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We propose a contactless optical method to determine the dispersion curves of guided acoustic

modes propagating along a micrometric fiber. Subnanosecond laser pulses are used to generate

guided acoustic waves, and an optical probe is used for measuring the ultrasonic displacements at

the fiber surface. The test sample is an aluminum fiber of diameter 33lm. The comparison between

the experimental and theoretical dispersion curves is presented.VC 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4899195]

The theoretical studies on acoustic waves guided by hol-

low and solid cylinders1,2 have nowadays important applica-

tions in the non-destructive testing3 (NDT) and the evaluation

of the elastic properties4 of pipes. In this letter, we demon-

strate the potential application of guided acoustic waves for

the evaluation of elastic properties of a single micrometric

fiber. The most challenging problem with a fiber is to excite

and detect guided acoustic waves and determine their disper-

sion curves, which will lead to the determination of elastic

constants.

The elastic properties of elementary fibers used in rein-

forced composite materials must be known with the best accu-

racy in order to predict their mechanical behavior. Elementary

fibers have diameters in the range of 5–50lm and at least

lengths of several centimeters. For most fibers, the diameter is

constant over more than 1mm of fiber, so that the infinite cyl-

inder model provides a good approximation for a fiber.

Moreover, the elastic properties of most fibers are transversely

isotropic. Taking the fiber axis as the isotropy axis and the

third axis (z-axis) of a Cartesian coordinate system linked to

the fiber, the elastic properties of the fiber material are com-

pletely defined by five independent elastic constants:

C11¼C22, C12, C13, C33, C44¼C55. The two elastic constants

C11 and C33 determine the velocities of plane longitudinal

waves that propagate respectively along the x-axis (or the y-
axis) and the z-axis. Such plane acoustic waves can be evi-

denced only for acoustic wavelengths that are small compared

to the fiber diameter d, which means frequencies well beyond

1GHz. Nevertheless, such high frequency acoustic waves can

be generated using subpicosecond laser pulses. The velocity

of acoustic waves traveling back and forth across a fiber diam-

eter can be measured,5 leading to the evaluation of the elastic

constants C11 and C22. For small objects such as a single fiber,

the use of a contactless technique of measurement is essential.

The use of a pump laser, either a continuous wave (CW) laser

modulated sinusoidally6 or a pulsed laser, is an efficient tech-

nique of exciting acoustic waves within a fiber without con-

tact. Another laser beam (the probe beam) is used for the

detection of the ultrasonic vibrations. This pump-probe optical

technique, referred to as laser ultrasonics (LU), has been used

for investigating circumferential acoustic waves that propa-

gate on the surface of cylinders, i.e., whispering gallery and

Rayleigh waves with wavelengths that are small compared to

the cylinder diameter.7–10 Alternatively, Laser Resonant

Ultrasound Spectroscopy (LRUS) is a variant of LU which

focuses on the measurement of eigenfrequencies. Recently,

we applied LRUS to a single aluminum fiber by measuring

cross-section eigenfrequencies. But this method permits to

retrieve only two independent elastic constants: C11 and

C66¼ (C11 À C12)/2, for instance.
11 Thus, for the complete

evaluation of the elastic constants of an anisotropic fiber, it is

essential to characterize acoustic waves that propagate along

the fiber axis. One possible approach is the use of bulk conical

or surface helical acoustic waves in the fiber,12 which would

require frequencies much beyond 1GHz. On the other hand,

the study of guided acoustic waves that propagate along an

anisotropic fiber is possible below 1GHz and would permit

the evaluation of elastic constants.4

An acoustic wave guided by a cylinder (a guided acous-

tic mode) is characterized both by an axial wave vector

k¼ 2p/k and an angular frequency x. The dispersion rela-

tions x(k) can be calculated if the elastic properties of the

fiber material are known. Cross-section eigenmodes are par-

ticular modes for which k¼ 0. The dispersion curves which

start with a horizontal slope at k¼ 0 and for which x(0) 6¼ 0

are of particular interest. If k% 0, the group velocities

vg¼ dx/dk of the modes are small compared to the lowest

velocity cT of bulk acoustic waves. However, the assumption

vg ( cT is only valid for rather long acoustic wavelengths k,
typically 2–3 times the fiber diameter d.

For the guided modes of a cylinder with a circular cross-

section, we use both the nomenclature of Silk and Bainton

(SB)13 and that of Viktorov8,9,14 for circumferential waves

(waves for which k¼ 0). The guided modes are named X(m, n)
(or simply Xm, n in Figures 1 and 3), where the letter symbols

X¼ L, WG, R, S, or T represent, respectively: longitudinal,

whispering gallery, Rayleigh, axial shear, and torsional modes.

The positive integer m characterizes the rotational symmetry

of the mode around the cylinder axis. The positive integer n
orders the dispersion curves Xm according to the increasing

frequencies for k¼ 0. According to the nomenclature of
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Viktorov, we split the flexural (F) modes in the SB nomencla-

ture into two separate categories: whispering gallery (WG) and
Rayleigh (R) modes.

The displacement field of a guided mode l (¼X(m, n))
is expressed, in cylindrical coordinates (r, h, z), as follows:

Uðr; h; z; tÞ

Ul
r ðr; kÞ

����
cosðmhÞ cosðxtÀ kzÞ
sinðmhÞ cosðxtÀ kzÞ

Ul
hðr; kÞ

����
sinðmhÞ cosðxtÀ kzÞ
cosðmhÞ cosðxtÀ kzÞ

Ul
z ðr; kÞ

����
cosðmhÞ sinðxtÀ kzÞ
sinðmhÞ sinðxtÀ kzÞ;

��������������

(1)

which can be written in a compact form

Uðr; h; z; tÞ ¼ Ulðr; h; kÞ exp½iðxtÀ kzÞ�þ c:c:; (2)

where Ul(r, h, k) is the displacement of a cross-section. The

notation c.c. stands for the complex conjugate. There are

two-fold degenerate modes for m 6¼ 0 and non-degenerate

modes for m¼ 0. Longitudinal modes L(0, n), torsional

modes T(0, n) and shear axial modes S(0, n) have a full rota-
tional symmetry around the cylinder axis. For any value of k,
the orthoradial displacements are zero for L-modes, and for

T-modes, only the orthoradial displacements are non-zero.

Provided k¼ 0, the displacements of axial shear modes

S(m, n) are exclusively along the z-axis. But if jkj > 0; Ur 6¼ 0

and/or Uh 6¼ 0 outside the nodal points of vibration. On the

contrary, if k¼ 0, the axial displacements Uz are zero for

WG(m, n) modes (n> 0) and R(m, 0) modes. For Rayleigh

modes R(m, 0), radial displacements near the fiber surface

tend to predominate orthoradial displacements, and for the

modesWG(m, 1), it is the reverse.
Figure 1 shows the dispersion curves of an aluminum

fiber, calculated by solving the secular equations given by

Mirsky,2 which are applicable for transversely isotropic

materials and thus for isotropic aluminum. We consider only

modes with real k, which can propagate along the fiber,

though Zemanek15 pointed out the existence of evanescent

waves with purely imaginary or complex values of k. For a
solid cylinder, the dispersion curve of the first Rayleigh

mode R(1, 0) is similar to that of the antisymmetric Lamb

mode A0 of a plate.
16 If k 6¼ 0, the two basic mode shapes of

R(1, 0) show undulation of the cylinder, either in the zx- or
yz-plane. The dispersion curve of the L(0, 1) mode has a con-

stant slope for k% 0, with a group or phase velocity:

Cbðk % 0Þ ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
, where E is Young’s modulus and q the

density. Shear axial modes are interesting to consider as they

involve strongly the elastic constants C44 and C55 for k% 0.

As the acoustic waves are generated by the sudden heat-

ing of a short laser pulse focused onto the fiber surface,11 a

lot of guided acoustic modes are excited simultaneously. The

shape of the pump spot determines the spanning of guided

modes that are excited both in the x- and k-domains. The

guided acoustic modes are detected, at a distance z from the

pump spot, through the measurement of the radial displace-

ments U(z, t)¼Ur in function of the time t, by a probe beam

focused at the point z of the fiber surface. The measured sig-

nal U(z, t) resulting from the superposition of many guided

modes can be expressed as follows:

Uðz; tÞ ¼
X1

l¼1

ðþ1

À1
~UlðkÞ exp fi½xlðkÞtÀ kz�gdk þ c:c; (3)

where ~UlðkÞ represents the vibration amplitude of the mode

l. Each angular frequency is considered as a complex num-

ber: xlðkÞ ¼ x0
lðkÞ þ ix00

lðkÞ. The phase and group velocities
are respectively: vul ðkÞ ¼ x0

lðkÞ=k and vglðkÞ ¼ dx0
lðkÞ=dk,

and the mode damping time is slðkÞ ¼ 1=x00
lðkÞ.

We assume that the damping is sufficiently weak, so

that xl(k) may be considered as a real number. Then, Eq. (3)

can be approximated by a double Fourier integral

Uðz; tÞ %
ðþ1

À1

ðþ1

À1
~Uðk;xÞ exp fiðxtÀ kzÞgdkdxþ c:c:;

(4)

where the density function ~Uðk;xÞ is approximately the

Fourier transform of U(z, t). As the function ~Uðk;xÞ is

defined in the real (k, x)-domain, the dispersion curves

xl(k) can be displayed by plotting the image of j ~Uðk;xÞj.
If xl(k) is a complex number, the dispersion curves can

be determined by using the so-called “matrix-pencil” method

(MP).17,18 We calculate first the Fourier transform of Eq. (3)

with respect to z, which leads to

Ûðk; tÞ ¼
X1

l¼1

~U
lðkÞ exp½ixlðkÞt�þ c:c: (5)

Then, the MP method can be applied to retrieve both the

complex frequencies xlðkÞ ¼ x0
lðkÞ þ ix00

lðkÞ and the

amplitudes ~U
lðkÞ.

The focusing of the pump and probe beams on the fiber

is depicted on Fig. 2. The sample is an aluminum fiber

mounted on a 1 cm diameter metal ring. The fiber diameter is

32.76 0.2 lm, measured with a scanning electron micro-

scope (SEM). The vibrations of the fiber are excited by using

FIG. 1. Dispersion curves of an aluminum fiber calculated with the follow-

ing parameters: diameter d¼ 32.7lm, Young’s modulus E¼ 69.6GPa,

Poisson’s ratio �¼ 0.35 and density q¼ 2700 kg/m3 (bulk density). Young’s

modulus and Poisson’s ratio are the values obtained by fitting the cross-

section eigenfrequencies of Fig. 3.
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a Q-switched Nd:YAG laser at 1064 nm, which provides

0.6 ns optical pulses at a repetition rate of 4 kHz. A pulse

energy of 100 nJ is used to excite the vibrations of the fiber

in the thermoelastic regime. The laser beam of a stabilized

homodyne Michelson interferometer, with a wavelength of

532 nm and a CW power of 2mW, is focused onto the fiber

surface to measure the radial displacements.11 Both the

pump and probe beams are focused by the aspherical lens

(AL). The probe spot has a Gaussian diameter at 1/e2 of

2ws¼ 1.5 lm at the fiber surface. By inserting a cylindrical

lens (CL) in the optical path of the pump beam, we obtain a

Gaussian elliptic spot at the fiber surface with the full width

and length at 1/e2 of 2wyÂ 2wz¼ 4 lmÂ 72 lm, the main

axis of the ellipse being aligned with the fiber axis. The

length 2wz of the pump spot determines the Gaussian distri-

bution of guided modes that are excited in the k-domain,

which is characterized by the dimensionless standard devia-

tion ~kc ¼ kcd=2p ¼ d=pwz % 0:3. Indeed, the last value is a
priori chosen to favor the excitation of modes with wave-

lengths k! 3d, which have low group velocities.

The pump-probe distance z is changed by moving the

pump spot along the fiber axis while the probe spot and the

fiber remain fixed. The dichroic mirror (TDM) reflecting the

pump beam can be tilted to move the pump spot over

6500 lm on both sides of the probe spot (Fig. 2). For each

position zi of the pump spot, the vibration signal is recorded

during 5ls by a 3GHz-bandpass digital oscilloscope, with

the sampling frequency of 2GHz. Frequencies beyond

1GHz are filtered by the 1GHz-bandpass photoreceiver. The

vibration temporal signals U(zi, t) are recorded with a sam-

pling pitch Dz% 50 lm, which determines the dimensionless

cutoff frequency ~kmax ¼ kmaxd=2p ¼ d=2Dz ’ 0:3, whereas
the spectral resolution, determined by the spatial sampling

window of 1mm, is D~k ’ 0:03. The fiber boundaries are dis-
tant of a few millimeters from the test zone so that no echoes

from the fiber boundaries are expected in the signal U(z, t)
during the acquisition time because of the weakness of group

velocities.

Figure 3 shows the grayscale image of the function

j ~Uð~k;x=2pÞj calculated from the data. The pixel dimensions

are determined by the spatio-temporal sampling of U(z, t). A
white pixel represents a zero amplitude so that the dispersion

curves are displayed as gray or dark lines on a white back-

ground. The comparison between Fig. 1 and Fig. 3 shows

clearly that Rayleigh guided modes are the most easily

detected. The whispering gallery modes are less visible than

Rayleigh modes. The sub-sampling of U(z, t) in the z-domain

induces a spectral aliasing in the k-domain for the modes:

R(1, 0), L(0, 1), R(2, 0) and WG(3, 1). Thus, these modes are

excited beyond ~k ¼ 0:3.
The shear axial mode S(0, 1) is only visible for ~k > 0:2,

which is expected, as radial displacements become signifi-

cant only for sufficiently large values of ~k. The R(1, 0) mode

is visible for ~k > 0:15 in Fig. 3, which shows a fairly good

agreement between the calculated and experimental disper-

sion curves.

FIG. 4. Calculated dispersion curves (solid line) for the Rayleigh mode

R(2, 0) superimposed to the image of j ~Uðk;xÞj. The crosses (in blue) repre-

sents the experimental frequencies calculated by the “matrix pencil” method.

The aliasing part of the calculated dispersion curve is in dashed line (red).

Mode shape of R(2, 0) for ~k % 0:4 (inset).

FIG. 2. The laser ultrasonics experimental setup used to study the propaga-

tion of guided acoustic waves along a micrometric fiber. CL: cylindrical lens
(f¼ 700mm), L: focusing lens, TDM: tilted dichroic mirror, and AL: aspheri-
cal lens (f¼ 8mm and NA¼ 0.5).

FIG. 3. Image in gray-scale of j ~Uðk;xÞj revealing the dispersion curves of

an aluminum fiber sample of diameter d¼ 32.7lm. The calculated disper-

sion curves are superimposed for modes R(1, 0) (white line) and L(0, 1)
(black line). The dashed lines are the aliasing part of dispersion curves.
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Figure 4 shows the calculated and experimental disper-

sion curve of the R(2, 0) mode, including the aliasing part of

the spectrum (dashed curve). The frequencies calculated by

the MP method are close to the theoretical frequencies within

0.1MHz for ~k < 0:3 (a relative difference of 0.1%). One

advantage of the MP method is that the precision in fre-

quency overcomes that given by the Fast Fourier Transform

(FFT). The second advantage of the MP method is to permit

the evaluation of the damping time of any mode. For the

mode R(2, 0), we calculate the average damping time

sl(k)% 2ls for ~k < 0:3.
Figure 5 shows the comparison between the experimen-

tal and theoretical dispersion curves, for the first whispering

gallery mode WG(1, 1). The experimental frequencies are

lower than the calculated frequencies by about 0.6%. The

MP method reveals a doublet of frequencies for some values

of k, which is due to the degeneracy lifting induced by the

small ellipticity of the fiber cross-section. Finite element

modeling confirms that a very small ellipticity of the cross-

section induces a significant splitting of the WG(1, 1) dou-
blet, whereas a negligible splitting exists for Rayleigh modes

and some other WG-modes.

The fairly good agreement between the predicted and

experimental dispersion curves demonstrates the propagation

of guided acoustic waves along the isotropic aluminum fiber.

In the near future, this technique will be applied to determine

experimentally the dispersion curves of elementary fibers

used in composite materials with the aim of determining

their elastic constants.
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