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Abstract

This paper focuses on semi-parametric estimation of multivariate expectiles for extreme levels of risk. Multivariate
expectiles and their extremes have been the focus of plentiful research in recent years. In particular, it has been
noted that due to the difficulty in estimating these values for elevated levels of risk, an alternative formulation of
the underlying optimization problem would be necessary. However, in such a scenario, estimators have only been
provided for the limiting cases of tail dependence: independence and comonotonicity. In this paper, we extend the
estimation of multivariate extreme expectiles (MEEs) by providing a consistent estimation scheme for random vectors
with any arbitrary dependence structure. Specifically, we show that if the upper tail dependence function, tail index,
and tail ratio can be consistently estimated, then one would be able to accurately estimate MEEs. The finite-sample
performance of this methodology is illustrated using both simulated and real data.
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1. Introduction

1.1. Multivariate risk measures10

Risk measures are viewed as a crucial tool in a multitude of fields relating to mathematics and statistics. Insurance,
finance and economics must all use these measures in evaluating their prospective positions in the face of uncertain
outcomes. Moreover, these measures are often required by regulatory organizations so that companies operate in good
faith of the interests of stakeholders. To this end, it is easy to see why risk measures are constantly evolving. There
have been numerous developments in this field, whether it be through establishing ideal properties [3, 21, 45, 46],15

extensions of univariate measures to higher dimension [11–13, 22], estimating these measures non-parametrically
[4, 19], or even the development of new measures [31, 32, 35, 47].

Recently, the concept of elicitability has been developed for risk measures. Gneiting [28] defines elicitability as the
ability to express a risk measure in the form of an optimization problem. Specifically, a risk measure Tα of a random
variable (r.v.) X is considered elicitable if it takes the form

Tα(X) = arg min
x∈R

E {S (x, α)} ,
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for a risk level α ∈ (0, 1), where S is the score function associated to the risk measure Tα. Elicitability is a desirable
property as it allows for a natural backtesting methodology; see Bellini and Bignozzi [5] for more information. Two
of the most well-known elicitable risk measures are value-at-risk (VaR) and expectiles. From the usual definition in
the univariate setting, VaR is the smallest such value a r.v. can take for which the probability of failing to exceed it
is at least α. Thus, at level α, VaR is classically written VaRα(X) = inf{x ∈ R : F(x) ≥ α} but can be written in an
elicitable form as

VaRα(X) = arg min
x∈R

E{α(X − x)+ + (1 − α)(X − x)−},

where x+ = max{0, x} and x− = max{0,−x}. While elicitable, it is well documented that VaR is not a coherent risk
measure in the sense of Artzner et al. [3] as it does not respect the crucial sub-additivity property. The second measure,
and the focus of this paper, is the α-level expectile. Expectiles eα(X) have been introduced by Newey and Powell [43]
as the minimizers of an asymmetric quadratic loss. Indeed, at level α ∈ (0, 1) the expectile of a r.v. X is defined by

eα(X) = arg min
x∈R

E
{
α(X − x)2

+ + (1 − α)(X − x)2
−

}
. (1)

Note that the uniqueness of the minimum in (1) is guaranteed by the strict convexity of the scoring function. When
α = 1/2, it is well known that eα(X) = E[X], thus expectiles can be seen as an asymmetric generalization of the mean.
The term “expectiles” has probably been suggested as a combination of “expectation” and “quantiles”. For α < 1/2,20

expectiles are super-additive and therefore not coherent. However, counter to VaR, expectiles are coherent when
α ≥ 0.5; see Ziegel [56]. As risk managers are often interested in elevated levels of risk α, this is quite advantageous.

Thus, the potential coherence of expectiles makes them an alternative risk measure to the VaR for practical applica-
tions. It should be noted that, prior to the recent discussions on expectiles, a third measure of risk had been discussed
as a potential replacement for VaR in practical applications: expected shortfall (ES) [1, 52, 53]. The expected shortfall
at risk level α for a r.v. X is defined by

ESα(X) =
1

1 − α

∫ 1

α

VaRu(X)du,

which can be interpreted as the expected value of X given that it surpasses VaRα(X). While expected shortfall is a
coherent risk measure [2], it is not elicitable. Given that expectiles can be both elicitable and coherent, they present
themselves as a potential improvement over both VaR and ES. In fact, for α > 1/2, expectiles are the only risk measure25

that is coherent, elicitable and law-invariant [56].

Expectiles are uniquely identified by the first-order condition,

αE
[
{X − eα(X)}+

]
= (1 − α)E

[
{X − eα(X)}−

]
.

The above equation can also be written as

1 − α
α

=
E

[
{X − eα(X)}+

]
E

[
{X − eα(X)}−

] .
This makes the economic interpretation of expectiles as risk measures clearer. Expectiles can be seen as the value of
X that provides a profits/loss ratio of (1 − α)/α. A comparison between expectiles and more common financial risk
measures, including VaR and ES can be found in Bellini and Di Bernardino [6]. Note that both expectiles and VaR
fall into the family of generalized quantiles, as described in Bellini et al. [7], defined by

qα(X) = arg min
x∈R

(αE [Φ1{(X − x)+}] + (1 − α)E [Φ2{(X − x)−}]) ,

where Φ1,Φ2 : [0,∞) 7→ [0,∞) are strictly increasing convex functions satisfying Φi(0) = 0 and Φi(1) = 1 for
i ∈ {1, 2}.30
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While univariate risk measures are well researched and developed, they limit one’s ability for sound inference in
real life situations as they often ignore any potential dependence that risks can have on one another. Ignoring such
relationships can provide inaccurate inference and induce prohibitive losses for businesses. As such, our interest lies
in exploring multivariate expectiles as these dependence structures can be incorporated directly into the measure.

First, the notion of elicitability is extended to the multivariate context. Here, for any d-dimensional random vector
X ∈ Rd an associated risk measure Tα is elicitable if we can write it as

Tα(X) = arg min
x∈Rd

{S(x, α)} .

Now consider the multivariate extensions of expectiles. Herrmann et al. [31] present a multivariate geometric defi-
nition of expectiles, which considers the possibility of selecting different levels of risk α for the components of the
vector X. Maume-Deschamps et al. [41] define two notions of multivariate expectiles: Lp-expectiles and Σ-expectiles.
The focus of this paper is on Lp-expectiles. For any p ∈ [1,∞], define the Lp-expectile of a random vector X by

ep
α(X) = arg min

x∈Rd
E

{
α‖(X − x)+‖

2
p + (1 − α)‖(X − x)−‖2p

}
.

Specifically, this paper explores semi-parametric estimation of the L1-expectile, i.e.,

eα(X) := e1
α(X) = arg min

x∈Rd
E

α
 d∑

i=1

|Xi − xi|+


2

+ (1 − α)

 d∑
i=1

|Xi − xi|−


2 . (2)

Analogously to the univariate case, the L1-expectile in (2) is the unique solution in Rd of

1 − α
α

=
E[‖(X − x)+‖1 1{Xk > xk}]
E[‖(X − x)−‖1 1{Xk < xk}]

, k ∈ {1, . . . , d}.

Thus, it can be interpreted as a ratio of expected positive scenarios over negative ones.35

In terms of estimation, we provide a consistent estimator for eα(X) in (2) for elevated risk levels α ≈ 1 when the
underlying dependence structure and marginal distributions are unknown, through the approximated optimization
problem

arg min
Θ∈Rd

LΛ̂ (Θ) ,

for some loss function L and consistently estimated parameter set Λ̂. In Maume-Deschamps et al. [41], it was shown
that multivariate expectiles could be consistently estimated using Robbins-Monro’s stochastic optimization for mod-
erate levels of α (see discussion in Section 4.3). However, for elevated levels of α their approach fails. As such, extra
care must be given when estimating eα(X) at extreme levels of risk.

The outline of the paper is as follows: In the remainder of Section 1, multivariate extreme expectiles (MEEs) and40

some important related concepts are introduced. In Section 2, a general optimization framework is provided for
MEEs. The main contribution of this paper is in Section 3, where the consistency of the proposed approximate
loss function and its capability to accurately produce MEEs for extreme levels of risk α is provided (Theorem 1
and Corollary 3, respectively). In Section 4, the finite-sample performance of our procedure is illustrated with several
simulation studies. In Section 5, possible improvements of our estimation procedure are discussed. Section 6 provides45

concluding remarks. Finally, in the supplementary material Section 7 we provide additional simulation, exploration,
and discussion for our procedure (see Section 7.1), an application of our procedure for real data (see Section 7.2) and
the gradient calculation of the considered loss function (see Section 7.3).

1.2. Multivariate Extreme Expectiles

The notion of extreme expectiles has been explored in the univariate case by Bellini and Bignozzi [5], Mao et al. [39],
Bellini and Di Bernardino [6], Daouia et al. [16, 17] and in the multivariate case by Maume-Deschamps et al. [41, 42]
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and Herrmann et al. [31], for example. In the latter works, the authors discuss situations for which expectiles can be
solved for explicitly or for moderate risk levels α. We recall several asymptotic and multivariate concepts that will be
crucial to this work. The first of which is the notion of multivariate regular variation (MRV). Recall in one dimension
a function f is considered to be regularly varying at a ∈ {0,+∞} with index θ ∈ R, denoted f ∈ RVθ(a), if

lim
t→a

f (tx)
f (t)

= xθ

for all x > 0. Extending this definition to random vectors, one has the following equivalent definitions:50

Definition 1 (MRV equivalent definitions). Let X be a random vector on Rd, the following definitions are equivalent:

• The vector X has regularly varying tail of index θ.

• There exists for all x > 0 a finite measure µ on the unit sphere Sd−1, a normalizing function b : (0,∞) 7→ (0,∞)
such that

lim
t→+∞

Pr
{
‖X‖ > xb(t),

X
‖X‖

∈ ·

}
= x−θµ(·).

The measure µ depends on the chosen norm, it is called the spectral measure of X.

• There exists a finite measure µ on the unit sphere Sd−1, a slowly varying function L, and a positive real θ > 0
such that

lim
x→+∞

xθ

L(x)
Pr

(
‖X‖ > x,

X
‖X‖

∈ B
)

= µ(B)

for all B ∈ B(Sd−1) with µ(∂B) = 0, where B represents the Borel σ-algebra and ∂B the boundary of the set B.

For more information on the concept of regular variation and how it relates to MEEs, see Section 1 of Maume-55

Deschamps et al. [42]. Drawing further from Maume-Deschamps et al. [42], the focus here is on marginal distributions
with asymptotically equivalent tails. This can be stated in the following assumption.

Assumption 1 (Equivalent Tails). Assume that X has equivalent regularly varying marginal tails, which means that
both (i) and (ii) below are satisfied:

(i) F1 ∈ RV−θ(+∞) with θ > 0;60

(ii) The tails of X1, . . . , Xd are equivalent. That is for all i ∈ {2, . . . , d}, there is a positive constant ci such that

lim
x→+∞

F i(x)

F1(x)
= ci.

Conditions (i) and (ii) imply that all margins are RV−θ(∞). Denote ci the tail ratio. Obviously c1 = 1. Extreme
asymptotic relationships within a random vector X on Rd are further quantified by the upper tail dependence function
defined by

λ(x) = lim
t→0+

Pr {F1(X1) ≥ 1 − tx1, . . . , Fd(Xd) ≥ 1 − txd}

t
= lim

t→0+

C(tx1, . . . , txd)
t

, (3)

where C is the survival copula associated to X (see, for instance, Equation (1.4) or (1.5) in Maume-Deschamps et al.
[42]). Pairwise upper tail dependencies will be of particular importance in this paper, so we denote by λik(xi, xk), the
upper tail dependence function for the random pair (Xi, Xk). It is also beneficial to define the stable tail dependence
function (stdf)

L(x) = lim
t→0+

1
t

Pr{F(X1) > 1 − tx1 or . . . or F(Xd) > 1 − txd}

and the bivariate relationship L(x, y) = x + y− λ(x, y). The following proposition from Maume-Deschamps et al. [42]
connects all these concepts to MEEs by providing an alternative system of equations when α→ 1.
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Proposition 1 (Maume-Deschamps et al. [42], Proposition 3.3). Assume that X has regular varying multivariate dis-
tribution in the sense of Definition 1 and that Assumption 1 holds. Consider the L1-expectile eα(X) = (ei

α(X))i∈{1,...,d}.
Then any limit vector Θ = (η, β2, . . . , βd) of

(
(1 − α)/F1{e1

α(X)}, e2
α(X)/e1

α(X), . . . , ed
α(X)/e1

α(X)
)

for α → 1 satisfies65

the following system of equations

1
θ − 1

− η
βθk
ck

= −

d∑
i=1,i,k


∫ ∞

βi
βk

λik
(

ci

ck
t−θ, 1

)
dt − η

βθ−1
k

ck
βi

 , k ∈ {1, . . . , d}. (4)

In particular, Maume-Deschamps et al. [42] show that the system solutions are

η⊥ =
1

(θ − 1)
{
1 +

∑d
j=2 c1/(θ−1)

j

} , β⊥k = c1/(θ−1)
k , (5)

for asymptotically independent random vectors and

η+ =
1

(θ − 1)
, β+

k = c1/θ
k , (6)

for comonotonic random vectors, for all k ∈ {1, . . . , d}. Denote Θ⊥ = (η⊥, β⊥2 , . . . , β
⊥
d ) and Θ+ = (η+, β+

2 , . . . , β
+
d ). In

the rest of this paper we are interested in using Proposition 1 towards estimating Θ and using this result to calculate
MEEs. Given these definitions, it is easy to see that estimating eα(X) for extreme risk levels α will require one to first
consistently estimate θ, c = (c2, . . . , cd) and λik.70

2. Optimization problem for MEE

As mentioned in Section 1, for moderate levels of α, effective calculation of eα(X) is possible through Robbins-
Monro’s stochastic optimization. However, such a method does not perform well for α ≈ 1 (see Section 4.3 for further
details). An alternative methodology will be required. In Definition 2 below, we use Proposition 1 as inspiration to
define an alternative optimization problem for MEEs.75

Definition 2. Consider a d-dimensional random vector X with regularly varying multivariate distribution in the sense
of Definition 1 with margins possessing equivalent tails as given in Assumption 1. Let β∗ = (β1, . . . , βd) with β1 = 1
and Θ = (η, β2, . . . , βd). Let c1 = 1 and Λ = (θ, c2, . . . , cd, λ(·)), where ci is the tail ratio for i ∈ {2, . . . , d}, θ is the tail
index and λ is the upper tail dependence function associated to the random vector X in (3). Define the loss function

LΛ(Θ) :=
1
2
‖FΛ(Θ)‖22, (7)

where

FΛ(Θ) =
(
F(1)
Λ

(Θ), . . . , F(d)
Λ

(Θ)
)

=
(
g(1)
Λ

(Θ) + f (1)
Λ

(Θ), . . . , g(d)
Λ

(Θ) + f (d)
Λ

(Θ)
)
,

with, for all k ∈ {1, . . . , d},

g(k)
Λ

(Θ) =
1

θ − 1
− η

βθk
ck

and f (k)
Λ

(Θ) =

d∑
i,k


∫ ∞

βi
βk

λik
(

ci

ck
t−θ, 1

)
dt − η

βθ−1
k

ck
βi

 .
Define an optimal vector Θ∗, obtained by optimizing the loss function LΛ in (7), i.e.,

Θ∗ = arg min
Θ

LΛ(Θ). (8)
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Corollary 1 establishes that the optimization problem in (8) can be used to calculate MEEs.

Corollary 1. Consider a d-dimensional random vector X with regularly varying multivariate distribution in the sense
of Definition 1. Consider the L1-expectile eα(X) = (ei

α(X))i∈{1,...,d} as in (2). Under Assumption 1 and the assumption
that the vector

(
(1 − α)/F1{e1

α(X)}, e2
α(X)/e1

α(X), . . . , ed
α(X)/e1

α(X)
)

has a unique limit point Θ = (η, β2, . . . , βd) for
α→ 1, then Θ satisfies the optimization problem (8) in Definition 2. Moreover, the optimization problems (2) and (8)
are equivalent for α→ 1, i.e.,

lim
α→1

ei
α(X)

ẽi
α(X)

= 1, for i ∈ {1, . . . , d}, ẽα(X) := VaRα(X1)η1/θ(1, β2, . . . , βd)>.

Proof. From Proposition 1 and the uniqueness of the limit Θ = (η, β2, . . . , βd) we get that Θ satisfies the op-
timization problem in (8). Furthermore, from Proposition 5.1 in Maume-Deschamps et al. [42], we know that
eα(X) ∼ VaRα(X1)η1/θ(1, β2, . . . , βd)>, for α→ 1. Hence, the result is proved.

To solve the optimization problem (8) in Definition 2, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) descent al-80

gorithm will be used in the present paper. The algorithm is a member of the family of quasi-Newton optimization
methods and allows one to avoid calculating second derivatives, a feat which can drastically improve computation
time. The BFGS algorithm is given in Algorithm 1.

Remark 1. For convergence results of the BFGS algorithm the interested reader is referred to Nocedal and Wright
[44]. It is important to note that, in the general case, the true optimization problem (8) does not satisfy the convexity85

assumption required for global convergence of the BFGS algorithm. Nevertheless, the choice to use BFGS is mo-
tivated by it’s simplicity of implementation and further validated by the satisfactory numerical results provided in
Section 4. More sophisticated algorithms which extend BFGS would indeed be possible, including L-BFGS-B [8]
and modified BFGS [36, 37], the latter of which allows one to relax the convexity assumption and still achieve global
convergence. These methods are briefly discussed in Section 5.90

Algorithm 1 BFGS quasi-Newton optimization algorithm

(Step 0) Put counter k := 0 and choose initial values Θ0 ∈ Rd, H0 ∈ Rd×d initial approximation to the inverse of the
Hessian matrix of LΛ, σ ∈ (0, 1/2), ρ ∈ (σ, 1), and ε ≥ 0.
(Step 1) Let LΛ as in Definition 2. If ‖∇LΛ

(
Θk

)
‖ ≤ ε: STOP.

(Step 2) Calculate the direction dk = −Hk∇LΛ
(
Θk

)
.

(Step 3) Determine the step size tk > 0 such that the Wolfe conditions are satisfied, i.e.,

LΛ
(
Θk + tk dk

)
≤ LΛ

(
Θk

)
+ σtk∇LΛ

(
Θk

)
,

∇LΛ
(
Θk + tk dk

)>
dk ≥ ρ∇LΛ

(
Θk

)>
dk.

(Step 4) Update the following:

• Θk+1 := Θk + tkdk • yk := ∇LΛ
(
Θk+1

)
− ∇LΛ

(
Θk

)
,

• sk := Θk+1 −Θk • Hk+1 :=
(
I − ρk sk y>k

)
Hk

(
I − ρk sk y>k

)
+ ρk sk s>k ,

where ρk = 1/y>k sk.
(Step 5) Set k ← k + 1 and go to (Step 1).

6



3. Approximated Optimization Problem

Since the underlying distribution is not known in practice, crucial information, including the values of λ, θ, and ci for
i ∈ {2, . . . , d}, is not available. As such, direct application of the BFGS algorithm for the optimization problem (8) is
not possible. Instead, an approximated version of (8) will be solved, i.e., one can focus on the approximate optimum

arg min
Θ∈Rd

LΛ̂(Θ) (9)

for some vector of estimators Λ̂ = (θ̂, ĉ2, . . . , ĉd, λ̂). Specifically, convergence of the estimated optimum can be shown

in the following way. The first step will be to show that Λ̂
Pr
−→
n→∞

Λ, and subsequently that LΛ̂(Θ)
Pr
−→
n→∞

LΛ(Θ) and

∇LΛ̂(Θ)
Pr
−→
n→∞

∇LΛ(Θ), where
Pr
−→
n→∞

denotes convergence in probability. Then, we will prove the consistency of every
iteration of the BFGS algorithm (see Theorem 1)

Θ̂k Pr
−→
n→∞
Θk, k ∈ {1, 2, . . .}.

Finally, by using a two-step procedure (see Algorithm 2), we can study the behaviour of the proposed method (see
Corollary 3).

3.1. Loss function

Establishing the consistency of every iteration of the BFGS algorithm applied to the approximated loss function comes
down to establishing the convergence of the approximate loss function LΛ̂ and its gradient ∇LΛ̂. In the end, this will
require convergence arguments for estimators λ̂ik, θ̂, and ĉi for i ∈ {2, . . . , d}, of λik, θ, and ci for i ∈ {2, . . . , d},
respectively. Moreover, the convergence∫ ∞

βi
βk

λ̂ik
(

ci

ck
t−θ, 1

)
dt

Pr
−→
n→∞

∫ ∞

βi
βk

λik
(

ci

ck
t−θ, 1

)
dt

is also required. For n observations of the random vector X, denote the random sample Xi = (Xi1, . . . , Xid), i ∈
{1, . . . , n}. Next, denote X j:1,n ≤ X j:2,n ≤ · · · ≤ X j:n,n the order statistics associated to the realizations of the jth random
variable of X for j ∈ {1, . . . , d}. First, consider the estimated tail index θ̂ via Hill’s estimator Hill [33],

γ̂ =
1
`θ

`θ∑
i=1

ln(X1:n−i+1,n) − ln(X1:n−`θ ,n), θ̂ =
1
γ̂
, (10)

for an intermediate integer sequence, i.e., `θ = `θ(n) such that `θ(n) = o(n) and `θ(n) −→
n→∞
∞. The tail ratio, ci, can be

estimated by

ĉi =

(
Xi:n−`i+1,n

X1:n−`i+1,n

)−θ̂
, i ∈ {2, . . . , d}, (11)

where `i = `i(n) is an intermediate integer sequence and θ̂ is as defined in (10). The consistency of θ̂ and ĉi is95

established, for instance, in Deheuvels et al. [18] or de Haan and Ferreira [30] and Maume-Deschamps et al. [42],
respectively. This leaves the upper tail dependence function as the sole remaining piece.
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3.2. Upper tail dependence function

One group of estimators for the upper tail dependence function take the form

λ̂(x) =
n
`λ

Ĉ
(
`λ
n

x
)
,

where Ĉ is some estimator of the survival copula C for the random vector X and `λ = `λ(n) is an intermediate integer
sequence. Thus, to estimate the upper tail dependence function effectively, a consistent estimator of the copula is
required. In this paper, the empirical beta copula was chosen. For a random sample X1, . . . , Xn with corresponding
ranks denoted by Ri, j =

∑n
k=1 1{Xk j ≤ Xi j}, i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, the empirical beta copula is defined as

CBeta
n (u) =

1
n

n∑
i=1

d∏
j=1

FRi, j,n(ui),

where u ∈ [0, 1]d and Fr,n(u) is the cumulative distribution function (cdf) of Ur:n, the rth order statistic of n independent
uniform random variables on [0, 1]. This also corresponds to Ur:n ∼ Beta(r, n + 1 − r). In two dimensions this gives

CBeta
n (u, v) =

1
n

n∑
i=1

FRi,1,n(u)FRi,2,n(v).

Moreover, as CBeta
n is a genuine copula, using the bivariate relationship C(u, v) = u + v − 1 + C(1 − u, 1 − v) gives

pairwise upper tail dependence function

λ̂ik
Beta(xi, xk) =

n
`λ

`λn xi +
`λ
n

xk − 1 +
1
n

n∑
j=1

FR j,i,n

(
1 −

`λ
n

xi

)
FR j,k ,n

(
1 −

`λ
n

xk

) . (12)

Proposition 2 establishes the consistency of the upper tail dependence function based on the empirical beta copula.

Proposition 2. For the estimator of the upper tail dependence function based on the empirical beta copula, as defined
in (12), it holds that λ̂ik

Beta is a consistent estimator for λik, i.e.,

λ̂ik
Beta(xi, xk)

Pr
−→
n→∞

λik(xi, xk).

Proof. The proof is straightforward from the work of Kiriliouk et al. [34]. They define the empirical process

BBeta
n,`λ =

√
`λ(LBeta

n,`λ − L),

where LBeta
n,`λ

(x) = n
{
1 −CBeta

n (1 − `λx/n)
}
/`λ is the stdf defined under the empirical beta copula. In particular, they

established the weak convergence (as defined in van der Vaart and Wellner [50]) BBeta
n,`λ
 B on `∞ ([0, 1]), where B is

some stochastic process with continuous trajectories. Using this result, and the bivariate relationship that for any stdf
λ(x, y) = x + y − L(x, y), the empirical process for upper tail dependence function based on the empirical beta copula
will have the same (up to a sign) asymptotic distribution. This implies that

λ̂ik
Beta(xi, xk)

Pr
−→
n→∞

λik(xi, xk),

establishing the result.100

In particular, Proposition 2 gives

λ̂ik
Beta

(
ci

ck
t−θ, 1

)
Pr
−→
n→∞

λik
(

ci

ck
t−θ, 1

)
.
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(a) Limiting subsequence `λ = n0.25
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(b) Limiting subsequence `λ = n0.40
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(c) Limiting subsequence `λ = n0.50
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(d) Limiting subsequence `λ = n0.75

Fig. 1: Comparison between estimates of the upper tail dependence function based the empirical copula, λ̂23
n (0.5, 1.5) (red), and the empirical beta

λ̂Beta(0.5, 1.5) (green), for varying values of `λ with sample size ranging from 100 to 10000. The true value, λ23(0.5, 1.5) (black), is also included.
The margins are Pareto type I. Specifically, Xi ∼ P{2, 1.25(1 + i)}, i ∈ {1, 2, 3}.

In Fig. 1, an illustration of the performance of λ̂Beta is provided using independent Pareto type I distributions. Specifi-
cally, we consider Xi ∼ P{2, 1.25(1+ i)}, i ∈ {1, 2, 3} with cdf Fi(x) = 1−{1.25(1+ i)/x}2. For comparison, the pairwise
upper tail dependence function based on the standard empirical copula

λ̂ik
n (xi, xk) =

1
`λ

n∑
j=1

1

{
Fin(X ji) > 1 −

`λ
n

xi, F jn(X jk) > 1 −
`λ
n

xk

}
,

where X ji is the jth realization of the r.v. Xi, is also used. As can be seen, λ̂Beta provides a far more accurate estimate
of λ and doesn’t exhibit any of the oscillating behavior that is seen when considering λ̂n. The performance is also
better at smaller sample sizes when a larger limiting subsequence is considered.
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3.3. Integral of the upper tail dependence function

The final piece of the estimation procedure is to approximate∫ ∞

βi
βk

λik
(

ci

ck
t−θ, 1

)
dt. (13)

To our knowledge, a consistent estimator for the integral of the upper tail dependence function has not been established105

in prior literature. Again, the underlying upper tail dependence function is estimated using the empirical beta copula.
The result is established in the following proposition.

Proposition 3. Consider the estimator of λ as proposed in (12), then∫ ∞

βi
βk

λ̂ik
Beta

(
ci

ck
t−θ, 1

)
dt

Pr
−→
n→∞

∫ ∞

βi
βk

λik
(

ci

ck
t−θ, 1

)
dt.

Proof. The proof boils down to an application of the Dominated Convergence Theorem. First, the convergence of the
integrand follows from Proposition 2. Second, as the empirical beta copula is a proper copula, it is easy to see that its
upper tail dependence function satisfies the bounds

λik,⊥
(

ci

ck
t−θ, 1

)
≤ λ̂ik

Beta

(
ci

ck
t−θ, 1

)
≤ λik,+

(
ci

ck
t−θ, 1

)
and hence

0 ≤ λ̂ik
Beta

(
ci

ck
t−θ, 1

)
≤ min

(
ci

ck
t−θ, 1

)
.

See for instance Proposition 2.1 in Kiriliouk et al. [34]. Third, it is shown in Maume-Deschamps et al. [42] (see the
proof of Lemma 3.4) that∫ ∞

βi
βk

λik,+
(

ci

ck
t−θ, 1

)
dt =

ci

ck

(
βi

βk

)−θ+1

βk

βi

(
ck

ci

)− 1
θ

− 1


+

ck

ci

(
βk

βi

)−θ

+
1

θ − 1

1 +

 βi

βk

(
ck

ci

)− 1
θ

− 1


+


−θ+1 < ∞.

Thus, by dominated convergence, we get the result.

In Fig. 2, an illustration of the finite sample performance of the estimator is provided. In particular, for each sample
size and subsequence combination, the calculation of

∫ ∞
β2
β3

λ23
Beta

(
c2
c3

t−θ, 1
)

dt was replicated 500 times. As can be seen110

for samples of size n > 400 and subsequences nq for q > 0.4, the estimator performs well.

Once again, it is compared to an equivalent quantity, using the standard empirical copula. In fact, under the empirical
copula, a closed form estimator for (13) exists, as outlined in Proposition 4 below.

Proposition 4. Under the empirical copula

Cn(u) =
1
n

n∑
i=1

d∏
j=1

1

{
Ri, j

n
≤ u j

}
,

it holds that ∫ ∞

βi
βk

λ̂ik
n

(
ci

ck
t−θ, 1

)
dt =

1
`λ

n∑
j=1

{n − Ri, j + 1
`λ

·
ck

ci

}− 1
θ

−
βi

βk


+

· 1
{
Xk j ≥ Xk:n−`λ,n

}
.
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Fig. 2: Performance of
∫ ∞
β2
β3

λ̂23
Beta

( c2
c3

t−θ, 1
)

dt for various sample sizes and subsequences. The variable q refers to the power used for our

subsequence, i.e., `λ = nq, q ∈ {0.1, 0.2, . . . , 0.9} with sample size n ∈ {100, 200, . . . , 1000, 2500, 5000}. They are compared to the true
value

∫ ∞
β2
β3

λ23
( c2

c3
t−θ, 1

)
dt under Pareto type I margins with a comonotonic dependence structure (green horizontal line). Specifically, Xi ∼

P{2, 1.25(1 + i)}, i ∈ {1, 2, 3}.
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Proof. One can write∫ ∞

βi
βk

λ̂ik
n

(
ci

ck
t−θ, 1

)
dt =

∫ ∞

βi
βk

1
`λ

n∑
j=1

1

1 − Fn,i(Xi j) <
`λ

ci
ck

t−θ

n
, 1 − Fn,k(Xk j) <

`λ
n

 dt

=

∫ ∞

βi
βk

1
`λ

n∑
j=1

1

n − Ri, j + 1
n

<
`λ

ci
ck

t−θ

n

1 {
Xk j ≥ Xk:n−`λ,n

}
dt

=
1
`λ

n∑
j=1

∫ ∞

βi
βk

1


(

n − Ri, j + 1
`λ

·
ck

ci

)− 1
θ

> t

1 {
Xk j ≥ Xk:n−`λ,n

}
dt

=
1
`λ

n∑
j=1

∫ (
n−Ri, j+1

`λ
·

ck
ci

)− 1
θ

βi
βk

1


(

n − Ri, j + 1
`λ

·
ck

ci

)− 1
θ

≥
βi

βk

1 {
Xk j ≥ Xk:n−`λ,n

}
dt

=
1
`λ

n∑
j=1

{n − Ri, j + 1
`λ

·
ck

ci

}− 1
θ

−
βi

βk

1

(

n − Ri, j + 1
`λ

·
ck

ci

)− 1
θ

≥
βi

βk

1 {
Xk j ≥ Xk:n−`λ,n

}
=

1
`λ

n∑
j=1

{n − Ri, j + 1
`λ

·
ck

ci

}− 1
θ

−
βi

βk


+

1
{
Xk j ≥ Xk:n−`λ,n

}
.

Fig. 3 illustrates the performance of
∫ ∞
β2/β3

λ̂n

{
(c2/c3)t−θ, 1

}
dt as in Proposition 4. Comparing to Fig. 2, one sees that115

the empirical beta copula far surpasses the standard empirical copula in terms of accuracy.

While the convergence of each individual estimator has been established, they must now be combined to establish the
convergence of our estimation procedure. Using the consistency of (10), (11), and (12) yields the following corollary

Corollary 2. Taking Λ̂ = (θ̂, ĉ2, . . . , ĉd, λ̂
ik
Beta) as defined in (10), (11), and (12), one has∫ ∞

βi
βk

λ̂ik
Beta

(
ĉi

ĉk
t−θ̂, 1

)
dt

Pr
−→
n→∞

∫ ∞

βi
βk

λik
(

ci

ck
t−θ, 1

)
dt.

Proof. For simplicity, we establish a similar result for λ̂ik
Beta, i.e.,

λ̂ik
Beta

(
ĉi

ĉk
t−θ̂, 1

)
Pr
−→
n→∞

λik
(

ci

ck
t−θ, 1

)
.

The proof makes use of the continuous mapping theorem (denoted CMT in the following); see, e.g., van der Vaart
[49], Theorem 2.3. Beginning with the first statement, using several iterations of the triangle inequality yields120
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Fig. 3: Performance of
∫ ∞
β2
β3

λ̂23
n

( c2
c3

t−θ, 1
)

dt as in Proposition 4 for various sample sizes and subsequences. The variable q refers to the power

used for our subsequence, i.e., `λ = nq, q ∈ {0.1, 0.2, . . . , 0.9} with sample size n ∈ {100, 200, . . . , 1000, 2500, 5000}. They are compared to
the true value

∫ ∞
β2
β3

λ23
( c2

c3
t−θ, 1

)
dt under Pareto type I margins with a comonotonic dependence structure (green horizontal line). Specifically,

Xi ∼ P{2, 1.25(1 + i)}, i ∈ {1, 2, 3}.
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∣∣∣λ̂ik
Beta

(
ĉi

ĉk
t−θ̂, 1

)
− λik

(
ci

ck
t−θ, 1

)∣∣∣∣∣∣ =

∣∣∣∣∣∣λ̂ik
Beta

(
ĉi

ĉk
t−θ̂, 1

)
− λik

(
ĉi

ĉk
t−θ̂, 1

)
+ λik

(
ĉi

ĉk
t−θ̂, 1

)
− λik

(
ci

ck
t−θ, 1

)∣∣∣∣∣∣
=

∣∣∣∣∣∣λ̂ik
Beta

(
ĉi

ĉk
t−θ̂, 1

)
− λik

(
ĉi

ĉk
t−θ̂, 1

)
+ λik

(
ĉi

ĉk
t−θ̂, 1

)
− λik

(
ci

ck
t−θ̂, 1

)
+ λik

(
ci

ck
t−θ̂, 1

)
− λik

(
ci

ck
t−θ, 1

)∣∣∣∣∣∣
=

∣∣∣∣∣∣λ̂ik
Beta

(
ĉi

ĉk
t−θ̂, 1

)
− λik

(
ĉi

ĉk
t−θ̂, 1

)
+ λik

(
ĉi

ĉk
t−θ̂, 1

)
− λik

(
ci

ĉk
t−θ̂, 1

)
+ λik

(
ci

ĉk
t−θ̂, 1

)
− λik

(
ci

ck
t−θ̂, 1

)
+ λik

(
ci

ck
t−θ̂, 1

)
− λik

(
ci

ck
t−θ, 1

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣λ̂ik
Beta

(
ĉi

ĉk
t−θ̂, 1

)
− λik

(
ĉi

ĉk
t−θ̂, 1

)∣∣∣∣∣∣︸                                   ︷︷                                   ︸
(i)

+

∣∣∣∣∣∣λik
(

ĉi

ĉk
t−θ̂, 1

)
− λik

(
ci

ĉk
t−θ̂, 1

)∣∣∣∣∣∣︸                                ︷︷                                ︸
(ii)

+

∣∣∣∣∣∣λik
(

ci

ĉk
t−θ̂, 1

)
− λik

(
ci

ck
t−θ̂, 1

)∣∣∣∣∣∣︸                                ︷︷                                ︸
(ii)

+

∣∣∣∣∣∣λik
(

ci

ck
t−θ̂, 1

)
− λik

(
ci

ck
t−θ, 1

)∣∣∣∣∣∣︸                                ︷︷                                ︸
(iii)

Pr
−→
n→∞

0,

where

(i) by the convergence of λ̂ik
Beta (Proposition 2),

(ii) by the CMT on λik and the consistency of ĉi, i ∈ {1, . . . , d} (Maume-Deschamps et al. [42], Proposition 4.2), and

(iii) by the CMT on λik and the consistency of θ̂ (de Haan and Ferreira [30], Theorem 3.2.2).

The proof of the main statement would follow in the same way, or as a result of the dominated convergence theorem,125

similar to Proposition 3.

For an illustration of Corollary 2, simulations are presented in Fig. 4. It is clear that adding extra uncertainty through
calculation of θ̂ and ĉi, i ∈ {2, . . . , d}, decreases the accuracy of the full estimator. The variability of these quantities is
well documented and this would naturally require an increased number of observations to estimate with confidence.
Moreover, the selection of the subsequences `θ, `λ and `i, i ∈ {2, . . . , d} is crucial. For instance, the impact of the130

choice of `λ is illustrated in Figs. 2-4. In a real data study, the subsequences could be calibrated by some stability
criterion. More precisely, in Section 7.2, we will use the selection procedure of intermediate sequences described, for
instance, by Cai et al. [9] and Di Bernardino and Prieur [20]. We will consider a range of possibilities for intermediate
sequences for which the associated estimators showed some stability. Then, to gain robustness, we average the
estimates corresponding to the selected ranges.135

3.4. Consistency

In Theorem 1 below, we first prove that the approximated loss function (approximated gradient function) in the
optimization problem (9) converges to the loss function in (8) (to the gradient function). Furthermore, every iteration
of the BFGS algorithm applied to the approximated optimization problem is consistent for the true optimization
problem. Subsequently, we show that, under the assumption that BFGS captures the global minimum of the true140

optimization problem (8), the approximate optimization problem (9) can be used to solve for MEEs (see Algorithm 2
and Corollary 3 below).

Theorem 1. Let Λ̂ = (θ̂, ĉ2, . . . , ĉd, λ̂
ik
Beta) as in and (12) respectively. Then

LΛ̂(Θ)
Pr
−→
n→∞

LΛ(Θ) and ∇LΛ̂(Θ)
Pr
−→
n→∞
∇LΛ(Θ). (14)
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Fig. 4: Performance of
∫ ∞
β2
β3

λ̂23
Beta

( ĉ2
ĉ3

t−θ̂, 1
)

dt for various sample sizes and subsequences. The variable q refers to the power used for our

subsequence, i.e., `λ = nq, q ∈ {0.1, 0.2, . . . , 0.9} with sample size n ∈ {100, 200, . . . , 1000, 2500, 5000}. They are compared to the true
value

∫ ∞
β2
β3

λ23
( c2

c3
t−θ, 1

)
dt under Pareto type I margins with a comonotonic dependence structure (green horizontal line). Specifically, Xi ∼

P{2, 1.25(1 + i)}, i ∈ {1, 2, 3}.
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Moreover, given identical starting values Θ0, H0, σ ∈ (0, 1/2), ρ ∈ (σ, 1) and ε ≥ 0, for any step k, it holds that

Θ̂k Pr
−→
n→∞
Θk. (15)

Proof. Noting the structure of LΛ and ∇LΛ(Θ) (detailed in 7.3), the consistency results in (14) are a direct result of
the consistency of θ̂, ĉi, i ∈ {2, . . . , d}, Propositions 2, 3 and Slutzky’s Theorem. For (15), we use induction. First, fix
Θ0, H0, σ ∈ (0, 1/2), ρ ∈ (σ, 1) and ε ≥ 0. Recalling the iteration step of BFGS algorithm, we have

d̂0 = −H0∇LΛ̂(Θ0)
Pr
−→
n→∞
−H0∇LΛ(Θ0) = d0.

Similarly, it is clear that t̂0
Pr
−→
n→∞

t0. It follows that

Θ̂1 = Θ0 + t̂0 d̂0 Pr
−→
n→∞
Θ0 + t0d0 = Θ1,

as well as ŷ0 Pr
−→
n→∞

y0, ŝ0 Pr
−→
n→∞

s0 and Ĥ1
Pr
−→
n→∞

H1. Next, assume Θ̂k Pr
−→
n→∞
Θk. Then,

Θ̂k+1 = Θ̂k + t̂kd̂k = Θ̂k + t̂kĤ−1
k ∇LΛ̂

(
Θ̂k

) Pr
−→
n→∞
Θk + tkH−1

k ∇LΛ
(
Θk

)
= Θk+1.

Thus, for any step k ∈ {1, 2, . . .}, Θ̂k Pr
−→
n→∞
Θk by induction.

We now proceed by using an iterated two-step procedure. We first provide an adequate estimate of the true loss
function (and its gradient) and then proceed with the optimization procedure. This is formalized in Algorithm 2.

Algorithm 2 Two-steps estimation procedure for MEEs

(Step 1) Taking the limit n→ ∞.
Establish the consistency of Λ̂ and subsequently LΛ̂ and ∇LΛ̂ (see Theorem 1).
(Step 2) Taking the limit k → ∞.
Optimize the consistently approximated problem from Step 1 using the BFGS algorithm.

145

The resulting asymptotic behavior of our estimation scheme using Algorithm 2 is established in Corollary 3. It is
important to note the limit order in the non-exchangeable iterated limit (16).

Corollary 3. Under the assumptions of Corollaries 1, 2 and Theorem 1, and further assuming that the BFGS algo-
rithm solves for the global minimum of (8), it holds that

lim
k→∞

(plim
n→∞
Θ̂k) = Θ∗. (16)

Proof. Under the assumption that BFGS solves for the global minimum of (8), i.e., Θk −→
k→∞
Θ∗, we have

lim
k→∞

{
lim
n→∞

Pr
(
‖ Θ̂k −Θ∗ ‖≥ ε

)}
= lim

k→∞

{
lim
n→∞

Pr
(
‖ Θ̂k −Θk +Θk −Θ∗ ‖≥ ε

)}
≤ lim

k→∞

{
lim
n→∞

Pr
(
‖ Θ̂k −Θk ‖ + ‖ Θk −Θ∗ ‖≥ ε

)}
≤ lim

k→∞

[
lim
n→∞

{
Pr

(
‖ Θ̂k −Θk ‖≥ ε/2

)︸                       ︷︷                       ︸(
Step 1

)
+ Pr

(
‖ Θk −Θ∗ ‖≥ ε/2

)︸                       ︷︷                       ︸(
Step 2

)
}]

= 0,

where firstly (Step 1) converges to zero as n → ∞ by Theorem 1 and subsequently (Step 2), which does not depend
on n, converges to 0 as k → ∞ by assumption.
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4. Numerical study150

In this section, several numerical examples are provided demonstrating the effectiveness of our estimation procedure.
In Section 4.1, we focus on the limiting cases of tail dependence: asymptotic independence and comonotonicity. As
per Maume-Deschamps et al. [42], closed form solutions exist for these tail dependence structures so they will provide
a good measuring stick for our methodology. In Section 4.2, we provide examples using non-trivial tail dependence
structures, i.e., neither asymptotic independence nor comonotonicity, where closed-form solutions for the system of155

equations in (4) exist. As such, we can further illustrate the performance of our estimates in this intermediate situation.

Results in each case are provided for both Θ̂ and êα(X). In the latter case, using Proposition 5.1 from Maume-
Deschamps et al. [42], the final calculation of MEE estimates can be done using

êα(X) = V̂aRα(X1)η̂1/θ̂(1, β̂2, . . . , β̂d)>,

where

V̂aRα(X1) = X1:n−k(n)+1,n

{
k(n)

(1 − α)n

}1/θ̂

, (17)

called Weissman’s estimator [51], for an intermediate integer sequence k(n) is better suited than standard estimation
techniques, using the empirical cdf, for large risk levels α ≈ 1. While both Θ̂ are êα(X) are provided, results for Θ̂
will more effectively demonstrate the capabilities of our procedure as they do not rely on the performance of (17).

The simulations were conducted for sample sizes n ∈ {50, 100, 250, 500, 1000, 2500} and repeated 500 times for each160

sample size. The subsequences for θ, ci for i ∈ {2, . . . , d} and λwere `θ = n0.75, `i = n0.75 for i ∈ {2, . . . , d} and `λ = n0.5

respectively. The risk level was set to α = 1 − 1/5000 = 0.9998 to reflect the largest sample size considered. True
system solutions Θ can be found in the last line of each table. First, we consider the limiting cases of tail dependence:
asymptotic independence and comonotonicity.

4.1. Asymptotic independence and comonotonicity165

For the limiting cases of tail dependence, we consider three and five dimensional random vectors with Pareto type I
marginals. Specifically, Xi ∼ P(bi, a) where a = θ = 3.5 and bi = 1.25(i + 1), i ∈ {1, . . . , d}, d ∈ {3, 5}. For Pareto
margins with cdfs Fi, i ∈ {1, . . . , 5} and these parameter settings, the tail ratios are

ci = lim
x→∞

F i(x)

F1(x)
=

(
bi

b1

)a

=


1.000, i = 1,
4.134, i = 2,

11.314, i = 3,
24.705, i = 4,
46.765, i = 5.

Three-dimensional case

The summarized results of the simulations are presented in Table 1 and boxplots can be found in Fig. 5. In the three-
dimensional case, it can be seen that the estimation procedure proposed in this paper performs quite well. At lower
samples, the results are only slightly biased, but with a fair amount of standard error. As the sample size increases
however, the algorithm is able to successfully estimate the true value of Θ and subsequently the true value of eα(X)170

for α = 0.9998 with minimal standard errors. It should be noted that for the comonotonic simulations the slight bias
and small standard errors would mean that the true value would likely not be contained in any reasonable confidence
interval, though the differences become smaller and smaller as the sample size increases.
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Fig. 5: Boxplots for the estimated solution vector for simulations using a three-dimensional random vector with Pareto type I margins for various
sample sizes n. Specifically, Xi ∼ P{3.5, 1.25(1 + i)}, i ∈ {1, 2, 3} with `θ = `i = n0.75 and `λ = n0.50. Results are for independent margins (left) and
comonotonic margins (right). True values Θ⊥ and Θ+ (dashed green lines) provided for comparison.
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Table 1: Medians of results from MEE simulation study for Pareto type I margins in three dimensions under independence (top) and comonotonicity
(bottom) for various sample sizes n. Specifically, n ∈ {50, 100, 250, 500, 1000, 2500, 5000} and Xi ∼ P{3.5, 1.25(1 + i)}, i ∈ {1, 2, 3} with `θ = `i =

n0.75 and `λ = n0.50. Standard deviations for the estimates are presented in parentheses.

(a) Independent Margins

n η̂ β̂2 β̂3 ê1
α(X) ê2

α(X) ê3
α(X)

50 0.088 (0.056) 1.811 (0.382) 2.726 (0.588) 14.814 (9.370) 27.332 (20.79) 40.634 (36.25)
100 0.085 (0.039) 1.769 (0.264) 2.629 (0.426) 14.438 (5.674) 25.757 (11.88) 38.158 (19.61)
250 0.081 (0.028) 1.771 (0.189) 2.660 (0.304) 14.210 (3.700) 25.359 (7.075) 37.745 (11.78)
500 0.078 (0.017) 1.758 (0.132) 2.660 (0.211) 13.725 (2.488) 24.333 (4.833) 36.347 (7.912)
1000 0.076 (0.012) 1.770 (0.110) 2.644 (0.160) 13.786 (1.749) 24.466 (3.529) 36.468 (5.638)
2500 0.076 (0.008) 1.766 (0.073) 2.639 (0.115) 13.682 (1.105) 24.308 (2.169) 36.117 (3.536)
5000 0.075 (0.006) 1.765 (0.052) 2.639 (0.091) 13.636 (0.834) 24.060 (1.652) 36.006 (2.701)
Θ 0.074 1.764 2.639 13.545 23.894 35.744

(b) Comonotonic Margins

n η̂ β̂2 β̂3 ê1
α(X) ê2

α(X) ê3
α(X)

50 0.371 (0.137) 1.525 (0.006) 2.062 (0.016) 22.523 (20.60) 34.338 (31.81) 46.446 (43.49)
100 0.375 (0.099) 1.519 (0.004) 2.049 (0.009) 21.737 (11.68) 33.028 (17.89) 44.534 (24.29)
250 0.385 (0.072) 1.514 (0.002) 2.036 (0.005) 22.109 (7.243) 33.485 (11.03) 45.029 (14.89)
500 0.382 (0.054) 1.512 (0.001) 2.029 (0.003) 21.580 (4.952) 32.618 (7.514) 43.789 (10.12)
1000 0.387 (0.041) 1.509 (0.001) 2.024 (0.002) 21.797 (3.555) 32.900 (5.383) 44.114 (7.238)
2500 0.391 (0.028) 1.507 (0.000) 2.019 (0.001) 21.834 (2.277) 32.908 (3.441) 44.069 (4.619)
5000 0.392 (0.022) 1.506 (0.000) 2.016 (0.001) 21.810 (1.761) 32.845 (2.658) 43.976 (3.563)
Θ 0.400 1.500 2.000 21.933 32.899 43.865

Five-dimensional case

The five-dimensional case is summarized in Table 2. It can be seen that the algorithm scales well to the increased175

dimension. This could be explained in part by the fact we are only ever dealing with pairwise dependencies through
the pairwise upper tail dependence function λik. The results presented focus on the independent five-dimensional case,
though results for comonotonic random vectors (not included here) were very similar.

4.2. Pareto–Clayton model

In this section we present a simulation study using a non-trivial tail dependence structure. Specifically, we consider
a random vector X with Pareto type I margins, as defined previously, whose dependence structure is defined by a
survival Clayton copula. The interested reader is referred to Cuberos et al. [14], Maume-Deschamps et al. [40], Yeh
[54]. Recall that for a pair of standard uniform rv’s (U,V) with a survival Clayton copula, we get

C(u, v; θC) =
{
max

(
u−θC + v−θC − 1, 0

)}−1/θC
,

where the parameter θC ∈ [−1,∞) \ {0} determines the strength of the dependence in the upper tail. In particular, the
pairwise upper tail dependence function can now be defined as

λ(x, y; θC) =
(
x−θC + y−θC

)−1/θC
.

For a general development of MEEs for Archimedean copulas, see Maume-Deschamps et al. [42]. Notice that for this
Pareto–Clayton model, it follows that

λ

(
ci

ck
t−θ, 1; θC

)
=


(

ci

ck

)−θC

t−θ θC + 1


−1/θC

.
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Table 2: Medians of results from MEE simulation study for Pareto type I margins in five dimensions linked with the independence copula for
various sample sizes n. Specifically, n ∈ {50, 100, 250, 500, 1000, 2500, 5000} and Xi ∼ P{3.5, 1.25(1 + i)}, i ∈ {1, . . . , 5} with `θ = `i = n0.75,
`λ = n0.50. Standard deviations for the estimates are presented in parentheses.

(a) Parameter estimates.

n η̂ β̂2 β̂3 β̂4 β̂5

50 0.040 (0.058) 1.779 (0.773) 2.672 (1.159) 3.641 (1.405) 4.662 (1.887)
100 0.037 (0.033) 1.760 (0.404) 2.622 (0.602) 3.553 (0.851) 4.565 (1.136)
250 0.032 (0.017) 1.779 (0.288) 2.674 (0.410) 3.667 (0.547) 4.783 (0.757)
500 0.032 (0.012) 1.783 (0.205) 2.668 (0.300) 3.661 (0.410) 4.690 (0.545)
1000 0.031 (0.008) 1.782 (0.142) 2.653 (0.206) 3.661 (0.286) 4.723 (0.386)
2500 0.031 (0.005) 1.769 (0.109) 2.653 (0.148) 3.638 (0.210) 4.695 (0.282)
5000 0.030 (0.004) 1.763 (0.073) 2.645 (0.108) 3.618 (0.154) 4.667 (0.205)
Θ 0.029 1.764 2.639 3.607 4.655

(b) Expectiles estimates.

n ê1
α(X) ê2

α(X) ê3
α(X) ê4

α(X) ê5
α(X)

50 12.301 (7.676) 21.755 (22.48) 33.493 (31.78) 46.092 (43.99) 58.649 (53.44)
100 11.546 (4.261) 19.608 (8.535) 29.990 (12.93) 41.265 (19.67) 53.211 (26.50)
250 10.968 (2.510) 19.893 (5.057) 29.810 (7.971) 41.149 (11.05) 52.947 (15.67)
500 10.761 (1.870) 19.108 (3.689) 28.967 (5.726) 38.747 (8.207) 50.317 (11.57)
1000 10.653 (1.261) 19.185 (2.324) 28.377 (3.698) 38.982 (5.352) 50.274 (7.274)
2500 10.660 (0.784) 18.776 (1.591) 28.107 (2.491) 38.583 (3.622) 49.900 (4.956)
5000 10.581 (0.628) 18.653 (1.108) 27.999 (1.823) 38.329 (2.632) 49.508 (3.671)
e0.9998(X) 10.390 18.330 27.420 37.475 48.372

For simplicity, and to facilitate closed form solutions to the system of equations in Proposition 1, we consider the case
where θC = θ−1. Then, the integral of λik can be written as

∫ ∞

βi
βk

λ

(
ci

ck
t−θ, 1; θ−1

)
dt =

1
θ − 1

ci

ck

 βi

βk
+

(
ci

ck

)1/θ

−θ+1

,

giving a system of equations

1
θ − 1

− η
βθk
ck

= −
∑
i,k

 1
θ − 1

ci

ck

 βi

βk
+

(
ci

ck

)1/θ

−θ+1

− η
βθ−1

k

ck
βi

 , k ∈ {1, . . . , d}.

We now consider two cases: (i) d = 2 , θ = 2, c2 > 0, and (ii) d ≥ 2, θ > 1, ci = 1, i ∈ {1, . . . , d}. In case (i) and (ii),
the closed-form MEEs system solutions are given by

Θ =

1 + c2(c3/4
2 +

√
c2)−1

c3/4
2 + 1

, c3/4
2

 and Θ =

(
(d − 1)2−θ+1 + 1

d(θ − 1)
, 1, . . . , 1

)
,

respectively. In the latter case, this solution makes heuristic sense. Having equivalent margins with a unit tail ratio180

would imply that they are identically distributed. As such, one would expect that the components of the MEEs are
identical and solely based on the dependence parameter θ. In Table 3, we present the results of our simulation for each
case. Here we see that performance is again satisfactory. In both cases our estimation procedure is able to accurately
capture the true value of MEEs. An additional study of MEEs for the Pareto–Clayton model can be found in the
Supplementary material Section (see Section 7.1). In particular, we study their behavior for varying θC .185
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Table 3: Medians of results from MEE simulation study for Pareto type I margins linked with a survival Clayton copula for different dimensions
d, dependence levels θC , and various sample sizes n. Specifically, n ∈ {50, 100, 250, 500, 1000, 2500, 5000} with `θ = `i = n0.75 and `λ = n0.50.
Standard deviations for the estimates are presented in parentheses.

(a) Case (i), with Xi ∼ P{2, 1.25(1 + i)}, i ∈ {1, 2}. This implies d = 2, θC = 1/2 and c2 = 1.25.

n η̂ β̂2 ê1
α(X) ê2

α(X)
50 0.468 (0.802) 1.873 (9.347) 140.525 (1241.8) 304.536 (5744.1)

100 0.480 (0.645) 1.872 (1.175) 125.333 (678.19) 276.406 (826.40)
250 0.508 (0.399) 1.895 (1.249) 120.870 (189.65) 251.578 (332.57)
500 0.520 (0.313) 1.927 (0.776) 123.610 (99.534) 253.192 (179.82)
1000 0.580 (0.255) 1.848 (0.620) 126.894 (59.084) 247.724 (93.983)
2500 0.574 (0.213) 1.883 (0.517) 128.624 (42.478) 252.158 (64.426)
5000 0.575 (0.184) 1.857 (0.491) 129.376 (32.306) 250.832 (49.495)
Θ 0.590 1.837 135.798 249.477

(b) Case (ii), with Xi ∼ P(2, 2.5), i ∈ {1, 2, 3}. This implies d = 3, θC = 1/2, and ci = 1, i ∈ {1, 2, 3}

n η̂ β̂2 β̂3 ê1
α(X) ê2

α(X) ê3
α(X)

50 0.574 (1.025) 0.989 (1.514) 1.024 (0.905) 151.343 (1689.1) 147.757 (1868.5) 144.849 (1057.6)
100 0.608 (0.703) 0.982 (0.760) 1.003 (0.809) 149.258 (562.22) 137.159 (386.92) 144.054 (411.26)
250 0.591 (0.444) 1.042 (0.502) 1.010 (0.555) 128.892 (152.95) 131.739 (125.49) 131.078 (134.63)
500 0.659 (0.386) 0.992 (0.464) 0.992 (0.416) 142.214 (115.13) 143.754 (104.74) 137.537 (102.22)
1000 0.677 (0.319) 0.990 (0.389) 0.967 (0.363) 141.696 (76.800) 138.610 (73.575) 136.954 (67.519)
2500 0.668 (0.252) 0.981 (0.323) 0.997 (0.323) 144.641 (46.530) 139.980 (44.727) 136.499 (43.140)
5000 0.660 (0.210) 1.002 (0.290) 0.992 (0.281) 140.850 (35.269) 142.948 (36.241) 141.022 (34.644)
Θ 0.667 1.000 1.000 144.338 144.338 144.338

4.3. Comparison with alternative methods

To further substantiate the performance of our estimation procedure, we compare the results in Table 1 to simulations
using the fully parametric estimators

η̂⊥ =
1

(θ̂ − 1)
(
1 +

∑d
j=2 ĉ

1
θ̂−1
j

) , β̂⊥k = ĉ
1
θ̂−1
k and η̂+ =

1
θ̂ − 1

, β̂+
k = ĉ

1
θ̂

k (18)

for k ∈ {2, . . . , d}, based on (5) and (6), respectively, from Maume-Deschamps et al. [42]. Using these fully parametric
estimators for the system solutions, estimators for MEEs can be written

ê⊥α (X) = V̂aRα(X1)
(

1
θ̂ − 1

) 1
θ̂

 1

1 +
∑d

i=i ĉ
1
θ̂−1
i

 (1, ĉ 1
θ̂−1
2 , . . . , ĉ

1
θ̂−1
d

)>
and ê+

α(X) = V̂aRα(X1)
(

1
θ̂ − 1

) 1
θ̂
(
1, ĉ

1
θ̂

2 , . . . , ĉ
1
θ̂

d

)>
for independent and comonotonic random vectors, respectively, where V̂aRα(X1) is the Weissman’s estimator [51]
in (17). Analogously to Table 1, in Table 4 we consider median parameter estimates from the simulation study of
independent and comonotonic Pareto margins in three dimensions. Standard deviations for the estimates are presented
in parentheses. Here, as in Section 4.1, Xi ∼ P{3.5, 1.25(1 + i)}, i ∈ {1, 2, 3}.190

Unsurprisingly, the fully parametric estimators perform better in particular for smaller sample sizes and have smaller
standard errors. However, our semi-parametric method (see Table 1) does not require any pre-imposed dependence
assumption and still provides satisfactory results. Note that the standard errors being zero for β̂2 and β̂3 for the
comonotonic case are a result of the estimators structure and the distributional assumptions, i.e.,

β̂+
i = ĉ

1
θ̂

i =
Xi:n−`i+1,n

Xi:n−`i+1,n
=

F−1
i (Un−`i+1,n)

F−1
1 (Un−`i+1,n)

=
bi

b1
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for i ∈ {2, 3}, where Un−`i+1,n is the n− `i + 1, nth order statistic from the standard uniform sample used to generate the
data. For comonotonic random vectors, each realization of the copula is generated using the same uniform realization
for each component, i.e., X ji = F−1

j (Ui), j ∈ {1, . . . , d}, i ∈ {1, . . . , n}.

In the full non-parametric framework, Maume-Deschamps et al. [41] use Robbins-Monro’s stochastic optimization to
solve the system of equations

α

d∑
i=1

E [(Xi − xi)+1{Xk > xk}] = (1 − α)
d∑

i=1

E [(Xi − xi)−1{Xk < xk}] , k ∈ {1, . . . , d}.

For a comparison with our results under the same independent Pareto model, the interested reader is referred to Fig. 7
in Maume-Deschamps et al. [41] (page 40). It is easy to see that for elevated levels of α, the non-parametric approach195

solved through Robbins-Monro’s stochastic optimization performs quite poorly.

Table 4: Medians of results from MEE simulation study for independent (top) and comonotonic (bottom) random vectors using the full parametric
estimators for Θ and eα in (18) with Pareto type I margins and various sample sizes n. Specifically, n ∈ {50, 100, 250, 500, 1000, 2500, 5000} and
Xi ∼ P{3.5, 1.25(1 + i)}, i ∈ {1, 2, 3} with `θ = `i = n0.75, `λ = n0.50. Standard deviations for the estimates are presented in parentheses.

(a) Independent Margins.

n η̂ β̂2 β̂3 ê1
α(X) ê2

α(X) ê3
α(X)

50 0.075 (0.022) 1.794 (0.231) 2.672 (0.407) 13.917 (8.231) 25.373 (18.82) 38.092 (31.18)
100 0.074 (0.016) 1.770 (0.167) 2.645 (0.304) 13.569 (5.119) 24.443 (10.67) 36.305 (17.80)
250 0.075 (0.012) 1.770 (0.124) 2.656 (0.214) 13.736 (3.293) 24.610 (6.598) 36.895 (11.03)
500 0.074 (0.009) 1.765 (0.094) 2.639 (0.157) 13.540 (2.281) 23.933 (4.580) 35.459 (7.501)
1000 0.074 (0.007) 1.767 (0.075) 2.636 (0.126) 13.588 (1.626) 23.915 (3.340) 35.931 (5.452)
2500 0.074 (0.005) 1.767 (0.053) 2.637 (0.089) 13.560 (1.051) 23.957 (2.108) 35.685 (3.441)
5000 0.074 (0.004) 1.762 (0.042) 2.637 (0.074) 13.530 (0.804) 23.903 (1.602) 35.736 (2.667)
Θ 0.074 1.764 2.639 13.544 23.894 35.744

(b) Comonotonic Margins.

n η̂ β̂2 β̂3 ê1
α(X) ê2

α(X) ê3
α(X)

50 0.411 (0.151) 1.500 (0) 2.000 (0) 23.228 (21.68) 34.843 (32.53) 46.457 (43.37)
100 0.404 (0.106) 1.500 (0) 2.000 (0) 22.222 (12.08) 33.333 (18.12) 44.444 (24.16)
250 0.407 (0.076) 1.500 (0) 2.000 (0) 22.460 (7.411) 33.690 (11.12) 44.921 (14.82)
500 0.399 (0.057) 1.500 (0) 2.000 (0) 21.842 (5.040) 32.763 (7.560) 43.684 (10.08)
1000 0.401 (0.043) 1.500 (0) 2.000 (0) 22.006 (3.605) 33.009 (5.407) 44.011 (7.210)
2500 0.401 (0.029) 1.500 (0) 2.000 (0) 21.980 (2.303) 32.970 (3.454) 43.960 (4.606)
5000 0.400 (0.023) 1.500 (0) 2.000 (0) 21.939 (1.776) 32.908 (2.664) 43.878 (3.552)
Θ 0.400 1.500 2.000 21.933 32.899 43.865

5. Discussion

As mentioned in Section 2, in the general case the loss function in (7) could be non-convex, and thus, might not
satisfy the assumptions required for global convergence of the BFGS algorithm. Nevertheless, we chose this method
for its relative simplicity and ease of implementation, as well as the satisfactory numerical results it has provided for200

our problem. To build a more rigorous estimation procedure, one could consider implementing methods which build
upon the foundation of the original BFGS algorithm. For instance, Li and Fukushima [36, 37] discuss modifications
to the BFGS algorithm which allow one to relax the assumption of convexity and still ensure global convergence.
Specifically, they discuss the importance of Lipschitz continuity and using a damping method on the iterates of the
approximate inverse Hessian matrix. Equivalently, Yuan et al. [55] discuss modifications to the Wolfe conditions in205

Algorithm 1 which ensures global convergence of BFGS for general functions. Such methods could further improve
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our results. However, while BFGS is already included in many R packages, the above methods are not readily avail-
able. Moreover, manually programming them and doing so efficiently would require a specific work which is beyond
the scope of the present work.

Additionally, while the BFGS algorithm works well for our problem, it was designed for unconstrained optimization210

problems. Clearly for extreme multivariate expectiles it is required that Θ > 0 componentwise. A further improve-
ment to this problem would be incorporating a box-constrained methodology for solving (8) and, more importantly,
(9). One such choice would be box-constrained BFGS algorithm (or BFGS-B). This algorithm would allow us to
incorporate properties of MEEs. For instance, as comonotonicity and independence represent the limiting cases of
dependence in the upper tail, all expectiles will be bounded above and below by comonotonic and independent expec-215

tiles. Moreover, from Lemmas 2.4 and 2.5 Maume-Deschamps et al. [42] we know that for asymptotically independent
and comonotonic random vectors the solutions to (8) are Θ⊥ and Θ+ defined by (5) and (6), respectively.

As these situations represent the extreme cases of MEEs, this allows one to bound any solution Θ∗ of (8) to the d-
dimensional box

[
ΘL

1 ,Θ
U
1

]
× · · · ×

[
ΘL

d ,Θ
U
d

]
where ΘL

i = min
{
Θ⊥i ,Θ

+
i

}
and ΘU

i = max
{
Θ⊥i ,Θ

+
i

}
for i ∈ {1, . . . , d}.

However, because the estimation is done without prior knowledge of the underlying distribution, the box-constraints
in the algorithm must also be estimated. To this end, the bounds of each box will be slightly relaxed. In other words,
the algorithm would look for a solution in [

Θ̂L
1 , Θ̂

U
1

]
× · · · ×

[
Θ̂L

d , Θ̂
U
d

]
,

where Θ̂L
i = (1 − γL) min

{
Θ̂⊥i , Θ̂

+
i

}
and Θ̂U

i = (1 + γU) max
{
Θ̂⊥i , Θ̂

+
i

}
for some γL, γU > 0.

Another change that could be made to the general BFGS algorithm is to incorporate limited memory storage of the
inverse hessian Hk. This would prove most beneficial when the dimension of the problem is large and we would want220

to limit the number of operations on large inverse Hessian matrices. Combining these two modifications gives the
limited-memory box-constrained BFGS algorithm (L-BFGS-B). Preliminary simulations using L-BFGS-B algorithm
applied to (9) were conducted and the results were encouraging. Indeed, incorporating this methodology could provide
further benefits in terms of both accuracy and computational efficiency. For more information on BFGS, L-BFGS or
L-BFGS-B algorithms see Nocedal and Wright [44], Liu and Nocedal [38] and Byrd et al. [8]. Incorporating these225

changes along with the modifications described in Li and Fukushima [36, 37] and Yuan et al. [55] would also be
interesting.

6. Conclusions

In this paper, we have presented an effective semi-parametric method for accurately estimating multivariate expectiles
for extreme levels of risk α ≈ 1. Using the empirical beta copula, taking advantage of the fact that it is a genuine cop-230

ula, we are able to establish the consistency of the approximate loss function in (9) when using empirical estimators
for the tail index, tail ratio and upper tail dependence function. We have also proposed a new consistent estimator for
the integral of the upper tail dependence function. Numerical simulations demonstrate the satisfactory finite-sample
performance of our estimation scheme when compared to the true MEEs stemming from a variety of dependence
structures, where closed form solutions exist. Furthermore, the set-up provided by the system of equations in Proposi-235

tion 1 allows us to mitigate the curse of dimensionality as we are only ever required to consider pairwise dependencies.
As such, the number of operations required for each iteration of the optimization algorithm will be

(
d
2

)
. In the future,

it would be interesting to compare the performance of the algorithm for a variety of estimators. For instance, if one
were to consider the checkerboard copula instead of the empirical beta copula. Finally, while finite-sample results
are encouraging, the estimation procedure could be further streamlined by considering an algorithm which could take240

advantage of additional properties of our optimization problem. For example, L-BFGS-B algorithm could improve
estimation by bounding solutions to (9) by the MEEs under the limiting cases of upper tail dependence.
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Furthermore the present work could open interesting perspectives in functional statistics field. Indeed, the univariate
well known conditional expectile/quantile model (see, e.g., Daouia et al. [15], Usseglio-Carleve [48], Girard et al. [27])
can be adapted to our semi-parametric estimation scheme for new conditional multidimensional L1-expectile from245

heavy-tailed distributions when functional covariate information is available. The interested reader is also referred for
instance to Gardes et al. [24], Gardes and Stupfler [25] where functional non-parametric estimators for conditional
extreme quantiles are proposed.

More precisely, let (Xi,Zi), i = 1, . . . , n, be n independent copies of a random pair (X, Z) ∈ Rd × E where (E, d) is
a not necessarily finite-dimensional Polish space endowed with a semi-metric d. For instance, E can be the standard
p−dimensional space Rp, a space of continuous functions over a compact metric space, or a Lebesgue space Lp(R),
to name a few. From Equation (2), a future development of this work would be to consider the functional conditional
multidimensional L1-expectile extension given by

e1
α(X, z) := arg min

x∈Rd
E

α
 d∑

i=1

|Xi − xi|+


2

+ (1 − α)

 d∑
i=1

|Xi − xi|−


2 ∣∣∣∣∣Z = z

 .
Then the study in the present paper could be adapted to estimate extreme e1

α(X, z) by using the extrapolation technique
when α → 1 together with a nonparametric estimation of the conditional tail copula (see, e.g., Gardes and Girard250

[23]). The main objective of this semi-parametric approach for extreme functional e1
α(X, z) would be to balance the

trade-off between the high sensitivity to dimension of the nonparametric models and the relative lack of flexibility of
the completely parametric models (see, e.g., Goia and Vieu [29]).
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[11] H. Cossette, M. Mailhot, É. Marceau, M. Mesfioui, Bivariate lower and upper orthant value-at-risk, European Actuarial Journal 3 (2013)275

321–357.
[12] H. Cossette, M. Mailhot, E. Marceau, M. Mesfioui, Vector-valued tail value-at-risk and capital allocation, Methodology and Computing in

Applied Probability 18 (2016) 653–674.
[13] A. Cousin, E. Di Bernardino, On multivariate extensions of value-at-risk, Journal of Multivariate Analysis 119 (2013) 32–46.
[14] A. Cuberos, E. Masiello, V. Maume-Deschamps, Copulas checker-type approximations: Application to quantiles estimation of sums of280

dependent random variables, Communications in Statistics - Theory and Methods 49 (2020) 3044–3062.
[15] A. Daouia, L. Gardes, S. Girard, On kernel smoothing for extremal quantile regression, Bernoulli 19 (2013) 2557–2589.

24



[16] A. Daouia, S. Girard, G. Stupfler, Estimation of tail risk based on extreme expectiles, Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 80 (2018) 263–292.

[17] A. Daouia, S. Girard, G. Stupfler, et al., Extreme M-quantiles as risk measures: From L1 to Lp optimization, Bernoulli 25 (2019) 264–309.285

[18] P. Deheuvels, E. Haeusler, D. M. Mason, Almost sure convergence of the Hill estimator, Mathematical Proceedings of the Cambridge
Philosophical Society 104 (1988) 371–381.
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7. Supplementary material

7.1. Pareto–Clayton model: additional studies345

Here we present the results of several extra simulations demonstrating the impact of dependence parameter θC on our
results. Note that in general θC ∈ [−1,+∞) \ {0} where the cases θC = −1, θC → 0 and θC → ∞ correspond to coun-
termonotonic, independent and comonotonic dependence structure, respectively. As such, we test our methodology
by considering very small and large values of θC so as to see if we can recapture these limiting results presented in
Section 4.1. Furthermore, we consider a range of values in between the limiting cases to study the behavior of MEEs350

as the dependence becomes stronger.

Once more, we consider Xi ∼ P(bi, a) where a = θ = 3.5 and bi = 1.25(i+1), i ∈ {1, 2, 3}. Recall that for these settings
the system solutions for independent and comonotonic random variables are

Θ⊥ = (0.0740, 1.764, 2.639), Θ+ = (0.400, 1.500, 2.000),

respectively (see Section 4.1). For all simulations in this section, we consider a survival Clayton copula with depen-
dence parameter θC ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10, 15, 20, 100}. Finally, `θ = `i = n0.75 and `λ = n0.50.

Table 5: Medians of results from MEE simulation study for Pareto type I margins using a Clayton survival copula with dependence parameter
θC = 0.01 (top) and θC = 100 (bottom) for various sample sizes. Specifically, n ∈ {50, 100, 250, 500, 1000, 2500, 5000} and Xi ∼ P{3.5, 1.25(1 + i)},
i ∈ {1, 2, 3} with `θ = `i = n0.75 and `λ = n0.50. Standard deviations for the estimates are presented in parentheses.

(a) Simulation results for Pareto–Clayton model with θC = 0.01. The final row Θ represents the known solutions under independence.

n η̂ β̂2 β̂3 ê1
α(X) ê2

α(X) ê3
α(X)

50 0.096 (0.081) 1.725 (0.392) 2.591 (0.620) 15.664 (13.81) 27.564 (23.86) 42.011 (39.55)
100 0.085 (0.042) 1.775 (0.280) 2.638 (0.468) 14.506 (5.847) 26.275 (12.51) 39.345 (21.03)
250 0.081 (0.026) 1.757 (0.199) 2.654 (0.331) 14.118 (3.618) 24.970 (7.340) 37.527 (12.78)
500 0.079 (0.021) 1.765 (0.149) 2.644 (0.248) 14.046 (2.637) 24.862 (5.236) 37.157 (8.546)
1000 0.077 (0.012) 1.765 (0.107) 2.642 (0.160) 13.761 (1.633) 24.379 (3.277) 36.605 (5.130)
2500 0.077 (0.009) 1.767 (0.077) 2.643 (0.117) 13.838 (1.139) 24.359 (2.303) 36.345 (3.620)
5000 0.076 (0.007) 1.763 (0.060) 2.637 (0.088) 13.715 (0.845) 24.189 (1.680) 36.242 (2.637)
Θ 0.074 1.764 2.639 13.545 23.894 35.744

(b) Simulation results for Pareto–Clayton model with θC = 100. The final row Θ represents the known solutions under comonotonicity.

n η̂ β̂2 β̂3 ê1
α(X) ê2

α(X) ê3
α(X)

50 0.344 (0.121) 1.536 (0.013) 2.089 (0.025) 21.480 (19.66) 32.878 (30.82) 44.503 (42.91)
100 0.363 (0.100) 1.529 (0.009) 2.071 (0.017) 21.767 (12.42) 33.267 (19.20) 45.242 (26.28)
250 0.367 (0.062) 1.521 (0.007) 2.054 (0.010) 21.600 (6.097) 32.843 (9.355) 44.331 (12.70)
500 0.362 (0.046) 1.517 (0.005) 2.044 (0.007) 20.651 (4.001) 31.298 (6.117) 42.124 (8.273)
1000 0.366 (0.036) 1.515 (0.004) 2.037 (0.006) 20.494 (3.126) 31.068 (4.764) 41.747 (6.429)
2500 0.365 (0.023) 1.511 (0.003) 2.029 (0.004) 20.138 (1.826) 30.400 (2.789) 40.751 (3.746)
5000 0.375 (0.018) 1.509 (0.003) 2.024 (0.002) 20.705 (1.445) 31.210 (2.174) 41.904 (2.941)
Θ 0.400 1.500 2.000 21.933 32.899 43.865

In Table 5, it can be seen that our estimation procedure accurately estimates the true system solutions for Pareto–
Clayton models which are arbitrarily close to independence and comonotonicity. Moreover, in Fig. 6, we plot the355

boxplots for β̂2 from our simulations. We also provide the true values under independence and comonotonicity for
comparison (green and red dotted lines in Fig. 6, respectively). Here, we are able to extract more insight into the
behavior of MEEs as the dependence parameter shifts. For the Pareto–Clayton model, we see that the parameter esti-
mates seem to decrease monotonically from those representing independence to those representing comonotonicity.
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Fig. 6: Simulation results for the estimate of β̂2 under the Pareto–Clayton model with varying dependence parameter θC and Pareto type I margins.
Specifically, Xi ∼ P{3.5, 1.25(1 + i)}, i ∈ {1, 2, 3} with `θ = `i = n0.75 and `λ = n0.50. Here the sample size is fixed at n = 5000 and θC ∈

{0.01, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10, 15, 20}. Dotted lines provide true values for asymptotic independence (green) and comonotonicity (red)
with β⊥2 = 1.764 and β+

2 = 1.5, respectively.
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7.2. Data study360

Here we present an application of MEEs to a real data set. In particular, we consider the Pima Indians Diabetes
Database (https://www.kaggle.com/uciml/pima-indians-diabetes-database). This data set has been used
in previous studies of multivariate risk measures, see, e.g., Girard and Stupfler [26], Chaouch and Goga [10]. The data
set consists of 9 variables (Pregnancies, Glucose, Diastolic Blood Pressure (DBP), Skin Thickness, Insulin Levels,
body mass index (BMI), Diabetes Pedigree Function, Age and Outcome) for n = 768 individuals from the Pima365

Indian population. The study was conducted in an attempt to understand the prevalence of diabetes in this population.
We consider the two-dimensional case for pairs (Xi1, Xi2) where Xi1 is the BMI and Xi2 is the DBP for individual
i ∈ {1, . . . , 768}.

The first step is to estimate θ̂ and ĉ2. Using the selection procedure described, for instance, by Cai et al. [9], we
consider a range of possibilities for intermediate sequences `θ and `2 for which the estimators showed some stability.370

Then, to gain robustness, we average the estimates corresponding to the selected ranges. The interested reader is also
referred to Di Bernardino and Prieur [20]. For θ̂ this turned out to be values of `θ ∈ [100, 150]. The corresponding
Hill plots are presented in Fig. 7. Considering these values the tail index was estimated to be θ̂ = 9.126. The same
procedure is followed for ĉ2 and the resulting estimated value is ĉ2 = 1103.046. In Fig. 8, the resulting expectiles are
plotted.375
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Fig. 7: Hill Plots for estimating θ̂ using BMI measurements. We consider a range of possibilities for intermediate sequences `θ for which the
estimator θ̂ shows some stability. In left panel we consider a wide range where `θ ∈ [10, 250] and the right panel shows the chosen estimation range
where `θ ∈ [100, 150].

Recalling the first order conditions of L1 expectiles, eα(X) is the value of x such that∑d
i=1 E [(Xi − xi)+1{Xk > xk}]∑d
i=1 E [(Xi − xi)−1{Xk < xk}]

=
1 − α
α

, k ∈ {1, 2}.

This could be interpreted as the value of x which fixes the ratio of participation in positive scenarios to negative
scenarios at (1 − α)/α for all variables. Consider the MEE at level α = 1 − 1/768 = 0.9987, we have ê0.9987(X) =

(45.433, 106.493). As was noted in similar studies of this data set, e.g., Chaouch and Goga [10], an individual with a
BMI above 31.7 kg/m2 would qualify as severely overweight and a DBP value above 95 mm Hg would be at risk of
hypertension. Both these factors are considered to impact the prevalence of diabetes.380
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Fig. 8: Extreme expectiles (ê1
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α(X)) for pairs of BMI and DBP in the Pima Indians Diabetes Study for several risk values α ∈ [0.9, 1) (black
dots). The extreme expectiles for α = 1 − 1/n ≈ 0.9987, (45.433, 106.493), are represented by red triangles.

7.3. Gradient ∇LΛ(·) in Algorithm 1

Recall that β∗ = (β1, . . . , βd) with β1 = 1 and Θ = (η, β2, . . . , βd). Then, with our notation,

Θ j =

{
η, j = 1
β j, j ∈ {2, . . . , d} .

First, note that ∇LΛ(·) is given by

∇LΛ(·) = ∇

1
2

d∑
k=1

{
g(k)
Λ

(·) + f (k)
Λ

(·)
}2


=



∑d
k=1

[{
g(k)
Λ

(·) + f (k)
Λ

(·)
}
× ∂

∂η

{
g(k)
Λ

(·) + f (k)
Λ

(·)
}]

∑d
k=1

[{
g(k)
Λ

(·) + f (k)
Λ

(·)
}
× ∂

∂β2

{
g(k)
Λ

(·) + f (k)
Λ

(·)
}]

...∑d
k=1

[{
g(k)
Λ

(·) + f (k)
Λ

(·)
}
× ∂

∂βd

{
g(k)
Λ

(·) + f (k)
Λ

(·)
}]


. (19)

Then, the marginal derivatives in (19) can be written explicitly evaluated

∂

∂Θ j
g(k)
Λ

(Θ) =


−
βθk
ck
, j = 1,

−ηθ
βθ−1

k
ck
, j = k , 1,

0, otherwise,

∂

∂Θ j
f (k)
Λ

(Θ) =


−
βθ−1

k
ck

∑
i,k βi, j = 1,∑

i,k

[
λik

{
ci
ck

(
βi
βk

)−θ
, 1

}
βi

β2
k
− η

(θ−1)βθ−2
k

ck
βi

]
, j = k , 1,

−λ jk
{

c j

ck

(
β j

βk

)−θ
, 1

}
1
βk
− η

βθ−1
k
ck
, otherwise,

j, k ∈ {1, . . . , d}.
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