 − μηλp) = μη(λm + λp − μηλmλp).
(131)
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Thus,

[Zmn]pq =

μ ·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − μηλm)(1 − μηλp)(Hmm ⊕ Hpp)+
η(λm + λp − μηλmλp)I + O(μ),

if m = n, p = q

(1 − μηλm)(1 − μηλq )(I ⊗ Hqp) + O(μ),

if m = n, p 
= q

(1 − μηλn)(1 − μηλp)(Hnm ⊗ I ) + O(μ),

if m 
= n, p = q

−μ(1 − μηλn)(1 − μηλq)[Hnm ⊗ Hqp] = O(μ),

if m 
= n, p 
= q

(132)

Before proceeding, we recall the following useful proper-
ties of the Kronecker and Kronecker sum products [37]. Let
{λi(A), i = 1, . . . , M} and {λ j (B), j = 1, . . . , M} denote the
eigenvalues of any two M × M matrices A and B, respectively.
Then,

{λ(A ⊗ B)} = {λi(A)λ j (B)}M,M
i=1, j=1, (133)

{λ(A ⊕ B)} = {λi(A) + λ j (B)}M,M
i=1, j=1. (134)

From (128), (129), and (132), it can be verified that the matrix
Z can be written as:

Z = X + Y. (135)

The matrix X is N2 × N2 block diagonal defined as:

X � μ · diag
{

diag
{
[Zmm]pp

}N
p=1

}N

m=1

= μ ·
[

O(1) 0
0 O(1) + O(η)

]

, (136)

where we used the fact that for m = 1 and p = 1, we have
[Z11]11 = μ · H11 ⊕ H11 + O(μ2) which is μ · O(1). This is
due to property (134) and the fact that H11 = 1

N

∑N
k=1 Hk,η >

0. For the remaining blocks of X , from (131), property (134),
and the fact that Hmm = ∑N

k=1[vm]2
kHk,η > 0, it can be veri-

fied that the matrix:

[Zmm]pp = μ(1 − μηλm)(1 − μηλp)(Hmm ⊕ Hpp)

+ μη(λm + λp − μηλmλp)I (137)

is also positive definite when:

0 < (1 − μηλm)(1 − μηλp) ≤ 1. (138)

Furthermore, in this case, we have [Zmm]pp = μ · (O(1) +
O(η)). The matrix Y = Z − X in (135) is an N2 × N2 block

matrix where each block is M2 × M2 given by:

[Ymn]pq

= μ ·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if m = n, p = q

(1 − μηλm)(1 − μηλq )(I ⊗ Hqp) + O(μ) ≤ O(1)

if m = n, p 
= q

(1 − μηλn)(1 − μηλp)(Hnm ⊗ I ) + O(μ) ≤ O(1)

if m 
= n, p = q

−μ(1 − μηλn)(1 − μηλq)[Hnm ⊗ Hqp] ≤ O(μ)

if m 
= n, p 
= q

(139)

Applying the matrix inversion identity [42], we obtain:

(X + Y )−1 = X−1 − X−1Y (I + X−1Y )−1X−1, (140)

From (136), we have:

X−1 = μ−1 · diag
{

diag
{
([Zmm]pp)−1}N

p=1

}N

m=1

= μ−1 ·
[

O(1) 0

0 (O(1) + O(η))−1

]

. (141)

From (141) and (139), we have:

X−1Y =
[

0 O(1)

(O(1) + O(η))−1 (O(1) + O(η))−1

]

, (142)

and

I + X−1Y =
[

O(1) O(1)

(O(1) + O(η))−1 O(1)

]

. (143)

Applying the block inversion formula to I + X−1Y , we obtain:

(I + X−1Y )−1 =
[

O(1) O(1)

(O(1) + O(η))−1 O(1)

]

. (144)

Finally, from (141), (142), and (144), we conclude that:

X−1Y (I + X−1Y )−1X−1

= μ−1 ·
[

(O(1) + O(η))−1 (O(1) + O(η))−1

(O(1) + O(η))−1 (O(1) + O(η))−2

]

.
(145)

Consider now the matrix (I − Fη )−1 = (V ⊗b V )(I −
Fη )−1(V ⊗b V )�. It can be verified that:

(I − Fη )−1

= (V ⊗b V )X−1(V ⊗b V )�

+ (V ⊗b V )X−1Y (I + X−1Y )−1X−1(V ⊗b V )�

=
N∑

m=1

N∑

p=1

[(vm ⊗ IM ) ⊗b (vp ⊗ IM )]
(
[Zmm]pp

)−1 ·

[(v�
m ⊗ IM ) ⊗b (v�

p ⊗ IM )] + μ−1(O(1) + O(η))−1

(146)
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APPENDIX D
PROOF OF THEOREM 1
From (65) and (146), we have:

(bvec(Y�))�(I − Fη )−1bvec(IMN ) = O(μ)(O(1) + O(η))−1

+
N∑

m=1

N∑

p=1

(bvec(Y�))�[(vm ⊗ IM ) ⊗b (vp ⊗ IM )]

· ([Zmm]pp)−1[(v�
m ⊗ IM ) ⊗b (v�

p ⊗ IM )]bvec(IMN ) (147)

where the bvec operation is relative to blocks of size M ×
M. Using the property bvec(ACB) = (B� ⊗b A)bvec(C), we
obtain:

[(v�
m ⊗ IM ) ⊗b (v�

p ⊗ IM )]bvec(IMN )

=
{

bvec(IM ) = vec(IM ), if m = p

0, if m 
= p

(148)

and we conclude that:

(bvec(Y�))�(I − Fη )−1bvec(IMN ) = O(μ)(O(1) + O(η))−1

+
N∑

m=1

(bvec(Y�))�[(um ⊗ IM ) ⊗b (um ⊗ IM )]xm
(149)

where

xm � ([Zmm]mm)−1vec(IM ). (150)

This vector is the unique solution to the linear system of
equations:

[Zmm]mmxm = vec(IM ), (151)

or, equivalently, by using (137):

μ
[
(1 − μηλm)2(Hmm ⊗ I ) + η

2
λm(2 − μηλm)

]
xm

+ μ
[
(1 − μηλm)2(I ⊗ Hmm) + η

2
λm(2 − μηλm)I

]
xm

= vec(IM ), (152)

Let Xm = unvec(xm). Applying the property vec(ACB) =
(B� ⊗ A)vec(C), we obtain:

vec(XmTm) + vec(TmXm) = vec(IM ) (153)

where

Tm � μ(1 − μηλm)2Hmm + μη

2
λm(2 − μηλm)I. (154)

We conclude from the above equation that Xm is the unique
solution to the continuous time Lyapunov equation:

XmTm + TmXm = IM , (155)

whose solution is given by:

Xm = 1

2
T −1

m

= 1

2μ

(
(1 − μηλm)2Hmm + η

2
λm(2 − μηλm)I

)−1
.

(156)

Using the definitions (66), (67), and applying properties

bvec(ACB) = (B� ⊗b A)bvec(C),

and Tr(AB) = (bvec(B�))�bvec(A), (157)

we get:

N∑

m=1

[bvec(Y�)]�[(vm ⊗ IM ) ⊗b (vm ⊗ IM )]vec(Xm)

=
N∑

m=1

Tr (unbvec{(vm ⊗ IM ) ⊗b (vm ⊗ IM )bvec(Xm)}Y )

=
N∑

m=1

Tr
(
(vm ⊗ IM )Xm(v�

m ⊗ IM )Y)

= μ2
N∑

m=1

(1 − μηλm)2Tr
(
(v�

m ⊗ IM )Sη(vm ⊗ IM )Xm
)

= μ

2

N∑

m=1

(1 − μηλm)2Tr

((
N∑

k=1

[vm]2
kRs,k,η

)

·

(

(1 − μηλm)2

(
N∑

k=1

[vm]2
kHk,η

)

+ η

2
λm(2 − μηλm)I

)−1
⎞

⎠

= μ

2

N∑

m=1

Tr

⎛

⎝

(
N∑

k=1

[vm]2
kHk,η + ηλm(2 − μηλm)

2(1 − μηλm)2
I

)−1

·

(
N∑

k=1

[vm]2
kRs,k,η

))

(158)

Substituting into (149) and (65), we conclude:

lim sup
i→∞

1

N
E‖Wo

η − W i‖2

= μ

2 N

N∑

m=1

Tr

⎛

⎝

(
N∑

k=1

[vm]2
kHk,η + ηλm(2 − μηλm)

2(1 − μηλm)2
I

)−1

·
(

N∑

k=1

[vm]2
kRs,k,η

))

+ O(μ)

(O(1) + O(η))
+ O(μ1+θm )

(159)

Now, according to definition (51), dividing (159) by μ and
computing the limit as μ → 0, we arrive at expression (68)
for the network MSD.

REFERENCES
[1] R. Nassif, S. Vlaski, and A. H. Sayed, “Distributed inference over mul-

titask graphs under smoothness,” in Proc. IEEE Int. Workshop Signal
Process. Advances Wireless Commun., Kalamata, Greece, Jun. 2018,
pp. 1–5.

[2] R. Nassif, S. Vlaski, C. Richard, and A. H. Sayed, “Learning over mul-
titask graphs—Part I: Stability analysis,” IEEE Open J. Signal Process.,
Apr. 2020, arXiv:1805.08535.

[3] D. P. Bertsekas, “A new class of incremental gradient methods for least
squares problems,” SIAM J. Optim., vol. 7, no. 4, pp. 913–926, 1997.

[4] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1,
pp. 215–233, Jan. 2007.

VOLUME 1, 2020 61



NASSIF ET AL.: LEARNING OVER MULTITASK GRAPHS—PART II: PERFORMANCE ANALYSIS

[5] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–
61, Jan. 2009.

[6] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proc. IEEE,
vol. 98, no. 11, pp. 1847–1864, Nov. 2010.
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