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• This article presents theoretical bases of three methods for determining the probability distribution of the sum of i.i.d. hypergeometric random variables: (1) direct convolution, (2) recursive algorithm by De Pril, (3) approximation.

• We provide associated MATLAB codes (including context-specific customizations) for direct implementation of these methods and discuss technical aspects and essential details of the tweaks we have made.

• A representative application example in SPM shows that the proposed approximation is considerably simpler in application than both other methods and it ensures a remarkable high accuracy of the results while reducing computational time considerably.

Method details

In Sections 1 and 2, we describe the calculation procedures and relevant formulas that are subsidiary or directly used in the methodology as well as code segments for implementing the methods in MATLAB. In Section 3, we provide the code segment and its description for an application of the proposed methods in the framework of SPM. In Section 4, we propose key criteria for choosing the appropriate method to compute the probability distribution of the sum of i.i.d. hypergeometric-distributed random variables. Conclusions in Section 5 complete the method article.

1 is the population size, n is the sample size and p is the population proportion of some attribute of interest, with m, N, n ∈ N * , N > n, p ∈ [0, 1]. The p.m.f. and c.d.f. of X i , i = 1, 2, . . . , m, are then given by

f Xi (x) = f HYP (x|N, n, p) = M x N -M n-x N n
(1.1)

F Xi (x) = F HYP (x|N, n, p) = x j=xmin M j N -M n-j N n (1.2)
where M = N p is the number of units in the population characterized by the attribute of interest.

In the following, the above parameters are referred to as input variables or variables used (see MATLAB code segment 1 with lines 1-12 in Figure 1). In particular, the parameters m, N, n, p are to initialize (see lines 1-4, parameter p is labeled by p 0), while M , x min , x max , mx min , mx max are computed by MATLAB (see lines 6, 9-12, parameter M is labeled by M 0). 2 Methods for determining the probability distribution of X

Direct convolution

As the random variable X = m i=1 X i is in general not hypergeometric-distributed (apart from special cases m = 1 or n = N or p ∈ {0, 1}), we need a practicable way to determine the probability distribution of X. Due to the fact that X 1 , . . . , X m are i.i.d. random variables, this can be achieved by the direct method of convolution. In particular, the probability distribution of the sum of i.i.d. hypergeometric random variables X i , i = 1, . . . , m, is the convolution of their individual distributions.

The m-fold convolution of f Xi and F Xi can be obtained via following recursive equations using general convolution equations (see e.g., Dickson [START_REF] Dickson | Insurance Risk and Ruin[END_REF]),

f X (s) = f (m) Xi (s) = f Xi • • • f Xi (s) ×m = s j=mxmin f (m-1) Xi (s -j)f Xi (j) (2.1) F X (s) = F (m) Xi (s) = F Xi • • • F Xi (s) ×m = s j=mxmin F (m-1) Xi (s -j)f Xi (j) (2.2)
where

f (0) Xi (s) =
1 for s = 0 0 for s > 0 and f

(1)

Xi = f Xi F (0) Xi (s) = 1 and F (1) 
Xi = F Xi and s ∈ {mx min , . . . , mx max }. Note that the order of convolution does not matter. Since there are no closed form solutions for f X and F X , the analytical calculation of f X and F X using convolution is impossible.

As for the numerical calculation of f X and F X with help of (2.1) and (2.2), respectively, code segment 2 (see lines 13-38 in Figure 2) enables for it. In particular, using for loops and if conditions, the calculation of f X (labeled by f x c, line 13) and F X (labeled by S c, line 14) is carried out as 1-, 2-, . . To increase the speed of calculation (while keeping a very high accuracy), the recursive algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF] can be utilized instead of direct convolution for the evaluation of f X and F X . In particular, the numerical calculation of f X and F X via convolution requires an increased computational effort already for mid-sized values of n (50 < n < 100) and m (100 < m < 1000), and a very high computational effort for larger values of n (n ≥ 100) and m (m ≥ 1000).

The standard form of the algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF] with respect to the hypergeometric distribution is given by

f X (s) = f (m) Xi (s) = P (X = s) = (f Xi (0)) m if s = 0 1 f X i (0) s j=1 ((m + 1) j s -1)f Xi (j)P (X = s -j) if s ∈ N * (2.3) F X (s) = F (m) Xi (s) = s j=0 f (m) Xi (j) (2.4)
where X i , i = 1, . . . , m, are i.i.d. hypergeometric random variables with f Xi (0) = 0, i.e., x min = 0 (p 1) is satisfied. In the case of x min > 0, the algorithm in shifted form is to employ, see De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF].

It is worth noting that the algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF] is optimal for the computation of f X and F X using small values of m, n, p, i.e. m ≤ 100, n ≤ 50, p ≤ 0.1. However, for mid-sized values of m (100 < m < 1000), the results of the algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF] converge to zero due to the fact that (f Xi (0)) m = 0 using standard settings of statistical software, i.e., double-precision floating point numbers (like in MATLAB, R,. . . ) instead of variable-precision floating point numbers. On the other hand, the computation of f X and F X with variable-precision floating point numbers is very time expensive for m ≥ 1000 and thus can not be recommended for the researcher/practitioner. Further, higher values of n and/or p lead to single infinitesimal hidden round-off errors, which can raise to substantial errors due to multiplication operations and thus entail unreliable results. This problem in turn stems from standard settings of statistical software.

As for the numerical calculation of f X and F X with help of (2.3) and (2.4), respectively, the code segment 3 (see lines 39-53 in Figure 3) enables for it. In particular, the calculation of f X (labeled by f x p, line 40) and F X (labeled by S p, line 41) is carried out using for loops (see lines 47-53) with initial values f 

The approximation by Johannssen et al. [3]

In order to find a remedy in cases with higher values of m, n or p, Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF] have proposed a new approximation of f X and F X . This approach is neither based on convolution nor on the algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF], but on the approximation of the sum of i.i.d. hypergeometric random variables X i , i = 1, . . . , m, by a hypergeometric-distributed random variable Z of parameters (mN, mn, p), i.e.,

f X (s) ≈ f HYP (s|mN, mn, p) (2.5) F X (s) ≈ F HYP (s|mN, mn, p) (2.6)
Using this approximation, the calculation of f X and F X is considerably simplified, and thus the computational time can be reduced to a few seconds while keeping a remarkable high accuracy. Moreover, a comprehensive range of numerical results shows that the higher the values of m, N, n, the better the approximation (see Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF]). Nonetheless, this method can also be successively used for smaller values of the parameters m, N, n, p resulting in minor deviations from exact results.

As for the numerical calculation of f X and F X with help of (2.5), (1.1) and (2.6), (1.2), respectively, code segment 4 (see lines 54-59 in Figure 4) enables for it. In particular, the calculation of f X (labeled by f x a, line 54) and F X (labeled by S a, line 55) is in turn carried out using for loop (see lines 56-59). 3 An application example in SPM

In this section, we provide an application example of the proposed methods in SPM for the hypergeometric np chart with estimated parameter p 0 (see Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF]). In particular, we show how to calculate inand out-of-control measures, i.e., the average run length (ARL) and its standard deviation (SDRL) associated with this control chart, using p.m.f. f X , which is determined via (1) convolution, (2) the algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF], (3) the new approximation by Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF].

The hypergeometric np chart allows for monitoring the number of nonconformings in finite and infinite horizon processes. The chart with estimated parameter is superior to the one with known parameter as well as to its binomial counterpart (i.e., the binomial np chart), given the parameter p 0 is unknown (see Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF]).

The mathematical model underlying the hypergeometric np chart for the number of nonconforming units is based on the hypergeometric distribution. Let us assume that Y i , i = 1, 2, . . . , k, are k Phase II independent random variables corresponding to the number of nonconforming units obtained after sampling without replacement n units in a population of size N > n, N, n ∈ N * , containing an unknown proportion p 1 ∈ [0, 1] of nonconforming units. By definition, Y i , i = 1, 2, . . . , k, are hypergeometric random variables of parameters (N, n, p 1 ), defined on {y min = max(0, n -N (1p 1 )), . . . , y max = min(N p 1 , n)}.

Further, let p 0 be the in-control proportion of nonconforming units. Given that p 0 is unknown, it has to be estimated from m Phase I independent random variables X i , i = 1, . . . , m, corresponding to the number of nonconforming units obtained after sampling without replacement n units in an in-control population of size N > n (i.e., containing a proportion p 0 ∈ [0, 1] of nonconforming units). By definition, X i , i = 1, . . . , m, are hypergeometric random variables of parameters (N, n, p 0 ) defined on {x min = max(0, n -N (1p 0 )), . . . , x max = min(N p 0 , n)}.

An estimator p0 of p 0 is given by the best linear unbiased estimator (BLUE)

p0 = 1 mn m i=1 X i = X mn
(see Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF]). Since X does in general not follow a hypergeometric distribution, the probability distribution f X (x|m, n, N, p 0 ) of X can be achieved by implementing one of the methods proposed in Section 2. In addition, the Shewhart-type control limits of the hypergeometric np chart with estimated parameter p 0 are given by

LCL = max 0, np 0 -K np 0 (1 -p0 ) N -n N -1 (3.1) UCL = np 0 + K np 0 (1 -p0 ) N -n N -1 (3.2)
where n p 0 corresponds to the center line CL and K > 0 is a chart parameter.

The (unconditional) ARL, SDRL of the hypergeometric np chart with estimated parameter p 0 are defined by

ARL = mxmax x=mxmin f X (x|m, n, N, p 0 ) 1 θ (3.3) SDRL = E[RL 2 ] -ARL 2 (3.4) with θ = 1 -F HYP conditional UCL x m + K x m 1 - x mn N -n N -1 N, n, p 1 + F HYP x m -K x m 1 - x mn N -n N -1 conditional LCL -1 N, n, p 1 (3.5) 
and

E[RL 2 ] = mxmax x=mxmin f X (x|m, n, N, p 0 ) 2 -θ θ 2 (3.6)
where f X (x|m, n, N, p 0 ) is the p.m.f. of X, θ is the probability that the number of nonconforming units in the i-th sample is outside the conditional control limits LCL and UCL (i.e., control limits defined conditionally to X = x), and RL is the run length of the hypergeometric np chart with estimated parameter p 0 .

Considering p 1 = p 0 and p 1 > p 0 , we obtain in-control and out-of-control performance measures, i.e., ARL 0 , SDRL 0 and ARL 1 , SDRL 1 , respectively. Defining p 1 = τ p 0 with τ > 1, the parameters p 0 and τ have to be fixed (see line 4 for p 0 , line 5 for τ , and lines 7-8 for calculation of p 1 in code segment 1).

Remark 3.1 In order to allow adequate comparisons with the performance measures in the known parameter case (given p 0 = p 0 ), the calculation of ARL and SDRL in the estimated parameter case should be performed under the additional condition of reasonable control limits. Due to the nature of Shewhart-type control limits, the (conditional) probability of a violation of the control limits can be equal to zero either for both cases or only for the estimated parameter case (for some values of x, see (3.5)) that results in infinitely large values of ARL and SDRL. While in the first scenario both charts are equivalent, in the second scenario the performance measures of the hypergeometric np chart with estimated parameter p 0 would be biased. To overcome this bias, we propose to use UCL given by (3.2) (which corresponds to UCL in the known parameter case) instead of conditional UCL (see (3.5)) for affected values of x in the calculation of θ. This procedure reduces the bias in an appropriate way by considering θ > 0 instead of θ = 0, i.e., by implementing a reasonable conditional upper control limit UCL < min(N p 0 , n) and UCL < min(N p 1 , n), respectively (see Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF]).

As for the numerical calculation of the in-control and out-of-control measures, code segment 5 (see lines 60-123 in Figure 5) enables for it. It is worth noting that, for instance, ARL 0 is labeled by ARL 0 c, ARL 0 p and ARL 0 a, where c, p and a stands for convolution, algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF] and approximation, respectively. Tagging via c/p/a also holds for ARL with K as a constant to be fixed in line 73),

• conditional center line CL (see line 74) and control limits LCL, UCL (see (3.5), lines 75-77),

• adjusted conditional UCL following the approach of reasonable control limits (see lines 78-79 for initial values of conditional UCL regarding in-control and out-of-control scenarios, labeled by UCL 0 and UCL 1, as well as both if conditions in lines 84-86 and 87-89),

• estimators θ 0 and θ 1 via (3.5) (see lines 90-91, labeled by teta 0 and teta 1, as well as lines 92-96 and 97-101 for exclusion of θ 0 = 0 and θ 1 = 0, caused by standard settings of statistical software, from calculations with help of dummy variables c 0 and c 1 ), while the calculation of SDRL 0 , SDRL 1 (see (3.4), lines 115-117, 118-120) is provided afterwards under subsidiary calculation of expected values E[RL 2 0 ] and E[RL 2 1 ] via (3.6) (see lines 105-107 and 111-113, labeled by E L2 0 c, E L2 0 p, E L2 0 a and E L2 1 c, E L2 1 p, E L2 1 a with initial values given in lines 63-65, 69-71). Code segment 5 ends with output vectors r c, r p, r a (see lines 121-123), which provide the values of ARL 0 , SDRL 0 , ARL 1 , SDRL 1 regarding convolution, algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF] and approximation.

As for numerical results regarding, for instance, the in-control measures of the hypergeometric np chart with estimated parameter p 0 , we provide in the Appendix Tables 3456789, which contain the values of ARL 0 , SDRL 0 for K = 3 and various combinations of parameters N, n, m, p 0 : N ∈ {100, 200, 500, 1000, 2000, 5000, 10000} (see Tables 3456789)

n ∈ {25, 50, 75, 100} (see blocks in Tables 3456789) m ∈ {10, 20, 50, 100, 200, 1000} (see columns in Tables 3456789) p 0 ∈ {0.01, 0.02, 0.05, 0.10, 0.15, 0.20} (see rows in Tables 3456789)

In particular, the first row of each cell of Tables 3456789shows the ordered pair (ARL 0 , SDRL 0 ) calculated via convolution, while the ordered pair (ARL 0 , SDRL 0 ) in each second row is calculated via the approximation by Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF]. The values of ARL 0 , SDRL 0 calculated via convolution correspond to the respective values calculated via the algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF], given N ≥ 200, n ≤ 50, m ≤ 100, p 0 ≤ 0.1. Deviant values of parameters N, n, m, p 0 lead to unreliable results, which is why the respective results obtained by this method (i.e., the algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF]) are not given in Tables 3456789.

It is worth noting that in the case of a total inspection of the population (i.e., N = n = 100), ARL 0 , SDRL 0 turn out to be infinitely large due to the fact that the type I error is equal to zero. In addition, for N ∈ {100, 200} and p 0 ∈ {0.01, 0.02}, the values of ARL 0 and SDRL 0 can in turn be infinitely large (see Tables 34). The reason for these exceptions is given by the fact that these parameter combinations do not ensure reasonable control limits and thus the (conditional) probability of a violation of the control limits is equal to zero for some values of x in the estimated parameter case as well as throughout in the known parameter case (see also Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF]).

The results of Tables 3-9 can be summarized as follows: The values of the in-control measures calculated via the approximation by Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF] (ARL a 0 , SDRL a 0 ) are throughout approximately equal to the respective exact in-control measures obtained via convolution (ARL c 0 , SDRL c 0 ). In particular, we observe • no tendency for a systematic deviation (ARL c 0 -ARL a 0 , SDRL c 0 -SDRL a 0 ) to one direction regarding n, • a negative tendency regarding p 0 for smaller values of N (N ≤ 100), and

• a positive tendency regarding m and smaller values of N .

For increasing values of N, n, m or p 0 , the difference between exact and approximate values for in-control measures decreases in a monotonic way and seems to converge to zero. For instance, the maximum of the relative deviation regarding ARL 0

|ARL c 0 -ARL a 0 | ARL c 0
• 100% is 2.21% for N = 100 and 0.07% for N = 10000. We mostly observe relative deviations regarding ARL 0 that are < 0.1% for N ≤ 1000 and < 0.05% for N > 1000. These negligible deviations between exact and approximate results are also confirmed when considering outof-control measures, see Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF]. That is, the new approximation is preferable for calculations due to considerable reductions of computational time, in particular for larger parameter values.

How to choose the appropriate method

In this section, we propose three key criteria for choosing the appropriate method to compute the probability distribution of the sum of i.i.d. hypergeometric-distributed random variables:

1. accuracy of results

computational effort

grade of simplicity

As there is mostly a trade-off between the satisfaction of these criteria, the "right" choice is dependent on various problem-based factors and up to the practitioner/researcher, and therefore, often a subjective decision. For instance, when cost aspects due to possible inaccuracies of the obtained results are more crucial than computational effort aspects or vice versa, this may lead to different final decisions. On the other hand, there are often real-life situations, where a decision must be made at short notice, i.e., without weighting of single criteria. In the following, we provide appropriate solutions for both these possible settings, based on comprehensive numerical analyzes, in terms of detailed descriptions of considered criteria with regard to single methods (see Table 1) as well as of facilitated guidelines for quick implementations (see decision tree in Figure 6).

Considering Table 1, the practitioner can use color coded ranking, i.e., green as the first choice, yellow as the second choice and red as the third choice, for decision making in single categories under consideration of the magnitude of the parameters m, n, p, N , i.e., low/middle/high. In addition, there are detailed comments (see also the legend in Table 2 related to the entries of Table 1) on the effects of the magnitude of the parameters, which can vary between extremely low and extremely high for the driving parameters (highlighted in bold type) or they are stated in the way "minor/increasing/decreasing" regarding parameters that are less important in a particular category. Finally, there are entries like "exact", "unreliable" or "(minor) deviations" with respect to exact results, inappropriate methods and approximate results in the category "accuracy of results" (see also detailed explanations in Table 2). • the algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF], as it provides exact results and a reduced computational effort/grade of complexity in comparison to convolution, or

• the approximation, as it ensures an extremely low computational effort while providing a very high grade of simplicity combined with an extremely high accuracy of the approximate results (near to exact results due to relative deviations < 0.05%). decreasing deviations between approximate and exact results as a result of increasing magnitude of the respective parameter minor deviations approximate results with minor deviations from the exact results unreliable unreliable results due to standard settings of statistical software (slightly) increasing (effort) increasing computational effort as a result of increasing magnitude of respective parameter minor (effort) minor input value of respective parameter regarding computational effort (slightly) decreasing (simplicity) increasing complexity of computational calculation as a result of an increasing magnitude of respective parameter minor (simplicity) minor input value of respective parameter regarding complexity of computational calculation

Table 2: Legend for Table 1 Considering the decision tree in Figure 6, the practitioner can follow the facilitated scheme to obtain a quick solution for specified parameters m, n, p, N . In particular, the decision tree is based on a standardized questionnaire with respect to the magnitude of parameters m, n, p, N (low vs. not low) and implements the most important limiting cases regarding single methods in compliance with conditions on high accuracy of the results and on an adequate computational effort. Following the scheme provided by Figure 6, the practitioner would choose 1. the approximation when there are higher values of m and/or n, 

Conclusions

In this paper, we have shown how to implement three methods -direct convolution, the algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF], and the new approximation by Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF] -for computing the probability mass function of X = m i=1 X i with i.i.d. random variables X i ∼ HYP(N, n, p), i = 1, . . . , m. While the computational effort using convolution is very extensive for combinations of larger values of m and n, multiplication operations in the framework of the algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF] entail unreliable results already for mid-sized values of m, n, p due to hidden round-off errors, and thus cannot be recommended for the researcher/practitioner. In order to get a feasible solution that leads to a considerably faster calculation and simultaneously ensures a high accuracy of the results, we have also considered the new approximation for the probability distribution of X introduced by Johannssen et al. [START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF]. By using this approximation the time required for the computation of f X and F X is reduced to a few seconds while keeping a remarkable high accuracy with only negligible deviations compared to the exact distribution obtained via convolution. Such remarkable properties of the new approximation may be helpful for numerous applications, for instance in SPM or quantitative risk management (e.g., for aggregation of credit, insurance, market, and operational risks, see Klugman et al. [START_REF] Klugman | Loss Models: From Data to Decisions[END_REF]).

We have performed an application example in SPM, where we have calculated in-control measures for the hypergeometric np chart with estimated parameter p 0 by means of p.m.f. f X determined via the above three methods. The results illustrate that in-control measures computed via exact convolution or the algorithm by De Pril [START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF] are throughout approximately equal to the respective measures calculated via the new approximation with only negligible relative deviations (on average < 0.1%). As the absolute difference between exact and approximate measures converges to zero and the computational effort required for convolution increases enormously for larger values of N, n, m, p 0 , the new approximation is clearly preferable for mid-sized and large parameter values. Only in rare cases with lower parameter values, where slightly increased relative deviations (up to about 2%) between exact and approximate results are considered as inadmissible, exact methods are to prefer. On the other hand, if such small deviations are considered as permissible, the new approximation can also be successfully used for smaller values of the parameters m, N, n, p 0 and the practitioner/researcher can take advantage of the considerably simplified handling of the approximation.

Based on comprehensive numerical analyzes, we have summarized all the advantages and limitations of the discussed three methods in schematic form under consideration of the magnitude of the parameters and three key criteria: (1) accuracy of results, (2) computational effort and (3) grade of simplicity. Furthermore, a color coded ranking reflects linked characteristics of the proposed methods in an illustrative way and provides the complete picture needed for an appropriate decision making. By a subjective weighting of the key criteria, the practitioner is more flexible in choosing a proper method. On the other hand, when a quick decision is necessary, a facilitated scheme by means of a decision tree can be used, where the practitioner obtains the adequate method by responding up to four questions regarding the magnitude of the parameters m, n, p, N . The decision tree reflects both limitations of the approximation for smaller parameter values and its advantages for larger parameter values.
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 1 Figure 1: Input variables and initializations for a hypergeometric-distributed random variable
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 2 Figure 2: Numerical calculation of f X and F X by means of convolution

Figure 3 :

 3 Figure3: Numerical calculation of f X and F X by means of the algorithm by De Pril[START_REF] De Pril | Recursions for convolutions of arithmetic distributions[END_REF] 
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 4 Figure 4: Numerical calculation of f X and F X by means of the approximation by Johannssen et al.[START_REF] Johannssen | The performance of the hypergeometric np chart with estimated parameter[END_REF] 

Example 4. 1

 1 Given m = 100, n = 50, p = 0.05, N = 2000, the practitioner could choose

2 .Figure 6 :

 26 Figure 6: Decision tree for the choice of the appropriate method

  1 , SDRL 0 , SDRL 1 , E[RL 2 0 ], E[RL2 1 ] in the following. The particular calculation of ARL 0 , ARL 1 (see(3.3), lines 102-104, 108-110) is carried out using for loop and four if conditions (see lines 72-114) with initial values (see lines 60-62, 66-68) and subsidiary calculation of • center line CL and control limits LCL, UCL (see (3.1), (3.2), lines 80-83, labeled by CL Y, LCL Y, UCL Y,

Table 1 :

 1 Color coded ranking for the choice of the appropriate method

		parameter	convolution	accuracy of results De Pril approximation	convolution	computational eort De Pril	approximation	convolution	grade of simplicity De Pril	approximation
	m	low (m ≤ 100) middle (100 < m < 1000)	exact exact	exact unreliable	minor deviations increasing	low/middle high	very low low	extremely low very low	low very low	middle low	very high very high
	n	high (m ≥ 1000) low (n ≤ 50) middle (50 < n < 100)	exact exact exact	unreliable exact unreliable	increasing minor deviations increasing	very high low/middle high	middle minor increasing	low minor minor	extremely low minor decreasing	very low minor slightly decreasing	very high very high very high
	p	high (n ≥ 100) low (p ≤ 0.1) high (p > 0.1)	exact exact exact	unreliable exact unreliable	increasing minor deviations increasing	very high minor increasing	increasing minor slightly increasing	minor minor minor	decreasing minor decreasing	slightly decreasing minor slightly decreasing	very high very high very high
	N	low (N < 200) middle (200 ≤ N < 1000) high (N ≥ 1000)	exact exact exact	unreliable exact exact	high (max. dev. ≈ 2%) very high (dev. < 0.1%) extr. high (dev. < 0.05%)	minor increasing increasing	minor slightly increasing slightly increasing	minor minor minor	minor decreasing decreasing	minor slightly decreasing slightly decreasing	very high very high very high
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