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ABSTRACT This paper formulates a multitask optimization problem where agents in the network have
individual objectives to meet, or individual parameter vectors to estimate, subject to a smoothness condition
over the graph. The smoothness condition softens the transition in the tasks among adjacent nodes and
allows incorporating information about the graph structure into the solution of the inference problem. A
diffusion strategy is devised that responds to streaming data and employs stochastic approximations in place
of actual gradient vectors, which are generally unavailable. The approach relies on minimizing a global cost
consisting of the aggregate sum of individual costs regularized by a term that promotes smoothness. We show
in this Part I of the work, under conditions on the step-size parameter, that the adaptive strategy induces a
contraction mapping and leads to small estimation errors on the order of the small step-size. The results in
the accompanying Part II will reveal explicitly the influence of the network topology and the regularization
strength on the network performance and will provide insights into the design of effective multitask strategies
for distributed inference over networks.

INDEX TERMS Multitask distributed inference, diffusion strategy, smoothness prior, graph Laplacian regu-
larization, gradient noise, stability analysis.

I. INTRODUCTION
Distributed inference allows a collection of interconnected
agents to perform parameter estimation tasks from streaming
data by relying solely on local computations and interactions
with immediate neighbors. Most prior literature focuses on
single-task problems, where agents with separable objective
functions need to agree on a common parameter vector cor-
responding to the minimizer of an aggregate sum of individ-
ual costs [2]–[11]. Many network applications require more
complex models and flexible algorithms than single-task im-
plementations since their agents may need to estimate and
track multiple objectives simultaneously [12]–[23]. Networks
of this kind are referred to as multitask networks. Although
agents may generally have distinct though related tasks to per-
form, they may still be able to capitalize on inductive transfer
between them to improve their performance.

Based on the type of prior information that may be avail-
able about how the tasks are related to each other, multitask
learning algorithms can be derived by translating the prior
information into constraints on the parameter vectors to be in-
ferred [12]–[23]. For example, in [19]–[21], distributed strate-
gies are developed under the assumption that the parameter
vectors across the agents overlap partially. A more general
scenario is considered in [22] where it is assumed that the
tasks across the agents are locally coupled through linear
equality constraints. In [23], the parameter space is decom-
posed into two orthogonal subspaces, with one of the sub-
spaces being common to all agents. There is yet another useful
way to model relationships among tasks, namely, to formulate
optimization problems with appropriate regularization terms
encoding these relationships [13]–[18]. For example, the strat-
egy developed in [13] adds squared �2-norm co-regularizers to
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the mean-square-error criterion to promote task similarities,
while the strategy in [14] adds �1-norm co-regularizers to
promote piece-wise constant transitions.

In this paper, and the accompanying Part II [24], we con-
sider multitask inference problems where each agent in the
network seeks to minimize an individual cost expressed as
the expectation of some loss function. The minimizers of the
individual costs are assumed to vary smoothly on the topol-
ogy captured by the graph Laplacian matrix. The smoothness
property softens the transition in the tasks among adjacent
nodes and allows incorporating information about the graph
structure into the solution of the inference problem. This
smoothness property (under which the tasks are similar at
neighboring vertices with the strength of similarity speci-
fied by the weight between them) is often observed in real
world applications. For instance, in monitoring applications,
agents in a network need to track multiple targets located on
a smooth area [13]. In weather forecasting applications, the
decision rules at neighboring weather stations are expected
to be similar since they are collecting features arising from
similar statistical distributions (see Section IV). Other ex-
amples include house price prediction and crime prediction
applications (see [25] and the applications therein). In order
to exploit the smoothness prior, we formulate in this work the
inference problem as the minimization of the aggregate sum of
individual costs regularized by a term promoting smoothness,
known as the graph-Laplacian regularizer [26], [27]. A diffu-
sion strategy is devised that responds to streaming data and
employs stochastic approximations in place of actual gradient
vectors, which are generally unavailable. We show in this
Part I of the work, under conditions on the step-size learning
parameter μ, that the adaptive strategy induces a contraction
mapping and that despite gradient noise, it is able to converge
in the mean-square-error sense within O(μ) from the solu-
tion of the regularized problem, for sufficiently small μ. The
analysis in the current part also reveals how the regularization
strength η can steer the convergence point of the network
toward many modes starting from the non-cooperative mode
where each agent converges to the minimizer of its individual
cost and ending with the single-task mode where all agents
converge to a common parameter vector corresponding to the
minimizer of the aggregate sum of individual costs. We shall
also derive in Part II [24] a closed-form expression for the
steady-state network mean-square-error relative to the mini-
mizer of the regularized cost. This closed form expression will
reveal explicitly the influence of the regularization strength,
network topology, gradient noise, and data characteristics, on
the network performance. Additionally, a closed-form expres-
sion for the steady-state network mean-square-error relative to
the minimizers of the individual costs will be also derived in
Part II [24]. This expression will provide insights into the de-
sign of effective multitask strategies for distributed inference
over networks.

There have been many works in the literature studying
distributed multitask adaptive strategies and their convergence
behavior. Nevertheless, with few exceptions [21], most of

these works focus on mean-square-error costs. This paper, and
the accompanying Part II [24], generalize distributed multi-
task inference over networks and applies it to a wide class of
individual costs. Furthermore, previous works in this domain
tend to show the benefit of multitask learning empirically by
simulations. Following some careful and demanding analysis,
we establish in Part II [24], which builds on the results of this
Part I, a useful expression for the network steady-state per-
formance. This expression provides insights into the learning
behavior of multitask networks and clarifies how multitask
distributed learning may improve the network performance.
Unlike most of the previous works in the field where the
performance analyses are conducted in the graph (or vertex)
domain, this work focuses instead on analyzing the proposed
strategy in the graph spectral domain. As a consequence,
the resulting performance expressions reveal explicitly the
influence of the eigenvalues and eigenvectors of the graph
Laplacian on the network performance. Furthermore, as we
will see in this paper, and the accompanying Part II [24], this
analysis shows that the multitask algorithm behaves in some
situations as a lowpass graph filter.

Notation: All vectors are column vectors. Random quanti-
ties are denoted in boldface. Matrices are denoted in capital
letters while vectors and scalars are denoted in lower-case
letters. The operator � denotes an element-wise inequality;
i.e., a � b implies that each entry of the vector a is less than
or equal to the corresponding entry of b. The symbol diag{·}
forms a matrix from block arguments by placing each block
immediately below and to the right of its predecessor. The
operator col{·} stacks the column vector entries on top of
each other. The symbol ⊗ denotes the Kronecker product. We
define x = O(μ) to mean limμ→0

x
μ

= c for some constant
c independent of μ, which is stronger than merely requiring
limμ→0

x
μ

≤ c. Table I lists a couple of variables and symbols
that will be used throughout the paper.

II. DISTRIBUTED INFERENCE UNDER SMOOTHNESS
PRIORS
A. PROBLEM FORMULATION AND ADAPTIVE STRATEGY
We refer to Fig. 1 and consider a connected network (or graph)
G = {N , E, A}, where N is a set of N agents (nodes), E is
a set of edges connecting agents with particular relations,
and A is a symmetric, weighted adjacency matrix. If there
is an edge connecting agents k and �, then [A]k� = ak� > 0
reflects the strength of the relation between k and �; other-
wise, [A]k� = 0. We introduce the graph Laplacian L, which
is a differential operator defined as L = D − A, where the
degree matrix D is a diagonal matrix with k-th entry [D]kk =∑N

�=1 ak�. Since L is symmetric positive semi-definite, it pos-
sesses a complete set of orthonormal eigenvectors. We denote
them by {v1, . . . , vN }. For convenience, we order the set of
real, non-negative eigenvalues of L as 0 = λ1 < λ2 ≤ . . . ≤
λN = λmax(L), where, since the network is connected, there
is only one zero eigenvalue with corresponding eigenvector
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TABLE 1. Definition of Some Variables Used Throughout the Paper

FIGURE 1. Agents linked by an edge can share information. The weight ak�
over an edge reflects the strength of the relation between wo

k at node k
and wo

� at node �.

v1 = 1√
N
1N [28]. Thus, the Laplacian can be decomposed as:

L = V �V �, (1)

where � = diag{λ1, . . . , λN } and V = [v1, . . . , vN ].
Let wk ∈ RM denote some parameter vector at agent k and

let W = col{w1, . . . ,wN } denote the collection of parameter
vectors from across the network. We associate with each agent
k a risk function Jk (wk ) : RM → R assumed to be strongly
convex. In most learning and adaptation problems, the risk
function is expressed as the expectation of a loss function
Qk (·) and is written as Jk (wk ) = E Qk (wk; xk ), where xk de-
notes the random data. The expectation is computed over the
distribution of this data. We denote the unique minimizer
of Jk (wk ) by wo

k . We introduce a common assumption on
the risks {Jk (wk )}. This condition is satisfied by many ob-
jective functions of interest in learning and adaptation such
as quadratic and logistic risks. Besides, regularization is a
common technique to ensure strong convexity (see, e.g., [7],
[10]). It should be noted that regularized logistic regression
risks are considered in the weather forecasting application in
Section IV and that mean-square-error (quadratic) risks are
considered in the simulation section of Part II [24].

Assumption 1 (Strong convexity): It is assumed that the
individual costs Jk (wk ) are each twice differentiable and
strongly convex such that the Hessian matrix function
Hk (wk ) = ∇2

wk
Jk (wk ) is uniformly bounded from below and

above, say, as:

0 < λk,minIM ≤ Hk (wk ) ≤ λk,maxIM , (2)

where λk,min > 0 for k = 1, . . . , N . �
In many situations, there is prior information available

about Wo = col{wo
1, . . . ,w

o
N }. In the current work, the prior

belief we want to enforce is that the target signal Wo is
smooth with respect to the underlying weighted graph. Ref-
erences [13]–[15], [18] provide variations for such problems
for the special case of mean-square-error costs and linear data
models. Here we treat general convex costs. Let L = L ⊗ IM .
The smoothness of W can be measured in terms of a quadratic
form of the graph Laplacian [26], [27], [29]:

S(W ) = W�LW = 1

2

N∑

k=1

∑

�∈Nk

ak�‖wk − w�‖2, (3)

where Nk is the set of neighbors of k, i.e., the set of nodes con-
nected to agent k by an edge. Fig. 1 provides an illustration.
The smaller S(W ) is, the smoother the signal W on the graph
is. Intuitively, given that the weights are non-negative, S(W )
shows that W is considered to be smooth if nodes with a large
ak� on the edge connecting them have similar weight values
{wk,w�}. Our objective is to devise and study a strategy that
solves the following regularized problem:

Wo
η = arg min

W
Jglob(W ) =

N∑

k=1

Jk (wk ) + η

2
W�LW, (4)

in a distributed manner where each agent is interested in
estimating the k-th sub-vector of Wo

η = col{wo
1,η, . . . ,w

o
N,η}.

The tuning parameter η ≥ 0 controls the trade-off between
the two components of the objective function. Reference [1]
provides a theoretical motivation for the optimization frame-
work where it is shown that, under a Gaussian Markov random
field assumption, solving problem (4) is equivalent to finding a
maximum a posteriori (MAP) estimate for W. We are particu-
larly interested in solving the problem in the stochastic setting
when the distribution of the data xk in Jk (wk ) = E Qk (wk; xk )
is generally unknown. This means that the risks Jk (wk ) and
their gradients ∇wk Jk (wk ) are unknown. As such, approximate
gradient vectors need to be employed. A common construc-
tion in stochastic approximation theory is to employ the fol-
lowing approximation at iteration i:

̂∇wk Jk (wk ) = ∇wk Qk (wk; xk,i ), (5)

where xk,i represents the data observed at iteration i. The
difference between the true gradient and its approximation is
called the gradient noise sk,i(·):

sk,i(w) � ∇wk Jk (w) − ̂∇wk Jk (w). (6)
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Each agent can employ a stochastic gradient descent update to
estimate wo

k,η:

wk,i = wk,i−1 − μ̂∇wk Jk (wk,i−1)

− μη
∑

�∈Nk

ak�(wk,i−1 − w�,i−1),
(7)

where μ > 0 is a small step-size parameter. In this implemen-
tation, each agent k collects from its neighbors the estimates
w�,i−1, and performs a stochastic-gradient descent update on:

J̄k,i−1(wk ) � Jk (wk ) + η

2

∑

�∈Nk

ak�‖wk − w�,i−1‖2. (8)

By introducing an auxiliary variable ψk,i, strategy (7) can be
implemented in an incremental manner:

{
ψk,i = wk,i−1 − μ̂∇wk Jk (wk,i−1)

wk,i = ψk,i − μη
∑

�∈Nk
ak�(ψk,i − ψ�,i ),

(9)

where we replaced (wk,i−1 − w�,i−1) in the second step by
the difference (ψk,i − ψ�,i ) since we expect ψk,i to be an im-
proved estimate compared towk,i−1. Note that if we introduce
the coefficients:

ck� =

⎧
⎪⎨

⎪⎩

1 − μη
∑

�∈Nk
ak�, k = �

μηak�, � ∈ Nk \ {k}
s0, � /∈ Nk

(10)

then recursion (9) can be written in the diffusion form [6]–
[10]:

{
ψk,i = wk,i−1 − μ̂∇wk Jk (wk,i−1)

wk,i = ∑
�∈Nk

ck�ψ�,i,
(11)

where the second step is a combination step. If we collect
the scalars {ck�} into the matrix C = [ck�], then the entries
of C are non-negative for small enough μ and its columns and
rows add up to one, i.e., C is a doubly-stochastic matrix. We
shall continue with form (9) because the second step in (9)
makes the dependence on η explicit. We will show later that
by varying the value of η we can make the algorithm behave in
different ways from fully non-cooperative to fully single-task
with many other modes in between.

B. SUMMARY OF MAIN RESULTS
Before delving into the study of the learning capabilities of (9)
and its performance limits, we summarize in this section, for
the benefit of the reader, the main conclusions of this Part
I, and its accompanying Part II [24]. One key observation is
that the smoothing parameter η can be regarded as an effec-
tive tuning parameter that controls the nature of the learning
process. The value of η can vary from η = 0 to η → ∞.
At one end, when η = 0, the learning algorithm reduces to
a non-cooperative mode of operation where each agent acts
individually and estimates its own local model, wo

k . On the
other hand, when η → ∞, the learning algorithm moves to
a single-mode of operation where all agents cooperate to

estimate a single parameter (namely, the Pareto solution of
the aggregate cost function). For any values of η in the range
0 < η < ∞, the network behaves in a multitask mode where
agents seek their individual models while at the same time
ensuring that these models satisfy certain smoothness and
closeness conditions dictated by the value of η. We are not
only interested in a qualitative description of the network
behavior. Instead, we would like to characterize these models
in a quantitative manner by deriving expressions that allow us
to predict performance as a function of η and, therefore, fine
tune the network to operate in different scenarios.

To begin with, recall that the objective of the multitask strat-
egy (9) is to exploit similarities among neighboring agents in
an attempt to improve the overall network performance in ap-
proaching the collection of individual minimizer Wo by means
of local communications. In light of the fact that algorithm (9)
has been derived as an (incremental) gradient descent recur-
sion for the regularized cost (4), whose minimizer Wo

η is in
general different from Wo, the limiting point of algorithm (9)
will therefore be generally different from Wo, the actual ob-
jective of the multitask learning problem. This mismatch is the
“cost” of enforcing smoothness. The analysis in the paper will
reveal that the mismatch is a function of the similarity between
the individual minimizers {wo

k}, of second-order properties
of the individual costs, of the network topology captured by
L, and of the regularization strength η. In particular, future
expression (32) will allow us to understand the interplay be-
tween these quantities which is important for the design of
effective multitask strategies. The key conclusion will be that,
while the bias (difference between Wo

η and Wo) will in general
increase as the regularization strength η increases, the size of
this increase is determined by the smoothness of Wo which is
in turn function of the network topology captured by L. The
more similar the tasks at neighboring agents are, the smaller
the bias will be. This result, while intuitive, is reassuring,
as it implies that as long as Wo is sufficiently smooth, the
bias induced by regularization will remain small, even for
moderate regularization strengths η.

The analysis in this work (this Part I, and its accompanying
Part II [24]) also quantifies the benefit of cooperation, namely,
the objective of improving the mean-square deviation around
the limiting point of the algorithm. This analysis is challeng-
ing due to coupling among agents, and the multi-task nature
of the learning process (where agents have individual targets
but need to meet certain smoothness and closeness conditions
with their neighbors). Section III in this Part I and Sections III
and IV in Part II [24], and the supporting appendices, are
devoted to carrying out this analysis in depth leading, for
example to Theorem 1 in Part II [24]. This theorem gives
expressions for the mean-square-deviation (MSD) relative to
Wo

η. The expressions reveal the effect of the step-size param-
eter μ, regularization strength η, network topology, and data
characteristics (captured by the smoothness profile, second-
order properties of the costs, and second-order moments of the
gradient noise) on the size of the steady-state mean-square-
error performance. The results established in Theorem 1 and
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FIGURE 2. Network steady-state MSD relative to a smooth signal Wo as a
function of the regularization strength η ∈ [0,350] at μ = 0.005.

expression (82) in Part II [24] provide tools for characterizing
the performance of multitask strategies in some great detail.

To illustrate the power of these results, consider a con-
nected network where each agent is subjected to streaming
data. The goal at each agent is to estimate a local parameter
vector wo

k from the observed data by minimizing a cost of the
form Jk (wk ) = E Qk (wk; xk ), where xk denotes the random
data. Consider network applications where the minimizers at
neighboring agents tend to be similar [13], [27]. Although
each agent is interested in estimating its own task wo

k , coop-
erating neighboring agents can still benefit from their inter-
actions because of this closeness. Given the graph Laplacian
and data characteristics, one problem of interest would be to
determine the optimal cooperation rule, i.e., the value of η

that minimizes the network mean-square-error performance.
Future expression (82) in Part II [24] can be used to solve this
problem since it allows us to predict the network MSD relative
to Wo, namely, MSD = lim supi→∞

1
N

∑N
k=1 E‖wo

k − wk,i‖2.
By using expression (82) in Part II [24], for example, we
will be able to construct curves of the form shown in Fig. 2,
which illustrate how performance is dependent on the smooth-
ness parameter η and how the nature of the limiting solution
varies as a function of this parameter. As it can be seen
from this figure, η = 4 gives the best network steady-state
mean-square performance. Note that η = 0 corresponds to the
non-cooperative scenario and that a large η induces a large
bias in the estimation. In the sequel we will see that as η

varies from η = 0 to η → ∞, the network behavior moves
from the non-cooperative mode of operation (where agents act
independently) to the single-task mode of operation (where all
agents focus on estimating a single parameter). For values of
η in between, the network can operate in any of a multitude
of multitask modes (where agents estimate their own local
parameters under smoothness conditions to allow for some
similarity between adjacent nodes). These limits are indicated
in Fig. 2.

Finally, we would like to mention that one of the main tools
used in the analysis in this work, and its accompanying Part
II [24], is the linear transformation relative to the eigenspace

of the graph Laplacian L from [6], which is also known as the
graph Fourier transform [27], [30], [31]. Under some condi-
tions on the data and costs profile, we show in Section VI-A
in Part II [24] how the diffusion type algorithm (9) exhibits
a low-pass graph filter behavior. Such filters are commonly
used to reduce the network noise profile when the signal to
be estimated is smooth with respect to the underlying topol-
ogy [27], [32]–[34]. Interestingly, the theoretical results estab-
lished in this Part I, and its accompanying Part II [24], reveal
the reasons for performance improvements under localized
cooperation.

C. NETWORK LIMIT POINT AND REGULARIZATION
STRENGTH
Before examining the behavior and performance of strat-
egy (9) with respect to the limiting point Wo

η in (4), we discuss
the influence of η on Wo

η. When η = 0, we have from (4)
that Wo

η = Wo and strategy (9) reduces to the single-agent
mode of operation or the non-cooperative solution where each
agent minimizes Jk (wk ) locally without cooperation. When
η → ∞, we have from (4) that Wo

η = 1N ⊗ w� where

w� � arg min
w

N∑

k=1

Jk (w), (12)

and we are in the single-task mode of operation where all
agents seek to estimate a common parameter vector w� corre-
sponding to the minimizer of the aggregate sum of individual
costs [6]–[10]. In order to study more closely the influence
of (finite) η > 0 on the network output Wo

η, we examine the
influence of η on the transformed vector:

Wo
η � (V � ⊗ IM )Wo

η = col
{
wo

m,η

}N
m=1

, (13)

with the m-th sub-vector wo
m,η denoting the spectral content of

Wo
η at the m-th eigenvalue λm of the Laplacian:

wo
m,η = (v�

m ⊗ IM )Wo
η. (14)

From (1), the quadratic regularization term S(W ) in (3) can be
written as:

S(W ) = W�LW =
N∑

m=1

λm‖wm‖2 =
N∑

m=2

λm‖wm‖2, (15)

where wm = (v�
m ⊗ IM )W and where we used the fact that

λ1 = 0. Intuitively, given that λm > 0 for m = 2, . . . , N , the
above expression shows that W is considered to be smooth if
‖wm‖2 corresponding to large λm is small. As a result, for a
fixed λm > 0, and as the regularization strength η > 0 in (4)
increases, one would expect ‖wo

m,η‖2 to decrease. Similarly,
for a fixed η ≥ 0, and as λm > 0 increases, one would ex-
pect ‖wo

m,η‖2 to decrease as well. However, as we will see
in the sequel, this behavior does not always hold. We show
in Section VI-A in Part II [24] that this is valid when the
Hessian matrix function Hk (wk ) � ∇2

wk
Jk (wk ) is independent

of wk , i.e., the cost Jk (wk ) is quadratic in wk and is uniform
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across the network. For more general scenarios, this is not
necessarily the case. What is useful to note, however, is that
as η moves from 0 towards ∞, a variety of solution points Wo

η

can occur ranging from the non-cooperative to the single-task
solution at both extremes.

From the optimality condition of (4), we have:

col
{
∇wk Jk (wo

k,η )
}N

k=1
= −ηLWo

η, (16)

Using the mean value theorem [35, pp. 24], we can write:

∇wk Jk (wo
k,η ) − ∇wk Jk (wo

k )
︸ ︷︷ ︸

=0

= Ho
k,η(wo

k,η − wo
k ), (17)

where

Ho
k,η �

∫ 1

0
∇2

wk
Jk (wo

k + t (wo
k,η − wo

k ))dt . (18)

Let Ho
η � diag{Ho

k,η}N
k=1. Relation (16) can then be rewritten

more compactly as:

Wo
η = (

Ho
η + ηL

)−1 Ho
ηW

o. (19)

Note that the inverse in (19) exists for all η ≥ 0 since the
matrix L is positive semi-definite and, under Assumption 1,
the matrix Ho

η is positive definite. Pre-multiplying both sides
of the above relation by (V ⊗ IM )� gives:

Wo
η = (Ho

η + ηJ )−1Ho
ηW

o
, (20)

where Wo
η is defined in (13) and

Wo � V�Wo, (21)

V � V ⊗ IM , J � � ⊗ IM , (22)

Ho
η � V�Ho

ηV . (23)

Since L has a single eigenvalue at zero, � and V can be
partitioned as follows:

� = diag{0,�o},V = [v1,VR], and V � = col{v�
1 ,V �

R }.
(24)

Lemma 1: (Limiting point) Under Assumption 1, it can be
shown that Wo

η given by (20) satisfies:

Wo
η =

[
IM Q−1

11 Q12
(
IM(N−1) − K

)

0 K

] [
wo

1[
Wo]

2:N

]

, (25)

where wo
1 = (v�

1 ⊗ IM )Wo, [Wo]2:N = (V �
R ⊗ IM )Wo and

Q11 � (v�
1 ⊗ IM )Ho

η(v1 ⊗ IM ) = 1

N

N∑

k=1

Ho
k,η, (26)

Q12 � (v�
1 ⊗ IM )Ho

η(VR ⊗ IM ), (27)

Q22 � (V �
R ⊗ IM )Ho

η(VR ⊗ IM ) + η�o ⊗ IM , (28)

G � (Q22 − Q�
12Q−1

11 Q12)−1, (29)

K � IM(N−1) − η G (�o ⊗ IM ) (30)

Proof: See Appendix A where we also show that:

‖K‖ ≤
(

max
1≤k≤N

λk,max

)(

ηλ2(L) + min
1≤k≤N

λk,min

)−1

= O(1)

(O(1) + O(η))
. (31)

�
Consider the difference between Wo

η and Wo. It turns out
that the smoother Wo is, the smaller ‖Wo − Wo

η‖ will be. To
see this, let us subtract Wo from both sides of equation (25).
We obtain:

Wo
η − Wo =

[
Q−1

11 Q12
(
IM(N−1) − K

)

K − IM(N−1)

]
[
Wo]

2:N . (32)

The difference Wo
η − Wo depends on [Wo]2:N . Thus, from (15)

and (32), we conclude that the smoother Wo is, the smaller
‖Wo

η − Wo‖ = ‖Wo
η − Wo‖ will be.

Lemma 1 will be useful in the sequel to establish Theorem 1
and to provide a low-pass graph filter interpretation for the
uniform Hessian matrices scenario considered in Section VI-
A in Part II [24].

III. NETWORK STABILITY
We examine the behavior of algorithm (9) under Assumption 2
on the gradient noise processes {sk,i(·)} defined in (6). As
explained in [7], [10], these conditions are automatically sat-
isfied by many risk functions of interest in learning and adap-
tation such as quadratic (considered in the simulation section
of Part II [24]) and logistic risks (considered in the weather
forecasting application of Section IV). Condition (33) essen-
tially states that the gradient vector approximation should be
unbiased conditioned on the past data, which is a reasonable
condition to require. Condition (34) states that the second-
order moment of the gradient noise process should get smaller
for better estimates, since it is bounded by the squared norm
of the iterate. Condition (35) states that the gradient noises
across the agents are uncorrelated.

Assumption 2 (Gradient noise process): The gradient
noise process defined in (6) satisfies for any w ∈ F i−1 and
for all k, � = 1, 2, . . . , N :

E[sk,i(w)|F i−1] = 0, (33)

E[‖sk,i(w)‖2|F i−1] ≤ β2
k ‖w‖2 + σ 2

s,k, (34)

E[sk,i(w)s�
�,i(w)|F i−1] = 0, k = �, (35)

for some β2
k ≥ 0, σ 2

s,k ≥ 0, and where F i−1 denotes the fil-
tration generated by the random processes {w�, j} for all � =
1, . . . , N and j ≤ i − 1. �

In this section, we analyze how well the multitask strat-
egy (9) approaches the optimal solution Wo

η of the regu-
larized cost (4). We examine this performance in terms of
the mean-square-error measure, E‖wo

k,η − wk,i‖2, the fourth-

order moment, E‖wo
k,η − wk,i‖4, and the mean-error process,

E(wo
k,η − wk,i ). To establish mean-square error stability, we
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extend the energy analysis framework of [6] to handle multi-
task distributed optimization. Then, following a similar line of
reasoning as in [7, Chapter 9], we establish the stability of the
first and fourth-order moments, which is necessary to arrive at
an expression for the steady-state performance in Part II [24].

Let us introduce the network block vector W i =
col{w1,i, . . . ,wN,i}. At each iteration, we can view (9) as a
mapping from W i−1 to W i:

W i = (IMN − μηL)

(

W i−1 − μ col
{
̂∇wk Jk (wk,i−1)

}N

k=1

)

(36)
We introduce the following condition on the combination ma-
trix (IMN − μηL), which is necessary for studying the perfor-
mance of (9). It can be easily verified that this requirement is
always met by selecting μ and η to satisfy the bounds (37)–
(38).

Assumption 3 (Combination matrix): The symmetric
combination matrix (IMN − μηL) has nonnegative entries
and its spectral radius is equal to one. Since L has an
eigenvalue at zero, these conditions are satisfied when the
step-size μ > 0 and the regularization strength η ≥ 0 satisfy:

0 ≤ μη ≤ 2

λmax(L)
, (37)

0 ≤ μη ≤ min
1≤k≤N

{
1

∑N
�=1 ak�

}

, (38)

where condition (37) ensures stability and condition (38) en-
sures non-negative entries. �

A. STABILITY OF SECOND-ORDER ERROR MOMENT
We first show that algorithm (9), in the absence of gradient
noise, converges and has a unique fixed-point. Then, we ana-
lyze the distance between this point and the vectors wo

k,η and
wk,i in the mean-square-sense.

1) EXISTENCE AND UNIQUENESS OF FIXED-POINT
Without gradient noise, relation (36) reduces to:

Wi = (IMN − μηL)
(
Wi−1 − μ col

{∇wk Jk (wk,i−1)
}N

k=1

)
.

(39)
Let X � col{x1, . . . , xN } denote an N × 1 block vector, where
xk is M × 1. The mapping (39) is equivalent to the determin-
istic mapping X → Y defined as:

Y = (IMN − μηL)
(
X − μ col

{∇wk Jk (xk )
}N

k=1

)
. (40)

Lemma 2: (Contractive mapping) Under Assumption 1
and condition (37), the deterministic mapping defined in (40)
satisfies:

‖Y1 − Y2‖ ≤ γ ‖X1 − X2‖, (41)

with γ � max1≤k≤N {γk} where:

γk � max{|1 − μλk,min|, |1 − μλk,max|}. (42)

This mapping is contractive when μ satisfies:

0 < μ < min
1≤k≤N

{
2

λk,max

}

. (43)

Proof: See Appendix B. �
It then follows from Banach’s fixed point theorem [36, pp.

299–303] that iteration (39) converges to a unique fixed point
W∞ = limi→∞ Wi = col{w1,∞, . . . ,wN,∞} at an exponential
rate given by γ . Observe that this fixed point is not Wo

η. Since
we wish to study lim supi→∞ E‖Wo

η − W i‖2, which can be
decomposed as:

lim sup
i→∞

E‖Wo
η − W i‖2

= lim sup
i→∞

E‖Wo
η − W∞ + W∞ − W i‖2

≤ 2‖Wo
η − W∞‖2 + 2 lim sup

i→∞
E‖W∞ − W i‖2, (44)

we shall first assess the size of ‖Wo
η − W∞‖2 and then exam-

ine the quantity lim supi→∞ E‖W∞ − W i‖2.

2) FIXED POINT BIAS ANALYSIS
Now we analyze how far this fixed point W∞ is from the
desired solution Wo

η when the step-size μ is small. We carry
out the analysis in two steps. First, we derive an expression
for W̃∞ � Wo

η − W∞ and then we assess its size. Since W∞ is
the fixed point of (39), we have at convergence:

W∞ = (IMN − μηL)
(
W∞ − μ col

{∇wk Jk (wk,∞)
}N

k=1

)

(45)
Let w̃k,∞ � wo

k,η − wk,∞. Using the mean-value theorem [35,
pp. 24],[7, Appendix D], we can write:

∇wk Jk (wk,∞) = ∇wk Jk (wo
k,η ) − Hk,∞w̃k,∞, (46)

where

Hk,∞ �
∫ 1

0
∇2

wk
Jk (wo

k,η − tw̃k,∞)dt . (47)

Subtracting the vector (IMN − μηL)Wo
η from both sides

of (45) and using relation (46), we obtain:

W̃∞ = (IMN − μηL)(IMN − μH∞)W̃∞ + μηLWo
η+

μ(IMN − μηL)col
{
∇wk Jk (wo

k,η )
}N

k=1
, (48)

where H∞ � diag{H1,∞, . . . , HN,∞}. From (16), recur-
sion (48) can be written alternatively as:

W̃∞ = (IMN − μηL)(IMN − μH∞)W̃∞ + μ2η2L2Wo
η, (49)

so that:

W̃∞ = μ2η2 [IMN − (IMN − μηL)(IMN − μH∞)]−1 L2Wo
η

(50)
The inverse exists when (IMN − μηL)(IMN − μH∞) is sta-
ble, i.e., its spectral radius is less than one. Since the spectral
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radius of a matrix is upper bounded by any of its induced
norms, we have:

ρ((IMN − μηL)(IMN − μH∞))

≤ ‖IMN − μηL‖‖IMN − μH∞‖, (51)

in terms of the 2−induced norm. Under condition (37) and
since λ1(L) = 0, we have ‖IMN − μηL‖ = 1. From Assump-
tion 1, we have:

(1 − μλk,max)IM ≤ IM − μHk,∞ ≤ (1 − μλk,min)IM , (52)

so that ‖IMN − μH∞‖2 ≤ max1≤k≤N γk with γk given in (42).
We conclude that when (37) and (43) are satisfied, the inverse
exists.

From (50), we observe that W̃∞ is zero in two cases:
i) when η = 0; ii) when wo

k = wo ∀k, i.e., Wo = 1N ⊗
wo. In the second case, consider (25) and observe that
wo

1 = √
Nwo, [Wo]2:N = 0, and Wo

η = col{wo
1, 0}. Thus,

Wo
η = (V ⊗ IM )Wo

η = (v1 ⊗ IM )wo
1 = 1N ⊗ wo and LWo

η =
L(1N ⊗ wo) = 0.

Theorem 1: (Fixed point bias size) Under Assumption 1
and for small μ satisfying conditions (37) and (43), the steady-
state bias W̃∞ = Wo

η − W∞ of the mapping (39) satisfies:

lim
μ→0

(
1

μ
‖Wo

η − W∞‖
)

≤ O(η2)

(O(1) + O(η))2
. (53)

Proof: See Appendix C. �

3) EVOLUTION OF THE STOCHASTIC RECURSION
We now examine how close the stochastic algorithm (9) ap-
proaches Wo

η. First, we introduce the mean-square perturba-
tion vector (MSP) at time i relative to W∞:

MSPi � col
{
E‖wk,∞ − wk,i‖2}N

k=1 . (54)

The k-th entry of MSPi characterizes how far away the esti-
mate wk,i at agent k and time i is from wk,∞.

Theorem 2 (Network mean-square-error stability): Under
Assumptions 1, 2, and 3, the MSP at time i can be recursively
bounded as:

MSPi � (IN − μηL) G MSPi−1 + μ2(IN − μηL)b, (55)

where:

G � diag
{
γ 2

k + 3μ2β2
k

}N
k=1 , (56)

b � col
{
σ 2

s,k + 3β2
k ‖wo

k,η‖2 + 3β2
k ‖wo

k,η − wk,∞‖2
}N

k=1
.

(57)

A sufficient condition for the stability of the above recursion
is:

0 < μ < min
1≤k≤N

{

min

{
2λk,min

λ2
k,min + 3β2

k

,
2λk,max

λ2
k,max + 3β2

k

}}

.

(58)
It follows that

‖ lim sup
i→∞

MSPi‖∞ = O(μ), (59)

and

lim sup
i→∞

E‖Wo
η − W i‖2 = O(μ) + O(μ2η4)

(O(1) + O(η))4
= O(μ).

(60)
Proof: See Appendix D. With regards to (60) note first that

for fixed η, we have O(μ) + O(μ2) = O(μ). When η and μ

are coupled (η = μ−ε), we obtain:

lim sup
i→∞

E‖Wo
η − W i‖2 = O(μ) + O(μ2−4ε )

O(1) + O(μ−4ε )
(61)

For ε < 0, O(1) dominates O(μ−4ε ) in the denominator and
we obtain O(μ) + O(μ2−4ε ) = O(μ). For ε > 0, O(μ−4ε )
dominates O(1) in the denominator and we obtain O(μ) +
O(μ2) = O(μ). �

B. STABILITY OF FOURTH-ORDER ERROR MOMENT
The results so far establish that the iterates wk,i converge to
a small O(μ)− neighborhood around the regularized solution
wo

k,η. We can be more precise and determine the size of this
neighborhood, i.e., assess the size of the constant multiply-
ing μ in the O(μ)−term. To do so, we shall derive in Part
II [24] an accurate first-order expression for the mean-square
error (60); the expression will be accurate to first-order in
μ. This expression will be useful because it will allow us to
highlight several features of the limiting point of the network
as a function of the parameter η.

To arrive at the desired expression, in Part II we first need
to introduce a long-term approximation model and assess how
close it is to the actual model. We then derive the performance
for the long-term model and use this closeness to transform
this result into an accurate expression for the performance of
the original learning algorithm. When this argument is con-
cluded we arrive at the desired performance expression, which
we then use to comment on the behavior of the algorithm in
a more informed manner. To derive the long-term model, we
shall follow the approach developed in [7]. The first step is to
establish the asymptotic stability of the fourth-order moment
of the error vector, E‖Wo

η − W i‖4. This property is needed to
justify the validity of the long-term approximate model that
will be introduced in Part II [24].

To establish the fourth-order stability, we introduce the fol-
lowing assumption on the gradient noise process.

Assumption 4 (Fourth-order moment of the gradient
noise): The gradient noise process defined in (6) satisfies for
any w ∈ F i−1 and for all k, � = 1, 2, . . . , N :

E
[‖sk,i(wk )‖4|F i−1

] ≤ β
4
k‖wk‖4 + σ 4

s,k, (62)

for some β
4
k ≥ 0, and σ 4

s,k ≥ 0.
As explained in [7], condition (62) implies (34) and, like-

wise, condition (62) holds for important cases of interest.
Exploiting the convexity of the norm functions ‖x‖4 and

‖x‖2 and using Jensen’s inequality, we can write:

E‖Wo
η − W i‖4 ≤ 8‖Wo

η − W∞‖4 + 8E‖W∞ − W i‖4, (63)

VOLUME 1, 2020 35



NASSIF ET AL.: LEARNING OVER MULTITASK GRAPHS—PART I: STABILITY ANALYSIS

and

E‖W∞ − W i‖4 = E
(‖W∞ − W i‖2)2

= E

(
N∑

k=1

‖wk,∞ − wk,i‖2

)2

= N2E

(
N∑

k=1

1

N
‖wk,∞ − wk,i‖2

)2

≤ N
N∑

k=1

E‖wk,∞ − wk,i‖4. (64)

Let us introduce the mean-fourth perturbation vector at time i
relative to W∞:

MFPi � col
{
E‖wk,∞ − wk,i‖4}N

k=1 . (65)

Theorem 3 (Fourth-order error moment stability): Under
Assumptions 1, 2, 3, and 4, the MFP at time i can be recur-
sively bounded as:

MFPi � (IN − μηL)G′MFPi−1+
μ2(IN − μηL)BMSPi−1 + μ4(IN − μηL)b,′ (66)

where

G′ � diag
{
γ 4

k + 24μ2γ 2
k β2

k + 81μ4β
4
k

}N

k=1
, (67)

B � 8γ 2
k diag

{
σ 2

s,k + 3β2
k ‖wo

k,η‖2 + 3β2
k ‖wo

k,η − wk,∞‖2
}N

k=1
(68)

b′ � col
{

3σ 4
s,k + 81β

4
k‖wo

k,η‖4 + 81β
4
k‖wo

k,η − wk,∞‖4
}N

k=1
(69)

A sufficiently small μ ensures the stability of the above recur-
sion. It follows that

‖ lim sup
i→∞

MFPi‖∞ = O(μ2), (70)

and

lim sup
i→∞

E‖Wo
η − W i‖4 =O(μ2) + O(μ4η8)

(O(1) + O(η))8
= O(μ2).

(71)
Proof: See Appendix E. �

C. STABILITY OF FIRST-ORDER ERROR MOMENT
We next need to examine the evolution of the mean-error
vector E(Wo

η − W i ). To establish the mean-stability, we need
to introduce a smoothness condition on the Hessian matrices
of the individual costs. This smoothness condition will be
adopted in the next Part II [24] when we study the long term
behavior of the network.

Assumption 5 (Smoothness condition on individual cost
functions): It is assumed that each Jk (wk ) satisfies a smooth-
ness condition close to wo

k,η, in that the corresponding Hessian

matrix is Lipchitz continuous in the proximity of wo
k,η with

some parameter κd ≥ 0, i.e.,

‖∇2
wk

Jk (wo
k,η + wk ) − ∇2

wk
Jk (wo

k,η )‖ ≤ κd‖wk‖, (72)

for small perturbations ‖wk‖ ≤ ε. �
From the triangle inequality, we have:

‖E(Wo
η − W i )‖ ≤ ‖Wo

η − W∞‖ + ‖E(W∞ − W i )‖. (73)

Let us introduce the square-mean perturbation (SMP) vector
at time i relative to W∞:

SMPi � col
{‖E(wk,∞ − wk,i )‖2}N

k=1 . (74)

Theorem 4 (First-order error moment stability): Under
Assumptions 1, 2, 3, and 5, the SMP at time i can be recur-
sively bounded as:

SMPi � (IN − μηL)G′′SMPi−1+
μ2(IN − μηL)(IN − G′′)−1B′MSPi−1+

μ2 1

2
(κ ′

d )2(IN − μηL)(IN − G′′)−1MFPi−1. (75)

where

G′′ � diag {γk}N
k=1 , (76)

B′ � 2(κ ′
d )2diag

{
‖wo

k,η − wk,∞‖2
}N

k=1
, (77)

with κ ′
d = max{κd ,

λk,max−λk,min
ε

}. Under Assumption 4, a suf-
ficiently small μ ensures the stability of the above recursion.
It follows that

‖ lim sup
i→∞

SMPi‖∞ = O(μ2), (78)

and that

lim sup
i→∞

‖E(Wo
η − W i )‖ = O(μ) + O(μη2)

(O(1) + O(η))2
. (79)

Proof: See Appendix F. �
We have established so far the stability of the mean-error

process, E(Wo
η − W i ), the mean-square-error E‖Wo

η − W i‖2,
and the fourth order moment E‖Wo

η − W i‖4. Building on
these results, we will derive in Part II [24] closed form ex-
pressions for the steady-state performance of algorithm (9).
Section VI in Part II [24] will provide illustration for the
theoretical results in this part (Theorems 1, 2, and 4), and its
accompanying Part II.

IV. SIMULATION RESULTS WITH REAL DATASET
In this section, we test algorithm (9) on a weather dataset
corresponding to a collection of daily measurements (mean
temperature, mean dew point, mean visibility, mean wind
speed, maximum sustained wind speed, and rain or snow
occurrence) taken from 2004 to 2017 at N = 139 weather
stations located around the continental United States [37].
We construct a representation graph G = (N , E, A) for the
stations using geographical distances between sensors. Each
sensor corresponds to a node k and is connected to |Nk|
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FIGURE 3. (Left) Occurrence of rain reported by 139 weather stations across the US on July 30, 2015. (Right) Prediction of rain occurrence from weather
data based on logistic regression and multitask learning.

neighbor nodes with undirected edges weighted according to
ak� = 1

2 (pk� + p�k ) with [32]:

pk� = e−d2
k�

√∑
m∈Nk,0

e−d2
km
∑

n∈N�,0
e−d2

�n

, � ∈ Nk,0, (80)

where Nk,0 is the set of 4-nearest neighbors of node k and
dk� denotes the geodesical distance between the k-th and �-
sensors – see Fig. 3 (left). Let hk,i ∈ RM denote the feature
vector at sensor k and day i composed of M = 5 entries corre-
sponding to the mean temperature, mean dew point, mean vis-
ibility, mean wind speed, and maximum sustained wind speed
reported at day i at sensor k. Let γk (i) denote a binary variable
associated with the occurrence of rain (or snow) at node k and
day i, i.e, γk (i) = 1 if rain (or snow) occurred and γk (i) = −1
otherwise. We would like to construct a classifier that allows
us to predict whether it will rain (or snow) or not based on the
knowledge of the feature vector hk,i. In principle, each station
could use an individual logistic regression machine [7], [38],
[39], that seeks a vector wo

k , such that γ̂k (i) = sign(h�
k,iw

o
k )

and

wo
k � arg min

wk
E ln

(
1 + e−γk (i)h�

k,iwk
)

+ ρ‖wk‖2. (81)

In this application, however, it is expected that the decision
rules {wo

k} at neighboring stations will be similar. In the
experiment, the dataset is split into a training set used to
learn the decision rule wo

k , and a test set from which γ̂k (i)
are generated for performance evaluation. The first dataset
comprises daily weather data recorded at the stations in the
interval 2004 − 2012 (a total number of Da = 3288 days) and
the test set contains data recorded in the interval 2012 − 2017
(a total number of Dt = 1826 days). We set μ = 3 · 10−4 and
ρ = 10−5. We generate the first iterate wk,0 from the Gaussian
distribution N (0, IM ) and we run strategy (9) over the training
set (i = 1, . . . , Da) for different values of η. For each value of
η, we report in Table 2 the prediction error over the test set
defined as:

1

N

N∑

k=1

1

Dt

Dt =1826∑

i=1

I[sign(h�
k,iŵk,∞) = γk (i)], (82)

TABLE 2. Rain Prediction Error (82) in Weather Sensor Networks for
Different Values of Regularization Strength η

where N = 139 is the number of nodes, ŵk,∞ is the average
of the last 200 iterates generated by the algorithm at agent k,
and I[x] is the indicator function at x, namely, I[x] = 1 if x is
true and 0 otherwise. Table 2 shows that through cooperation,
the agents improve performance. This is due to the fact that
the non-cooperative solution (η = 0) may suffer from a slow
convergence rate [1, Section V-B] in which case some nodes
may not be able to converge in the finite dataset scenario. By
increasing η, the convergence rate improves. However, a large
value of η (such as η = μ−1) yields a deterioration in the ac-
curacy since in this case all agents converge approximately to
the same classifier. By setting η = 45, we obtain the smallest
prediction error. We show in Fig. 3 (right) the results of the
prediction on July 30, 2015 across the US for η = 45.

V. CONCLUSION
In this work, we considered multitask inference problems
where agents in the network have individual parameter vectors
to estimate subject to a smoothness condition over the graph.
Based on diffusion adaptation, we proposed a strategy that
allows the network to minimize a global cost consisting of the
aggregate sum of the individual costs regularized by a term
promoting smoothness. We showed that, for small step-size
parameter, the network is able to approach the minimizer
of the regularized problem to arbitrarily good accuracy lev-
els. Furthermore, we showed how the regularization strength
can steer the convergence point of the network toward many
modes starting from the non-cooperative mode and ending
with the single-task mode.

APPENDIX A PROOF OF LEMMA 1
Consider the matrix inversion identity [40]:

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1, (83)
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which allows us to write:

(U + W )−1U = I − U−1(I + WU−1)−1

W = I − (U + W )−1W, (84)

for any invertible matrix U . Using (84), we write (20) alterna-
tively as:

Wo
η =

(

I − η
(
Ho

η + ηJ
)−1

J
)

Wo
. (85)

Let

Q � Ho
η + ηJ . (86)

Using the definitions (22) and (23), we can partition Q into
blocks:

Q =
[
Q11 Q12

Q�
12 Q22

]

, (87)

with Q11, Q12, and Q22 defined in (26), (27), and (28), re-
spectively. Since v1 = 1√

N
1N , we have Q11 = 1

N

∑N
k=1 Ho

k,η

which is positive definite from Assumption 1. Observe that Q
is invertible since it is similar to Ho

η + ηL which is positive
definite under Assumption 1. Now, by applying the block
inversion formula to Q, we obtain:

Q−1 = (Ho
η + ηJ )−1

=
[
Q−1

11 + Q−1
11 Q12GQ�

12Q−1
11 −Q−1

11 Q12G
−GQ�

12Q−1
11 G

]

, (88)

where

G � (Q22 − Q�
12Q−1

11 Q12)−1. (89)

Replacing (88) into (85) and using (22), we arrive at:

Wo
η =

[
IM ηQ−1

11 Q12G (�o ⊗ IM )

0 IM(N−1) − η G (�o ⊗ IM )

]

Wo
. (90)

Using definition (30) into (90), we conclude (25).
Now, we establish (31). Let us first introduce the matrix G′:

G′ � (V �
R ⊗ IM )Ho

η(VR ⊗ IM ) − Q�
12Q−1

11 Q12. (91)

Using the above definition and expressions (29) and (28), we
can re-write the matrix K in (30) alternatively as:

K = IM(N−1) − η [(V �
R ⊗ IM )Ho

η(VR ⊗ IM ) + η�o ⊗ IM−
Q�

12Q−1
11 Q12]−1 (�o ⊗ IM )

= IM(N−1) − η(G′ + η�o ⊗ IM )−1(�o ⊗ IM )

(84)= (G′ + η�o ⊗ IM )−1G′. (92)

The matrix G′ in (91) is the Schur complement of Ho
η in (23)

which can be partitioned as:

Ho
η =

[
Q11 Q12

Q�
12 (V �

R ⊗ IM )Ho
η(VR ⊗ IM )

]

. (93)

Thus, G′ is positive definite since it is the Schur complement
of the positive definite matrix Ho

η [41, pp. 651]. Since G′ is
symmetric, from Weyl’s inequality [42, pp. 239] we have:

0 < ηλ2(L) + λmin(G′)

≤ λmin(G′ + η�o ⊗ IM ) ≤ ηλ2(L) + λmax(G′).
(94)

Furthermore, since G′ is the Schur complement of the positive
definite matrix Ho

η, we have [43, Theorem 5]:

λmin(G′) ≥ λmin(Ho
η ) = λmin(Ho

η ) ≥ min
1≤k≤N

λk,min, (95)

λmax(G′) ≤ λmax(Ho
η ) = λmax(Ho

η ) ≤ max
1≤k≤N

λk,max. (96)

Therefore, from (94) and (95), we get:

λmin(G′ + η�o ⊗ IM ) ≥ ηλ2(L) + min
1≤k≤N

λk,min, (97)

and

λmax((G′ + η�o ⊗ IM )−1) = 1

λmin(G′ + η�o ⊗ IM )

≤
(

ηλ2(L) + min
1≤k≤N

λk,min

)−1

.

(98)

Since the 2−induced norm of a positive definite matrix is
equal to its maximum eigenvalue, we obtain:

‖(G′ + η�o ⊗ IM )−1‖ ≤
(

ηλ2(L) + min
1≤k≤N

λk,min

)−1

. (99)

From the sub-multiplicative property of the 2−induced norm
and from (92), (99), and (96), we obtain:

‖K‖ ≤ ‖(G′ + η�o ⊗ IM )−1‖ · ‖G′‖

≤
(

max
1≤k≤N

λk,max

)(

ηλ2(L) + min
1≤k≤N

λk,min

)−1

.

(100)

APPENDIX B PROOF OF LEMMA 2
Given any two input vectors X1 and X2 with corresponding
updated vectors Y1 and Y2, we have from (40):

Y1 − Y2 = (IMN − μηL)

·
(
X1 − X2 − μ col

{∇wk Jk (x1
k ) − ∇wk Jk (x2

k )
}N

k=1

)
. (101)

From the mean-value theorem [35, pp. 24], we have:

∇wk Jk (x1
k ) − ∇wk Jk (x2

k )

=
(∫ 1

0
∇2

wk
Jk (x2

k + t (x1
k − x2

k ))dt

)

(x1
k − x2

k ). (102)

Using (102) into (101), and the sub-multiplicative property of
the 2−induced norm [7], we obtain:

‖Y1 − Y2‖ ≤ ‖IMN − μηL‖‖D‖‖X1 − X2‖, (103)
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where

D � diag

{

IM − μ

∫ 1

0
∇2

wk
Jk (x2

k + t (x1
k − x2

k ))dt

}N

k=1
.

(104)
We have

‖IMN − μηL‖ = ‖(IN − μηL) ⊗ IM‖ = ‖IN − μηL‖. (105)

Let ρ(·) denote the spectral radius of its matrix argument.
Since L is symmetric, we have ‖IN − μηL‖ = ρ(IN − μηL).
Since L has one eigenvalue at zero, ρ(IN − μηL) is guaran-
teed to be equal to 1 if μη satisfies condition (37). For the
block diagonal symmetric matrix D in (104), we have:

‖D‖ = max
1≤k≤N

∥
∥
∥
∥IM − μ

∫ 1

0
∇2

wk
Jk (x2

k + t (x1
k − x2

k ))dt

∥
∥
∥
∥ .

(106)
Due to Assumption 1, we have:

0 < λk,minIM ≤
∫ 1

0
∇2

wk
Jk (x2

k + t (x1
k − x2

k ))dt ≤ λk,maxIM .

(107)
It follows that ‖D‖ ≤ γ where γ � max1≤k≤N {γk} and γk

is given in (42). It holds that 0 < γk < 1 when μ is chosen
according to (43). Combining the previous results, we arrive
at:

‖Y1 − Y2‖2 ≤ γ ‖X1 − X2‖2, (108)

for γ < 1 when (37) and (43) are satisfied and, in this case,
the deterministic mapping (40) is a contraction.

APPENDIX C PROOF OF THEOREM 1
From (50), we obtain the following expression for W̃∞:

W̃∞ = μη2[H∞ + ηL − μηLH∞]−1L2Wo
η. (109)

Pre-multiplying both sides of (109) by V� = V � ⊗ IM gives:

W∞ = μη2 [H∞ + ηJ − μηJH∞
]−1 J 2 Wo

η, (110)

where W∞ � V�W̃∞, Wo
η � V�Wo

η,

H∞ � V�H∞V, (111)

and J is given by (22).
In the following we show that W∞ can be written as:

W∞ = μη2
[−P−1

11 P12T
T

]

(�2
o ⊗ IM )K[Wo]2:N , (112)

where K is defined in (30) and:

T � (P22 − P21P−1
11 P12)−1, (113)

P11 � (v�
1 ⊗ IM )H∞(v1 ⊗ IM )= 1

N

N∑

k=1

Hk,∞, (114)

P12 � (v�
1 ⊗ IM )H∞(VR ⊗ IM ), (115)

P21 � ((IN−1 − μη�o) ⊗ IM )(V �
R ⊗ IM )H∞(v1 ⊗ IM ),

(116)

P22 � η�o ⊗ IM+
((IN−1 − μη�o) ⊗ IM )(V �

R ⊗ IM )H∞(VR ⊗ IM ), (117)

We introduce the following matrix, which appears in (110):

P � (IMN − μηJ )H∞ + ηJ =
[
P11 P12

P21 P22

]

, (118)

where the blocks {Pi j} are given by (114)–(117). Note that,
under Assumption 1, P11 in (114) is invertible since it can be
bounded as follows:

0 <
1

N

(
N∑

k=1

λk,min

)

IM ≤ P11 ≤ 1

N

(
N∑

k=1

λk,max

)

IM . (119)

Applying the block inversion formula to P , we obtain:

P−1 =
[
P−1

11 + P−1
11 P12T P21P−1

11 −P−1
11 P12T

−T P21P−1
11 T

]

, (120)

with T defined in (113). Replacing (120) into (110), and
using (22) and (25), we conclude (112).

Our goal now is to show that

lim
μ→0

‖Wo
η − W∞‖

μ
= c, (121)

for some constant c that may depend on η (the regularization
strength), but not on μ (the step-size parameter). From (112),
we have:

lim
μ→0

‖Wo
η − W∞‖

μ

= η2 lim
μ→0

∥
∥
∥
∥

[−P−1
11 P12T
T

]

(�2
o ⊗ IM )K[Wo]2:N

∥
∥
∥
∥ . (122)

Since the Euclidean norm is continuous, we have
limμ→0 ‖g(μ)‖ = ‖ limμ→0 g(μ)‖. In the following we
show that

η4
∥
∥
∥
∥ lim

μ→0
T (�2

o ⊗ IM )K[Wo]2:N

∥
∥
∥
∥

2

≤ O(η4)(O(1) + O(η))−4,

(123)
and

η4
∥
∥
∥
∥ lim

μ→0
P−1

11 P12T (�2
o ⊗ IM )K[Wo]2:N

∥
∥
∥
∥

2

≤ O(η4)(O(1) + O(η))−4. (124)

From (122), (123), and (124), we can conclude (53).
Let us first establish (123). We have:

‖T (�2
o ⊗ IM )K[Wo]2:N‖2 ≤ ‖T ‖2‖�2

o‖2‖K‖2‖[Wo]2:N‖2.

(125)
From (31), we have ‖K‖2 ≤ (O(1) + O(η))−2. For suffi-
ciently small step-sizes, we have:

lim
μ→0

P21 = (V �
R ⊗ IM )H∞(v1 ⊗ IM ), (126)

lim
μ→0

P22 = η�o ⊗ IM + (V �
R ⊗ IM )H∞(VR ⊗ IM ). (127)
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Following the same line of reasoning as in (91)–(99), we can
show that, when μ → 0, we have:

‖T ‖2 ≤
(

ηλ2(L) + min
1≤k≤N

λk,min

)−2

= (O(1) + O(η))−2.

(128)
Thus, we conclude (123).

Now, we establish (124). From (119), we have P11 = O(1)
and ‖P−1

11 ‖2 = O(1). Similarly, we can conclude from (115)
that ‖P12‖2 ≤ O(1). Thus, using (123), we arrive at (124).

APPENDIX D PROOF OF THEOREM 2
From (6), (36), and (45), we have:

W∞ − W i = (IMN − μηL) (W∞ − W i−1−

μ col
{∇wk Jk (wk,∞) − ∇wk Jk (wk,i−1) + sk,i(wk,i−1)

}N
k=1

)
.

(129)

Using the mean-value theorem (102), the above relation can
be written as:

W∞ − W i = (IMN − μηL)

· ((IMN − μHi−1)(W∞ − W i−1) − μ col{sk,i(wk,i−1)}N
k=1

)
,

(130)

where Hi−1 � diag{H1,i−1, . . . , HN,i−1} with:

Hk,i−1 �
∫ 1

0
∇2

wk
Jk (wk,∞ − t (wk,∞ − wk,i−1))dt (131)

Let

φi � (IMN − μHi−1)(W∞ − W i−1) − μ col{sk,i(wk,i−1)}N
k=1

(132)

C � IN − μηL. (133)

From the Laplacian matrix definition, it can be verified that
the off-diagonal entries of the matrix C are non-negative and
that its diagonal entries are non-negative under condition (38).
Furthermore, since we have L1N = 0, the entries on each
row of C will add up to one. Thus, applying Jensen’s in-
equality [41, pp. 77] to the convex function ‖ · ‖2, we obtain
from (130) and (132):

E‖wk,∞ − wk,i‖2 ≤
N∑

�=1

[C]k�E‖φ�,i‖2, (134)

where φk,i is the k-th sub-vector of φi given by:

φk,i = (IM − μHk,i−1)(wk,∞ − wk,i−1) − μsk,i(wk,i−1).
(135)

Squaring both sides of (135), conditioning on F i−1, and tak-
ing expectations we obtain:

E[‖φk,i‖2|F i−1] = ‖wk,∞ − wk,i−1‖2
�k,i−1

+
μ2E[‖sk,i(wk,i−1)‖2|F i−1]. (136)

where �k,i−1 � (IM − μHk,i−1)2 and where the cross term
is zero because of the zero-mean condition (33). Due to As-
sumption 1, �k,i−1 can be bounded as follows:

0 < �k,i−1 ≤ γ 2
k IM , (137)

where γk is given by (42). From Assumption 2,
E[‖sk,i(wk,i−1)‖2|F i−1] can be bounded as follows:

E[‖sk,i(wk,i−1)‖2|F i−1]

≤ β2
k ‖wk,i−1‖2 + σ 2

s,k

= β2
k ‖wo

k,η − wk,∞ + wk,∞ − wk,i−1 − wo
k,η‖2 + σ 2

s,k

≤ 3β2
k ‖wo

k,η − wk,∞‖2 + 3β2
k ‖wk,∞ − wk,i−1‖2

+ 3β2
k ‖wo

k,η‖2 + σ 2
s,k . (138)

Taking expectation again in (136), and using the bounds (137)
and (138), we obtain:

E‖φk,i‖2 = E‖wk,∞ − wk,i−1‖2
�k,i−1

+ μ2E‖sk,i(wk,i−1)‖2

≤ (γ 2
k + 3μ2β2

k )E‖wk,∞ − wk,i−1‖2

+ μ2
(

3β2
k ‖wo

k,η − wk,∞‖2 + 3β2
k ‖wo

k,η‖2 + σ 2
s,k

)
.

(139)

Now, combining (139) and (134), we obtain (55).
Iterating (55) starting from i = 1, we get:

MSPi � (CG)iMSP0 + μ2
i−1∑

j=0

(CG) jCb. (140)

Under Assumption 3 and condition (58), the matrix CG can
be guaranteed to be stable. To see this, we upper bound the
spectral radius as follows:

ρ(CG) ≤ ‖CG‖∞ ≤ ‖C‖∞‖G‖∞

= ‖G‖∞ = max
1≤k≤N

γ 2
k + 3μ2β2

k , (141)

where we used the fact that, under condition (38), the matrix
C is a right-stochastic matrix. We have:

γ 2
k + 3μ2β2

k = max{1 − 2μλk,min + μ2λ2
k,min + 3μ2β2

k ,

1 − 2μλk,max + μ2λ2
k,max + 3μ2β2

k }, (142)

which is guaranteed to be less than one when:

0 < μ < min

{
2λk,min

λ2
k,min + 3β2

k

,
2λk,max

λ2
k,max + 3β2

k

}

. (143)

Then we conclude that the matrix CG is stable under condi-
tion (58). In this case, we have:

lim sup
i→∞

MSPi � μ2
∞∑

j=0

(CG) jCb. (144)
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Using the submultiplicative property of the induced infinity
norm, we obtain:

‖ lim sup
i→∞

MSPi‖∞ ≤ μ2

∥
∥
∥
∥
∥
∥

∞∑

j=0

(CG) j

∥
∥
∥
∥
∥
∥∞

‖C‖∞‖b‖∞

≤ μ2
∞∑

j=0

‖(CG) j‖∞‖b‖∞,

≤μ2
∞∑

j=0

‖C‖ j
∞‖G‖ j

∞‖b‖∞ = μ2‖b‖∞
1 − ‖G‖∞

,

(145)

where we used the fact that ‖C‖∞ = 1 and where ‖G‖∞ =
max1≤k≤N γ 2

k + 3μ2β2
k . From (142), we have:

γ 2
k + 3μ2β2

k = 1 − μζk, (146)

where

ζk � min{2λk,min − μλ2
k,min − 3μβ2

k ,

2λk,max − μλ2
k,max − 3μβ2

k }. (147)

Thus,

‖G‖∞ = max
1≤k≤N

{1 − μζk} = 1 − μ min
1≤k≤N

ζk . (148)

Substituting into (145), we obtain:

‖ lim sup
i→∞

MSPi‖∞ ≤ μ‖b‖∞
min1≤k≤N ζk

. (149)

For sufficiently small μ, we have from (57) and Theorem 1
that ‖b‖ = O(1) + O(μ2η4)(O(1) + O(η))−4. We conclude
that ‖ lim supi→∞ MSPi‖∞≤O(μ).

From (44), we have:

lim sup
i→∞

E‖Wo
η − W i‖2 ≤ 2‖Wo

η − W∞‖2

+ 2 lim sup
i→∞

1�
N · MSPi (150)

Therefore, from Theorem 1 and (59), we conclude (60).

APPENDIX E PROOF OF THEOREM 3
Applying Jensen’s inequality [41, pp. 77] to the convex func-
tion ‖ · ‖4, we obtain from (130) and (132):

E‖wk,∞ − wk,i‖4 ≤
N∑

�=1

[C]k�E‖φ�,i‖4, (151)

where C and φk,i are given by (133) and (135), respectively.
Using the inequality [7, pp. 523]:

‖a + b‖4 ≤ ‖a‖4 + 3‖b‖4 + 8‖a‖2‖b‖2 + 4‖a‖2(a�b),
(152)

we obtain from (135) under Assumption 2 on the gradient
noise:

E‖φk,i‖4 ≤ E‖(IM − μHk,i−1)(wk,∞ − wk,i−1)‖4

+ 3μ4E‖sk,i(wk,i−1)‖4 + 8μ2·
(
E‖(IM − μHk,i−1)(wk,∞ − wk,i−1)‖2) (E‖sk,i(wk,i−1)‖2)

(153)

From Assumption 1, the matrices (IM − μHk,i−1)2 and (IM −
μHk,i−1)4 can be bounded as follows:

0 < (IM − μHk,i−1)2 ≤ γ 2
k IM , (154)

0 < (IM − μHk,i−1)4 ≤ γ 4
k IM , (155)

where γk is given by (42). Thus, we obtain:

E‖φk,i‖4 ≤ γ 4
k E‖wk,∞ − wk,i−1‖4 + 3μ4E‖sk,i(wk,i−1)‖4

+ 8μ2γ 2
k

(
E‖wk,∞ − wk,i−1‖2) (E‖sk,i(wk,i−1)‖2) .

(156)

Under condition (62), we have:

E
[‖sk,i(wk,i−1)‖4|F i−1

]

≤ β
4
k‖wk,i−1‖4 + σ 4

s,k

= β
4
k‖wo

k,η − wk,∞ + wk,∞ − wk,i−1 − wo
k,η‖4 + σ 4

s,k

≤ 27β
4
k‖wo

k,η − wk,∞‖4 + 27β
4
k‖wk,∞ − wk,i−1‖4

+ 27β
4
k‖wo

k,η‖4 + σ 4
s,k, (157)

where we applied Jensen’s inequality to the function ‖ · ‖4.
Furthermore, from (138), the last term on the RHS of (156)
can be bounded as follows:

(
E‖wk,∞ − wk,i−1‖2) (E‖sk,i(wk,i−1)‖2)

≤ 3β2
k

(
E‖wk,∞ − wk,i−1‖2)2

+ (3β2
k ‖wo

k,η − wk,∞‖2+3β2
k ‖wo

k,η‖2+ σ 2
s,k )

· E‖wk,∞−wk,i−1‖2

≤ 3β2
k E‖wk,∞ − wk,i−1‖4

+ (3β2
k ‖wo

k,η−wk,∞‖2+3β2
k ‖wo

k,η‖2+ σ 2
s,k )

· E‖wk,∞−wk,i−1‖2 (158)

where we used the fact that for any random variable a, we
have (Ea)2 ≤ Ea2. Replacing (157) and (158) into (156), we
obtain:

E‖φk,i‖4 ≤
(γ 4

k + 81μ4β
4
k + 24μ2γ 2

k β2
k )E‖wk,∞ − wk,i−1‖4 + 8μ2γ 2

k ·
(3β2

k ‖wo
k,η−wk,∞‖2+ 3β2

k ‖wo
k,η‖2+ σ 2

s,k )E‖wk,∞−wk,i−1‖2

+ 81μ4β
4
k‖wo

k,η − wk,∞‖4 + 81μ4β
4
k‖wo

k,η‖4 + 3μ4σ 4
s,k .

(159)

Now, combining (159) and (151), we arrive at (66).
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Iterating (66) starting from i = 1, we get:

MFPi � (CG′)iMFP0

+ μ2
i−1∑

j=0

(CG′) jCBMSPi−1− j + μ4
i−1∑

j=0

(CG′) jCb′.
(160)

Under Assumption 3 and for sufficiently small μ, the matrix
CG′ can be guaranteed to be stable. To see this, we upper
bound its spectral radius as follows:

ρ(CG′) ≤ ‖CG′‖∞ ≤ ‖C‖∞‖G′‖∞ = ‖G′‖∞, (161)

since under condition (38), C is a right-stochastic matrix. The
∞−norm of G′ is given by:

‖G′‖∞

= max
1≤k≤N

{
γ 4

k + 24μ2γ 2
k β2

k + 81μ4β
4
k

}

= max
1≤k≤N

{
max{1 − 4μλk,min + 6μ2λ2

k,min − 4μ3λ3
k,min

+ μ4λ4
k,min + 24μ2γ 2

k β2
k + 81μ4β

4
k,

1 − 4μλk,max + 6μ2λ2
k,max − 4μ3λ3

k,max

+ μ4λ4
k,max + 24μ2γ 2

k β2
k + 81μ4β

4
k}
}

= 1 − μ min
1≤k≤N

{
min{4λk,min − 6μλ2

k,min + 4μ2λ3
k,min

− μ3λ4
k,min − 24μγ 2

k β2
k − 81μ3β

4
k,

4λk,max − 6μλ2
k,max + 4μ2λ3

k,max

− μ3λ4
k,max − 24μγ 2

k β2
k − 81μ3β

4
k}
}

. (162)

A sufficiently small μ ensures ‖G′‖∞ < 1 and, thus, ensures
the stability of CG′.

We have established in Theorem 2 that, for small μ, af-
ter sufficient iterations have passed, MSP j converges to a
bounded region on the order of μ. This implies that, there
exists a jo large enough such that for all j ≥ jo it holds that:

‖MSP j‖∞ ≤ smax = O(μ). (163)

In this case, we have from (160):

lim sup
i→∞

MFPi

� μ4
∞∑

j=0

(CG′) jCb′ + μ2 lim sup
i→∞

i−1∑

j=0

(CG′) jCBMSPi−1− j

= μ4
∞∑

j=0

(CG′) jCb′ + μ2 lim sup
i→∞

i−1∑

j=0

(CG′)i−1− jCBMSP j

= μ4
∞∑

j=0

(CG′) jCb′ + μ2 lim sup
i→∞

⎛

⎝
jo∑

j=0

(CG′)i−1− jCBMSP j

+
i−1∑

j= jo+1

(CG′)i−1− jCBMSP j

⎞

⎠

=μ4
∞∑

j=0

(CG′) jCb′+μ2lim sup
i→∞

⎛

⎝(CG′)i
jo∑

j=0

(CG′)−1− jCBMSP j

+
i−1∑

j= jo+1

(CG′)i−1− jCBMSP j

⎞

⎠

= μ4
∞∑

j=0

(CG′) jCb′ + μ2 lim sup
i→∞

i−1∑

j= jo+1

(CG′)i−1− jCBMSP j

(164)

Using the submultiplicative and sub-additive properties of the
induced infinity norm, we obtain:

‖ lim sup
i→∞

MFPi‖∞

≤ μ4

∥
∥
∥
∥
∥
∥

∞∑

j=0

(CG′) j

∥
∥
∥
∥
∥
∥∞

‖b′‖∞

+ μ2 lim sup
i→∞

i−1∑

j= jo+1

‖(CG′)i−1− jCBMSP j‖∞

≤ μ4
∞∑

j=0

‖G′‖ j
∞‖b′‖∞ + μ2 lim sup

i→∞

i− jo−2∑

j=0

‖G′‖ j
∞‖B‖∞smax

= μ4 ‖b′‖∞
1 − ‖G′‖∞

+ μ2 ‖B‖∞smax

1 − ‖G′‖∞
(165)

where in the second line we used (163) and where ‖G′‖∞ is
given by (162). Since ‖b′‖∞ = O(1), ‖B‖∞ = O(1), smax =
O(μ), and 1 − ‖G′‖∞ = O(μ), we conclude (70).

From (63) and (64), we have:

lim sup
i→∞

E‖Wo
η − W i‖4 ≤ 8‖Wo

η − W∞‖4

+ 8N lim sup
i→∞

1N · MFPi. (166)

Therefore, from Theorem 1 and (70), we conclude (71).

APPENDIX F PROOF OF THEOREM 4
Conditioning both sides of (130), invoking the conditions on
the gradient noise from Assumption 2, and computing the
conditional expectations, we obtain:

E[(W∞ − W i )|F i−1]

= (IMN − μηL)(IMN − μHi−1)(W∞ − W i−1). (167)

Taking expectations again, we arrive at:

E(W∞ − W i ) = (IMN − μηL)

· E[(IMN − μHi−1)(W∞ − W i−1)]. (168)
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Applying Jensen’s inequality [41, pp. 77] to the convex func-
tion ‖ · ‖2, we obtain from the above relation:

‖E(wk,∞ − wk,i )‖2

≤
N∑

�=1

[C]k�

∥
∥E

[
(IM − μH�,i−1)(w�,∞ − w�,i−1)

]∥
∥2

,
(169)

where C and Hk,i−1 are given by (133) and (131), respectively.
Let

H̃k,i−1 � Hk,η − Hk,i−1, (170)

where

Hk,η = ∇2
wk

Jk (wo
k,η ). (171)

Then, we can write:

E
[
(IM − μHk,i−1)(wk,∞ − wk,i−1)

]

= (IM − μHk,η )E(wk,∞ − wk,i−1) + μck,i−1, (172)

in terms of a deterministic perturbation sequence defined by

ck,i−1 � E[H̃k,i−1(wk,∞ − wk,i−1)]. (173)

By applying Jensen’s inequality to the convex function ‖ · ‖2,
we obtain:

‖E(IM − μHk,i−1)(wk,∞ − wk,i−1)‖2

= ‖(IM − μHk,η )E(wk,∞ − wk,i−1) + μck,i−1‖2

=
∥
∥
∥
∥t

1

t
(IM − μHk,η )E(wk,∞ − wk,i−1)

+μ(1 − t )
1

1 − t
ck,i−1

∥
∥
∥
∥

2

≤ t

∥
∥
∥
∥

1

t
(IM − μHk,η )E(wk,∞ − wk,i−1)

∥
∥
∥
∥

2

+ μ2(1 − t )

∥
∥
∥
∥

1

1 − t
ck,i−1

∥
∥
∥
∥

2

= 1

t
‖(IM − μHk,η )E(wk,∞ − wk,i−1)‖2 + μ2 1

1 − t
‖ck,i−1‖2

(174)

for any arbitrary positive number t ∈ (0, 1). We select t = γk

where γk is given by (42), which is guaranteed to be less than
one under condition (43). From Assumption 1, we have ‖IM −
μHk,η‖2 ≤ γ 2

k . Thus, we obtain:

‖E(IM − μHk,i−1)(wk,∞ − wk,i−1)‖2

≤ γk‖E(wk,∞ − wk,i−1)‖2 + μ2 1

1 − γk
‖ck,i−1‖2.

(175)

As shown in [7, Appendix E], the Hessian of a twice
differentiable strongly convex function Jk (wk ) satisfying
Assumptions 1 and 5 is globally Lipschitz relative to wo

k,η,

namely, it satisfies:

‖∇2
wk

Jk (wk ) − ∇2
wk

Jk (wo
k,η )‖ ≤ κ ′

d‖wk − wo
k,η‖, ∀wk,

(176)
where κ ′

d = max{κd ,
λk,max−λk,min

ε
}. Then, for each agent k we

obtain:

‖H̃k,i−1‖
� ‖Hk,η − Hk,i−1‖

≤
∫ 1

0

∥
∥
∥∇2

wk
Jk (wo

k,η ) − ∇2
wk

Jk (wk,∞− t (wk,∞ − wk,i−1))
∥
∥
∥dt

≤
∫ 1

0
κ ′

d‖wo
k,η − wk,∞ + t (wk,∞ − wk,i−1)‖dt

≤
∫ 1

0
κ ′

d‖wo
k,η − wk,∞‖dt +

∫ 1

0
κ ′

d‖t (wk,∞ − wk,i−1)‖dt

= κ ′
d‖wo

k,η − wk,∞‖ + 1

2
κ ′

d‖wk,∞ − wk,i−1‖, (177)

and, hence,

‖ck,i−1‖ = ‖E[H̃k,i−1(wk,∞ − wk,i−1)]‖
≤ E[‖H̃k,i−1‖‖wk,∞ − wk,i−1‖]

≤ κ ′
d‖wo

k,η − wk,∞‖E‖wk,∞ − wk,i−1‖

+ 1

2
κ ′

dE‖wk,∞ − wk,i−1‖2. (178)

where we used the stochastic version of Jensen’s inequality:

f (Ea) ≤ E( f (a)) (179)

when f (x) ∈ R is convex. Applying Jensen’s inequality to the
convex function ‖ · ‖2 and using the fact that (Ea)2 ≤ Ea2 for
any real-valued random variable a, we obtain from (178):

‖ck,i−1‖2 ≤ 2(κ ′
d )2‖wo

k,η − wk,∞‖2 (E‖wk,∞ − wk,i−1‖
)2

+ 2
1

4
(κ ′

d )2 (E‖wk,∞ − wk,i−1‖2)2

≤ 2(κ ′
d )2‖wo

k,η − wk,∞‖2E‖wk,∞ − wk,i−1‖2

+ 1

2
(κ ′

d )2E‖wk,∞ − wk,i−1‖4. (180)

From (169) and using the above bound in (175), we con-
clude (75).

Iterating (75) starting from i = 1, we obtain:

SMPi � (CG′′)iSMP0

+ μ2 1

2
(κ ′

d )2
i−1∑

j=0

(CG′′) jC(I − G′′)−1MFPi−1− j+

μ2
i−1∑

j=0

(CG′′) jC(I − G′′)−1B′MSPi−1− j .

(181)
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Under Assumption 3 and condition (43), the matrix CG′′ is
guaranteed to be stable. From (59), (70), and following similar
arguments as the ones used to establish (70) in Appendix E,
we conclude that

‖ lim sup
i→∞

SMPi‖∞ = O(μ2) + O(μ3η4)

(O(1) + O(η))4
= O(μ2),

(182)
where we used the fact that ‖B′‖∞ ≤ O(μ2η4)/(O(1) +
O(η))4 from Theorem 1 and ‖(IN − G′′)−1‖∞ ≤ O(μ−1).

Using (73) and since ‖E(W∞ − W i )‖2 = 1N · SMPi, we
conclude (79) from Theorem 1 and (78).
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