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Online Distributed Learning over Graphs with
Multitask Graph-Filter Models

Fei Hua, Roula Nassif, Member, IEEE, Cédric Richard, Senior Member, IEEE, Haiyan Wang
and Ali H. Sayed, Fellow, IEEE

Abstract—In this work, we are interested in adaptive and
distributed estimation of graph filters from streaming data. We
formulate this problem as a consensus estimation problem over
graphs, which can be addressed with diffusion LMS strategies.
Most popular graph-shift operators such as those based on the
graph Laplacian matrix, or the adjacency matrix, are not energy
preserving. This may result in an ill-conditioned estimation
problem, and reduce the convergence speed of the distributed
algorithms. To address this issue and improve the transient
performance, we introduce a preconditioned graph diffusion
LMS algorithm. We also propose a computationally efficient
version of this algorithm by approximating the Hessian matrix
with local information. Performance analyses in the mean and
mean-square sense are provided. Finally, we consider a more
general problem where the filter coefficients to estimate may vary
over the graph. To avoid a large estimation bias, we introduce an
unsupervised clustering method for splitting the global estimation
problem into local ones. Numerical results show the effectiveness
of the proposed algorithms and validate the theoretical results.

Index Terms—Graph signal processing, graph filter, diffusion
LMS, node-varying graph filter, clustering.

I. INTRODUCTION

Data generated by network-structured applications often ex-
hibit non-Euclidean structures, which make traditional signal
processing techniques inefficient to analyze them. In contrast,
graph signal processing (GSP) provides useful tools to analyze
and process signals on graphs. They represent them as samples
at the vertices of a possibly weighted graph, and use algebraic
and spectral properties of the graph to study the signals. These
graph representations are useful in applications ranging from
social and economic networks to smart grids [3]–[6]. Recent
results in the area include sampling [7]–[9], filtering [10], and
inference and learning [11]–[14], to cite a few.
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In order to cope with graph signals, GSP relies on two
ingredients: the graph shift operator (GSO) on one hand,
which accounts for the topology of the graph, and the graph
Fourier transform (GFT) on the other hand, which allows to
represent graph signals in the graph frequency domain. Built
upon the definition of the GFT, graph filters play a central role
in processing graph signal spectra by selectively amplifying
or attenuating frequency components. Various architectures of
graph filters have been proposed in the literature, including
finite impulse response (FIR) [6], [10] and infinite impulse
response (IIR) [15], [16] filters. From a perspective of scal-
ability, and considering energy constraints and band-limited
communications that may be encountered in large networks of
distributed nodes such as sensor networks, significant efforts
have been made recently to derive distributed graph filters.
These filtering procedures allow each node to exchange only
local information with its neighboring nodes [17]–[21].

Much of the GSP literature has focused on static graph
signals, that is, signals that need not evolve with time. How-
ever, a wide spectrum of network-structured problems requires
adaptation to time-varying dynamics. Sensor networks, social
networks, vehicular networks, communication networks, and
power grids are some typical examples. Prior to the more
recent GSP literature, many earlier works on adaptive net-
works have addressed problems dealing with this challenge
by developing processing strategies that are well-suited to data
streaming into graphs; see, e.g., [22]–[24]. Several diffusion
strategies have been introduced, and their performance studied
in various situations, such as diffusion LMS [25], RLS [26],
and APA [27]. By referring to the problem of estimating an
optimal parameter vector at a node as a “task”, and depending
on the relations between the parameter vectors across the
entire network, adaptive networks can be divided into single or
multitask networks. In single-task networks, all nodes estimate
the same parameter vector. Typical works include [22]–[24].
With multitask networks, multiple but related parameter vec-
tors are inferred simultaneously in a cooperative manner, so
as to improve the estimation accuracy by using the similarities
between tasks [28]–[31].

Related works: In this work, we are interested in online
learning of linear graph models for representing streaming
graph signals in a distributed manner. We focus on diffusion
strategies because they are scalable, robust, and enable net-
work adaptation and learning. Recently, some research works
have considered time-varying graph signals. An adaptive graph
signal reconstruction algorithm based on the LMS is proposed
in [32] but it operates in a centralized manner. In [33], the
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authors focus on estimating a network structure capturing the
dependencies among time series in the form of a possibly
directed, weighted adjacency matrix. A causal autoregressive
process is introduced in the time series to capture the intuition
that information travels over the network at some fixed speed.
In [34], vector autoregressive (VAR) and vector autoregressive
moving average (VARMA) models are proposed for predicting
time-varying processes on graphs. Joint time-vertex stationar-
ity is introduced for time-varying graph signals in [35], [36],
and a joint time-vertex harmonic analysis for graph signals is
proposed in [37]. It is shown that joint stationarity facilitates
estimation or recovery tasks when compared to purely time or
graph methods.

All the aforementioned works focus on centralized solu-
tions whereas distributed algorithms may be more appropriate
within the context of big data applications. In [38], [39], the
behavior of some distributed graph filters on time-varying
graph signals is studied. Considering graph signal sampling
and reconstruction, several distributed algorithms have been
proposed to track time-varying band-limited graph signals,
e.g., LMS-based algorithms in [40], RLS-based methods
in [41], Kalman-based methods in [42], and kernel-based
algorithms in [43]. In [44], the authors are interested in time-
varying graph signals with temporal smoothness prior. They
devise distributed gradient descent algorithms to reconstruct
the signals. Most of these works assume that the graph signals
are band-limited. Another limitation is that the graph Fourier
decomposition (eigenvectors) is needed beforehand, which is
impractical for large networks.

Contributions: Recently, several works successfully applied
adaptive algorithms to graph signals. In [32], [40], [41] for
instance, graph Fourier coefficients are learned from streaming
graph signals under band-limited assumption to perform adap-
tive reconstruction and tracking of time-varying graph signals
from partial observations. In this work, we are interested in
online distributed learning of linear graph models without
assumption of band-limited processes. We use graph filter
models in the time-vertex domain where there is no need to de-
compose the graph shift operator. The formulated optimization
problem relies on minimizing a global cost consisting of the
aggregate sum of individual costs at each vertex. To address
this problem, we blend concepts from adaptive networks [45]
and graph signal processing to devise graph diffusion LMS
strategies. Considering that most popular shift operators are
not energy preserving and may result in a slow convergence
speed, we introduce a preconditioned optimization strategy
to improve the transient performance. As this may lead to
an increased computational complexity, we further propose a
computationally efficient algorithm. Explicit theoretical per-
formance analyses in the mean and mean-square-error sense
are provided. We also give alternative theoretical results that
are tractable for large networks. Simulation results show
the efficiency of the proposed algorithms and validate the
theoretical models. Finally, we extend these node-invariant
filter models to more flexible ones where each node in the
graph seeks to estimate a local node-varying graph filter. This
allows us to exploit more degrees of freedom in the filter
coefficients to better model graph signals. We introduce an

unsupervised clustering strategy to determine which nodes in
the graph share the same graph filter and may collaborate
to estimate its parameters. Numerical results on a real-word
dataset illustrate the efficiency of the proposed methods.

The rest of the paper is organized as follows. Section II
formulates the problem and provides the centralized solution.
Section III introduces the distributed algorithms, namely, the
graph diffusion LMS strategy and its preconditioned coun-
terparts. Section IV provides their theoretical analyses in the
mean and the mean-square sense. A clustering method is de-
vised to estimate local node-varying graph filters in Section V.
Numerical results in Section VI show the effectiveness of these
algorithms and validate the theoretical models.

Notations: We use normal font letters to denote scalars, bold-
face lowercase letters to denote column vectors, and boldface
uppercase letters to denote matrices. The m-th entry of a
vector x is denoted by xm or [x]m when needed, the (m,n)-
th entry of a matrix X is denoted by xmn or [X]m,n when
needed, the k-th row of a matrix X is denoted by [X]k,•.
We use the symbol ⊗ to denote the Kronecker product and
the symbol Tr(·) to denote the trace operator. The operator
col{·} stacks the column vector entries on top of each other.
The symbol vec(X) refers to the vectorization operator that
stacks the columns of a matrix on top of each other. Operator
x = diag(X) stores the diagonal entries of X into vector x,
and X = diag(x) is a diagonal matrix containing the vector x
along its main diagonal. The symbol bdiag{·} forms a matrix
from block arguments by placing each block immediately
below and to the right of its predecessor. The symbol ‖ · ‖b,∞
denotes the block maximum norm of a matrix. The symbols
1 and I are the vector of all ones and the identify matrix of
appropriate size, respectively. The symbols ρ(·) and λmax(·)
denote the spectral radius and the maximum eigenvalue of its
matrix argument, respectively.

II. PROBLEM FORMULATION AND CENTRALIZED
SOLUTION

We consider an undirected, weighted and connected graph
G = (N , E ,W ) of N nodes, where N = {1, 2, . . . , N}
is the set of nodes, and E is the set of edges such that if
node k is connected to node `, then (k, `) ∈ E . We denote
by Nk the neighborhood of node k including itself, namely,
Nk = {` : ` = k ∨ (`, k) ∈ E}. Matrix W ∈ RN×N is the
adjacency matrix whose (k, `)-th entry wk` assigns a weight
to the relation between vertices k and `. Since the graph
is undirected, W is a symmetric matrix. The degree matrix
D , diag(W1) is a diagonal matrix whose i-th diagonal
entry is the degree of node i which is equal to the sum of
all the weights of edges incident at node i. The combinatorial
Laplacian matrix is defined as L , D −W which is a real,
symmetric, positive semi-definite matrix. We further assume
that the graph is endowed with a graph shift operator defined
as an N ×N shift matrix S whose entry sk` can be non-zero
only if k = ` or (k, `) ∈ E . Although the shift matrix can be
any matrix that captures the graph topology for the problem at
hand [4], popular choices are the graph Laplacian matrix [6],
the adjacency matrix [10], and their normalized counterparts.



JOURNAL OF LATEX CLASS FILES, VOL. X’X, NO. X, MAY 2019 3

A graph signal is defined as x = [x1, . . . , xN ]> ∈ RN where
xk is the signal sample associated with node k. Let x(i) denote
the graph signal at time i. Operation Sx is called graph shift. It
can be performed locally at each node k by linearly combining
the samples x` from its neighboring nodes ` ∈ Nk.

A. Graph filter and data model

In this paper, we focus on linear shift-invariant FIR graph
filters H : RN×N → RN×N of order M , which are polyno-
mials of the graph-shift operator [10]:

H ,
M−1∑
m=0

homS
m, (1)

where ho = {hom}M−1
m=0 are the scalar filter coefficients.

With the definitions of graph signal and graph shift operator,
one common filtering model assumes that the filtered graph
signal y(i) is generated from the input graph signal x(i) as
follows [10], [46]:

y(i) =Hx(i) + v(i) =

M−1∑
m=0

homS
mx(i) + v(i), (2)

where v(i) = [v1(i), . . . , vN (i)]> ∈ RN denotes an i.i.d. zero-
mean noise independent of any other signal and with covari-
ance matrixRv = diag{σ2

v,k}Nk=1. For each node k, the filtered
signal yk(i) can be computed by linearly combining the input
signals at nodes located in an (M − 1)-hop neighborhood [6].
This model however assumes the instantaneous diffusion of
information over the graph since Smx(i) translates x(i)
without time delay. As this assumption may appear as a serious
limitation, we consider the more general model embedding the
temporal dimension as follows [38], [47]:

y(i) =

M−1∑
m=0

homS
mx(i−m) + v(i). (3)

Observe that the input signal x(i) in (2) has been replaced
by x(i −m) in (3), i.e., the m-hop spatial shift Sm is now
carried out in m time slots. This model implements an FIR
filter in both graph domain and temporal domain. By retaining
the following shifted signals that form the N ×M −1 matrix:

Xr =
[
x(i− 1),Sx(i− 2), . . . ,SM−2x(i−M + 1)

]
, (4)

note that only one shift is required at time instant i to produce
the filtered signal y(i). This means that yk(i) can be computed
using only local information available within the one-hop
neighborhood of node k. Let Z(i) denote the N ×M matrix
given by:

Z(i) ,
[
x(i), Sx(i− 1), . . . ,SM−1x(i−M + 1)

]
, (5)

then model (3) can be written alternatively as:

y(i) = Z(i)ho + v(i) (6)

From model (6), sample yk(i) at node k can be written as:

yk(i) = z
>
k (i)h

o + vk(i), (7)

where z>k (i) is the k-th row of Z(i) given by:

zk(i) , col
{
[x(i)]k, [Sx(i−1)]k, . . . , [SM−1x(i−M+1)]k

}
.

(8)
Observe in (7) that each node shares the same filter coefficient
vector ho. The corresponding graph filter (1) is referred to
as node-invariant graph filter. A more flexible model was
introduced in [19], and called a node-variant graph filter. It
allows the filter coefficients to vary across nodes as follows:

H ,
M−1∑
m=0

diag(h(m))Sm, (9)

with h(m) ∈ RN . If h(m) = hm1 for all m, model (9) reduces
to the node-invariant model (1). Otherwise, each node applies
different weights to the shifted signal Smx. Then yk(i) in (7)
can be re-written as:

yk(i) = z
>
k (i)h

o
k + vk(i), (10)

where hok ∈ RM is the filter coefficient vector at node k
collected into h(m), i.e., [hok]m = [h(m)]k. In this work,
we seek to estimate hok from the filtered graph signal yk(i)
and inputs zk(i), in a distributed, collaborative and adaptive
manner. Distributed algorithms such as the diffusion LMS
exist in the literature to address single-task and multitask
inference problems with similar data models as (7) or (10).
In this work, however, regressors zk(i) in (8) are raised from
graph shifted signals. This paper aims to exploit the graph
shift structure in the regression data and incorporate it into the
formulation of the distributed algorithm – see expression (22)
further ahead. In the sequel, first, we shall study the case
where the filter coefficients are common for all nodes, i.e.
hok = ho,∀k ∈ N . We shall show how to estimate ho from
streaming data {y(i),x(i)} in a centralized way and then, in a
distributed way. Next, we shall assume that there are clusters
of nodes within the graph, and each node in the same cluster
uses the same filter. This model is called a hybrid node-varying
graph filter [48]. We shall introduce an unsupervised clustering
method to allow each node to identify which neighboring
nodes it should collaborate with.

B. Centralized solution

Before introducing the distributed method, we first introduce
the centralized solution. Consider the data model (6) and as-
sume that {y(i),x(i),v(i)} are zero-mean jointly wide-sense
stationary random processes. Estimating ho from {y(i),Z(i)}
can be performed by solving the following problem:

ho = argmin
h
J(h), (11)

where J(h) denotes the mean-square-error criterion:

J(h) = E‖y(i)−Z(i)h‖2

= E{y>(i)y(i)} − 2h>rZy + h
>RZh, (12)

and the M ×M matrix RZ and the M × 1 vector rZy are
given by:

RZ , E{Z>(i)Z(i)}, rZy , E{Z>(i)y(i)}. (13)
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By setting the gradient vector of J(h) to zero, the optimal
parameter vector ho can be found by solving:

RZh
o = rZy. (14)

It can be verified that the (m,n)-th entry of RZ is given by:

[RZ ]m,n = Tr
(
(Sm−1)>Sn−1Rx(m− n)

)
(15)

where Rx(m) , E{x(i)x>(i −m)}. The m-th entry of the
vector rZy is given by:

[rZy]m = Tr
(
(Sm−1)>Rxy(m)

)
, (16)

with Rxy(m) , E{y(i)x>(i−m)} denoting cross correlation
function, which is assumed independent of time i.

Instead of solving (14), ho can be sought iteratively by using
the gradient-descent method:

h(i+ 1) = h(i) + µ
[
rZy −RZh(i)

]
, (17)

with µ > 0 a small step-size. Since the statistical moments are
usually unavailable beforehand, one way is to replace them
by the instantaneous approximations RZ ≈ Z>(i)Z(i) and
rZy ≈ Z>(i)y(i). This yields the LMS graph filter:

h(i+ 1) = h(i) + µZ>(i)
[
y(i)−Z(i)h(i)

]
. (18)

This stochastic-gradient algorithm is referred to as the cen-
tralized graph-LMS algorithm. In this centralized setting, each
node k at each time instant i sends its data {xk(i), yk(i)} to a
fusion center which will update h(i) according to (18). Note
that the step-size µ in (18) must satisfy 0 < µ < 2

λmax(RZ)
in order to guarantee stability in the mean under certain
independence conditions on the data [49].

III. DIFFUSION LMS STRATEGIES OVER GRAPH SIGNALS

In this section, we seek to estimate the graph filter coeffi-
cients in a distributed fashion. First, we review the graph dif-
fusion LMS strategy [47]. Then, a preconditioned algorithm is
proposed to improve the transient performance. We also devise
a computationally efficient counterpart of this algorithm.

A. Graph diffusion LMS

Consider the local data model (7) at node k. It is worth
noting that, by retaining the past shifted signals {[Sm−1x(i−
m)]` : m = 1, . . . ,M − 1} at each node ` in the network
from previous iterations, zk(i) can be computed locally at
node k from its one-hop neighbors at each iteration i. Let
Rz,k , E{zk(i)z>k (i)} denote the M ×M covariance matrix
with (m,n)-th entry given by [47]:

[Rz,k]m,n = Tr
(
[Sm−1)]>k,•[S

n−1]k,•Rx(m− n)
)
. (19)

Considering the local cost Jk(h) at node k:

Jk(h) = E|yk(i)− z>k (i)h|2, (20)

the global cost (12) is now the aggregation of the local costs
over the graph:

J(h) =

N∑
k=1

Jk(h). (21)

In order to minimize (12) in a decentralized fashion, there
are several useful techniques, e.g., incremental strategy [50],
consensus strategy [51] and diffusion strategy [24]. Diffusion
strategies are attractive since they are scalable, robust, and
enable continuous learning and adaptation. In particular, the
adapt-then-combine (ATC) diffusion LMS takes the following
form at node k [47]:

z>k (i) =
[
xk(i),

∑
`∈Nk

sk` [z`(i− 1)]1, . . . ,∑
`∈Nk

sk` [z`(i− 1)]M−1

]
, (22a)

ψk(i+ 1) = hk(i) + µkzk(i)
[
yk(i)− z>k (i)hk(i)

]
, (22b)

hk(i+ 1) =
∑
`∈Nk

a`kψ`(i+ 1), (22c)

where µk > 0 is a local step-size parameter and {a`k} are
non-negative combination coefficients chosen to satisfy:

a`k > 0,

N∑
`=1

a`k = 1, and a`k = 0 if ` /∈ Nk. (23)

This implies that the matrix A with (`, k)-th entry a`k is a
left-stochastic matrix, which means that the sum of each of its
columns is equal to 1. In the first step (22a), each node k uses
the first M−1 entries of z`(i−1) from its one-hop neighbors
and its own input sample xk(i) to compute zk(i). Note that
the first M − 1 entries of zk(i) then need to be retained for
the next iteration. In the adaptation step (22b), each node k
updates its local estimate hk(i) to an intermediate estimate
ψk(i + 1). In the combination step (22c), node k aggregates
all the intermediate estimates ψ`(i+ 1) from its neighbors to
obtain the updated estimate hk(i+ 1).

B. Graph diffusion preconditioned LMS

The regressor zk(i) used in the adaptation step (22b) results
from shifted graph signals while the shift matrix S is not
energy preserving in general [52]. This is due to the fact that
the magnitude of the eigenvalues of the shift operator S are
not uniformly equal to 1; the energy of the shifted signal Smx
changes exponentially with m. Thus, the eigenvalue spread of
Rz,k may be large and the LMS update may suffer from slow
convergence speed in this case [49]. To address this issue,
albeit at an increased computational cost, we resort to a form
of Newton’s method. Focusing on the adaptation step, we have:

ψk(i+ 1) = hk(i)− µk[∇2
hJk(hk(i))]

−1[∇hJk(hk(i))],
(24)

where ∇2
hJk(·) denotes the Hessian matrix for Jk(·) and

∇hJk(·) is its gradient vector, if available. For the quadratic
cost function (20), expression (24) would lead to:

ψk(i+ 1) = hk(i) + µkR
−1
z,k

[
rzy,k −Rz,khk(i)

]
, (25)

where rzy,k = E{zk(i)yk(i)}. Note that the second term
on the RHS of (25) requires second-order moments. Since
they are rarely available beforehand, we can replace rzy,k −
Rz,khk(i) by the instantaneous approximation:

rzy,k −Rz,khk(i) ≈ zk(i)ek(i) (26)
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with ek(i) = yk(i) − z>k (i)hk(i). The adaptation step (25)
becomes:

ψk(i+ 1) = hk(i) + µkR̂
−1

z,k(i)zk(i)ek(i), (27)

where R̂z,k(i) is an estimate for Rz,k(i) which can possibly
be obtained recursively:

R̂z,k(i) = (1−µ) R̂z,k(i−1)+µ
[
zk(i)z

>
k (i)

]
, i ≥ 1, (28)

where µ is a small factor that can be chosen in (0, 0.1] in
practice. It can be verified that E{R̂z,k(i)} = Rz,k is an
unbiased estimate when i→∞. As discussed before, S may
not be energy preserving and results in a large eigenvalue
spread of Rz,k, which may even be close to singular. The
inverse R−1

z,k would then be ill-conditioned and lead to un-
desirable effects. To address this problem, it is common to
use regularization [49]. We obtain the diffusion LMS-Newton
algorithm:

ψk(i+ 1) = hk(i) + µk
[
εI + R̂z,k(i)

]−1
zk(i)ek(i), (29a)

hk(i+ 1) =
∑
`∈Nk

a`kψ`(i+ 1), (29b)

with ε ≥ 0 a small regularization parameter. Compared with
the diffusion LMS algorithm (22), algorithm (29) requires first
to recursively estimate the Hessian matrix according to (28)
and then calculate

[
εI + R̂z,k(i)

]−1
. This algorithm can lead

to improved performance as shown in the sequel, but at the
expense of additional computation cost.

In order to reduce the computational complexity of the
LMS-Newton algorithm, we propose to use a preconditioning
matrix P k does not depend on the graph signal x(i) in the
adaptation step, instead of the Hessian matrix Rz,k or its
estimate R̂z,k. Since the large eigenvalue spread of the input
covariance matrix Rz,k results mainly from the shift matrix S
and the filter order M , we construct an M×M preconditioning
matrix P k as follows:

P k , diag{‖[S(m−1)]k,•‖2}Mm=1. (30)

The rationale behind (30) is that, in the case where x(i) is
i.i.d. with variance σ2, it follows from (19) that Rz,k = σ2P k.
According to (30), matrix P k does not depend on x(i) and
can be evaluated beforehand at each node k during an initial
step. Each node k only requires to know the edge weights
in its M -hop neighborhood, which can be performed in a
decentralized manner. Interestingly, P k is a diagonal matrix,
which means that the matrix product in the adaptation step
does not require expensive matrix inversion. Following the
same line of reasoning as for the Newton algorithm (29), a
regularization term εIM can be added to P k. This leads to:

Dk = (εIM + P k)
−1. (31)

We arrive at the following preconditioned graph diffusion LMS
strategy:

ψk(i+ 1) = hk(i) + µkDkzk(i)ek(i), (32a)

hk(i+ 1) =
∑
`∈Nk

a`kψ`(i+ 1). (32b)

At each iteration i, node k uses the local information to
update the intermediate estimate ψk(i + 1) in the adaptation
step (32a). Then, in the combination step (32b), the interme-
diate estimates ψ`(i + 1) from the neighborhood of node k
are combined to get hk(i+ 1). Although the preconditioning
matrix Dk is not the true Hessian matrix, we prove in
Section IV that the algorithm converges to the optimal solution
ho provided that it is stable.

C. Comparison with the graph diffusion LMS

We explain how preconditioning with (30) improves per-
formance. For comparison purposes, let us first focus on the
adaptation step of diffusion LMS. At each node k, the m-th
entry of hk(i) is updated as follows:

[ψk(i+ 1)]m = [hk(i)]m + µk
[
zk(i)ek(i)

]
m
. (33)

During the transient phase, the m-th entry [hk(i)]m exponen-
tially converges to its optimal value with a time constant [49]:

τ̃m ≈
1

2µkλm
(34)

where λm denotes the m-th eigenvalue of Rz,k. Given µk, the
convergence rate of each entry of hk(i) then depends on the
corresponding eigenvalue. Disparity between entries increases
as the eigenvalue spread defined as λmax/λmin increases.

The preconditioning matrix Dk is diagonal at each node k,
which means that the m-th entry of hk(i) in (32a) converges
to its optimal value with a time constant:

τ̃m ≈
1

2µkdk,mλm
(35)

where dk,m denotes the m-th diagonal entry of Dk. The
convergence speed now depends on dk,mλm. Considering the
case where P k is proportional to Rz,k, then dk,m is inversely
proportional to λm, which mitigates the effects of the eigenval-
ues spread. We shall analyze and illustrate in Section IV and
Section VI, respectively, how this preconditioning improves
convergence speed in more general cases.

IV. PERFORMANCE ANALYSIS

We shall now analyze the stochastic behavior of the diffu-
sion preconditioned LMS (PLMS) algorithm (32) in the sense
of mean and mean-square error. We introduce the following
weight error vectors at each node k:

h̃k(i) = h
o − hk(i), ψ̃k(i) = h

o −ψk(i), (36)

and we collect them across the nodes into the network weight
error vectors :

h̃(i) , col{h̃1(i), h̃2(i), . . . , h̃N (i)}, (37)

ψ̃(i) , col{ψ̃1(i), ψ̃2(i), . . . , ψ̃N (i)}. (38)

We refer to mean stability of the error vector h̃(i) if the limit
superior of ‖Eh̃(i)‖ is bounded. Furthermore, we will claim
that the algorithm converges in the mean to the optimum if
Eh̃(i) converges to zero as i tends to +∞ regardless of the
starting point. Mean-square stability refers to the case where
the superior limit of E‖h̃(i)‖2 is bounded.
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Let us introduce the following N ×N block matrices with
individual entries of size M ×M :

A , A⊗ IM , (39)

M , bdiag{µkIM}Nk=1, (40)

D , bdiag{Dk}Nk=1. (41)

The estimation error in (32a) can be written as:

ek(i) = yk(i)− z>k (i)hk(i) = z>k (i)h̃k(i) + vk(i). (42)

Subtracting ho from both sides of (32a) and using the above
relation, then stacking ψ̃k(i) across the nodes, we obtain

ψ̃(i+ 1) = (INM −MDRz(i)) h̃(i)−MDpzv(i), (43)

where Rz(i) is an N × N block matrix with entries of size
M ×M define as:

Rz(i) , bdiag{zk(i)z>k (i)}Nk=1, (44)

and pzv(i) is an N × 1 block column vector with entries of
size M × 1 given by:

pzv(i) , col{zk(i)vk(i)}Nk=1. (45)

Subtracting ho from both sides of (32b), we obtain the block
weight error vector:

h̃(i+ 1) = A>ψ̃(i+ 1). (46)

Finally, combing (43) and (46), the network weight error
vector h̃(i) of algorithm (32) evolves according to:

h̃(i+ 1) = B(i)h̃(i)−A>MDpzv(i), (47)

with

B(i) = A>
(
INM −MDRz(i)

)
. (48)

To proceed with the analysis, we introduce the following
assumption.

Assumption 1 (independent inputs). The inputs zk(i) arise
from a zero-mean random process that is temporally white
with Rz,k > 0.

A consequence of Assumption 1 is that zk(i) is independent
of h`(j) for all ` and j ≤ i. This independence assumption
is not true in the current work. Two successive regressors
zk involve common entries that cannot be statistically inde-
pendent as in a conventional FIR implementation. However,
when the step-size is sufficiently small, conclusions derived
under this assumption tend to be realistic. For more details
and discussions, see [49, Section 16.4]. Since this assumption
helps to simplify the derivations without constraining the
conclusions, it is widely used in the literature of adaptive filters
and adaptive networks [24], [49]. We shall see in Section VI
that the resulting expressions match well the simulation results
for sufficiently small step-sizes.

A. Mean-error behavior analysis

Taking expectations of both sides of (47), using the fact
that Epzv(i) = 0, and applying Assumption 1, we find that
the network mean error vector evolves according to:

Eh̃(i+ 1) = BEh̃(i), (49)

where:

B , EB(i) = A>(INM −MDRz), (50)

Rz , ERz(i) = bdiag{Rz,k}Nk=1. (51)

Theorem 1 (Convergence in the mean). Assume that data
model (7) and Assumption 1 hold. Then, for any initial con-
dition, algorithm (32) converges asymptotically in the mean
toward the optimal vector ho if, and only if, the step-sizes in
M are chosen to satisfy:

ρ
(
A>(INM −MDRz)

)
< 1, (52)

where ρ(·) denotes the spectral radius of its matrix argument.
In the case where the signal x(i) is i.i.d, a sufficient condition
for (52) to hold is to choose µk such that:

0 < µk <
2

λmax(DkRz,k)
, k = 1, . . . , N. (53)

Proof. The weight error vector h̃(i) converges to zero if, and
only if, the coefficient matrix B in (49) is a stable matrix,
namely, ρ(B) < 1. Since any induced matrix norm is lower
bounded by the spectral radius, we have the following relation
in terms of block maximum norm [24]:

ρ(B) ≤ ‖A>(INM −MDRz)‖b,∞
≤ ‖A>‖b,∞ · ‖INM −MDRz‖b,∞
= ‖INM −MDRz‖b,∞, (54)

where the last equality follows from the fact that A is left
stochastic, which implies that ‖A>‖b,∞ = 1 from Lemma D.4
of [24]. Matrix Rz is block diagonal if x(i) is i.i.d. Since D
is also diagonal, their product is symmetric, and MDRz is
a block diagonal symmetric matrix. Then, following Lemma
D.5 of [24], its block maximum norm agrees with its spectral
radius:

‖INM −MDRz‖b,∞ = ρ(INM −MDRz). (55)

Combining (54) and (55), we verify that condition (53) ensures
the stability of B.

B. Mean-square-error behavior analysis

We shall now study the mean-square-error behavior of
algorithm (32). Let Σ be any NM × NM positive semi-
definite matrix that we are free to choose. The freedom in
selecting Σ will allow us to derive different performance
measures about the network and the nodes. We consider the
weighted mean-square error vector, i.e., E‖h̃(i)‖2Σ, where
‖h̃(i)‖2Σ , h̃

>
(i)Σh̃(i). From Assumption 1 and Epzv(i) =

0, using (47), we obtain the following variance relation:

E‖h̃(i+ 1)‖2Σ = E‖h̃(i)‖2Σ′ + E‖A>MDpzv(i)‖2Σ, (56)
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where Σ′ , E{B>(i)ΣB(i)}. Let σ denote the (NM)2 × 1
vector obtained by vectorizing matrix Σ, namely, σ = vec(Σ).
With some abuse of notation, we shall use ‖ · ‖2σ to also refer
to the quantity ‖ · ‖2Σ when it is more convenient. Let σ′ =
vec(Σ′). Considering that vec(UΣW ) = (W>⊗U)σ, it can
be verified that:

σ′ = Fσ, (57)

where F is the (NM)2 × (NM)2 matrix given by

F ,E{B>(i)⊗B>(i)}

=
(
I(NM)2 − INM ⊗R>z DM−R>z DM⊗ INM

+O(M2)
)
(A⊗A), (58)

whereO(M2) denotes E{R>z (i)DM⊗R>z (i)DM}, which
depends on the square of the step-sizes, {µ2

k}. While we can
continue the analysis by taking this factor into account as was
done in other studies [53], it is sufficient for the exposition to
focus on the case of sufficiently small step-sizes where terms
involving higher powers of the step-sizes {µk} can be ignored.
Following the same line of reasoning, for sufficiently small
step-sizes {µk}, F can be approximated by:

F ≈ B> ⊗B>. (59)

The second term on the RHS of (56) can be written as:

E‖A>MDpzv(i)‖2Σ = Tr(ΣG), (60)

where

G , A>MDSDMA, (61)

S , E{pzv(i)p>zv(i)} = bdiag{σ2
v,kRz,k}Nk=1. (62)

Using the property Tr(ΣW ) = [vec(W>)]>σ, combin-
ing (57) and (60), the variance relation (56) can be re-written
as:

E‖h̃(i+ 1)‖2σ = E‖h̃(i)‖2Fσ + [vec(G>)]>σ. (63)

Theorem 2 (Stability in the mean-square). Assume that data
model (7) and Assumption 1 hold. Algorithm (32) converges in
the mean-square sense if the matrix F in (58) is stable. Assume
further that the step-sizes are sufficiently small such that (59)
is a reasonable approximation. In that case, the stability of F
is ensured if B is stable.

Proof. Iterating (63) starting from i = 0, we obtain

E‖h̃(i+1)‖2σ = E‖h̃(0)‖2Fi+1σ+[vec(G>)]>
i∑

j=0

F jσ, (64)

with initial condition h̃(0) = ho−h(0). Provided F is stable,
F i → 0 as i → ∞, then the first item on the RHS of (64)
converges to zero and the second item converges to a finite
value. The weighted mean-square error converges to a finite
value as i → ∞ which implies that the algorithm (32) will
converge in the mean-square sense if F is stable. Under the
sufficiently small step-sizes assumption where the higher-order
terms of F in (58) can be neglected, approximation (59)
is reasonable. The eigenvalues of F are all the products of

the eigenvalues of B, which means that ρ(F) = [ρ(B)]2.
It follows that F is stable if B is stable. Therefore, when
the graph signal x(i) is i.i.d, according to Theorem 1, condi-
tion (53) ensures mean-square stability of the algorithm under
the assumed approximation (59).

Theorem 3 (Network transient MSD). Assume sufficiently
small step-sizes that ensure mean and mean-square stability.
The network transient mean-square deviation (MSD) defined
as ζ(i) = 1

NE‖h̃(i)‖2 evolves according to the following
recursion for i ≥ 0:

ζ(i+ 1) = ζ(i) +
1

N

(
[vec(E{h̃(0)h̃

>
(0)})]>(F − I(NM)2)

+ [vec(G>)]>
)
F ivec(INM ). (65)

Proof. Comparing (64) at time i + 1 and i, E‖h̃(i + 1)‖2σ is
related to E‖h̃(i)‖2σ as follows:

E‖h̃(i+ 1)‖2σ = E‖h̃(i)‖2σ + [vec(G>)]>F iσ+

[vec(E{h̃(0)h̃
>
(0)})]>(F − I(NM)2)F iσ. (66)

Substituting σ by 1
N vec(INM ) leads to (65).

Although expression (65) gives a compact form of the
transient MSD model, it may not be practical to use since F
is of size (NM)2 × (NM)2 and may become huge for large
networks or high order filters. For example, in the simulation
Section VI, we considered a network consisting of N = 60
nodes and a graph filter of degree M = 5. Matrix F is
of size 90000 × 90000 and requires a prohibitive amount of
computational time and memory space (about 60GB in that
case). To tackle this issue, we make use of the following
properties of the Kronecker product:

vec(XY Z) = (Z> ⊗X)vec(Y ) (67)

Tr(XY ) =
(
vec(Y >)

)>
vec(X). (68)

This leads to:

Corollary 1 (Alternative network transient MSD expression).

ζ(i+ 1) = ζ(i) +
1

N
Tr
(
BiG(Bi)>

+ h̃(0)h̃
>
(0)
(
(Bi+1)>Bi+1 − (Bi)>Bi

) )
.

(69)

While the update with F has a computation complexity of
order O((NM)2), using B only requires matrix manipulations
of order O(NM).

Corollary 2 (Network steady-state MSD). Consider suffi-
ciently small step-sizes to ensure mean and mean-square
convergence. The network steady-state MSD is given by

ζ? =
1

N
[vec(G>)]>(I(NM)2 −F)−1 vec(INM ). (70)

Proof. The network steady-state MSD is defined as:

ζ? = lim
i→∞

1

N
E{‖h̃(i)‖2}. (71)

If F is stable, we obtain from (63) as i→∞:

lim
i→∞

E‖h̃(i)‖2(I(NM)2−F)σ = [vec(G>)]>σ. (72)
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We obtain (70) by substituting σ in (72) by 1
N (I(NM)2 −

F)−1 vec(INM ).

Following the same line of reasoning as for the transient
MSD model, the steady-state MSD given by (70) can be
equivalently expressed as:

Corollary 3 (Alternative steady-state MSD expression).

ζ? =
1

N

∞∑
i=0

Tr
(
BiG(Bi)>

)
(73)

This expression is obtained by a series expansion of (70).
In practice, a limited number of iterations can be used instead
of the upper limit index i→∞ to obtain an accurate result.

V. UNSUPERVISED CLUSTERING FOR HYBRID
NODE-VARYING GRAPH FILTER

In Section III, we investigated the scenario where the nodes
in a graph share a common filter coefficient vector. Now
we extend this model to the more flexible case (10), which
allows the filter coefficients to vary across the graph. We
further assume that the graph is decomposed into Q clusters
of nodes Cq and, within each cluster Cq , there is a common
filter coefficient vector hoq to estimate, namely,

hok = hoq, if k ∈ Cq. (74)

We assume that there is no prior information on the clusters
composition and that the nodes do not know which other nodes
share the same estimation task. Applying the algorithm (32)
within this context may result a bias due to aggregate in-
termediate estimates from different data models. To address
this issue, automatic network clustering strategies may be
used [28], [54]–[56] in order to inhibit cooperation between
nodes from different clusters. These methods are based on
local stand-alone estimation strategies that may not be efficient
for the current context. Basically, the polynomial form (1)
of graph filters does not make the estimation of the filter
coefficients reliable enough for the higher degrees. In the
following, we tackle this problem by devising a clustering
strategy based on the PLMS.

First, we introduce the N × N instantaneous clustering
matrix Ei, whose (`, k)-th entry shows if node k believes at
time i that its neighboring node ` belongs to the same cluster
or not, namely,

[Ei]`k =

{
1, if ` ∈ Nk and k believes thathok = ho` ,

0, otherwise.
(75)

At each time instant i, node k infers which neighbors belong
to its cluster based on the non-zeros entries of the k-th column
of Ei. We collect these entries into a set Nk,i, so that node k
only combines the intermediate estimates from its neighbors in
Nk,i. Condition (23) on the combination coefficients becomes:

a`k > 0,

N∑
`=1

a`k = 1, and a`k = 0 if ` /∈ Nk,i, (76)

Since the clustering information is unknown beforehand, we
propose to learn Ei in an online way by computing a Boolean
variable b`k(i) defined as follows:

b`k(i) =

{
1, if ‖ψ`(i+ 1)− hk(i)‖2 ≤ β,
0, otherwise,

(77)

with β > 0 a preset threshold. Variable b`k(i) is defined from
the `2-norm distance between the estimates at two neighboring
nodes. If this distance is smaller than the threshold β, the two
nodes are then assigned to the same cluster. Note that the
distance between ψ`(i+1) and hk(i) is used in (77), instead
of the distance between h`(i+ 1) and hk(i+ 1), in order to
merge the learning and the clustering processes. Consider the
learning process at any node k defined in (32). Information
about clusters is used in the combination step (32b), where
Nk now denotes the neighboring nodes of k that share the
same estimation task as node k. This information should be
available as soon as possible in order to avoid estimation bias.
Considering the distance between h`(i + 1) and hk(i + 1)
to decide if nodes k and ` are in the same cluster would
allow to update the composition of sets Nk and N` in the
combination step (32b) used to calculate parameter vectors
h`(i+ 2) and hk(i+ 2). This latency time can be shortened
by considering the distance between ψ`(i+1) and hk(i) right
after the adaptation step (32a), and using this information to
define Nk in the combination step.

This strategy usually fails if left as is, because the estimation
of higher-order coefficients is not reliable enough and results
in bad clustering performance. We propose to estimate this
distance from Mk principal components of the estimates, to be
defined, of the estimates. Because Rz,k cannot be reasonably
used to perform a Principal Component Analysis (PCA) of
the input data, as it is rarely available beforehand and would
involve significant additional computational effort, we suggest
instead using matrix P k. As for the PLMS, the rationale
behind this is that Rz,k = σ2P k when x(i) is i.i.d. with
variance σ2. Another interest lies in that P k is a diagonal
matrix, which greatly simplifies calculations. Without loss of
generality, consider that the diagonal entries of P k are in
decreasing order. Projecting data onto the first Mk principal
axes then reduces to selecting their first Mk entries and set
the other entries to zero. Dimension Mk can be determined
by setting the ratio of explained variance to total variance to
some desired level τ as follows:

minimize Mk

subject to
Mk∑
m=1

π̂k,m ≥ τ
(78)

with π̂k,m = [pk]m/Tr(P k) an approximation of the propor-
tion of total variance [57]. In practice, we can use a predefined
threshold τ ∈ [0.9, 1) to decide how many entries should be
retained. The Boolean variable (77) becomes:

b`k(i) =

{
1, if ‖ψ

′
`(i+1)−h′

k(i)‖2
‖h′

k(i)‖2 ≤ β,
0, otherwise,

(79)

with ψ′`(i+1) and h′k(i) the first Mk entries of ψ`(i+1) and
hk(i) respectively. Compared to (77), note that the distance
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in (79) that accounts for the similarity between ψ′`(i+1) and
h′k(i) has been normalized. We suggest to choose β ∈ (0, 0.01]
to lower the false detection rate. To reduce noise effects, we
further introduce a smoothing step:

t`k(i) = νt`k(i− 1) + (1− ν)b`k(i), (80)

where t`k(i) is a trust level, and ν is a forgetting factor in (0, 1)
to balance the past and present cluster assignments. Once the
trust level t`k(i) exceeds a preset threshold θ, which can be
chosen in [0.5, 1), node k concludes that node ` belongs to its
cluster, that is,

[Ei]`k =

{
1, if t`k(i) ≥ θ,
0, otherwise.

(81)

Based on [Ei]`k, each node k determines at each time instant i
those nodes ` that it believes they belong to the same cluster,
updates the combination coefficients according to (76), and
finally combines the estimates from its neighbors with (32b).

VI. NUMERICAL RESULTS

A. Experiment with i.i.d. input data

We first considered a zero-mean i.i.d. Gaussian graph sig-
nal x(i) with covariance Rx = diag{σ2

x,k}Nk=1. Variances
σ2
x,k were randomly generated from the uniform distribution
U(1, 1.5). In this setting, the graph signal sample xk(i) was
independent of x`(j) for all ` and j ≤ i. We assumed
the linear data model (7). The graph filter order was set to
M = 5 and the coefficients hom were randomly generated from
the uniform distribution U(0, 1). Noise v(i) was zero-mean
Gaussian with covariance Rv = diag{σ2

v,k}Nk=1. Variances
σ2
v,k were randomly generated from the uniform distribution
U(0.1, 0.15). We considered this data model with an Erdős-
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Fig. 1: Network MSD performance with the Erdős-Rényi
graph.

Rényi random graph and on a sensor network graph. Both
consisted of N = 60 nodes. The Erdős-Rényi random graph
was generated in a similar construction as in [33]. Namely,
it was obtained by generating an N × N symmetric matrix
S whose entries were governed by the Gaussian distribution
N (0, 1), and then thresholding edges to be between 1.2 and
1.8 in absolute value. Then, the edges were soft thresholded by

1.1 to be between 0.1 and 0.7 in magnitude. The shift matrix
S was normalized by 1.1 times its largest eigenvalue. The
sensor network was generated by using GSPBOX [58]. Each
node was connected to its 5 nearest neighbors. The shift matrix
was the normalized adjacency matrix, that is, S = W

1.1λmax(W ) .
In this case, all the eigenvalues of S are smaller than 1 and
the energy of the shifted signal Smx diminishes for large m.
The smallest eigenvalue λmin(Rz,k) was very small, and, for
some node, it was close to 0.

With this setting, we compared the diffusion LMS al-
gorithm (22), the diffusion LMS-Newton (LMSN) algo-
rithm (29), and the diffusion preconditioned LMS (PLMS)
algorithm (32). Simulated results were averaged over 500
Monte-Carlo runs. For the LMSN and PLMS algorithms,
we set the regularization parameter as ε = 0.01. We ran
algorithms (22), (29) and (32) by setting a`,k = 1

|Nk| for
` ∈ Nk. We used a uniform step-size for all nodes, i.e., µk = µ
for all k. We also considered the ε-normalized LMS (ε-NLMS)
method for comparison purposes. In this case, the adaptation
step (32a) is substituted by:

ψk(i+ 1) = hk(i) +
µk

‖zk(i)‖2 + ε
zk(i)ek(i). (82)

With the Erdős-Rényi graph, we compared the performance
of the LMS, PLMS, LMSN and ε-NLMS algorithms. We
set µ = {0.08, 0.008, 0.01, 0.05}, respectively. The network
MSD performance of each algorithm is reported in Fig. 1.
The theoretical transient and steady-state MSD are also re-
ported. With the sensor network graph, we compared the
performance of the LMS, PLMS and LMSN algorithms. We
set µ = {0.08, 0.005, 0.0055}, respectively. The performance
of each algorithm is reported in Fig. 2(a). In Fig. 1, we
observe that the diffusion ε-NLMS converged slower than all
other algorithms. Observe that the diffusion LMSN and PLMS
algorithms converged faster than the LMS algorithm for both
graphs, and the diffusion PLMS performed similarly compared
with the LMSN in terms of convergence rate. Also, note that
the theoretical results match well the simulated curves.

In a second experiment, we considered the normalized graph
Laplacian matrix S =D−

1
2LD−

1
2 , and the adjacency matrix

W , as shift operators. For the normalized graph Laplacian,
λmax(Rz,k) was large for all nodes. Therefore, for the diffu-
sion LMS algorithm, the step-size was chosen relatively small
to guarantee convergence. We set µ = {0.004, 0.01, 0.008}
for the LMS, LMSN and PLMS. The results are reported
in Fig. 2(b). For the adjacency matrix, we used uniform
step-sizes µ = {0.02, 0.018} for the LMSN and PLMS,
respectively. The step-size was set to µk = 0.05 · 2

λmax(Rz,k)

for each node k for the LMS update in order to achieve the
same steady-state MSD. The results are reported in Fig. 2(c).
We observe in Fig. 2 that the diffusion LMSN and PLMS
algorithms converged faster than the LMS algorithm with the
three graph shift operators. The PLMS algorithm achieved
the same performance as the LMSN algorithm with a lower
computational complexity.
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(a) Normalized Adjacency Matrix

0 200 400 600 800 1000 1200 1400 1600 1800 2000

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

(b) Normalized Laplacian Matrix
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(c) Adjacency Matrix

Fig. 2: Network MSD performance for different types of shift operators with the sensor network.

B. Experiment with correlated input data

We tested the algorithms over the sensor network graph
with correlated graph signals. We first considered a zero-
mean i.i.d. Gaussian graph signal driven by a non-diagonal
covariance matrix Rx. This means that the input data were
correlated over the vertex domain, but uncorrelated over time.
Matrix Rx was generated as Rx = V diag{σ2

x,k}Nk=1V
>, with

σ2
x,k randomly chosen from the uniform distribution U(1, 1.5)

and V is the graph Fourier transform matrix. The graph shift
operator was defined by the normalized adjacency matrix. The
filter degree was set as M = 3. We observe in Fig. 3 that the
proposed diffusion PLMS algorithm performed as well as the
LMSN algorithm, and converged faster than the diffusion LMS
algorithm.
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Fig. 3: Network MSD performance with a vertex domain
correlated input signal.

Next, we considered a graph signal x(i) that was correlated
over both vertex and time domains. We assumed that x(i) is
a Gaussian process with zero mean and covariance matrix Rx

satisfying the discrete Lyapunov equation:

SRxS
> −Rx + I = 0. (83)

Graph signal sample x(i) was related to x(i− 1) as follows:

x(i) = Sx(i− 1) +w(i) (84)

with S the normalized adjacency matrix and w(i) a zero-mean
i.i.d. Gaussian noise with covariance IN . It can be checked
that x(i) is wide-sense stationary with E{x(i)} = 0, and
Rx(τ) = SτRx(0) for all τ > 0, where Rx(0) satisfies
the Lyapunov equation (83). The graph filter order was set as
M = 3. The step-sizes were set to µ = {0.1, 0.038, 0.03} for
the LMS, LMSN and PLMS, respectively. The regularization
parameter ε was set to ε = 0.1. Fig. 4 depicts the simulated
and theoretical MSD performance. We observe that, due to
correlation over time, the diffusion LMSN method converged
faster than the PLMS. However, the proposed PLMS algorithm
still performed better than the diffusion LMS method.
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Fig. 4: Network MSD performance with input graph signal
correlated over both vertex and time domains.

C. Clustering method for node-varying graph filter

Finally, we considered a scenario where nodes do not
share the same filter coefficients. We assumed the linear data
model (10). The graph shift operator was defined by the
normalized adjacency matrix, and the graph filter order was
set as M = 3. The nodes were grouped into three clusters:
C1 = {1, . . . , 20}, C2 = {21, . . . , 40}, and C3 = {41, . . . , 60}.
The optimal graph filter coefficients hok were set according
to [0.5 0.4 0.9]> if k ∈ C1, [0.3 0.1 0.4]> if k ∈ C2, and
[0.9 0.3 0.7]> if k ∈ C3. We considered for comparison pur-
pose the PLMS algorithm with clustering mechanism (78)-(81)
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, with basic clustering mechanism (77) and Mk = M for all
k, the oracle PLMS algorithm where the clusters are assumed
to be known a priori, the PLMS algorithm without clustering
mechanism, and the non-cooperative algorithm where a`k = 1
if k = ` and zero otherwise. All algorithms used the adap-
tation step (32a) with the same step-size µk = 0.01 for all
k. Parameters {τ, β, θ, ν} were set to {0.9, 0.01, 0.5, 0.98},
respectively. As shown in Fig. 5, the non-cooperative method
did not achieve acceptable MSD level. The main reason is that,
with the normalized adjacency matrix as graph shift operator
S, the entries of zk(i) in (8) corresponding to higher powers
of S are significantly diminished, resulting in poor estimation
performance of filter coefficients when nodes cannot cooper-
ate. The PLMS algorithm without clustering mechanism did
not achieve good performance too because it has been designed
to converge toward a consensual solution ho, which does
not make sense for this scenario. The PMLS with clustering
mechanism (71) and Mk =M achieved slightly improved per-
formance because the estimation of higher-order coefficients
in hk was not reliable enough, leading to incorrect clustering.
The proposed PLMS algorithm with clustering mechanism
(78)-(81) performed as well as the oracle algorithm. Fig. 6 (a)
shows the topology of the graph given by the adjacency matrix
A (and the shift matrix S). Fig. 6 (b) presents the clusters
inferred by the proposed method. These clusters perfectly
match the ground truth clusters C1 to C3.
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Fig. 5: Network MSD performance for different clustering
algorithms.
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Fig. 6: Graph topology and clusters.

Next, we considered that optimal parameter vectors hok
change over time while clusters remain unchanged. Nodes
were grouped into two clusters C1 = {1, . . . , 30} and C2 =
{31, . . . , 60}. The optimal parameter vectors changed for

both clusters at time instant i = 1000. Simulation results
in Fig. 7 show that the proposed clustering method was
able to track well this change. Finally, we considered the
scenario where clusters and models change simultaneously.
At Stage 1, the nodes were grouped into two clusters defined
as C1 = {1, . . . , 30} and C2 = {31, . . . , 60}. Stage 2 started
at time instant i = 1000 with three clusters C1 = {1, . . . , 20},
C2 = {21, . . . , 40}, and C3 = {41, . . . , 60}. Stage 3 started at
time instant i = 2000 with two clusters C1 = {1, . . . , 25},
C2 = {26, . . . , 60}. At each stage, the optimal parameter
vectors hok changed accordingly. Ground truth clusters for
the three stages are depicted in Fig. 9 (Top). Parameters
{µ, τ, β, θ, ν} were set to {0.01, 0.9, 0.01, 0.5, 0.4}, respec-
tively. Fig. 8 shows the simulated transient MSD of the
proposed PLMS algorithm with clustering mechanism. It is
compared with the oracle PLMS algorithm where the clusters
are assumed to be known a priori. Fig. 9 (Bottom) depicts the
inferred clusters at i = 1000, 2000, 3000 during one Monte
Carlo run. The proposed algorithm was able to track changes
in both clusters and models.
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Fig. 7: Network MSD performance with model change.
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Fig. 8: Network MSD performance with model and clusters
change.

D. Reconstruction on U.S. temperature dataset
We considered a dataset that collects hourly temperature

measurements at N = 109 stations for T = 8759 hours across
the United States in 2010 [59]. An undirected graph, illustrated
in Fig. 10, was constructed according to the nodes coordinates
by using the k-NN approach (k = 7) of GSPBOX.
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Fig. 9: (Top) Ground truth cluster. (Bottom) Inferred clusters
at steady-state of a single Monte Carlo run. From left to right:
Stage 1, Stage 2, Stage 3.

(a) (b)

Fig. 10: Graph topology for the U.S. temperatures dataset.
Temperatures were sampled at the red nodes in red. Data at
the blue nodes were unobserved. (a) 37 sampled nodes. (b) 54
sampled nodes.

In the first experiment, the dataset was divided into a
training set containing Ttrain = 6570 hours data (about 75%
of total). The remaining data were assigned to the test set.
The goal of this experiment was to learn a graph filter that
minimizes the reconstruction error over the training set, i.e.,

min

Ttrain∑
i=1

N∑
k=1

|yk(i)−
M∑
m=1

hm,k[S
mx(i−m+ 1)]k|2, (85)

where y(i) is the ground truth temperature at time i, and x(i)
is the partial observation given by x(i) = diag(1S)y(i). Here
1S denotes the set indicator vector, whose k-th entry is equal
to one if node k is sampled, and zero otherwise. The sampling
set, illustrated in Fig. 10 (a) was fixed over time in the first
experiment. The normalized adjacency matrix was set as graph
shift operator. Graph filter degree was set to M = 4. Note that
if hm,k = hm for all k, problem (85) refers to the single-task
problem where all the nodes seek to find common graph filter
coefficients; see model (1). Otherwise, problem (85) refers
to the multitask problem; see model (9). We ran different
models and algorithms on the training set to learn graph filter
coefficients. In Fig. 11, we provide the true temperature and
the reconstructed ones obtained by the different algorithms at
an unobserved node, black circled in Fig. 10, over the last
120 hours samples of the test set. For comparison purposes,
reconstruction results of the Kernel Kalman Filter (KKF) and

the Kernel Ridge Regression (KRR) in [43] are also reported
in Fig. 11. We observe that the single-task diffusion LMSN
and multitask diffusion LMS were not able to reconstruct the
true temperature, whereas the multitask diffusion PLMS and
the multitask diffusion LMSN showed a good reconstruction
performance, and performed better than the KKF and KRR
at the selected unobserved node. To evaluate the performance
over all unobserved nodes on the test set, we considered the
normalized mean square error (NMSE) defined as:

NMSE =

∑T
i=Ttrain+1 ‖diag(1S̄) (y(i)− ŷ(i)) ‖22∑T

i=Ttrain+1 ‖diag(1S̄)y(i)‖22
(86)

where ŷ(i) denotes the reconstructed estimate at time i, 1S̄
is the set indicator vector whose k-th entry is equal to one
if node k has not been sampled, and zero otherwise. The
results are reported in Table I. We observe that the multitask
diffusion PLMS performed as well as the LMSN at a lower
computational cost, and both performed better than the KFF
and KRR. Finally, Figure 12 reports the original topology and
the clusters learned by the multitask diffusion PLMS.
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Fig. 11: True temperatures and reconstructed ones at an
unobserved node. µLMS = 10−5, µPLMS = µLMSN = 10−4.

TABLE I: NMSE of different algorithms.

Algorithm NMSE
KKF 0.1093

KRR 0.0479

Multitask diffusion LMS 0.1152

Multitask diffusion PLMS 0.0090

Multitask diffusion LMSN 0.0031

In the second experiment, we divided the dataset into two
parts. The first part contained the first 4200 hours sampled at
the nodes showed in Fig. 10 (a), and the second part contained
the remaining hours sampled at the nodes showed in Fig. 10
(b). This means that the sampling set abruptly changed at time
t = 4201 (the black circled node was unobserved in both case).
We applied the multitask diffusion PLMS method over the
entire dataset. In Fig. 13 (a), the reconstructed temperature
at the unobserved black circled node is reported from time
t = 4100 to t = 4300 by using the filter coefficients learned
up to time t = 4000. As expected, we can notice that the
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Fig. 12: U.S. temperature graph topology and learned clusters.

reconstruction performance was successful from t = 4100 to
t = 4200, and dramatically deteriorated after t = 4201. This
is due to the fact that the sampling set changed, which led
to a drift in the filter coefficients to estimate. Figure 13 (b)
depicts the reconstruction behavior over last 120 hours using
the filter coefficients learned up to time t = 8600. It can be
observed that the proposed method was able to track the drift
in the filter coefficients.
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Fig. 13: True temperatures and reconstructed ones at an
unobserved node. For clarity purposes, focus on the intervals
(a) [4100, 4300] and (b) [8640, 8759].

VII. CONCLUSION

Diffusion LMS strategies were considered to estimate graph
filter coefficients in an adaptive and distributed manner. A
diffusion LMS with Newton-like descent procedure was first
proposed to achieve improved convergence rate, since usual
algorithms may suffer from ill conditioning effects due to
the use of non-energy preserving graph shift operators. A
preconditioned diffusion LMS strategy, which does not require
computationally intensive matrix inversion and only uses local
information, was then devised to reduce the computational
burden. Its convergence behavior was analyzed in the mean
and mean-square-error sense. Finally, for hybrid node-varying
graph filters, a clustering mechanism to be used with the pre-
conditioned diffusion LMS was proposed. Simulation results
validated the theoretical models and showed the efficiency of
the proposed algorithms. In this work, we assumed that the
graph shift operator is known and time invariant. In future
works, we will consider ways to estimate the graph shift
operator and the filter coefficients simultaneously. Because of
their improved flexibility, which allows to address a variety
of non-linear identification problems, we will also focus on

non-parametric methods such as [60], [61] and see how they
can be incorporated into GSP framework.
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“Graph signal processing: Overview, challenges, and applications,” Proc.
IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

[5] A. Sandryhaila and J. M. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure,” IEEE Signal Process. Mag., vol. 31, no. 5,
pp. 80–90, Sep. 2014.

[6] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May
2013.

[7] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal
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