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Efficient algorithms for calculating the probability distribution of the sum
of hypergeometric-distributed random variables

Arne Johannssen1 Nataliya Chukhrova2 Philippe Castagliola3

Abstract

In probability theory and statistics, the probability distribution of the sum of two or more independent and
identically distributed (i.i.d.) random variables is the convolution of their individual distributions. While
convoluting random variables following a binomial, geometric or Poisson distribution is a straightforward
procedure, convoluting hypergeometric-distributed random variables is not. The problem is that there is
no closed form solution for the probability mass function (p.m.f.) and cumulative distribution function
(c.d.f.) of the sum of i.i.d. hypergeometric random variables. To overcome this problem, we propose
an approximation for the distribution of the sum of i.i.d. hypergeometric random variables. In addition,
we compare this approximation with two classical numerical methods, i.e., convolution and the recursive
algorithm by De Pril, by means of an application in Statistical Process Monitoring (SPM). We provide
MATLAB codes to implement these three methods for computing the probability distribution of the sum
of i.i.d. hypergeometric random variables in an efficient way. The obtained results show that the proposed
approximation has remarkable properties and may be helpful in all fields, where the problem of convoluting
hypergeometric-distributed random variables occurs. Therefore, the approximation considered in this paper
is well suited to make a change over established practices.

• This article presents theoretical bases of three methods for determining the probability distribution of
the sum of i.i.d. hypergeometric random variables: (1) direct convolution, (2) recursive algorithm by
De Pril, (3) approximation.

• We provide associated MATLAB codes (including context-specific customizations) for direct imple-
mentation of these methods and discuss technical aspects and essential details of the tweaks we have
made.

• A representative application example in SPM shows that the proposed approximation is considerably
simpler in application than both other methods and it ensures a remarkable high accuracy of the results
while reducing computational time considerably.

Method details

In Sections 1 and 2, we describe the calculation procedures and relevant formulas that are subsidiary or
directly used in the methodology as well as code segments for implementing the methods in MATLAB. In
Section 3, we provide the code segment and its description for an application of the proposed methods in the
framework of SPM. In Section 4, we propose key criteria for choosing the appropriate method to compute
the probability distribution of the sum of i.i.d. hypergeometric-distributed random variables. Conclusions in
Section 5 complete the method article.

1 The hypergeometric distribution

Let us assume that Xi, i = 1, 2, . . . ,m, are m i.i.d. hypergeometric random variables of parameters (N,n, p),
defined on {xmin = max(0, n−N(1− p)), . . . , xmax = min(Np, n)}, where m is the number of populations, N
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is the population size, n is the sample size and p is the population proportion of some attribute of interest,
with m,N, n ∈ N∗, N > n, p ∈ [0, 1]. The p.m.f. and c.d.f. of Xi, i = 1, 2, . . . ,m, are then given by

fXi
(x) = fHYP(x|N,n, p) =

(
M
x

)(
N−M
n−x

)(
N
n

) (1.1)

FXi(x) = FHYP(x|N,n, p) =

x∑
j=xmin

(
M
j

)(
N−M
n−j

)(
N
n

) (1.2)

where M = bNpc is the number of units in the population characterized by the attribute of interest.

In the following, the above parameters are referred to as input variables or variables used (see MATLAB
code segment 1 with lines 1–12 in Figure 1). In particular, the parameters m,N, n, p are to initialize (see
lines 1–4, parameter p is labeled by p 0), while M , xmin, xmax, mxmin, mxmax are computed by MATLAB
(see lines 6, 9–12, parameter M is labeled by M 0).

1 m=50; % number of populations
2 N=1000; % population size
3 n=25; % sample size
4 p_0 =0.05; % estimated in-control parameter
5 tau =1; % shift parameter tau

6 M_0=floor(N*p_0); % in-control number of nonconforming units in a population
7 M_1=floor(N*p_0*tau); % out -of-control number of nonconforming units in a population
8 p_1=M_1/N; % specified out -of-control parameter

9 x_min=max(0,n-N+M_0); % minimum possible realization of X_i
10 x_max=min(M_0 , n); % maximum possible realization of X_i

11 s_min=m*x_min; % minimum possible realization of X
12 s_max=m*x_max; % maximum possible realization of X

Figure 1: Input variables and initializations for a hypergeometric-distributed random variable

In the next section, we determine the probability distribution of the random variable X =
∑m

i=1Xi with
minimum and maximum possible realization mxmin (labeled by s min, see line 11) and mxmax (labeled by
s max, see line 12), respectively, via

(a) convolution,

(b) algorithm by De Pril [1],

(c) approximation by Johannssen et al. [3].

2 Methods for determining the probability distribution of X

2.1 Direct convolution

As the random variable X =
∑m

i=1Xi is in general not hypergeometric-distributed (apart from special cases
m = 1 or n = N or p ∈ {0, 1}), we need a practicable way to determine the probability distribution of X.
Due to the fact that X1, . . . , Xm are i.i.d. random variables, this can be achieved by the direct method of
convolution. In particular, the probability distribution of the sum of i.i.d. hypergeometric random variables
Xi, i = 1, . . . ,m, is the convolution of their individual distributions.

2



The m-fold convolution of fXi
and FXi

can be obtained via following recursive equations using general
convolution equations (see e.g., Dickson [2]),

fX(s) = f
(m)
Xi

(s) = fXi
~ · · ·~ fXi

(s)︸ ︷︷ ︸
×m

=

s∑
j=mxmin

f
(m−1)
Xi

(s− j)fXi
(j) (2.1)

FX(s) = F
(m)
Xi

(s) = FXi
~ · · ·~ FXi

(s)︸ ︷︷ ︸
×m

=

s∑
j=mxmin

F
(m−1)
Xi

(s− j)fXi
(j) (2.2)

where

f
(0)
Xi

(s) =

{
1 for s = 0
0 for s > 0

and f
(1)
Xi

= fXi

F
(0)
Xi

(s) = 1 and F
(1)
Xi

= FXi

and s ∈ {mxmin, . . . ,mxmax}. Note that the order of convolution does not matter. Since there are no closed
form solutions for fX and FX , the analytical calculation of fX and FX using convolution is impossible.

As for the numerical calculation of fX and FX with help of (2.1) and (2.2), respectively, code segment 2 (see
lines 13–38 in Figure 2) enables for it. In particular, using for loops and if conditions, the calculation of fX
(labeled by f x c, line 13) and FX (labeled by S c, line 14) is carried out as 1-, 2-, . . . , m-fold convolution
(see lines 21–38), i.e., the algorithm provides results for the sum of 2, 3, . . . ,m i.i.d. hypergeometric random
variables (see rows 2–m in output vectors f x c and S c and lines 28–38 in code segment 2) as well as for
a single hypergeometric-distributed random variable Xi with help of (1.1) and (1.2) (see row 1 in output
vectors f x c and S c and lines 21–27 in code segment 2). It is worth noting that there is a subsidiary vector
s vec, which contains values of s for 1, 2, . . . ,m populations (see lines 15–20 in code segment 2).

13 f_x_c=zeros(m,s_max -s_min +1); % vector of exact probabilities (convolution)
14 S_c=zeros(m,s_max -s_min +1); % vector of exact cumulative probabilities (convolution)

15 s_vec=zeros(m,s_max -s_min +1); % vector of values of s for i=1,2,...,m
16 for i=1:m
17 for j=1:(i*(x_max -x_min)+1)
18 s_vec(i,j)=i*x_min+j-1;
19 end
20 end

21 for j=1: length(s_vec (1,:))
22 s=s_vec(1,j);
23 if s_vec(1,j)==0 && j==1|| s>0
24 f_x_c(1,j)=hygepdf(s, N, M_0 , n);
25 S_c(1,j)=hygecdf(s, N, M_0 , n);
26 end
27 end

28 for k=2:m
29 for j=1: length(s_vec (1,:))
30 s=s_vec(k,j);
31 if s_vec(k,j)==0 && j==1|| s>0
32 for i=0:(j-1)
33 f_x_c(k,j)=f_x_c(k,j)+f_x_c(k-1,j-i)*f_x_c(1,i+1);
34 S_c(k,j)=S_c(k,j)+f_x_c(k,i+1);
35 end
36 end
37 end
38 end

Figure 2: Numerical calculation of fX and FX by means of convolution
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2.2 The algorithm by De Pril [1]

To increase the speed of calculation (while keeping a very high accuracy), the recursive algorithm by De Pril
[1] can be utilized instead of direct convolution for the evaluation of fX and FX . In particular, the numerical
calculation of fX and FX via convolution requires an increased computational effort already for mid-sized
values of n (50 < n < 100) and m (100 < m < 1000), and a very high computational effort for larger values
of n (n ≥ 100) and m (m ≥ 1000).

The standard form of the algorithm by De Pril [1] with respect to the hypergeometric distribution is given
by

fX(s) = f
(m)
Xi

(s) = P (X = s) =

{
(fXi

(0))m if s = 0
1

fXi
(0)

∑s
j=1((m+ 1) j

s − 1)fXi
(j)P (X = s− j) if s ∈ N∗ (2.3)

FX(s) = F
(m)
Xi

(s) =

s∑
j=0

f
(m)
Xi

(j) (2.4)

where Xi, i = 1, . . . ,m, are i.i.d. hypergeometric random variables with fXi(0) 6= 0, i.e., xmin = 0 (p� 1) is
satisfied. In the case of xmin > 0, the algorithm in shifted form is to employ, see De Pril [1].

It is worth noting that the algorithm by De Pril [1] is optimal for the computation of fX and FX using small
values of m, n, p, i.e. m ≤ 100, n ≤ 50, p ≤ 0.1. However, for mid-sized values of m (100 < m < 1000),
the results of the algorithm by De Pril [1] converge to zero due to the fact that (fXi

(0))m = 0 using stan-
dard settings of statistical software, i.e., double-precision floating point numbers (like in MATLAB, R,. . . )
instead of variable-precision floating point numbers. On the other hand, the computation of fX and FX

with variable-precision floating point numbers is very time expensive for m ≥ 1000 and thus can not be rec-
ommended for the researcher/practitioner. Further, higher values of n and/or p lead to single infinitesimal
hidden round-off errors, which can raise to substantial errors due to multiplication operations and thus entail
unreliable results. This problem in turn stems from standard settings of statistical software.

As for the numerical calculation of fX and FX with help of (2.3) and (2.4), respectively, the code segment
3 (see lines 39–53 in Figure 3) enables for it. In particular, the calculation of fX (labeled by f x p, line 40)

and FX (labeled by S p, line 41) is carried out using for loops (see lines 47–53) with initial values f
(m)
Xi

(0)

and F
(m)
Xi

(0) (see lines 45–46) and subsidiary values of fXi
(calculated via (1.1)) with respect to a single

hypergeometric distributed random variable Xi (see lines 39, 42–44).

39 f_x_i=zeros(1,s_max +1); % vector of hypergeometric probabilities
40 f_x_p=zeros(1,s_max +1); % vector of exact probabilities (De Pril)
41 S_p=zeros(1,s_max +1); % vector of exact cumulative probabilities (De Pril)

42 for j=0: x_max
43 f_x_i(1,j+1)=hygepdf(j, N, M_0 , n);
44 end

45 f_x_p (1,1)=( f_x_i (1,1))^m;
46 S_p(1,1)=f_x_p (1,1);

47 for s=1: s_max
48 for j=1:s
49 f_x_p(1,s+1)=f_x_p(1,s+1) +(((m+1)*j/s) -1)*f_x_i(1,j+1)*f_x_p(1,s-j+1);
50 end
51 f_x_p(1,s+1)=max(0,f_x_p(1,s+1)/f_x_i (1,1));
52 S_p(1,s+1)=S_p(1,s)+f_x_p(1,s+1);
53 end

Figure 3: Numerical calculation of fX and FX by means of the algorithm by De Pril [1]
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2.3 The approximation by Johannssen et al. [3]

In order to find a remedy in cases with higher values of m, n or p, Johannssen et al. [3] have proposed a new
approximation of fX and FX . This approach is neither based on convolution nor on the algorithm by De
Pril [1], but on the approximation of the sum of i.i.d. hypergeometric random variables Xi, i = 1, . . . ,m, by
a hypergeometric-distributed random variable Z of parameters (mN,mn, p), i.e.,

fX(s) ≈ fHYP(s|mN,mn, p) (2.5)

FX(s) ≈ FHYP(s|mN,mn, p) (2.6)

Using this approximation, the calculation of fX and FX is considerably simplified, and thus the computational
time can be reduced to a few seconds while keeping a remarkable high accuracy. Moreover, a comprehensive
range of numerical results shows that the higher the values of m,N, n, the better the approximation (see
Johannssen et al. [3]). Nonetheless, this method can also be successively used for smaller values of the pa-
rameters m,N, n, p resulting in minor deviations from exact results.

As for the numerical calculation of fX and FX with help of (2.5), (1.1) and (2.6), (1.2), respectively, code
segment 4 (see lines 54–59 in Figure 4) enables for it. In particular, the calculation of fX (labeled by f x a,
line 54) and FX (labeled by S a, line 55) is in turn carried out using for loop (see lines 56–59).

54 f_x_a=zeros(1,s_max -s_min +1); % vector of approximate probabilities
55 S_a=zeros(1,s_max -s_min +1); % vector of approximate cumulative probabilities

56 for j=s_min:s_max;
57 f_x_a(1,j-s_min +1)=hygepdf(j, m*N, m*M_0 , m*n);
58 S_a(1,j-s_min +1)=hygecdf(j, m*N, m*M_0 , m*n);
59 end

Figure 4: Numerical calculation of fX and FX by means of the approximation by Johannssen et al. [3]

3 An application example in SPM

In this section, we provide an application example of the proposed methods in SPM for the hypergeometric
np chart with estimated parameter p0 (see Johannssen et al. [3]). In particular, we show how to calculate in-
and out-of-control measures, i.e., the average run length (ARL) and its standard deviation (SDRL) associated
with this control chart, using p.m.f. fX , which is determined via (1) convolution, (2) the algorithm by De
Pril [1], (3) the new approximation by Johannssen et al. [3].

The hypergeometric np chart allows for monitoring the number of nonconformings in finite and infinite hori-
zon processes. The chart with estimated parameter is superior to the one with known parameter as well as
to its binomial counterpart (i.e., the binomial np chart), given the parameter p0 is unknown (see Johannssen
et al. [3]).

The mathematical model underlying the hypergeometric np chart for the number of nonconforming units is
based on the hypergeometric distribution. Let us assume that Yi, i = 1, 2, . . . , k, are k Phase II independent
random variables corresponding to the number of nonconforming units obtained after sampling without re-
placement n units in a population of size N > n, N,n ∈ N∗, containing an unknown proportion p1 ∈ [0, 1] of
nonconforming units. By definition, Yi, i = 1, 2, . . . , k, are hypergeometric random variables of parameters
(N,n, p1), defined on {ymin = max(0, n−N(1− p1)), . . . , ymax = min(Np1, n)}.

Further, let p0 be the in-control proportion of nonconforming units. Given that p0 is unknown, it has
to be estimated from m Phase I independent random variables Xi, i = 1, . . . ,m, corresponding to the
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number of nonconforming units obtained after sampling without replacement n units in an in-control pop-
ulation of size N > n (i.e., containing a proportion p0 ∈ [0, 1] of nonconforming units). By definition, Xi,
i = 1, . . . ,m, are hypergeometric random variables of parameters (N,n, p0) defined on {xmin = max(0, n −
N(1− p0)), . . . , xmax = min(Np0, n)}.

An estimator p̂0 of p0 is given by the best linear unbiased estimator (BLUE)

p̂0 =
1

mn

m∑
i=1

Xi =
X

mn

(see Johannssen et al. [3]). Since X does in general not follow a hypergeometric distribution, the probability
distribution fX(x|m,n,N, p0) of X can be achieved by implementing one of the methods proposed in Section
2. In addition, the Shewhart-type control limits of the hypergeometric np chart with estimated parameter
p0 are given by

L̂CL = max

{
0,

⌈
np̂0 −K

√
np̂0(1− p̂0)

N − n
N − 1

⌉}
(3.1)

ÛCL =

⌊
np̂0 +K

√
np̂0(1− p̂0)

N − n
N − 1

⌋
(3.2)

where np̂0 corresponds to the center line ĈL and K > 0 is a chart parameter.

The (unconditional) ARL,SDRL of the hypergeometric np chart with estimated parameter p0 are defined by

ARL =

mxmax∑
x=mxmin

fX(x|m,n,N, p0)

(
1

θ̂

)
(3.3)

SDRL =

√
E[RL2]−ARL2 (3.4)

with

θ̂ = 1− FHYP

( conditional UCL︷ ︸︸ ︷⌊
x

m
+K

√
x

m

(
1− x

mn

) N − n
N − 1

⌋ ∣∣∣∣∣N,n, p1

)

+ FHYP

(⌈
x

m
−K

√
x

m

(
1− x

mn

) N − n
N − 1

⌉
︸ ︷︷ ︸

conditional LCL

−1

∣∣∣∣∣N,n, p1

)
(3.5)

and

E[RL2] =

mxmax∑
x=mxmin

fX(x|m,n,N, p0)

(
2− θ̂
θ̂2

)
(3.6)

where fX(x|m,n,N, p0) is the p.m.f. of X, θ̂ is the probability that the number of nonconforming units in the
i-th sample is outside the conditional control limits LCL and UCL (i.e., control limits defined conditionally
to X = x), and RL is the run length of the hypergeometric np chart with estimated parameter p0.

Considering p1 = p0 and p1 > p0, we obtain in-control and out-of-control performance measures, i.e.,
ARL0,SDRL0 and ARL1,SDRL1, respectively. Defining p1 = τp0 with τ > 1, the parameters p0 and τ
have to be fixed (see line 4 for p0, line 5 for τ , and lines 7–8 for calculation of p1 in code segment 1).
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Remark 3.1 In order to allow adequate comparisons with the performance measures in the known parameter
case (given p0 = p̂0), the calculation of ARL and SDRL in the estimated parameter case should be performed
under the additional condition of reasonable control limits. Due to the nature of Shewhart-type control limits,
the (conditional) probability of a violation of the control limits can be equal to zero either for both cases or
only for the estimated parameter case (for some values of x, see (3.5)) that results in infinitely large values of
ARL and SDRL. While in the first scenario both charts are equivalent, in the second scenario the performance
measures of the hypergeometric np chart with estimated parameter p0 would be biased. To overcome this bias,

we propose to use ÛCL given by (3.2) (which corresponds to UCL in the known parameter case) instead of

conditional UCL (see (3.5)) for affected values of x in the calculation of θ̂. This procedure reduces the bias

in an appropriate way by considering θ̂ > 0 instead of θ̂ = 0, i.e., by implementing a reasonable conditional
upper control limit UCL < min(Np̂0, n) and UCL < min(Np1, n), respectively (see Johannssen et al. [3]).

As for the numerical calculation of the in-control and out-of-control measures, code segment 5 (see lines
60–123 in Figure 5) enables for it. It is worth noting that, for instance, ARL0 is labeled by ARL 0 c,
ARL 0 p and ARL 0 a, where c, p and a stands for convolution, algorithm by De Pril [1] and approximation,
respectively. Tagging via c/p/a also holds for ARL1,SDRL0,SDRL1,E[RL2

0],E[RL2
1] in the following. The

particular calculation of ARL0,ARL1 (see (3.3), lines 102–104, 108–110) is carried out using for loop and
four if conditions (see lines 72–114) with initial values (see lines 60–62, 66–68) and subsidiary calculation of

• center line ĈL and control limits L̂CL, ÛCL (see (3.1), (3.2), lines 80–83, labeled by CL Y, LCL Y, UCL Y,
with K as a constant to be fixed in line 73),

• conditional center line CL (see line 74) and control limits LCL, UCL (see (3.5), lines 75–77),

• adjusted conditional UCL following the approach of reasonable control limits (see lines 78–79 for initial
values of conditional UCL regarding in-control and out-of-control scenarios, labeled by UCL 0 and UCL 1,
as well as both if conditions in lines 84–86 and 87–89),

• estimators θ̂0 and θ̂1 via (3.5) (see lines 90–91, labeled by teta 0 and teta 1, as well as lines 92–96

and 97–101 for exclusion of θ̂0 = 0 and θ̂1 = 0, caused by standard settings of statistical software, from
calculations with help of dummy variables c0 and c1),

while the calculation of SDRL0,SDRL1 (see (3.4), lines 115–117, 118–120) is provided afterwards under
subsidiary calculation of expected values E[RL2

0] and E[RL2
1] via (3.6) (see lines 105–107 and 111–113, labeled

by E L2 0 c, E L2 0 p, E L2 0 a and E L2 1 c, E L2 1 p, E L2 1 a with initial values given in lines 63–65,
69–71). Code segment 5 ends with output vectors r c, r p, r a (see lines 121–123), which provide the values
of ARL0,SDRL0, ARL1,SDRL1 regarding convolution, algorithm by De Pril [1] and approximation.
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60 ARL_0_c =0;
61 ARL_0_p =0;
62 ARL_0_a =0;

63 E_L2_0_c =0;
64 E_L2_0_p =0;
65 E_L2_0_a =0;

66 ARL_1_c =0;
67 ARL_1_p =0;
68 ARL_1_a =0;

69 E_L2_1_c =0;
70 E_L2_1_p =0;
71 E_L2_1_a =0;

72 for j=s_min:s_max

73 K=3; % chart parameter
74 CL=j/m; % conditional center line
75 Var_X=j*(1-j/(m*n))*(N-n)/(m*(N-1));
76 LCL=CL -K*sqrt(Var_X); % conditional lower control limit
77 UCL=CL+K*sqrt(Var_X); % conditional upper control limit
78 UCL_0=UCL; % conditional UCL for in-control performance
79 UCL_1=UCL; % conditional UCL for out -of-control performance

80 CL_Y=n*p_0; % center line
81 Var_Y=n*p_0*(1-p_0)*(N-n)/(N-1);
82 LCL_Y=CL_Y -K*sqrt(Var_Y); % lower control limit
83 UCL_Y=CL_Y+K*sqrt(Var_Y); % upper control limit

84 if UCL >=min(M_0 , n) && UCL_Y <min(M_0 , n)
85 UCL_0=UCL_Y; % adjusted conditional UCL for in -control performance
86 end

87 if UCL >=min(M_1 , n) && UCL_Y <min(M_1 , n)
88 UCL_1=UCL_Y; % adjusted conditional UCL for out -of -control performance
89 end

90 teta_0=1-hygecdf(floor(UCL_0), N, M_0 , n)+ hygecdf ((ceil(LCL) -1), N, M_0 , n);
91 teta_1=1-hygecdf(floor(UCL_1), N, M_1 , n)+ hygecdf ((ceil(LCL) -1), N, M_1 , n);

92 if teta_0 ==0 && UCL_0 <min(M_0 , n)
93 c_0 =0;
94 else
95 c_0 =1;
96 end

97 if teta_1 ==0 && UCL_1 <min(M_1 , n)
98 c_1 =0;
99 else

100 c_1 =1;
101 end

102 ARL_0_c=ARL_0_c+f_x_c(m,j-s_min +1)*( teta_0 ^(-1*c_0))*c_0;
103 ARL_0_p=ARL_0_p+f_x_p(1,j+1)*( teta_0 ^(-1*c_0))*c_0;
104 ARL_0_a=ARL_0_a+f_x_a(1,j-s_min +1)*( teta_0 ^(-1*c_0))*c_0;
105 E_L2_0_c=E_L2_0_c+f_x_c(m,j-s_min +1)*(2- teta_0)/( teta_0 ^(2* c_0))*c_0;
106 E_L2_0_p=E_L2_0_p+f_x_p(1,j+1)*(2- teta_0)/( teta_0 ^(2* c_0))*c_0;
107 E_L2_0_a=E_L2_0_a+f_x_a(1,j-s_min +1)*(2- teta_0)/( teta_0 ^(2* c_0))*c_0;

108 ARL_1_c=ARL_1_c+f_x_c(m,j-s_min +1)*( teta_1 ^(-1*c_1))*c_1;
109 ARL_1_p=ARL_1_p+f_x_p(1,j+1)*( teta_1 ^(-1*c_1))*c_1;
110 ARL_1_a=ARL_1_a+f_x_a(1,j-s_min +1)*( teta_1 ^(-1*c_1))*c_1;
111 E_L2_1_c=E_L2_1_c+f_x_c(m,j-s_min +1)*(2- teta_1)/( teta_1 ^(2* c_1))*c_1;
112 E_L2_1_p=E_L2_1_p+f_x_p(1,j+1)*(2- teta_1)/( teta_1 ^(2* c_1))*c_1;
113 E_L2_1_a=E_L2_1_a+f_x_a(1,j-s_min +1)*(2- teta_1)/( teta_1 ^(2* c_1))*c_1;

114 end

115 SDRL_0_c=sqrt(E_L2_0_c -ARL_0_c ^2);
116 SDRL_0_p=sqrt(E_L2_0_p -ARL_0_p ^2);
117 SDRL_0_a=sqrt(E_L2_0_a -ARL_0_a ^2);

118 SDRL_1_c=sqrt(E_L2_1_c -ARL_1_c ^2);
119 SDRL_1_p=sqrt(E_L2_1_p -ARL_1_p ^2);
120 SDRL_1_a=sqrt(E_L2_1_a -ARL_1_a ^2);

121 r_c=[min(ARL_0_c , inf), min(SDRL_0_c , inf), min(ARL_1_c , inf), min(SDRL_1_c , inf)]
122 r_p=[min(ARL_0_p , inf), min(SDRL_0_p , inf), min(ARL_1_p , inf), min(SDRL_1_p , inf)]
123 r_a=[min(ARL_0_a , inf), min(SDRL_0_a , inf), min(ARL_1_a , inf), min(SDRL_1_a , inf)]

Figure 5: An application example in SPM: Calculation of in- and out-of-control measures ARL and SDRL
for the hypergeometric np chart with estimated parameter p0, using fX determined via (1) convolution, (2)
the algorithm by De Pril [1], (3) the approximation by Johannssen et al. [3]
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As for numerical results regarding, for instance, the in-control measures of the hypergeometric np chart with
estimated parameter p0, we provide in the Appendix Tables 3–9, which contain the values of ARL0,SDRL0

for K = 3 and various combinations of parameters N,n,m, p0:

N ∈ {100, 200, 500, 1000, 2000, 5000, 10000} (see Tables 3–9)

n ∈ {25, 50, 75, 100} (see blocks in Tables 3–9)

m ∈ {10, 20, 50, 100, 200, 1000} (see columns in Tables 3–9)

p0 ∈ {0.01, 0.02, 0.05, 0.10, 0.15, 0.20} (see rows in Tables 3–9)

In particular, the first row of each cell of Tables 3–9 shows the ordered pair (ARL0,SDRL0) calculated via
convolution, while the ordered pair (ARL0,SDRL0) in each second row is calculated via the approximation
by Johannssen et al. [3]. The values of ARL0,SDRL0 calculated via convolution correspond to the respective
values calculated via the algorithm by De Pril [1], given N ≥ 200, n ≤ 50, m ≤ 100, p0 ≤ 0.1. Deviant
values of parameters N,n,m, p0 lead to unreliable results, which is why the respective results obtained by
this method (i.e., the algorithm by De Pril [1]) are not given in Tables 3–9.

It is worth noting that in the case of a total inspection of the population (i.e., N = n = 100), ARL0,SDRL0

turn out to be infinitely large due to the fact that the type I error is equal to zero. In addition, for
N ∈ {100, 200} and p0 ∈ {0.01, 0.02}, the values of ARL0 and SDRL0 can in turn be infinitely large (see
Tables 3–4). The reason for these exceptions is given by the fact that these parameter combinations do not
ensure reasonable control limits and thus the (conditional) probability of a violation of the control limits
is equal to zero for some values of x in the estimated parameter case as well as throughout in the known
parameter case (see also Johannssen et al. [3]).

The results of Tables 3–9 can be summarized as follows: The values of the in-control measures calculated
via the approximation by Johannssen et al. [3] (ARLa

0 , SDRLa
0) are throughout approximately equal to the

respective exact in-control measures obtained via convolution (ARLc
0, SDRLc

0). In particular, we observe

• no tendency for a systematic deviation (ARLc
0−ARLa

0 , SDRLc
0−SDRLa

0) to one direction regarding n,

• a negative tendency regarding p0 for smaller values of N (N ≤ 100), and

• a positive tendency regarding m and smaller values of N .

For increasing values of N,n,m or p0, the difference between exact and approximate values for in-control
measures decreases in a monotonic way and seems to converge to zero. For instance, the maximum of the

relative deviation regarding ARL0

(
|ARLc

0−ARLa
0 |

ARLc
0

· 100%
)

is 2.21% for N = 100 and 0.07% for N = 10000. We

mostly observe relative deviations regarding ARL0 that are < 0.1% for N ≤ 1000 and < 0.05% for N > 1000.
These negligible deviations between exact and approximate results are also confirmed when considering out-
of-control measures, see Johannssen et al. [3]. That is, the new approximation is preferable for calculations
due to considerable reductions of computational time, in particular for larger parameter values.

4 How to choose the appropriate method

In this section, we propose three key criteria for choosing the appropriate method to compute the probability
distribution of the sum of i.i.d. hypergeometric-distributed random variables:

1. accuracy of results

2. computational effort

3. grade of simplicity
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As there is mostly a trade-off between the satisfaction of these criteria, the “right” choice is dependent on
various problem-based factors and up to the practitioner/researcher, and therefore, often a subjective deci-
sion. For instance, when cost aspects due to possible inaccuracies of the obtained results are more crucial
than computational effort aspects or vice versa, this may lead to different final decisions. On the other hand,
there are often real-life situations, where a decision must be made at short notice, i.e., without weighting
of single criteria. In the following, we provide appropriate solutions for both these possible settings, based
on comprehensive numerical analyzes, in terms of detailed descriptions of considered criteria with regard to
single methods (see Table 1) as well as of facilitated guidelines for quick implementations (see decision tree
in Figure 6).

Considering Table 1, the practitioner can use color coded ranking, i.e., green as the first choice, yellow as
the second choice and red as the third choice, for decision making in single categories under consideration of
the magnitude of the parameters m,n, p,N , i.e., low/middle/high. In addition, there are detailed comments
(see also the legend in Table 2 related to the entries of Table 1) on the effects of the magnitude of the
parameters, which can vary between extremely low and extremely high for the driving parameters (highlighted
in bold type) or they are stated in the way “minor/increasing/decreasing” regarding parameters that are less
important in a particular category. Finally, there are entries like “exact”, “unreliable” or “(minor) deviations”
with respect to exact results, inappropriate methods and approximate results in the category “accuracy of
results” (see also detailed explanations in Table 2).

Example 4.1
Given m = 100, n = 50, p = 0.05, N = 2000, the practitioner could choose

• the algorithm by De Pril [1], as it provides exact results and a reduced computational effort/grade of
complexity in comparison to convolution, or

• the approximation, as it ensures an extremely low computational effort while providing a very high grade
of simplicity combined with an extremely high accuracy of the approximate results (near to exact results
due to relative deviations < 0.05%).

parameter
accuracy of results computational e�ort grade of simplicity

convolution De Pril approximation convolution De Pril approximation convolution De Pril approximation

low (m ≤ 100) exact exact minor deviations low/middle very low extremely low low middle very high
m middle (100 < m < 1000) exact unreliable increasing high low very low very low low very high

high (m ≥ 1000) exact unreliable increasing very high middle low extremely low very low very high

low (n ≤ 50) exact exact minor deviations low/middle minor minor minor minor very high
n middle (50 < n < 100) exact unreliable increasing high increasing minor decreasing slightly decreasing very high

high (n ≥ 100) exact unreliable increasing very high increasing minor decreasing slightly decreasing very high

p
low (p ≤ 0.1) exact exact minor deviations minor minor minor minor minor very high
high (p > 0.1) exact unreliable increasing increasing slightly increasing minor decreasing slightly decreasing very high

low (N < 200) exact unreliable high (max. dev. ≈ 2%) minor minor minor minor minor very high
N middle (200 ≤ N < 1000) exact exact very high (dev. < 0.1%) increasing slightly increasing minor decreasing slightly decreasing very high

high (N ≥ 1000) exact exact extr. high (dev. < 0.05%) increasing slightly increasing minor decreasing slightly decreasing very high

1

Table 1: Color coded ranking for the choice of the appropriate method
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Denomination Explanation

dev. relative deviations of x% between approximate and exact results

exact exact results
increasing (accuracy) decreasing deviations between approximate and exact results as a result of increasing

magnitude of the respective parameter
minor deviations approximate results with minor deviations from the exact results
unreliable unreliable results due to standard settings of statistical software

(slightly) increasing (effort) increasing computational effort as a result of increasing magnitude of respective pa-
rameter

minor (effort) minor input value of respective parameter regarding computational effort

(slightly) decreasing (simplicity) increasing complexity of computational calculation as a result of an increasing magni-
tude of respective parameter

minor (simplicity) minor input value of respective parameter regarding complexity of computational cal-
culation

Table 2: Legend for Table 1

Considering the decision tree in Figure 6, the practitioner can follow the facilitated scheme to obtain a
quick solution for specified parameters m,n, p,N . In particular, the decision tree is based on a standardized
questionnaire with respect to the magnitude of parameters m,n, p,N (low vs. not low) and implements the
most important limiting cases regarding single methods in compliance with conditions on high accuracy of the
results and on an adequate computational effort. Following the scheme provided by Figure 6, the practitioner
would choose

1. the approximation when there are higher values of m and/or n,

2. convolution when the values of m,n are low in combination with a higher value of p or in combination
with low values of p,N , and

3. the algorithm by De Pril [1] when there are low values of m,n, p and higher values of N .

As for Example 4.1, consulting Figure 6 would lead to the algorithm by De Pril [1]. But, when one of
the parameters m or n increases, one would choose the approximation. Convolution should be chosen, for
instance, when p exceeds 0.1.

approximation

convolution

De Pril

low number of populations (m ≤ 100)

low sample size (n ≤ 50)

low population proportion (p ≤ 0.1)

low population size (N < 200)

yes

yes

yes

yes

no

no

no

no

Figure 6: Decision tree for the choice of the appropriate method
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5 Conclusions

In this paper, we have shown how to implement three methods – direct convolution, the algorithm by De
Pril [1], and the new approximation by Johannssen et al. [3] – for computing the probability mass function of
X =

∑m
i=1Xi with i.i.d. random variables Xi ∼ HYP(N,n, p), i = 1, . . . ,m. While the computational effort

using convolution is very extensive for combinations of larger values of m and n, multiplication operations in
the framework of the algorithm by De Pril [1] entail unreliable results already for mid-sized values of m,n, p
due to hidden round-off errors, and thus cannot be recommended for the researcher/practitioner. In order
to get a feasible solution that leads to a considerably faster calculation and simultaneously ensures a high
accuracy of the results, we have also considered the new approximation for the probability distribution of
X introduced by Johannssen et al. [3]. By using this approximation the time required for the computation
of fX and FX is reduced to a few seconds while keeping a remarkable high accuracy with only negligible
deviations compared to the exact distribution obtained via convolution. Such remarkable properties of the
new approximation may be helpful for numerous applications, for instance in SPM or quantitative risk man-
agement (e.g., for aggregation of credit, insurance, market, and operational risks, see Klugman et al. [4]).

We have performed an application example in SPM, where we have calculated in-control measures for the
hypergeometric np chart with estimated parameter p0 by means of p.m.f. fX determined via the above three
methods. The results illustrate that in-control measures computed via exact convolution or the algorithm by
De Pril [1] are throughout approximately equal to the respective measures calculated via the new approxima-
tion with only negligible relative deviations (on average < 0.1%). As the absolute difference between exact
and approximate measures converges to zero and the computational effort required for convolution increases
enormously for larger values of N,n,m, p0, the new approximation is clearly preferable for mid-sized and large
parameter values. Only in rare cases with lower parameter values, where slightly increased relative deviations
(up to about 2%) between exact and approximate results are considered as inadmissible, exact methods are
to prefer. On the other hand, if such small deviations are considered as permissible, the new approximation
can also be successfully used for smaller values of the parameters m,N, n, p0 and the practitioner/researcher
can take advantage of the considerably simplified handling of the approximation.

Based on comprehensive numerical analyzes, we have summarized all the advantages and limitations of the
discussed three methods in schematic form under consideration of the magnitude of the parameters and three
key criteria: (1) accuracy of results, (2) computational effort and (3) grade of simplicity. Furthermore, a color
coded ranking reflects linked characteristics of the proposed methods in an illustrative way and provides the
complete picture needed for an appropriate decision making. By a subjective weighting of the key criteria,
the practitioner is more flexible in choosing a proper method. On the other hand, when a quick decision is
necessary, a facilitated scheme by means of a decision tree can be used, where the practitioner obtains the
adequate method by responding up to four questions regarding the magnitude of the parameters m,n, p,N .
The decision tree reflects both limitations of the approximation for smaller parameter values and its advan-
tages for larger parameter values.
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Table 3: Exact and approximate (ARL0, SDRL0) for the hypergeometric np chart with N = 100, n ∈
{25, 50, 75, 100}, p0 ∈ {0.01, 0.02, 0.05, 0.10, 0.15, 0.20}, m ∈ {10, 20, 50, 100, 200, 1000}, K = 3

p0 m = 10 m = 20 m = 50 m = 100 m = 200 m = 1000

n = 25

0.01 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.02 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.05 (729.6, 1199.6) (798.8, 1238.5) (898.0, 1288.3) (987.8, 1326.0) (1094.6, 1361.8) (1330.9, 1409.4)
(729.8, 1199.7) (799.3, 1238.7) (898.8, 1288.7) (989.0, 1326.5) (1096.1, 1362.2) (1332.2, 1409.5)

0.10 (3003.9, 63672.0) (958.3, 4784.4) (600.6, 1368.5) (491.7, 656.2) (484.7, 489.8) (486.0, 485.5)
(2937.5, 61362.8) (949.9, 4647.0) (597.8, 1355.8) (491.2, 650.2) (484.8, 489.5) (486.0, 485.5)

0.15 (1664.5, 7384.0) (985.4, 2945.6) (608.0, 1135.0) (536.6, 670.8) (532.5, 539.2) (535.0, 534.5)
(1648.7, 7301.5) (979.5, 2902.8) (606.1, 1126.2) (536.2, 666.4) (532.6, 538.9) (535.0, 534.5)

0.20 (467.1, 627.2) (538.5, 684.7) (603.0, 731.7) (682.0, 773.3) (747.1, 797.0) (812.3, 812.8)
(467.7, 627.7) (539.4, 685.4) (604.1, 732.4) (683.0, 773.8) (747.9, 797.2) (812.4, 812.8)

n = 50

0.01 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.02 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.05 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.10 (647.2, 791.6) (741.2, 821.5) (812.7, 837.3) (837.0, 841.3) (842.4, 842.0) (842.6, 842.1)
(648.4, 792.0) (742.2, 821.8) (813.2, 837.4) (837.2, 841.3) (842.4, 842.0) (842.6, 842.1)

0.15 (393.5, 443.4) (405.7, 437.0) (391.1, 418.2) (363.6, 393.2) (331.5, 360.0) (274.0, 282.3)
(393.9, 443.5) (405.8, 436.9) (390.8, 417.9) (363.2, 392.8) (331.0, 359.5) (273.8, 282.0)

0.20 (375.2, 503.5) (374.7, 462.3) (416.9, 545.0) (448.1, 606.4) (491.3, 680.9) (684.6, 919.9)
(375.8, 504.1) (375.0, 462.8) (417.2, 545.7) (448.6, 607.4) (492.1, 682.1) (686.1, 921.5)

n = 75

0.01 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.02 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.05 (909.0, 1293.3) (1038.8, 1344.3) (1218.5, 1391.9) (1334.2, 1409.7) (1399.4, 1415.5) (1417.0, 1416.5)
(910.0, 1293.8) (1040.2, 1344.7) (1220.1, 1392.3) (1335.5, 1409.9) (1399.9, 1415.5) (1417.0, 1416.5)

0.10 (615.2, 1433.4) (495.0, 697.9) (485.4, 486.7) (486.0, 485.5) (486.0, 485.5) (486.0, 485.5)
(613.0, 1423.3) (494.4, 691.3) (485.4, 486.6) (486.0, 485.5) (486.0, 485.5) (486.0, 485.5)

0.15 (533.2, 995.4) (512.4, 665.3) (531.5, 543.8) (534.7, 534.5) (535.0, 534.5) (535.0, 534.5)
(533.6, 993.5) (512.6, 663.3) (531.6, 543.3) (534.7, 534.5) (535.0, 534.5) (535.0, 534.5)

0.20 (423.1, 568.4) (512.0, 644.4) (614.1, 719.2) (708.3, 769.5) (777.4, 798.8) (813.4, 813.0)
(423.9, 569.1) (513.1, 645.2) (615.3, 720.0) (709.5, 770.1) (778.1, 799.1) (813.4, 813.0)

n = 100

0.01 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.02 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.05 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.10 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.15 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.20 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
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Table 4: Exact and approximate (ARL0, SDRL0) for the hypergeometric np chart with N = 200, n ∈
{25, 50, 75, 100}, p0 ∈ {0.01, 0.02, 0.05, 0.10, 0.15, 0.20}, m ∈ {10, 20, 50, 100, 200, 1000}, K = 3

p0 m = 10 m = 20 m = 50 m = 100 m = 200 m = 1000

n = 25

0.01 (49.8, 62.7) (59.6, 65.1) (65.7, 65.8) (66.3, 65.8) (66.3, 65.8) (66.3, 65.8)
(49.9, 62.8) (59.7, 65.1) (65.7, 65.8) (66.3, 65.8) (66.3, 65.8) (66.3, 65.8)

0.02 (1229.3, 3195.1) (729.4, 2392.5) (268.1, 1108.9) (165.7, 368.1) (155.9, 161.2) (155.8, 155.3)
(1227.7, 3192.9) (726.8, 2387.4) (266.8, 1102.4) (165.5, 364.5) (155.9, 160.9) (155.8, 155.3)

0.05 (1222.7, 29601.6) (468.0, 1851.0) (298.0, 601.0) (279.9, 322.1) (290.7, 295.3) (296.5, 296.0)
(1211.4, 28091.1) (466.1, 1831.0) (297.6, 597.8) (280.0, 321.4) (290.7, 295.3) (296.5, 296.0)

0.10 (996.6, 7421.0) (498.4, 1352.2) (366.2, 640.7) (299.7, 517.1) (236.9, 371.9) (189.5, 189.7)
(990.1, 7284.9) (497.0, 1341.7) (365.7, 639.6) (299.1, 516.0) (236.5, 370.8) (189.5, 189.7)

0.15 (1046.3, 5081.1) (602.5, 1397.6) (457.9, 728.7) (388.2, 615.7) (314.8, 488.6) (225.7, 234.0)
(1041.2, 5026.2) (601.2, 1389.3) (457.4, 727.6) (387.7, 615.0) (314.3, 487.6) (225.6, 233.7)

0.20 (731.8, 1750.3) (603.9, 1131.7) (501.1, 794.7) (422.8, 619.2) (360.2, 442.1) (331.6, 331.2)
(731.5, 1748.0) (603.4, 1129.5) (500.5, 793.5) (422.3, 617.8) (359.9, 441.0) (331.6, 331.1)

n = 50

0.01 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.02 (233.9, 273.1) (249.9, 276.4) (276.3, 280.0) (280.4, 280.3) (280.9, 280.4) (280.9, 280.4)
(234.1, 273.1) (250.0, 276.5) (276.4, 280.0) (280.4, 280.3) (280.9, 280.4) (280.9, 280.4)

0.05 (2986.3, 48816.3) (994.9, 4910.8) (592.2, 1353.6) (425.9, 767.3) (370.8, 416.9) (365.3, 364.8)
(2954.7, 48065.4) (990.5, 4840.4) (590.8, 1349.2) (425.2, 763.7) (370.7, 415.7) (365.3, 364.8)

0.10 (700.7, 1292.6) (699.2, 1253.8) (566.6, 947.6) (476.5, 676.0) (429.1, 473.8) (418.5, 418.0)
(700.8, 1292.5) (698.7, 1252.8) (565.9, 945.6) (476.0, 674.1) (428.9, 472.9) (418.5, 418.0)

0.15 (412.7, 552.2) (427.6, 541.1) (429.4, 530.3) (468.5, 578.1) (521.6, 635.1) (669.1, 749.5)
(412.8, 552.2) (427.7, 541.1) (429.6, 530.5) (468.8, 578.5) (522.0, 635.5) (669.5, 749.7)

0.20 (376.6, 503.9) (401.4, 487.4) (438.7, 486.0) (466.4, 492.4) (491.3, 500.9) (507.2, 506.7)
(376.8, 504.1) (401.6, 487.5) (438.9, 486.1) (466.6, 492.4) (491.5, 501.0) (507.2, 506.7)

n = 75

0.01 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.02 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.05 (4525.9, 13629.3) (3006.1, 10395.1) (1328.8, 3856.4) (1190.5, 1570.5) (1268.7, 1345.7) (1357.5, 1357.7)
(4515.1, 13609.2) (2994.1, 10364.3) (1325.7, 3829.8) (1190.8, 1564.1) (1269.3, 1345.8) (1357.6, 1357.7)

0.10 (474.6, 676.7) (502.9, 662.0) (482.6, 594.8) (442.1, 518.5) (401.0, 438.6) (371.7, 371.3)
(474.8, 676.7) (503.0, 661.8) (482.3, 594.3) (441.8, 518.0) (400.8, 438.1) (371.7, 371.3)

0.15 (351.9, 410.4) (378.6, 419.6) (412.2, 437.0) (428.0, 445.3) (440.4, 453.2) (470.9, 473.3)
(352.2, 410.5) (378.8, 419.7) (412.4, 437.1) (428.1, 445.4) (440.4, 453.2) (471.0, 473.3)

0.20 (325.4, 390.0) (369.2, 428.9) (423.4, 480.7) (471.3, 521.7) (523.0, 557.2) (590.7, 592.6)
(325.6, 390.1) (369.5, 429.1) (423.7, 481.0) (471.7, 522.0) (523.3, 557.4) (590.7, 592.6)

n = 100

0.01 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.02 (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)
(∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞) (∞, ∞)

0.05 (542.0, 622.5) (588.2, 635.7) (635.1, 645.8) (647.2, 647.8) (648.5, 648.0) (648.5, 648.0)
(542.4, 622.7) (588.5, 635.8) (635.2, 645.8) (647.2, 647.8) (648.5, 648.0) (648.5, 648.0)

0.10 (423.4, 567.9) (481.6, 586.5) (566.5, 625.3) (613.1, 639.8) (639.7, 646.6) (650.2, 649.7)
(423.9, 568.2) (482.0, 586.8) (566.9, 625.5) (613.3, 639.9) (639.8, 646.6) (650.2, 649.7)

0.15 (340.5, 414.0) (384.1, 440.6) (418.1, 449.2) (415.7, 430.6) (405.0, 409.3) (398.2, 397.7)
(340.8, 414.2) (384.4, 440.8) (418.2, 449.2) (415.7, 430.5) (404.9, 409.2) (398.2, 397.7)

0.20 (327.1, 385.5) (364.6, 409.9) (401.9, 429.7) (419.1, 433.0) (423.1, 426.3) (422.8, 422.3)
(327.4, 385.7) (364.9, 410.1) (402.1, 429.8) (419.2, 433.0) (423.1, 426.3) (422.8, 422.3)

15



Table 5: Exact and approximate (ARL0, SDRL0) for the hypergeometric np chart with N = 500, n ∈
{25, 50, 75, 100}, p0 ∈ {0.01, 0.02, 0.05, 0.10, 0.15, 0.20}, m ∈ {10, 20, 50, 100, 200, 1000}, K = 3

p0 m = 10 m = 20 m = 50 m = 100 m = 200 m = 1000

n = 25

0.01 (858.3, 35490.8) (276.1, 1427.8) (159.4, 457.9) (105.8, 338.1) (59.0, 166.2) (45.7, 45.2)
(851.8, 35047.1) (275.7, 1416.7) (159.2, 457.5) (105.7, 337.6) (59.0, 165.8) (45.7, 45.2)

0.02 (577.9, 8149.3) (234.1, 873.9) (163.0, 416.0) (110.2, 213.6) (95.9, 105.7) (95.0, 94.5)
(575.9, 8001.7) (233.7, 869.8) (162.8, 415.5) (110.1, 213.1) (95.9, 105.6) (95.0, 94.5)

0.05 (502.9, 4239.4) (295.0, 828.7) (216.3, 395.0) (183.8, 230.2) (179.9, 182.2) (180.2, 179.7)
(501.5, 4202.3) (294.7, 826.1) (216.1, 394.5) (183.8, 229.9) (179.9, 182.1) (180.2, 179.7)

0.10 (675.0, 3470.1) (405.7, 995.0) (306.2, 471.6) (285.7, 426.6) (259.7, 397.1) (173.9, 261.4)
(673.6, 3450.3) (405.3, 992.7) (306.1, 471.3) (285.6, 426.6) (259.6, 396.9) (173.7, 261.2)

0.15 (737.4, 3123.5) (481.2, 1065.6) (384.0, 565.2) (374.2, 502.9) (363.8, 493.0) (338.5, 470.4)
(736.1, 3110.3) (480.7, 1063.2) (383.9, 564.7) (374.2, 502.9) (363.8, 493.0) (338.5, 470.3)

0.20 (665.6, 1535.0) (554.5, 1124.2) (452.5, 670.0) (416.6, 592.9) (373.7, 538.6) (257.2, 326.7)
(665.3, 1534.0) (554.1, 1122.7) (452.3, 669.5) (416.5, 592.8) (373.6, 538.4) (257.1, 326.4)

n = 50

0.01 (1689.2, 16206.5) (425.9, 3125.3) (209.3, 674.2) (135.0, 282.0) (122.7, 128.9) (122.4, 121.9)
(1681.6, 16152.2) (424.9, 3104.7) (208.9, 673.0) (134.9, 281.1) (122.7, 128.8) (122.4, 121.9)

0.02 (762.5, 17279.5) (371.3, 1357.2) (268.5, 496.3) (216.0, 419.7) (160.8, 330.8) (87.7, 108.5)
(759.8, 16946.2) (370.8, 1351.5) (268.4, 496.0) (215.9, 419.5) (160.6, 330.5) (87.6, 108.3)

0.05 (685.7, 4658.6) (407.3, 1040.3) (324.6, 495.7) (297.5, 439.1) (267.4, 406.2) (177.3, 268.8)
(684.1, 4621.2) (406.9, 1037.5) (324.5, 495.4) (297.5, 439.0) (267.3, 406.1) (177.2, 268.6)

0.10 (722.3, 2025.9) (508.6, 1078.0) (396.9, 569.9) (379.4, 475.4) (388.9, 475.7) (427.0, 499.9)
(721.5, 2022.6) (508.2, 1075.9) (396.8, 569.4) (379.4, 475.3) (388.9, 475.7) (427.1, 500.0)

0.15 (448.5, 747.3) (441.0, 652.1) (406.5, 536.2) (375.5, 469.8) (337.6, 400.3) (289.6, 290.8)
(448.6, 747.2) (441.0, 651.8) (406.5, 535.9) (375.4, 469.7) (337.5, 400.0) (289.6, 290.8)

0.20 (366.1, 476.2) (377.2, 463.8) (386.7, 446.9) (392.9, 448.1) (409.8, 468.7) (488.7, 549.2)
(366.1, 476.2) (377.3, 463.7) (386.7, 446.8) (393.0, 448.2) (409.9, 468.8) (488.8, 549.3)

n = 75

0.01 (1179.2, 5019.0) (635.5, 3060.3) (362.0, 833.4) (369.7, 461.4) (401.0, 465.1) (470.4, 477.0)
(1177.0, 5012.7) (634.1, 3053.1) (361.9, 830.2) (369.8, 461.3) (401.1, 465.1) (470.4, 477.0)

0.02 (1184.2, 50250.6) (486.4, 1810.9) (345.0, 623.3) (309.7, 550.8) (250.6, 475.1) (128.9, 208.9)
(1179.6, 49415.1) (485.7, 1803.1) (344.9, 622.8) (309.6, 550.7) (250.5, 474.8) (128.8, 208.5)

0.05 (919.6, 5555.2) (516.4, 1270.3) (389.6, 597.9) (374.5, 504.9) (371.5, 499.4) (341.9, 473.5)
(917.6, 5521.4) (515.9, 1266.9) (389.5, 597.3) (374.5, 504.8) (371.4, 499.4) (341.8, 473.4)

0.10 (448.7, 747.3) (456.7, 704.2) (417.4, 553.2) (380.8, 478.5) (340.2, 405.2) (289.8, 291.4)
(448.7, 747.2) (456.7, 703.9) (417.4, 553.0) (380.7, 478.4) (340.1, 405.0) (289.8, 291.4)

0.15 (375.5, 485.7) (390.2, 480.9) (405.4, 483.9) (409.4, 484.2) (397.8, 469.1) (324.6, 351.9)
(375.6, 485.7) (390.3, 480.9) (405.4, 483.9) (409.4, 484.2) (397.7, 469.0) (324.5, 351.7)

0.20 (329.2, 409.1) (368.3, 438.6) (389.5, 444.7) (388.6, 426.6) (375.3, 394.5) (355.6, 355.3)
(329.2, 409.2) (368.4, 438.7) (389.5, 444.6) (388.6, 426.5) (375.3, 394.4) (355.6, 355.3)

n = 100

0.01 (1017.6, 2302.8) (981.7, 2240.0) (535.2, 1570.9) (328.6, 1081.4) (196.7, 550.4) (155.3, 154.8)
(1017.4, 2302.5) (981.2, 2239.4) (534.4, 1569.5) (328.0, 1079.7) (196.4, 548.9) (155.3, 154.8)

0.02 (1854.5, 58925.7) (677.3, 3072.1) (437.4, 852.9) (355.2, 696.1) (258.8, 504.6) (171.9, 177.8)
(1845.7, 58349.4) (676.2, 3053.8) (437.1, 852.0) (354.9, 695.6) (258.6, 504.0) (171.9, 177.7)

0.05 (982.9, 3235.6) (655.7, 1562.8) (474.5, 722.2) (428.3, 607.7) (388.4, 557.8) (265.6, 347.6)
(981.7, 3229.7) (655.1, 1559.4) (474.4, 721.5) (428.2, 607.5) (388.2, 557.7) (265.5, 347.3)

0.10 (386.2, 520.0) (384.1, 480.7) (388.5, 451.4) (396.2, 453.3) (413.7, 474.2) (489.9, 551.7)
(386.3, 519.9) (384.1, 480.6) (388.5, 451.4) (396.2, 453.4) (413.7, 474.3) (490.0, 551.8)

0.15 (330.5, 410.0) (367.6, 438.9) (390.9, 446.6) (390.6, 430.5) (377.0, 397.7) (355.7, 355.4)
(330.6, 410.1) (367.7, 439.0) (390.9, 446.6) (390.5, 430.4) (376.9, 397.6) (355.7, 355.4)

0.20 (317.7, 373.2) (348.9, 392.6) (375.1, 407.5) (376.0, 401.0) (362.3, 381.9) (319.5, 323.2)
(317.8, 373.3) (349.0, 392.6) (375.1, 407.5) (376.0, 400.9) (362.2, 381.8) (319.5, 323.1)

16



Table 6: Exact and approximate (ARL0, SDRL0) for the hypergeometric np chart with N = 1000, n ∈
{25, 50, 75, 100}, p0 ∈ {0.01, 0.02, 0.05, 0.10, 0.15, 0.20}, m ∈ {10, 20, 50, 100, 200, 1000}, K = 3

p0 m = 10 m = 20 m = 50 m = 100 m = 200 m = 1000

n = 25

0.01 (426.1, 11240.4) (216.9, 1083.9) (122.2, 323.3) (85.0, 241.3) (55.6, 141.8) (41.9, 41.4)
(425.0, 11105.3) (216.7, 1080.9) (122.1, 323.1) (85.0, 241.2) (55.6, 141.7) (41.9, 41.4)

0.02 (430.8, 5780.5) (253.7, 825.8) (135.4, 316.1) (100.8, 191.8) (85.6, 98.0) (84.1, 83.6)
(430.0, 5745.7) (253.5, 824.1) (135.4, 315.9) (100.7, 191.6) (85.6, 97.9) (84.1, 83.6)

0.05 (556.3, 3064.8) (301.2, 790.4) (197.7, 357.2) (165.5, 216.9) (158.1, 162.2) (157.6, 157.1)
(555.7, 3054.4) (301.1, 789.3) (197.7, 357.0) (165.5, 216.8) (158.1, 162.2) (157.6, 157.1)

0.10 (569.5, 3120.9) (371.7, 848.9) (295.9, 439.5) (277.5, 392.0) (266.5, 381.2) (219.0, 329.3)
(568.9, 3111.0) (371.5, 847.9) (295.9, 439.3) (277.5, 392.0) (266.5, 381.2) (219.0, 329.2)

0.15 (745.7, 3323.5) (460.6, 995.3) (363.7, 525.5) (360.9, 459.7) (373.1, 465.4) (411.7, 488.5)
(745.0, 3315.7) (460.4, 994.3) (363.7, 525.2) (360.9, 459.7) (373.1, 465.4) (411.7, 488.5)

0.20 (756.6, 2072.3) (532.1, 1086.2) (444.1, 642.4) (414.6, 563.4) (394.5, 542.2) (315.7, 447.1)
(756.3, 2071.0) (531.9, 1085.4) (444.1, 642.1) (414.6, 563.3) (394.5, 542.1) (315.6, 447.0)

n = 50

0.01 (554.2, 12310.4) (227.0, 1027.7) (152.4, 377.4) (104.8, 196.4) (92.0, 103.8) (90.8, 90.3)
(553.0, 12194.3) (226.8, 1025.1) (152.3, 377.1) (104.7, 196.2) (92.0, 103.7) (90.8, 90.3)

0.02 (577.4, 5163.4) (293.1, 837.7) (201.3, 339.3) (187.4, 311.5) (167.8, 289.5) (97.0, 172.9)
(576.6, 5139.2) (293.0, 836.4) (201.2, 339.2) (187.3, 311.5) (167.7, 289.5) (96.9, 172.8)

0.05 (586.6, 3088.8) (373.9, 865.0) (277.1, 405.5) (267.1, 351.9) (265.8, 349.1) (275.4, 356.0)
(586.0, 3078.5) (373.7, 864.0) (277.0, 405.3) (267.1, 351.9) (265.8, 349.1) (275.4, 356.1)

0.10 (708.3, 2450.1) (451.6, 957.4) (357.7, 512.0) (342.4, 402.9) (356.5, 387.4) (401.0, 404.4)
(707.7, 2447.0) (451.4, 956.3) (357.7, 511.8) (342.4, 402.9) (356.5, 387.5) (401.0, 404.4)

0.15 (449.6, 709.9) (422.8, 622.7) (376.0, 479.3) (359.0, 436.7) (341.2, 415.9) (279.0, 334.0)
(449.6, 709.9) (422.7, 622.6) (376.0, 479.2) (359.0, 436.6) (341.2, 415.9) (278.9, 333.9)

0.20 (364.5, 461.3) (375.6, 445.2) (390.2, 437.3) (407.9, 443.5) (435.5, 458.4) (477.3, 478.2)
(364.5, 461.3) (375.7, 445.2) (390.2, 437.3) (408.0, 443.6) (435.5, 458.5) (477.3, 478.2)

n = 75

0.01 (781.1, 13598.1) (273.6, 1150.0) (196.8, 367.3) (200.5, 230.1) (217.3, 227.9) (230.4, 229.9)
(779.5, 13477.1) (273.4, 1147.1) (196.8, 366.9) (200.5, 230.1) (217.3, 227.9) (230.4, 229.9)

0.02 (629.9, 4665.0) (346.2, 906.3) (255.1, 386.7) (248.4, 344.3) (247.1, 342.8) (245.5, 341.6)
(629.2, 4643.4) (346.0, 905.0) (255.1, 386.5) (248.4, 344.3) (247.1, 342.8) (245.5, 341.6)

0.05 (669.1, 3380.2) (413.7, 899.6) (318.5, 464.3) (303.7, 359.7) (321.3, 351.2) (363.0, 366.2)
(668.4, 3370.7) (413.5, 898.5) (318.5, 464.1) (303.7, 359.7) (321.3, 351.2) (363.0, 366.2)

0.10 (475.2, 787.2) (420.1, 627.8) (365.5, 459.8) (351.0, 410.4) (348.5, 403.0) (347.3, 401.5)
(475.2, 787.1) (420.1, 627.6) (365.4, 459.7) (351.0, 410.3) (348.5, 403.0) (347.3, 401.5)

0.15 (370.4, 510.0) (383.2, 498.1) (387.3, 464.9) (379.1, 425.2) (386.0, 416.1) (431.2, 440.7)
(370.5, 510.1) (383.3, 498.1) (387.2, 464.9) (379.1, 425.1) (386.0, 416.2) (431.2, 440.7)

0.20 (338.8, 422.7) (359.8, 421.4) (364.9, 398.1) (361.5, 381.5) (359.9, 376.4) (358.8, 374.5)
(338.8, 422.7) (359.9, 421.4) (364.9, 398.1) (361.5, 381.4) (359.9, 376.4) (358.8, 374.5)

n = 100

0.01 (694.0, 22713.8) (345.1, 1221.0) (252.0, 468.0) (203.3, 390.0) (161.3, 324.6) (86.7, 117.2)
(692.7, 22439.4) (344.8, 1218.5) (251.9, 467.8) (203.2, 389.9) (161.2, 324.5) (86.6, 117.1)

0.02 (684.0, 5737.5) (372.8, 1032.0) (281.9, 438.9) (277.8, 386.1) (271.7, 380.3) (261.1, 371.7)
(683.0, 5711.7) (372.6, 1030.5) (281.9, 438.7) (277.8, 386.1) (271.7, 380.3) (261.1, 371.7)

0.05 (720.3, 2861.2) (451.1, 973.3) (357.8, 513.5) (338.9, 404.4) (354.0, 386.5) (400.3, 404.1)
(719.7, 2856.2) (451.0, 972.2) (357.7, 513.2) (338.9, 404.3) (354.0, 386.5) (400.3, 404.1)

0.10 (372.5, 508.1) (392.6, 516.0) (390.5, 486.0) (373.3, 436.9) (352.8, 381.9) (335.1, 334.7)
(372.6, 508.1) (392.7, 516.0) (390.5, 486.0) (373.2, 436.8) (352.8, 381.8) (335.1, 334.7)

0.15 (339.0, 419.5) (356.1, 418.6) (370.0, 412.4) (382.5, 417.2) (403.1, 434.4) (469.8, 483.8)
(339.1, 419.5) (356.2, 418.6) (370.0, 412.4) (382.5, 417.2) (403.1, 434.4) (469.8, 483.8)

0.20 (312.6, 363.1) (339.1, 374.4) (363.7, 384.4) (378.7, 393.3) (394.1, 403.1) (415.7, 415.5)
(312.6, 363.2) (339.1, 374.4) (363.7, 384.4) (378.7, 393.3) (394.1, 403.1) (415.7, 415.5)
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Table 7: Exact and approximate (ARL0, SDRL0) for the hypergeometric np chart with N = 2000, n ∈
{25, 50, 75, 100}, p0 ∈ {0.01, 0.02, 0.05, 0.10, 0.15, 0.20}, m ∈ {10, 20, 50, 100, 200, 1000}, K = 3

p0 m = 10 m = 20 m = 50 m = 100 m = 200 m = 1000

n = 25

0.01 (340.7, 5663.0) (188.3, 826.8) (109.9, 280.2) (77.9, 210.2) (52.4, 125.1) (40.3, 39.8)
(340.3, 5635.8) (188.2, 825.8) (109.9, 280.1) (77.9, 210.1) (52.4, 125.0) (40.3, 39.8)

0.02 (369.4, 4129.8) (227.1, 695.8) (124.9, 280.7) (94.5, 172.6) (81.4, 95.4) (79.6, 79.1)
(369.1, 4118.4) (227.0, 695.2) (124.9, 280.6) (94.5, 172.5) (81.4, 95.4) (79.6, 79.1)

0.05 (499.2, 2922.3) (276.2, 702.1) (186.6, 325.6) (158.5, 212.1) (149.1, 154.6) (148.1, 147.6)
(498.9, 2916.7) (276.2, 701.6) (186.6, 325.5) (158.5, 212.0) (149.1, 154.6) (148.1, 147.6)

0.10 (591.4, 2783.5) (367.6, 845.6) (290.9, 425.5) (277.9, 379.3) (268.7, 370.9) (246.2, 350.4)
(591.1, 2779.4) (367.5, 845.1) (290.9, 425.4) (277.9, 379.2) (268.7, 370.9) (246.2, 350.4)

0.15 (688.4, 2955.0) (459.3, 1018.2) (354.3, 508.4) (353.4, 440.0) (370.3, 446.3) (425.8, 474.5)
(688.1, 2951.6) (459.2, 1017.7) (354.3, 508.3) (353.4, 440.0) (370.4, 446.3) (425.8, 474.5)

0.20 (697.4, 1872.1) (546.5, 1106.4) (431.5, 618.7) (417.6, 550.8) (410.7, 543.3) (366.4, 501.0)
(697.3, 1871.5) (546.4, 1106.0) (431.4, 618.5) (417.6, 550.8) (410.7, 543.3) (366.4, 501.0)

n = 50

0.01 (382.0, 4557.7) (232.5, 722.3) (127.1, 288.0) (95.8, 176.5) (82.3, 96.9) (80.5, 80.0)
(381.7, 4543.6) (232.4, 721.7) (127.0, 287.9) (95.8, 176.4) (82.3, 96.8) (80.5, 80.0)

0.02 (442.2, 3151.6) (243.4, 669.4) (187.8, 299.7) (182.5, 279.9) (166.6, 265.0) (118.8, 206.7)
(441.9, 3144.9) (243.4, 668.8) (187.8, 299.6) (182.5, 279.9) (166.6, 265.0) (118.8, 206.7)

0.05 (543.8, 2804.1) (321.6, 747.7) (254.2, 373.6) (252.0, 316.6) (263.9, 321.0) (300.3, 340.0)
(543.5, 2800.1) (321.5, 747.2) (254.1, 373.5) (252.0, 316.6) (263.9, 321.0) (300.3, 340.0)

0.10 (636.9, 1991.2) (426.5, 880.7) (339.7, 475.9) (320.7, 375.1) (329.0, 346.6) (353.1, 353.0)
(636.7, 1990.0) (426.5, 880.2) (339.7, 475.8) (320.7, 375.0) (329.0, 346.6) (353.1, 353.0)

0.15 (428.8, 707.1) (407.7, 605.2) (366.9, 459.1) (352.6, 414.7) (350.4, 409.5) (337.3, 398,3)
(428.8, 707.0) (407.7, 605.1) (366.9, 459.0) (352.6, 414.7) (350.4, 409.5) (337.3, 398,3)

0.20 (364.9, 482.9) (368.1, 447.1) (390.6, 455.4) (395.5, 434.2) (405.4, 420.5) (419.5, 419.0)
(364.9, 482.9) (368.1, 447.1) (390.6, 455.4) (395.5, 434.2) (405.4, 420.5) (419.5, 419.0)

n = 75

0.01 (452.7, 4330.7) (250.1, 728.7) (164.8, 286.7) (163.6, 182.8) (172.4, 177.1) (178.6, 178.1)
(452.3, 4319.3) (250.0, 728.1) (164.7, 286.6) (163.6, 182.8) (172.4, 177.1) (178.6, 178.1)

0.02 (487.0, 2977.2) (290.4, 728.1) (214.4, 321.2) (219.1, 280.3) (227.9, 283.7) (265.8, 301.1)
(486.7, 2971.0) (290.3, 727.6) (214.4, 321.1) (219.1, 280.3) (227.9, 283.7) (265.8, 301.1)

0.05 (602.5, 2618.7) (367.6, 789.1) (288.2, 414.1) (270.7, 319.1) (278.5, 291.6) (295.3, 294.9)
(602.2, 2615.0) (367.5, 788.7) (288.2, 414.0) (270.7, 319.0) (278.5, 291.6) (295.3, 294.9)

0.10 (455.6, 747.4) (399.7, 581.4) (356.8, 440.9) (352.0, 403.4) (367.2, 407.0) (422.1, 438.1)
(455.6, 747.3) (399.7, 581.3) (356.8, 440.9) (352.0, 403.3) (367.2, 407.0) (422.1, 438.1)

0.15 (374.9, 516.2) (381.7, 491.2) (366.9, 436.7) (354.9, 392.6) (353.5, 367.8) (366.9, 366.8)
(374.9, 516.2) (381.7, 491.2) (366.9, 436.7) (354.9, 392.6) (353.5, 367.8) (366.9, 366.8)

0.20 (331.8, 408.7) (361.4, 421.7) (371.2, 411.9) (384.8, 418.2) (409.0, 437.6) (472.8, 481.6)
(331.8, 408.7) (361.4, 421.7) (371.2, 411.9) (384.8, 418.2) (409.0, 437.6) (472.8, 481.6)

n = 100

0.01 (524.0, 4395.5) (274.1, 756.1) (209.0, 339.4) (189.3, 303.3) (166.7, 279.7) (104.1, 187.2)
(523.6, 4384.9) (274.0, 755.6) (209.0, 339.4) (189.3, 303.2) (166.7, 279.7) (104.1, 187.2)

0.02 (523.6, 3216.3) (299.2, 726.4) (240.6, 354.0) (236.7, 296.4) (251.6, 301.2) (269.7, 320.6)
(523.3, 3210.2) (299.2, 725.9) (240.6, 353.9) (236.7, 296.4) (251.6, 301.2) (269.7, 320.6)

0.05 (664.2, 2495.3) (420.5, 876.7) (323.4, 460.8) (297.2, 355.4) (293.6, 307.5) (302.2, 301.7)
(663.9, 2493.2) (420.4, 876.2) (323.3, 460.7) (297.1, 355.4) (293.6, 307.5) (302.2, 301.7)

0.10 (400.0, 597.2) (390.3, 544.9) (363.2, 452.5) (346.2, 405.6) (325.9, 374.3) (270.0, 283.4)
(400.0, 597.2) (390.3, 544.9) (363.2, 452.5) (346.1, 405.6) (325.9, 374.3) (270.0, 283.4)

0.15 (336.5, 421.8) (356.1, 427.1) (369.8, 420.2) (374.4, 410.7) (375.4, 393.7) (378.3, 377.9)
(336.5, 421.8) (356.1, 427.1) (369.8, 420.2) (374.4, 410.7) (375.4, 393.7) (378.3, 377.9)

0.20 (315.1, 376.4) (348.0, 396.4) (367.3, 403.5) (371.8, 400.2) (360.8, 381.5) (323.8, 326.7)
(315.1, 376.4) (348.0, 396.4) (367.3, 403.5) (371.8, 400.2) (360.8, 381.5) (323.8, 326.7)
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Table 8: Exact and approximate (ARL0, SDRL0) for the hypergeometric np chart with N = 5000, n ∈
{25, 50, 75, 100}, p0 ∈ {0.01, 0.02, 0.05, 0.10, 0.15, 0.20}, m ∈ {10, 20, 50, 100, 200, 1000}, K = 3

p0 m = 10 m = 20 m = 50 m = 100 m = 200 m = 1000

n = 25

0.01 (304.0, 4198.0) (174.6, 719.4) (135.5, 310.6) (88.6, 228.3) (54.8, 133.8) (39.4, 38.9)
(303.9, 4190.7) (174.6, 719.1) (135.4, 310.6) (88.6, 228.3) (54.8, 133.7) (39.4, 38.9)

0.02 (339.8, 3464.3) (213.4, 633.7) (138.7, 305.8) (96.4, 183.8) (79.4, 96.1) (77.1, 76.6)
(339.6, 3460.6) (213.4, 633.4) (138.7, 305.8) (96.4, 183.8) (79.4, 96.1) (77.1, 76.6)

0.05 (468.6, 2685.7) (262.8, 656.3) (191.0, 338.6) (156.1, 214.6) (144.4, 152.1) (142.9, 142.4)
(468.5, 2683.6) (262.8, 656.1) (191.0, 338.5) (156.1, 214.5) (144.4, 152.1) (142.9, 142.4)

0.10 (606.6, 2832.2) (353.2, 834.1) (279.0, 406.1) (275.8, 369.9) (270.9, 365.2) (262.2, 358.1)
(606.4, 2830.7) (353.1, 833.9) (279.0, 406.1) (275.8, 369.9) (270.9, 365.2) (262.2, 358.1)

0.15 (680.2, 2760.5) (457.2, 968.4) (354.7, 507.6) (347.0, 427.2) (365.6, 433.4) (427.6, 462.5)
(680.1, 2759.3) (457.2, 968.2) (354.7, 507.6) (347.0, 427.2) (365.6, 433.4) (427.6, 462.5)

0.20 (665.3, 1764.4) (523.6, 1051.7) (430.8, 614.4) (420.5, 544.1) (415.0, 537.4) (396.7, 522.0)
(665.2, 1764.2) (523.6, 1051.6) (430.8, 614.3) (420.5, 544.1) (415.0, 537.4) (396.7, 522.0)

n = 50

0.01 (319.9, 3083.6) (204.3, 592.5) (134.0, 291.5) (93.9, 176.0) (77.7, 93.3) (75.4, 74.9)
(319.8, 3080.3) (204.3, 592.3) (134.0, 291.5) (93.9, 176.0) (77.6, 93.3) (75.4, 74.9)

0.02 (384.6, 2636.8) (219.3, 575.1) (187.3, 287.8) (177.2, 261.3) (167.1, 252.6) (133.8, 218.7)
(384.5, 2634.4) (219.2, 574.9) (187.3, 287.8) (177.2, 261.3) (167.1, 252.6) (133.8, 218.6)

0.05 (538.2, 2574.5) (329.2, 711.7) (245.7, 357.6) (244.2, 298.7) (254.8, 300.6) (299.0, 320.9)
(538.1, 2572.9) (329.1, 711.6) (245.7, 357.6) (244.2, 298.7) (254.8, 300.6) (299.0, 320.9)

0.10 (659.9, 2253.3) (427.8, 874.3) (331.1, 468.3) (308.7, 362.2) (311.8, 325.4) (326.7, 326.3)
(659.8, 2252.7) (427.8, 874.1) (331.1, 468.2) (308.7, 362.1) (311.8, 325.4) (326.7, 326.3)

0.15 (451.0, 725.3) (407.8, 601.2) (365.2, 455.3) (356.0, 416.8) (364.3, 421.3) (399.1, 456.2)
(451.0, 725.3) (407.8, 601.2) (365.2, 455.3) (356.0, 416.8) (364.3, 421.3) (399.1, 456.2)

0.20 (370.3, 494.8) (383.6, 492.7) (393.0, 476.6) (392.9, 446.2) (387.7, 405.8) (388.6, 388.1)
(370.3, 494.8) (383.6, 492.7) (393.0, 476.6) (392.9, 446.2) (387.7, 405.8) (388.6, 388.1)

n = 75

0.01 (354.0, 2707.6) (213.5, 641.3) (155.9, 268.2) (146.9, 166.0) (152.8, 155.5) (156.6, 156.1)
(353.9, 2705.0) (213.5, 641.0) (155.9, 268.2) (146.9, 166.0) (152.8, 155.5) (156.6, 156.1)

0.02 (412.1, 2470.8) (267.1, 636.7) (199.8, 292.9) (205.0, 251.3) (216.8, 254.8) (255.1, 269.3)
(412.0, 2469.1) (267.0, 636.5) (199.8, 292.9) (205.0, 251.3) (216.8, 254.8) (255.1, 269.3)

0.05 (536.0, 2326.6) (356.2, 743.7) (275.5, 392.8) (255.1, 303.3) (255.0, 264.6) (261.9, 261.5)
(535.9, 2325.4) (356.1, 743.5) (275.5, 392.8) (255.0, 303.2) (255.0, 264.6) (261.9, 261.5)

0.10 (418.8, 685.9) (380.8, 543.9) (346.6, 421.7) (341.9, 384.6) (353.6, 378.5) (392.6, 395.6)
(418.8, 685.9) (380.8, 543.8) (346.6, 421.7) (341.9, 384.6) (353.6, 378.5) (392.6, 395.6)

0.15 (361.7, 499.9) (370.6, 483.0) (363.0, 427.4) (351.6, 387.5) (345.0, 359.4) (340.4, 341.4)
(361.7, 499.9) (370.6, 483.0) (363.0, 427.4) (351.6, 387.5) (345.1, 359.4) (340.4, 341.4)

0.20 (334.5, 407.8) (357.0, 409.2) (368.4, 401.3) (382.8, 406.4) (400.7, 416.4) (434.4, 435.1)
(334.5, 407.8) (357.0, 409.2) (368.4, 401.3) (382.8, 406.4) (400.7, 416.4) (434.4, 435.1)

n = 100

0.01 (384.6, 2636.8) (243.3, 668.9) (187.3, 287.8) (177.2, 261.4) (167.1, 252.6) (133.8, 218.7)
(384.5, 2634.4) (243.2, 668.7) (187.3, 287.8) (177.2, 261.4) (167.1, 252.6) (133.8, 218.6)

0.02 (452.4, 2273.7) (284.5, 649.9) (216.0, 320.2) (215.6, 259.2) (231.0, 259.9) (267.6, 272.8)
(452.3, 2272.3) (284.5, 649.7) (216.0, 320.2) (215.6, 259.2) (231.0, 259.9) (267.6, 272.8)

0.05 (585.4, 2292.5) (383.8, 774.8) (304.2, 427.0) (278.9, 342.7) (262.3, 280.8) (258.1, 257.6)
(585.3, 2291.5) (383.8, 774.6) (304.2, 427.0) (278.9, 342.6) (262.3, 280.8) (258.1, 257.6)

0.10 (391.2, 571.8) (378.6, 526.1) (349.0, 428.0) (335.5, 385.1) (326.2, 370.3) (288.1, 328.4)
(391.2, 571.8) (378.6, 526.1) (348.9, 428.0) (335.5, 385.1) (326.2, 370.3) (288.1, 328.3)

0.15 (334.1, 420.4) (352.7, 422.7) (367.2, 422.7) (365.4, 407.8) (352.1, 377.4) (325.7, 326.0)
(334.1, 420.4) (352.7, 422.7) (367.2, 422.7) (365.4, 407.8) (352.1, 377.4) (325.7, 326.0)

0.20 (323.4, 386.7) (347.3, 396.6) (363.8, 396.8) (363.1, 385.1) (355.8, 373.9) (320.9, 337.6)
(323.4, 386.7) (347.3, 396.6) (363.8, 396.8) (363.1, 385.1) (355.8, 373.9) (320.9, 337.6)
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Table 9: Exact and approximate (ARL0, SDRL0) for the hypergeometric np chart with N = 10000, n ∈
{25, 50, 75, 100}, p0 ∈ {0.01, 0.02, 0.05, 0.10, 0.15, 0.20}, m ∈ {10, 20, 50, 100, 200, 1000}, K = 3

p0 m = 10 m = 20 m = 50 m = 100 m = 200 m = 1000

n = 25

0.01 (293.4, 3844.4) (170.5, 689.0) (132.7, 302.8) (87.1, 222.8) (54.2, 130.8) (39.1, 38.7)
(293.4, 3841.1) (170.5, 688.8) (132.7, 302.8) (87.1, 222.8) (54.2, 130.8) (39.1, 38.7)

0.02 (330.8, 3278.9) (209.2, 615.0) (136.6, 299.1) (95.3, 180.2) (78.6, 94.8) (76.3, 75.8)
(330.8, 3277.2) (209.2, 614.9) (136.5, 299.1) (95.3, 180.2) (78.6, 94.8) (76.3, 75.8)

0.05 (459.1, 2595.6) (258.6, 642.0) (188.4, 332.6) (154.3, 211.3) (142.7, 150.2) (141.2, 140.7)
(459.0, 2594.6) (258.6, 642.0) (188.4, 332.5) (154.3, 211.3) (142.7, 150.2) (141.2, 140.7)

0.10 (595.8, 2761.4) (348.0, 818.4) (277.0, 410.7) (272.1, 364.7) (273.6, 364.8) (267.2, 359.8)
(595.7, 2760.7) (347.9, 818.3) (277.0, 410.7) (272.1, 364.7) (273.6, 364.8) (267.2, 359.8)

0.15 (669.8, 2770.7) (450.6, 951.7) (350.0, 500.2) (349.7, 425.6) (365.6, 430.0) (427.1, 458.2)
(669.7, 2770.1) (450.6, 951.6) (350.0, 500.2) (349.7, 425.6) (365.6, 430.0) (427.2, 458.2)

0.20 (692.9, 1995.2) (520.8, 1096.8) (425.1, 605.5) (414.9, 536.4) (416.2, 535.2) (406.4, 527.3)
(692.9, 1995.0) (520.8, 1096.7) (425.1, 605.5) (414.9, 536.4) (416.2, 535.2) (406.4, 527.3)

n = 50

0.01 (303.2, 2754.1) (196.3, 565.6) (129.8, 278.7) (91.6, 169.1) (76.7, 95.6) (73.9, 73.4)
(303.2, 2752.6) (196.3, 565.5) (129.8, 278.7) (91.6, 169.1) (76.7, 95.6) (73.9, 73.4)

0.02 (368.1, 2433.0) (234.9, 636.8) (181.7, 277.9) (172.0, 252.7) (162.3, 244.3) (138.9, 221.4)
(368.0, 2432.0) (234.9, 636.7) (181.7, 277.9) (172.0, 252.7) (162.3, 244.3) (138.9, 221.4)

0.05 (518.9, 2437.1) (319.3, 685.0) (239.1, 346.8) (237.8, 291.3) (251.7, 294.2) (296.5, 314.0)
(518.8, 2436.4) (319.3, 684.9) (239.1, 346.8) (237.8, 291.3) (251.7, 294.2) (296.5, 314.0)

0.10 (638.6, 2157.5) (415.8, 844.7) (326.8, 455.6) (305.0, 358.4) (306.2, 318.9) (318.4, 318.0)
(638.5, 2157.2) (415.8, 844.6) (326.8, 455.6) (305.0, 358.4) (306.2, 318.9) (318.4, 318.0)

0.15 (438.9, 704.5) (397.4, 584.8) (359.8, 451.4) (355.7, 416.1) (367.3, 423.7) (415.4, 466.4)
(438.9, 704.5) (397.4, 584.7) (359.8, 451.3) (355.7, 416.1) (367.3, 423.7) (415.4, 466.4)

0.20 (361.1, 481.8) (388.4, 498.3) (397.2, 486.4) (392.6, 449.3) (381.7, 401.0) (379.1, 378.6)
(361.1, 481.8) (388.4, 498.3) (397.2, 486.4) (392.6, 449.3) (381.7, 401.0) (379.1, 378.6)

n = 75

0.01 (329.1, 2356.4) (202.2, 589.5) (149.2, 252.6) (141.0, 158.9) (147.3, 149.4) (150.3, 149.8)
(329.1, 2355.4) (202.2, 589.4) (149.2, 252.5) (141.0, 158.9) (147.3, 149.4) (150.3, 149.8)

0.02 (388.2, 2232.9) (254.4, 596.1) (194.3, 293.4) (196.5, 241.0) (211.5, 245.4) (248.8, 258.9)
(388.2, 2232.2) (254.4, 596.0) (194.3, 293.4) (196.5, 241.0) (211.5, 245.4) (248.8, 258.9)

0.05 (514.8, 2334.0) (341.5, 719.5) (271.6, 391.4) (251.2, 302.9) (247.3, 257.2) (252.1, 251.6)
(514.8, 2333.4) (341.5, 719.4) (271.6, 391.4) (251.2, 302.9) (247.3, 257.2) (252.1, 251.6)

0.10 (402.8, 657.8) (368.5, 522.9) (342.9, 414.9) (337.4, 377.4) (347.1, 368.1) (379.9, 381.3)
(402.8, 657.8) (368.5, 522.9) (342.9, 414.9) (337.4, 377.4) (347.1, 368.1) (379.9, 381.3)

0.15 (376.8, 528.5) (377.1, 489.8) (358.4, 420.2) (348.2, 382.8) (342.1, 356.6) (337.7, 338.9)
(376.8, 528.5) (377.1, 489.8) (358.4, 420.2) (348.2, 382.8) (342.1, 356.6) (337.7, 338.9)

0.20 (322.7, 392.7) (349.4, 399.2) (367.0, 396.2) (378.7, 399.0) (393.9, 406.2) (419.2, 419.3)
(322.7, 392.7) (349.4, 399.2) (367.0, 396.2) (378.7, 399.0) (393.9, 406.2) (419.2, 419.3)

n = 100

0.01 (351.4, 2231.6) (226.5, 604.5) (176.0, 268.0) (166.7, 244.0) (164.4, 242.0) (143.7, 223.0)
(351.3, 2230.6) (226.4, 604.4) (176.0, 268.0) (166.7, 244.0) (164.4, 242.0) (143.7, 223.0)

0.02 (420.8, 2293.0) (271.5, 645.7) (215.6, 318.5) (209.0, 248.5) (223.9, 247.6) (255.9, 258.5)
(420.8, 2292.2) (271.5, 645.6) (215.6, 318.5) (209.0, 248.5) (223.9, 247.6) (255.9, 258.5)

0.05 (582.2, 2202.8) (379.4, 777.6) (298.6, 416.9) (273.3, 337.6) (253.7, 275.2) (245.6, 245.1)
(582.1, 2202.4) (379.4, 777.5) (298.6, 416.9) (273.3, 337.6) (253.7, 275.2) (245.6, 245.1)

0.10 (386.8, 585.3) (372.7, 512.1) (346.1, 422.6) (331.0, 376.8) (325.6, 365.3) (306.6, 347.5)
(386.8, 585.3) (372.7, 512.1) (346.1, 422.6) (331.0, 376.8) (325.6, 365.3) (306.6, 347.5)

0.15 (339.2, 422.9) (354.2, 421.7) (363.5, 416.3) (360.5, 401.7) (347.3, 375.1) (311.9, 313.6)
(339.2, 422.9) (354.2, 421.7) (363.5, 416.3) (360.5, 401.7) (347.3, 375.1) (311.9, 313.6)

0.20 (322.9, 392.5) (348.5, 398.7) (360.2, 390.9) (360.2, 379.1) (355.6, 370.3) (336.0, 352.5)
(322.9, 392.5) (348.5, 398.7) (360.2, 390.9) (360.2, 379.1) (355.6, 370.3) (336.0, 352.4)
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