
HAL Id: hal-03347174
https://hal.science/hal-03347174v1

Submitted on 17 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lattice-based Cryptosystems on FPGA: Parallelization
and Comparison using HLS

Timo Zijlstra, Karim Bigou, Arnaud Tisserand

To cite this version:
Timo Zijlstra, Karim Bigou, Arnaud Tisserand. Lattice-based Cryptosystems on FPGA: Paralleliza-
tion and Comparison using HLS. IEEE Transactions on Computers, 2021, �10.1109/TC.2021.3112052�.
�hal-03347174�

https://hal.science/hal-03347174v1
https://hal.archives-ouvertes.fr

1

Lattice-based Cryptosystems on
FPGA: Parallelization and Comparison using HLS

Timo Zijlstra, Karim Bigou and Arnaud Tisserand

Abstract—This paper deals with hardware implementations
for lattice-based cryptography. Various CPA and CCA secure
algorithms for LWE, RLWE and MLWE problems have been
studied, parallelized, implemented and compared on FPGA
using high-level synthesis. The impact of PRNG choices on the
implementations performances and costs is also evaluated. HLS
allows us to compare various sets of algorithms, architectures and
parameters with a reduced design effort. Our results are often
similar to state-of-the-art for various speed and cost trade-offs.
Sometimes we obtain better results thanks to the exploration of
numerous architecture and algorithm optimizations.

Index Terms—learning with errors, post-quantum cryptogra-
phy, public-key encryption, hardware implementation, high-level
synthesis

I. INTRODUCTION

PUBLIC-KEY cryptography (PKC) uses computationally
hard problems to guarantee the security of some crypto-

graphic primitives. The hard problems underlying RSA and
ECC can be efficiently solved using quantum algorithms [1].
Therefore quantum computers represent a threat for services
relying on current PKC. Even though it may take decades for
a sufficiently large quantum computer to become fully oper-
ational, solutions to this security issue should be developed
well before that time, to ensure long term security.

Post-quantum cryptography (PQC) is based on mathemat-
ical problems for which known quantum algorithms offer
no significant speed-up. Lattice problems such as learning
with errors (LWE) [2], ring-LWE (RLWE) [3], module-LWE
(MLWE) [4] and learning with rounding (LWR) [5] and its
variants are promising examples for PQC.

NIST launched in 2016 a standardization project [6] to se-
lect post-quantum algorithms for public-key encryption (PKE)
/ key-encapsulation mechanism (KEM) and signature. At the
second round of this project, 9 schemes are lattice based
among the 17 PKE/KEM submissions. At the third round,
3 of the 4 finalists are lattice based for PKE/KEMx}. Such
a standardization process requires to estimate the cost and
performance of solutions using real world constraints and
different implementation targets. We try to participate to this
effort with the implementation on FPGA of various architec-
tures and security levels for several (R/M)LWE based solutions
and parameters close to NIST candidates.

T. Zijlstra was with CNRS and Lab-STICC UMR 6285 during this work.
He is now with SERMA Safety & Security in Bordeaux, France.

K. Bigou is with University of West Brittany and Lab-STICC UMR 6285,
in Brest, France.

A. Tisserand is with CNRS and Lab-STICC UMR 6285 in Lorient, France.

When comparing implementation solutions for PKC, hard-
ware ones usually lead to faster computations and a lower en-
ergy consumption than software ones. FPGAs offer a cheap but
very effective hardware implementation solution when dealing
with wide cost-performance space exploration. Hardware im-
plementations can be realized using high-level synthesis (HLS)
and input languages such as C for a reduced design effort.
HLS also allows to quickly explore numerous algorithms,
architectures and optimizations solutions which would be
tedious with HDL. But, as for HDL implementation, HLS
requires some expertise for low-level optimizations especially
for finite field arithmetic. HLS was used for instance by [7]
for benchmarking authenticated encryption algorithms, and by
[8] for the post quantum standardization project.

Hardware implementations are easier to protect against
physical attacks than software ones. In a previous work [9]
(available online), we proposed, implemented and compared
on FPGA using HLS several countermeasures against side
channel attacks (SCAs) for RLWE schemes.

Here, we reuse and extend our polynomial and modular
arithmetic units from [9] to:
• design, implement and compare various LWE, RLWE

and MLWE hardware solutions with several security
parameters for PKE/KEM (inspired from Frodo [10],
NewHope [11] and Kyber [12] candidates);

• implement various architectures and study the speed-up
achieved for various levels of parallel computations in
critical sequences of operations;

• implement the Fujisaki-Okamoto transform [13] to obtain
CCA secure KEMs for LWE, RLWE and MLWE;

• evaluate the impact of PRNG and FPGA choices on the
performance and cost of the most efficient MLWE PKE
with: a fast and small implementation using Trivium [14];
a slower but more secure solution using SHAKE256 [15];
and a hybrid one which uses both PRNGs. In our hybrid
solution, Trivium generates the pseudorandom part of the
public key while SHAKE256 samples the secret error
terms during encryption.

Using the same implementation methodology, tool, target
FPGA, design and optimization efforts for all our implemen-
tations, we hope to provide a fair comparison between the
various evaluated algorithms, parameters and architectures.
Our source codes are available as open source [16].

Background on PKE algorithms is recalled in Section III.
Sections IV, V and VI respectively detail our LWE, RLWE
and MLWE implementations with a focus on parallel computa-
tions. Our implementations of the CPA to CCA transformation

and randomness generation methods are described in Section
VII. An extensive comparison of our results with state of the
art results is provided in Section VIII.

II. DEFINITIONS AND NOTATIONS

• Zq = Z/qZ and Rq = Zq[x]/(xn + 1) for n, q > 0.
• Rk×mq is the Rq-module. An element from this module

is k ×m matrix of polynomials in Rq .
• Bold font is used for vectors, matrices and polynomials.
• Bλ denotes the symmetric binomial distribution centred

around 0 with integer parameter λ.
• a

$←− Bλ(Zq) denotes a random element in Zq sampled
using Bλ.

• a
$←− Bλ(Rq) denotes a random polynomial in Rq whose

coefficients are sampled using Bλ(Zq).
• A

$←− Bλ(Rk×kq) denotes a random matrix of polynomials
sampled using Bλ(Rq).

• � denotes the point-wise multiplication of vectors.
• bac is the integer a′ closest to a in Zq such that a′ ≤ a.
• PK and SK respectively denote the public and secret

keys.
• For e0 and e1 two λ-bit integers, we denote e0||e1 := e0+

2w+wλe1, where w = 1+blog2 qc and wλ = 1+blog2 λc.

III. STATE OF THE ART

A. Learning with Errors Cryptography

Definition 3.1 (LWE [2]): Let χ be an error distribution,
that is, a probability distribution close to 0 and symmetric
around 0. Let q and m positive integers; s ∈ Zmq be some
secret vector; and a1,a2, . . . some vectors sampled from the
uniform distribution over Zmq . Then the LWE problem is to
find the vector s given a number of LWE samples of the form
(ai,a

ᵀ
i s+ ei), where the error terms ei are sampled from χ.

LWR [5] replaces the random sampling of ei by a rounding
mechanism adding a deterministic error to aᵀi s.

Definition 3.2 (MLWE [4]): For some integer parameter
k > 0, an MLWE sample for some secret vector of poly-
nomials s ∈ Rkq is given by some uniformly random vector
a

$←− Rkq , together with the polynomial b = aᵀs + e, where
e

$←− Bλ(Rq). The search MLWE problem is to find s given
a number of samples.

Note that for n = 1, MLWE is similar to LWE with
vectors of length k. In MLWE, small matrices and vectors
with polynomial coefficients are used. RLWE is obtained by
taking k = 1. Table I reports the parameters (n, k,m) values
used in our LWE, RLWE and MLWE implementations. Works
[2], [3], [4] respectively show that LWE, RLWE and MLWE
are at least as hard as solving some hard lattice problems using
quantum algorithms.

We describe the framework used for instance by NewHope,
Kyber and FrodoKEM. Variations of this framework include
the use of deterministic errors [17] or Gaussian noise (used in
FrodoKEM) instead of sampling the binomial distribution. The
secret key SK is defined by sampling some s

$←− Bλ(Rk×mq).
The corresponding public key PK is determined by com-
puting a number of LWE/RLWE/MLWE samples for this

Input: Plaintext µ ∈ {0, . . . , 2B}m2n, PK = (A,b)
Output: Ciphertext (c1, c2)
e1, e2

$←− Bλ(Rk×mq)

e3
$←− Bλ(Rm×mq)

c1 ← eᵀ1A+ eᵀ2
c2 ← be1 + e3 + ENCODEB(µ)

Fig. 1. Encryption algorithm ENC(µ,PK).

Input: SK = s, ciphertext C = (c1, c2)
Output: Plaintext µ
d← c2 − c1s
µ← DECODEB(d)

Fig. 2. Decryption algorithm DEC(C,SK).

secret by sampling a uniform random A
$←− Rk×kq and

e0
$←− Bλ(Rm×kq), and computing PK given by (A,b) where

b = sᵀA + e0. Encryption and decryption algorithms are
described in Figures 1 and 2.

The number of bits encoded in each plaintext coefficient
is equal to B + 1. For RLWE and MLWE, the parameter
B is set to zero and ENCODEB(µ) lifts µ to the ring Rq in
a straightforward coefficient-wise manner and returns µ

⌊
q
2

⌋
.

The DECODEB(d) function maps coefficients of d to 0 if they
are in the interval {

⌊−q
4

⌋
, . . . ,

⌊
q
4

⌋
}, else they are mapped to

1. In LWE each coefficient encodes a number of bits B ≥ 1.
Encoding then lifts µ to the module Zm×mq and involves a
scalar multiplication by

⌊
q

2B+1

⌋
. Decoding is generalized by

dividing Zq up into 2B+1 intervals as described by [10].
For n > 1 and k = m = 1, algorithms in Figures 1 and

2 are for the RLWE scheme. Ciphertexts, plaintexts and keys
are then polynomials in Rq . For n = 1 and k,m > 1 the ring
Rq is equal to Zq and the plain LWE scheme is obtained,
with ciphertexts, plaintext and keys in the form of matrices
over Zq . The intermediate parameter sets for which n, k > 1
define the MLWE variant of the scheme.

B. CPA to CCA Conversion

The cryptosystem described in Sec. III-A is secure against
chosen plaintext attacks (CPA). The Fujisaki-Okamoto trans-
form [13] protects the decryption algorithm against chosen
ciphertext attacks (CCA). It consists of computing a re-
encryption of the decrypted ciphertext and comparing it to
the received ciphertext. The decrypted text is returned if and
only if the two ciphertexts are equal. If they are not equal, then
pseudorandom bits are returned. Since the ciphertext depends
on the random error terms generated during encryption, the
source of randomness is deterministic and computed by apply-
ing a hash function to the message and the public key. A third
argument is added to the ENC function that specifies the source
of randomness used for the binomial sampling. The CCA-
secure algorithms in Figures 3 and 4 use hash function H and
G, and Algorithms 1 and 2. This CPA to CCA transformation
and variants of it are used by Kyber, NewHope, Frodo and
other lattice-based key exchange mechanisms.

2

Input: PK, random µ ∈ {0, 1}n
Output: Ciphertext C and session key K

1: (r1, r2)← H(PK||µ)
2: C ← ENC(µ,PK, r1)
3: K ← G(C||r2)

Fig. 3. CCA-secure encapsulation function ENCAPS.

Input: Ciphertext C, PK and SK
Output: Session key K ′

1: µ′ ← DEC(C,SK)
2: (r′1, r

′
2)← H(PK||µ′)

3: C ′ ← ENC(µ′,PK, r′1)
4: if C ′ = C then
5: K ′ ← G(C ′||r′2)
6: else
7: K ′

$←− {0, 1}256
8: end if

Fig. 4. CCA-secure decapsulation function DECAPS.

C. Implementation of Main Operations

1) Matrix multiplication: The multiplication of the public
key A with the error matrix e1 is the most expensive operation
in the standard LWE scheme. It consists of k2m multiplica-
tions in the rings Z215 or Z216 . In [18] the matrix multiplication
is accelerated by computing partial products in parallel using
up to 16 DSP blocks.

2) Polynomial multiplication: In RLWE and MLWE, the
most expensive arithmetic operation is the polynomial multi-
plication. Multiplication in the ring Rq is computed using the
number theoretic transform (NTT). FPGA implementations of
NewHope using the NTT for n = 1024 are given by [19] and
[20]. A fast and area optimized implementation for n = 256
is given by [21]. In [22] the usage of HLS for the implemen-
tation of the NTT is discussed. While implementations using
schoolbook polynomial multiplication have been proposed in
[23], [24], they are much slower than the NTT.

In [24] the schoolbook algorithm is optimized for coefficient
multiplication on Xilinx DSP48E blocks with 18 × 25-bit
hardwired integer multiplication. The coefficients sampled
from the error distribution can be represented on a few
bits. Therefore, a naive multiplication of a coefficient with
w = blog qc + 1 bits by an error coefficient would underuse
the DSP block. Paper [24] “packs” two error coefficients
e0, e1 of size wλ = 1 + blog2 λc into a new (w + 2wλ)-
bit coefficient e0 + 2w+wλe1. If (w + 2wλ) < 25, then for
any w-bit coefficient a the multiplication (e0 + 2w+wλe1)a
can be computed on one DSP block. The product e0a can be
read on the first w+wλ LSBs of the output. The product e1a
is obtained by applying w+wλ right shifts to the output and
again selecting the w+wλ LSBs of the remainder. The sign of
the products is computed separately. Then two multiplications
are obtained for the cost of one.

3) Binomial sampling: The Bλ(Zq) distribution is sampled
by generating 2λ random bits x1, . . . , xλ, y1, . . . , yλ and com-
puting

∑λ
i=1 xi−yi mod q. The sampling requires 2λ random

bits per coefficient. For a total of mn(2k+m) coefficients for
the 3 errors e1, e2 and e3, the amount of random bits needed is
considerable. In the specifications of most of the NIST round
2 candidates it is suggested to use SHAKE256 or AES to
supply the randomness. Some implementations however, such
as [18], use Trivium because it is faster. Precomputing random
bits and storing them in BRAM is used in [25] to improve the
throughput of the PRNG.

4) Modular reduction: In the LWE scheme the modulus
is a power of 2, so that no computation is required to
compute modular reduction. In RLWE/MLWE however, for
fast polynomial arithmetic, one often chooses to use the NTT
which requires the existence of a 2n-th root of unity in Zq .
This is the case if q is a prime for which q ≡ 1 mod 2n. The
choices for q are therefore limited. For prime moduli of the
form q = 2l1 − 2l2 + 1 for some integers l1 and l2, one has
2l1 − 2l2 + 1 ≡ 1 mod 2n if l2 ≥ log2(2n). For n = 256
suitable primes include 7681 = 213 − 29 + 1 which is used
in the original version of Kyber and for n = 1024 the prime
q = 214 − 212 + 1 = 12289 is used in NewHope. We use a
modular reduction method in the style of [26] for moduli of
the form 2l1−2l2+1. Using the fact that 2l1 ≡ 2l2−1 mod q, a
modular reduction can be computed using only bitwise shifts,
additions and subtractions.

D. Parameters Selected for our Implementations

We implement the CPA and CCA secure LWE, RLWE and
MLWE schemes for the parameter sets shown in Table I.

We choose LWE parameters from FrodoKEM [10] except
for the Gaussian distribution. We sample the Bλ distribution
instead, where λ is chosen such that the obtained Bλ distribu-
tions are close to the Gaussian distributions from FrodoKEM.
This allows us to make a fair comparison between LWE
on one hand and RLWE and MLWE (both using binomial
distributions) on the other. To the best of our knowledge, there
does not exist any attack that exploits the small difference
between the sampled distribution and the Gaussian distribution
used in the security proof. The performance of the best
algorithms solving LWE does not depend on the exact error
distribution, which is why schemes such as Kyber [12] also
prefer binomial sampling.

Our parameters for RLWE and MLWE are those used by
NewHope [11] and Kyber [12] respectively. A newer version
of Kyber [27] proposes to use the modulus q = 3329. On
FPGA, there is hardly any speedup from replacing 13-bit
operands by 12-bit when this does not reduce the number
of required DSP blocks. Reducing q however, requires to
implement quadratic extension field arithmetic. To avoid the
overhead in computation time that this would cause, we first
implement the original scheme using q = 7681. In section
VI, we also implement the scheme with the new modulus and
compared its performance to the original scheme.

The parameter sets are designed for the NIST security levels
1, 3 and 5, where level 1 corresponds to AES-128, 3 to AES-
192 and 5 to AES-256. Level 1 is claimed by [10] for Frodo
using parameter set LWE-640, and by [12] for Kyber using
parameters set MLWE-512. Level 3 proposals use parameter

3

TABLE I
PARAMETER SETS USED IN OUR IMPLEMENTATIONS.

Scheme n m k q λ

LWE 1 8 640 / 976 / 1344 215 / 216 / 216 15 / 10 / 4
RLWE 1024 1 1 12289 8
MLWE 256 1 2 / 3 / 4 7681 5 / 4 / 3

sets LWE-976 and MLWE-768, while LWE-1344, RLWE-
1024 and MLWE-1024 are used in level 5.

IV. FPGA IMPLEMENTATION OF LWE

In Sections IV to VIII, we use Vivado HLS (version 2018.1)
on an Artix-7 FPGA (XC7A200) from Xilinx for all our
implementations since this FPGA family is frequently used
in other works (see Table VII in Section VIII). We also
verified several of our architectures for CPA-secure RLWE
on a ZedBoard card with a Zynq XC7Z020 FPGA (we do
not have an Artix-7 card) where performance and cost results
obtained on the Zynq FPGA card accurately confirm the
synthesis and place&route (SPR) results. Below we report SPR
results on the Artix-7 family.

A. Matrix Arithmetic for LWE

We extend the method from [24] to speed-up schoolbook
polynomial multiplication, described in Sec. III-C, to the
matrix multiplication for the standard LWE scheme. Matrices
A and e1 coefficients are 15 and wλ = 1+ blog2 λc bits wide
respectively. We pack two coefficients e00||e10 to reduce the
8× k matrix e1 with wλ-bit elements to a 4× k matrix with
(w+2wλ)-bit ones. Then multiplying one coefficient from A
by one from e1 requires a single DSP block.

The coefficients of the public key matrix A are generated by
the PRNG. At each clock cycle, one coefficient is generated.
During the first clock cycle, a00 is generated and multiplied
by all 4 coefficients in the first column vector of e1.

The resulting vector is added to the first column of the
output matrix. All the coefficients that are loaded in the first
clock cycle are coloured blue in Figure 5. During the second
clock cycle, the red coefficients are loaded. The resulting
integer products are all added to the first column of the output

 e00||e10 e01||e11 . . .
...

...
e60||e70 e61||e71

︸ ︷︷ ︸

k columns

×

a00 a01 . . .
a10 a11

...

...
a(k−1)0

︸ ︷︷ ︸

k columns

=

c00 c01 . . .
c10

...
...

c70

︸ ︷︷ ︸

k columns

1

Fig. 5. Matrix multiplication eᵀ1A: each element of A is multiplied with a
column vector of eᵀ1 .

PRRAM RAM

++ ++++ ++

15100

15 15 15 15 15 15 15 15

40 40 40 40

2525 25 25

120

Fig. 6. Architecture for matrix multiplication eᵀ1A. The 4 DSPs compute 8
integer products. Coefficients of A are generated by the PRNG (denoted PR).

matrix. The first column of this output matrix is completely
computed after k (+ pipeline depth) clock cycles. Only then
the computation of the second column begins.

Each row of e1 is stored in one BRAM (i.e. matrix e1 uses
4 BRAMs). The architecture of the matrix multiplication is
shown in Figure 6. To increase the level of parallelism by a
factor two, the blue and red multiplications can be performed
at the same time. Then twice as many DSP blocks are required
for the matrix multiplication and two coefficients of A have
to be generated at the same time. For higher degrees of
parallelism, multiple elements on the same row of e1 have
to be read simultaneously. Therefore the rows of e1 have to
be implemented on multiple BRAMs each.

B. Parallelization using HLS

The C source code of the matrix multiplication c1 ← eᵀ1A,
illustrated in Figure 5, is reported in Figure 7. The loops
labelled col_A and row_A iterate over the columns and rows
of A respectively. Column of the output matrix are loaded
and stored by loops copy1 and copy2. The prng function
generates the next coefficient of A, and comp_2prods
computes a · (e||e′) for coefficients a, e, e′ using the error
encoding method described in paragraph III-C2.

In order to specify optimization to the HLS tool, we
use various directives (see [28]). Applying the pipeline
directive to the loop row_A, ensures that this loop is pipelined
and the subloop row_E is completely unrolled. That is, all 4
iterations of the loop row_E are computed at the same time
on 4 DSPs. Arrays are implemented on a single BRAM by
default. Without any specifications, the HLS tool would try to
implement E1 on a single BRAM. However, all 4 elements of
each column have to be loaded simultaneously. Therefore we
use the array_partition directive on E1 to partition the
local memory into 4 parallel BRAMs.

We parallelize the computation even further by applying
the unroll directive on loop row_A using several unrolling
factors: 2, 4, 8 and 16. For unrolling factors 4, 8 and 16,
multiple elements on the same row have to be accessed at the
same time. Therefore the array E1 has to be partitioned in the
second dimension as well, using the array_partition di-
rective, to prevent simultaneous accesses to the same BRAM.
A similar effect can be obtained using the array_reshape
directive, which results in fewer additional BRAMs than
array_partition. Using the array_map directive, mul-
tiple arrays can be implemented on one single BRAM. This

4

TABLE II
CPA-SECURE LWE IMPLEMENTATIONS RESULTS FOR ENCRYPTION AND

DECRYPTION.

Scheme Freq. Time µs Area
LWE-k MHz enc / dec DSP, BRAM, Slices, LUT

LWE-640 200 2275 / 232 6, 16, 1629, 4311
LWE-976 200 5123 / 353 8, 16, 1601, 4322

LWE-1344 200 9506 / 486 6, 25, 1439, 3832

col_A: for(i=0; i<k; i++){
copy1: for(ii=0; ii<8; ii++)

C1_tmp[ii] = C1[ii][i]; // copy BRAM -> registers
row_A: for(jj=0; jj<k; jj++){

sum = 0;
prng(State_A, &a_coeff); // PK coeff. from PRNG
row_E: for(j=0; j<4; j++){

comp_2prods(a_coeff, E1[j][jj], &prod1, &prod2);
C1_tmp[2*j] = C1_tmp[2*j] + prod1; // update C1
C1_tmp[2*j+1] = C1_tmp[2*j+1] + prod2;

}
}
copy2 :for(ii=0; ii<8; ii++)

C1[ii][i] = C1_tmp[ii]; // copy registers -> BRAM
}

1

Fig. 7. Source code for matrix multiplication c1 ← eᵀ1A.

may have a negative impact on the computation time, as some
arrays need to be accessed during the same clock cycle.

Other examples of directives used in our implementations
includeinline, allocation and dependence. To find
the optimal choice of directives, we have tried dozens of
directive combinations including

• different factors for array_partition, unroll and
array_reshape with different options,

• pipelining using different initiation intervals,
• array_map for different variables,
• inline and dependence for various loops and func-

tions,
• allocation to set a strict limit to the number of DSPs

used by the implementation for various limits.

The same (somewhat) exhaustive approach to the explo-
ration of the design space is used for RLWE and MLWE
implementations in sections V and VI. In total we have tested
over 100 different configurations, which would not be possible
in reasonable time using HDL (and debugging so many
architectures would be tedious). Clearly, this demonstrates the
interest of HLS for PKC implementations. The complete set
of directives used for our source codes is available online in
our repository [16].

C. Implementation results

The implementation results are reported in Table II. The
error encoding technique for packing two error terms in one
w + 2wλ bits integer allows to compute 8 multiplications in
parallel using 4 DSP blocks for the parameters sets of k = 640
and k = 1344. For k = 976 however, the error terms are still
5-bit integers while the coefficient size is increased to 16 bits
(see Table I). Therefore w + wλ > 25 and extra DSP blocks

BRAM 13 = 1.00×13

Enc. time (µs)
1201 =
0.55 ×
2181

Slice 1588 = 1.10× 1437LUT 4053 = 1.04×3884

DSP
9 =

1.8 × 5 0.0

0.2

0.4

0.6

0.8

1.0

BRAM 17 = 1.30×13

Enc. time (µs)
698 =
0.32 ×
2181

Slice 1917 = 1.33× 1437LUT 5000 = 1.28×3884

DSP
17 =

3.4 × 5 0.0

0.2

0.4

0.6

0.8

1.0

BRAM 25 = 1.92×13

Enc. time (µs)
554 =
0.25 ×
2181

Slice 2583 = 1.79× 1437LUT 6683 = 1.72×3884

DSP
33 =

6.6 × 5 0.0

0.2

0.4

0.6

0.8

1.0

BRAM 41 = 3.15×13

Enc. time (µs)
508 =
0.23 ×
2181

Slice 3914 = 2.72× 1437LUT 9296 = 2.39×3884

DSP
65 =

13.0 × 5 0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8. Comparison of the LWE-640 base implementation (blue) to parallel
ones with unrolling factors 2 (green), 4 (red), 8 (cyan) and 16 (magenta).

are needed for the multiplications. For k = 1344 the size of
the error terms decreases to 4 bits.

The matrix multiplication using 4 parallel DSP blocks is
computed in roughly k2 = 409600 cycles for k = 640. This
operation takes up 90 percent of the total encryption time. The
impact of parallelism on the timing and area implementation
results is shown in Figure 8. These results are for the LWE-640
encryption algorithm only. The unrolling factor 2 divides the
total encryption time by almost 2 while the overhead in terms
of DSPs is lower than 2. In terms of slices, LUTs and BRAMs,
the trade-off is even more favourable for the parallelized
implementation, which even holds for the more parallelized
implementations using unrolling factors 4, 8 and 16. For these

5

RAM

RAM
BF

<<ROM + RED

PR
+bit

+bit
-6

3

3 2

2

3

13

13
13

13

13

13

13

16

16

Fig. 9. Binomial sampler (yellow part) using PRNG for the error polynomials
in the NTT domain (red part). The negative wrapped convolution is computed
using a shift and add based multiplier (green part), exploiting the fact that the
binomial samples are small. The NTT uses one butterfly operator (BF) that
consists of a single DSP block and integer addition/subtraction operators.

TABLE III
CPA-SECURE RLWE-1024 ENCRYPTION/DECRYPTION RESULTS.

Freq. Time µs Area
Version MHz enc / dec DSP, BRAM, Slices, LUT

Our work in [9] 250 65 / 39 7, 12, 4106, 11164
Sequential 206 110 / 47 1, 11, 3820, 10563

Parallel NTTs 258 63 / 38 4, 10, 3701, 10112
Unrolled 251 59 / 35 6, 16, 4474, 12301

higher degrees of parallelism however, the number of DSPs
increases faster than the computation time decreases. For an
unrolling factor of 8 and 16 the obtained frequency is reduced,
limiting the obtained speed-up. More detailed results including
comparisons with results from the state of the art are reported
in Table VI in Section VIII.

V. NEW OPTIMIZED RLWE IMPLEMENTATIONS

We re-used the finite field and polynomial arithmetic units
from our previous work [9], and we added the implementation
of the CPA secure RLWE cryptoscheme for n = 256 and
n = 1024. Our new architectures include modular reduction,
NTT and the binomial sampler, as illustrated in figure 9. The
negative wrapped convolution computes the products of small
error terms with the 2n-th roots of unity. These multiplications
are computed using a shift and add based multiplier. The
constant geometry variant [29] of the NTT is used. Bit-
reversal is avoided by using the decimation-in-frequency (DIF)
algorithm for the forward NTT and decimation-in-time (DIT)
for the inverse, as proposed in [30].

Our new (CPA and area optimized) implementation results
reported in Table III are compared to our non-CPA version
from [9] and RLWE-1024. The sequential architecture requires
only one DSP block but doubles the encryption time. In the
parallel architecture, 2 forward NTTs are computed simulta-
neously with n

2 log n less cycles in the encryption function,
resulting in a smaller latency. The parallel architecture also
leads to a higher frequency than the sequential one, resulting
in an even more significant speed-up. The unrolled architecture
unrolls loops of the point-wise computations by a factor 2.
There is a small speedup compared to the parallel architecture
but with some area overhead in terms of DSPs and BRAMs.
Thanks to HLS, adding CPA protection was possible in a
moderate design time.

enc. dec. DSP BRAM slices (x100)
0

10

20

30

40

50

60

70

ti
m

e
 (
µ
s)

62

37

60

17

RLWE-1024
MLWE-1024

0

10

20

30

40

50

u
n
it

s

4
10

37

4

11

24

Fig. 10. Comparison of CPA-secure MLWE (using q = 7681) with RLWE
(q = 12289) PKE FPGA implementations for the same security level.

VI. MLWE IMPLEMENTATIONS AND COMPARISON

A. Modifying the RLWE Implementation for MLWE

We transform our RLWE-1024 implementation for MLWE
using slight changes, starting by changing n from 1024 to
256. The arithmetic units are re-used for computations in
Rq and MLWE. This includes our architecture in Figure 9
(modified for n = 256) that generates binomial samples in
the NTT domain and now denoted BN. The same operations
are performed but on polynomial coefficients of k-dimensional
vectors over Rq . The MLWE scheme is thus implemented
by applying the operators used in RLWE to each of the k
polynomials (each of degree n) of the vectors in a sequential
manner. This is achieved by modifying the control accordingly.
Each vector consists of 14 · 256 · k bits and is stored in
one 18 kb BRAM. For k = 4, around 14 kb are used in
each BRAM, while for k = 2, only 7 kb are used. In a
sequential architecture, the number of BRAMs is the same
for k ∈ {2, 3, 4}. Extra additions and a modified control are
needed to support the multiplication of matrices and vectors
of dimension k. To avoid storing the k × k random matrix
A, which is part of the public key, we use the PRNG to
generate the coefficients of the polynomials in matrix A on
the fly, as suggested by [12]. The public key to be stored in
the architecture only consists of the vector b ∈ Rkq and the
seed for the PRNG. We apply one step of rejection sampling
in order to avoid too much bias in the distribution of the
coefficients (see section VII-A), as proposed for instance for
Kyber in [12].

As seen in Sec. III-D, several values of the security param-
eter k ∈ {2, 3, 4} are used for MLWE based candidates. We
provide implementations for all those values with results in
Table IV. Having a generic source code for HLS allows us to
select k easily. In HDL, this would not be simple to optimize
the performances using pipelining. k determines the number of
required multiplications in Rq . During the encryption, k2 + k
multiplications in Rq and 2k forward NTTs are needed. The
decryption consists of k multiplications in Rq , with only one
inverse NTT.

Figure 10 compares, for a similar security level, RLWE
with n = 1024 and MLWE with k = 4 implementations. For
encryption, MLWE is slightly faster but for decryption MLWE
is twice as fast as RLWE with only one additional BRAM
and even less slices. The impact of k on the decryption time
of MLWE is limited, since only the size of the computation
c1 · s depends on k. During the encryption however k2 + k

6

TABLE IV
CPA-SECURE MLWE FPGA IMPLEMENTATIONS FOR DIFFERENT

SECURITY LEVELS.

Scheme Freq. Time µs Area
(k × n) MHz enc / dec DSP, BRAM, Slices, LUT

q = 7681
MLWE-512 256 30 / 12 4, 11, 2380, 5538
MLWE-768 256 44 / 15 4, 11, 2540, 6031
MLWE-1024 250 61 / 17 4, 11, 2383, 5515

q = 3329
MLWE-512 227 61 / 19 13, 19, 6696, 17291
MLWE-768 227 98 / 23 13, 19, 7036, 17288
MLWE-1024 222 144 / 29 13, 19, 6975, 17187

multiplications in Rq and 2k NTTs have to be computed. The
encryption time is therefore heavily impacted by increasing the
parameter k. In order to estimate the performance of Kyber
from the Round 2 specification, we modify the implementation
by using modulus q = 3329. The fast modular reduction
algorithm for modulus 7681 cannot be used and must be
replaced. Moreover, there are no 2n-roots of unity in Z3329,
therefore the NTT has to be modified as well, and quadratic
extension field arithmetic has to be added to replace the point-
wise multiplications. As a result, the latency is increased and
extra DSP blocks are required as reported in Table IV. Adding
a quadratic extension for the field arithmetic is not simple. But
using HLS this corresponds to a few days of design and debug
(using HDL this would be tedious).

B. Parallelization of Operations in Rkq
We also propose parallelized implementations of MLWE

encryption and decryption whose computation time is inde-
pendent of the vector length k. While the computations in Zq
are still performed sequentially, hardware is added to compute
the operations on a higher level (matrix-vector operations)
in parallel. During the encryption the k components of the
error vectors e1 and e2 have to be sent to the NTT domain.
All of these 2k transforms are computed simultaneously. The
operation (for k = 2)

e1, e2 7→

(
NTT(e

(0)
1)

NTT(e
(1)
1)

)
,

(
NTT(e

(0)
2)

NTT(e
(1)
2)

)
is computed in the time it takes to compute one NTT, that is,
n
2 log(n)+δ cycles for where δ is the pipeline depth. Similarly,
PRNGs and binomial samplers are added to sample the 2k
error polynomials simultaneously. The k2 multiplications in
Rq for the computation of c1 ← Aᵀe1 + e2 and the k
multiplications in Rq needed to compute c2 are also computed
in parallel. For k = 2, the operation

e1,A 7→

(
a(00) � e

(0)
1 + a(01) � e

(1)
1

a(10) � e
(0)
1 + a(11) � e

(1)
1

)
is computed in just over n cycles, which is the time it takes
to compute one single point-wise multiplication. For the com-
putation of Aᵀe1, in order to compute the k2 multiplications
over Rq in parallel, we need to access all k2 coefficients of
A at the same time. Therefore, we generate a seed for the

PRNG for each of the k2 coefficients of A. The public key
then consists of a vector b ∈ Rkq and a seed for the PRNG
used to generate the k2 seeds for the k × k matrix A. The
parallel architecture for k = 3 using the BN unit described in
the previous section is shown in Figure 11.

C. Parallel Implementation using HLS

The C source code in Figure 12 is an excerpt of the MLWE
encryption. It computes the matrix-vector product Aᵀe1 where
all the matrix and vector coefficients are in the NTT domain.

A standard matrix-vector product can be recognized in the
loops labelled col and row. The coeff loop iterates over
the coefficients of the polynomials in matrices A and e1. The
matrix A is not read from memory, but computed “on the
fly”. The k2 internal PRNG states are read from memory and
the PRNG is used to generate the coefficients of the k2 poly-
nomials in A. The reduce and reduce_fast functions
perform modular reduction, the prng function samples a 13-
bit signed integer, and the DW macro casts the operands of
the multiplication to the int26 type, to get a 26-bit signed
integer as result.

In order to generate a parallel architecture, some directives
have to be specified accordingly in Vivado HLS. To compute
all of the k2 polynomial multiplications simultaneously, we
set the pipeline directive on the coeff loop. It forces all
subloops to be completely unrolled. Then the k2 operations in
the col and row loops are performed in parallel.

We use the array_partition directive to partition the
arrays E1[k][n] and C1[k][n] into k different arrays.
This distributes them over k different BRAMs each. Then k
values can be loaded from the array E1 at the same time and
k values can be written to C1 at the same time. We apply
the same directive to both dimensions of the k × k array
Trivium_States. Clearly doing this type of architecture
exploration in HDL would be labor intensive.

To generate an architecture for a different vector length
k, we use a SageMath script that creates a new header file
defining k and computes a new set of valid keys (the C
preprocessor in Vivado HLS is not able to perform such
mathematical computations). The C source code remains the
same and the same directives apply. Our SageMath script also
generates all the constants used in the architecture, such as n-
th roots of unity and exponents parametrizing the modulus. A
simple change of parameters in the script is all that is needed to
generate architectures for different values of (n, q, k) without
changing the C source code. We can even switch between
RLWE (k = 1) and MLWE implementations (k = 2, 3 or 4)
by simply generating a new header file. For area optimization,
we add some specific directives depending on the parameter
k. The allocation directive for instance, allows to set a
limit to the number of DSP blocks in the implementation.

D. Implementation Results

The PRNG is instantiated with the Trivium stream cipher
[14]. The results are shown in Table V. In the parallel MLWE
implementation, the impact of k on the encryption time is
mitigated by adding BRAMs and DSP blocks. The latency

7

ADD

MA

PR

RAM

BN

28813 288

13 13 13 13 13

13 13 13

28813 288

13 13 13 13 13

13

28813 288

13 13 13 13 13

13 13 13

ADD ADD

RAM RAM RAM RAM RAM

BN BN BN BN BNPR PR PR PR PR PR PR PR

MA MA MA MA MA MA MA MA

Fig. 11. Proposed parallel architecture for the matrix-vector multiplication in MLWE-768. The PRNG (“PR”) generating matrix A uses the internal PRNG
states stored in RAM. The modular arithmetic unit (“MA”) computes modular multiplication and addition with the error coefficients supplied by the BN units.
The polynomial products are summed up to obtain c1 = Aᵀe1 + e2.

coeff: for(i=0; i<N; i++){
col: for(jj=0; jj<K; jj++){

c1_coeff = 0;
row: for(j=0; j<K; j++){

A_coeff = 0;
prng(Trivium_States[j][jj], &A_coeff);
c1_coeff += reduce(DW(A_coeff)*DW(E1[j][i]));

}
C1[jj][i] = reduce_fast(c1_coeff);

}
}

1

Fig. 12. HLS code for matrix-vector multiplication Aᵀe1.

(in clock cycles) of the arithmetic part of the scheme is then
the same for k = 2, 3 and 4. A slight increase in encryption
and decryption time is due to the loading and storing of public
keys and ciphertexts of increased size. In Table V, increasing k
means adding n cycles to the decryption latency, during which
the k · n coefficients of the ciphertext part c1 are loaded. The
encryption latency increases by 2n cycles since both b and c1
consist of k · n coefficients.

The throughput and area (in DSP blocks) trade-offs of our
LWE, RLWE and MLWE implementations, with various paral-
lelism levels, are shown in Figure 13. Sequential architectures
for RLWE and MLWE using only 1 DSP block and no other
optimizations than pipelining are compared to the slightly par-
allel (computing NTTs simultaneously) and full parallel ones.
For RLWE and MLWE implementations, the throughput is
increased by computing parallel NTTs during the encryption.
Further parallelism is obtained by unrolling loops. This almost
doubles the throughput of the slightly parallel architecture
for MLWE-1024. However for RLWE-1024, the speedup is
limited to only 7 percent compared to the slightly parallel
version. This is due to the memory access patterns of the NTTs
which limit further parallelism. In RLWE these NTTs consist
of 10 stages of 512 butterfly operations each, while in MLWE
only 8× 128 butterfly operations are necessary. The potential
for parallel architectures provided by the matrix structure, is
clearly an advantage for MLWE compared to RLWE. For
the LWE implementations, the throughput increases when

0 5 10 15 20 25

DSP

0

5

10

15

20

25

30

35

40

45

O
p
s/

s
×

10
00

MLWE-512

MLWE-768

MLWE-1024

RLWE-1024

LWE-640

LWE-976

LWE-1344

Fig. 13. Throughput (in k-encryptions per second) vs area (in DSPs) trade-offs
for various parallelism levels. The most left point of each curve corresponds
to a sequential architecture, the middle point embeds parallel NTTs (for
RLWE/MLWE) and the most right point is a full parallel architecture.

TABLE V
PARALLEL CPA-SECURE MLWE (q = 7681) ARCHITECTURE RESULTS

FOR DIFFERENT SECURITY LEVELS.

Size Freq. Time µs Area
k MHz enc / dec DSP, BRAM, Slices, LUT
2 204 25 / 14 9, 17, 4565, 8584
3 196 29 / 16 16, 25, 6271, 12383
4 196 32 / 17 25, 29, 8988, 16803

unrolling the matrix multiplication loop. It remains however,
far below those of MLWE and RLWE.

Obtaining optimized implementations for such a set of
architectures and algorithms in HDL would have been very
difficult and costly.

VII. RANDOMNESS GENERATION AND CCA
IMPLEMENTATIONS

In this section, we investigate various links between area,
performances and security of our solutions. We evaluate the
use of: rejection sampling for public-key generation; a more
secure PRNG; CCA transformation for higher security.

8

0 1 2 3 4
Rejection steps r

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

O
v
e
rh

e
a
d
 (

%
)

Slice

LUT

FF

Latency

Clock period

Fig. 14. Area/timing overhead of CPA-secure MLWE-1024 implementation
due to rejection sampling.

A. Rejection Sampling

To generate the coefficients of the public key A, uniform
sampling over Zq is needed. The naive way for sampling the
uniform distribution over Zq is to generate w = dlog2(q)e
random bits defining a w-bit number a and returning a mod q.
This results in a biased distribution: for any a0 ∈ {0, . . . , 2w−
q − 1} and a1 ∈ {2w − q, . . . , q − 1}, the probability of
obtaining a0 is twice as high as the probability of obtaining
a1. The bias is determined by the probability of obtaining
an integer in the range {q, . . . , 2w − 1}, which is equal to
2w−q
2w ≈ 2−4 for q = 7681. To reduce the bias in the obtained

distribution, rejection sampling can be performed as proposed
for instance in Kyber [12]. This requires generating a number
of random integers a0, . . . , ar and selecting one that is in the
interval [0, q − 1]. The sampling algorithm using r rejection
steps, has a probability of returning an integer in the range
{q, . . . , 2w − 1} of approximately 2−4(1+r). We implemented
rejection sampling for r = 0, 1, 2, 3 and 4. The impact of the
number of rejection steps on the area utilization is shown in
Figure 14. There is a small area overhead in slices, LUTs
and flipflops as rejection steps are added (the maximum for
r = 4 is less than 3 percent). The number of clock cycles
is not impacted by the additional r rejection steps for the
range of r considered in Figure 14. The number of DSPs and
BRAMs also remains the same. Rejection sampling can thus
be efficiently implemented without much overhead.

B. Alternative PRNG

While Trivium leads to fast and small circuits, his 80-bit
key space is smaller than the number of security bits (128,
192 or 256, depending on the parameter set) targeted by
Kyber, NewHope and Frodo. An attacker has no direct access
to the PRNG output used for error sampling. However, the
correctness of a Trivium key guess can be checked by recon-
structing e1 using the PRNG and verifying that eᵀ1A ≈ c1.
The Trivium key can therefore be found in 280 operations. If
the Trivium key is compromised, an attacker may compute
c2 − be1 ≈

⌊
q
2

⌋
µ to recover the message. An exhaustive

search in the 80-bit key space could thus be used for message
recovery attacks.

In Kyber, NewHope and Frodo it is suggested to use
SHAKE256 or similar algorithms as PRNG. Other schemes
propose to use the less secure SHAKE128 to generate the

MLWE-512 MLWE-768 MLWE-1024 RLWE-10240

20

40

60

80

100

120

En
cr

yp
tio

n
tim

e
(µ
s)

30
43

60 62

36
53

71

91

40

60

84

119
Trivium
Hybrid
SHAKE-256

Fig. 15. Impact of the PRNG choice (Trivium, Hybrid, SHAKE) on the
encryption time for CPA-secure MLWE and RLWE architectures.

MLWE-512 MLWE-768 MLWE-1024 RLWE-10240

1000

2000

3000

4000

5000

6000

7000

8000

Sl
ice

s

2380 2540 2383

37013834 3737 3840
46085029 5160 4871

7926

Trivium Hybrid SHAKE-256

Fig. 16. Impact of the PRNG choice on area (in slices) for CPA-secure
MLWE and RLWE architectures.

public key part A. We implement a hybrid version using
Trivium for the public key and SHAKE256 for the error
samples, as presented in [18]. We also implement a version
that uses SHAKE256 for both error sampling and public-
key generation. A standalone Keccak implementation requires
1769 slices, 3782 LUTs and 5121 flipflops, and computes
the 24-round Keccak algorithm in 25 clock cycles. The 3
variations (Trivium, Hybrid and SHAKE) are implemented
for RLWE-1024, MLWE-512, MLWE-768 and MLWE-1024.
The speed results are shown in Figure 15. The area overheads
are shown in Figure 16 (number of required DSPs remains
unchanged). Figure 17 presents a time×area trade-offs com-
parison. The hybrid version has a clear advantage over the full
SHAKE256 variant in terms of area and speed. The obtained
frequency in the RLWE implementation is heavily impacted
by substituting Trivium for SHAKE, dropping from 256 MHz
to 166 MHz. See Table VI for detailed results.

C. CCA Secure Solutions

As proposed for Frodo [10], NewHope [11] and Kyber [12],
we transform our CPA-only secure LWE, RLWE and MLWE
implementations (with hybrid sampling mode) into CCA se-
cure implementations using algorithms in Figures 3 and 4.
Hash functions H and G are instantiated with the SHA3-256
algorithm. A comparison between the timing results of the

MLWE-512 MLWE-768 MLWE-1024 RLWE-10240

200

400

600

800

1000

Ti
m

e
(m

s)
×

Sl
ice

s

71 110 144
231

136
200

273
421

204
309

410

940
Trivium
Hybrid
SHAKE-256

Fig. 17. Impact of the choice of PRNG on time × area for CPA-secure
MLWE and RLWE architectures.

9

MLWE-1024 RLWE-1024
0

50

100

150

200

250
T
im

e
 (
µ
s)

79
91

20

47

115
137128

187

CPA-enc

CPA-dec

CCA2-enc

CCA2-dec

0

2

4

6

8

10

12

14

T
im

e
 (

m
s)

11

1

12 12

LWE-1344

Fig. 18. Encryption and decryption time for CCA2 and CPA implementations.
RLWE and MLWE times are in µs, while ms are used for LWE.

MLWE-1024 RLWE-1024 LWE-1344
0

10

20

30

40

50

60

70

u
n
it

s

4 5 65 5 4

12 11

41

11 9
6

12
15 13

16 17

62CPA-dsp
CPA-slice (×1000)

CPA-bram

CCA-dsp
CCA-slice (×1000)

CCA-bram

Fig. 19. Area comparison between CCA2 and CPA-only implementations.

CPA-only implementations and the CCA implementations is
shown in Figure 18. For LWE, the computation time of the
hash functions is small compared to the matrix multiplica-
tion. The computation time difference between CPA-secure
and CCA-secure encryption are almost entirely accounted
for by the matrix multiplication in the encryption algorithm.
For MLWE and RLWE however, this is not the case. The
difference in computation time between CPA-enc and CCA-
enc is due to the hash functions, as can be expected from
the encapsulation algorithm in Figure 3. This also holds for
the difference between CCA-dec and the sum of CPA-enc
and CPA-dec. Additional slow-down is caused by a drop in
obtained frequency for CCA implementations. The impact on
the area is shown in Figure 19. There is a clear increase in
DSPs for RLWE and MLWE, showing that the sharing of
resources is not optimal.

VIII. COMPARISON WITH OTHER WORKS

Table VI summarizes results for encryption and encapsula-
tion, including this work (TW) and the best FPGA implemen-
tations from the literature. State-of-the-art implementations use
handwritten HDL to get optimized FPGA implementations
(with more extensive implementation effort). All cited results
have been implemented on Xilinx FPGAs (7 series and Ul-
trascale families), except the recent work [31] implemented
on Intel/Altera FPGA, which makes direct comparisons dif-
ficult. Results in Table VI are first grouped by algorithms
(R/M/LWE), second by size and then by type (CCA, CPA
or KE). For each group, the results are reported by increasing
execution time. }

MLWR and RLWR-based schemes are often chosen with a
modulus q that is a power of 2 to ease modular reduction (see
[17], [32]). . Another advantage is that there is no need for

binomial error sampling, as the errors are generated by setting
a number of LSBs to zero.

The work [33] provides hardware/software solutions for
many PKE/KEM algorithms and sizes. The obtained results
are interesting but cannot be compared to pure hardware ones
(for instance the area required by a A53 Cortex core cannot
be compared with FPGA resources).

For LWE, our implementation of the CCA secure LWE-
640 takes more time (increased by a factor 2.45) but uses
less DSP blocks (decreased by a factor 3.2) compared to the
HDL optimized implementation [18] using hybrid PRNG. Our
implementation uses more slices, but it includes decapsulation
whereas [18] does not.

For RLWE, our results are given for q = 7681. Our CPA-
secure RLWE-1024 implementation has an execution time
very close to [34] (63µs vs. 62µs), but is less optimized in
term of hardware resource consumption (4 vs. 2 DSPs). This
shows some potential for HLS implementation.

For MLWE-1024 on Artix-7 FPGAs, our solution is slower
(116µs vs. 67.9µs) and larger (factor 5) than [35] (published
after our initial submission). Using the same HLS code, we are
able to get a much faster solution on a more efficient FPGA
(UltraScale+).

As presented in Fig. 15, changing from Hybrid PRNG to
a complete SHAKE256 solution adds a time overhead about
30% for RLWE-1024 and 20% for MLWE-1024 due to the
frequency drop. It also leads to 30% to 50% area increase.
Thus, even with a complete SHAKE solution the results
remain good using HLS.

Clearly, recent optimized HDL solutions outperform our
HLS ones. But at the time of our initial submission, our HLS
solutions were comparable, and sometimes better, to published
results based on HDL implementation. Unfortunately, we are
not able to compare the respective design efforts to imple-
ment many solutions for various algorithms, architectures and
parameters. This would be interesting.

IX. CONCLUSION

We implemented several CPA and CCA secure LWE, RLWE
and MLWE based cryptosystems on FPGA using HLS for the
first time. At the submission time of this paper, our architec-
tures generated using HLS lead to comparable, and sometimes
better, results compared to the best references from the state
of the art using HDL (such as [20], [19], [31], [25]) but
probably for a much smaller design effort. Recent HDL based
solutions (such as [36], [35]) are faster and smaller than ours.
We showed how HLS can be used effectively to parallelize
implementations. We also evaluated the impact of the choice
of the PRNG on the performance of the encryption. Using
Trivium instead of SHAKE to generate the pseudorandom
part of the public key, the encryption can be accelerated.
Even more speed-up is obtained when using Trivium for the
error sampling as well, although this decreases the theoretical
security of the scheme. HLS seems to us, for a first use of
this type of hardware implementation method, an interesting
solution for PQC algorithms in a tight design budget and for
exploration of solutions. So many different implementations

10

TABLE VI
CPA AND CCA-SECURE ENCRYPTION OR ENCAPSULATION (CPA, CCA) OR ‘CLIENT’ PART IN SERVER-CLIENT-SERVER KEY EXCHANGE (K-E).

“HYBRID” IN THE PRNG COLUMN MEANS TRIVIUM + SHAKE. NOTATIONS: SYMBOL * DENOTES RESULTS FOR BOTH ENCRYPTION AND DECRYPTION,
TW STANDS FOR “THIS WORK”.

Lvl. of Scheme FPGA Freq. Time Area
Source Parallel. type-size Algorithm PRNG Type family (model) MHz µs DSP, 18kb BRAM, Slices, LUT

[18] high LWE-640 Frodo Hybrid CCA Artix-7 171 1212 16, 0, 1692, 5796
[18] medium LWE-640 Frodo Hybrid CCA Artix-7 177 2342 8, 0, 1485, 5155
TW low LWE-640 Hybrid CCA Artix-7 (200) 159 2972 5, 37, 12951, 39077 *
[18] low LWE-640 Frodo Hybrid CCA Artix-7 183 4624 4, 0, 1338, 4620
[25] LWE-640 Frodo Hybrid CCA Artix-7 (35T) 167 19608 1, 11, 1855, 6745
[18] high LWE-976 Frodo Hybrid CCA Artix-7 168 2857 16, 0, 1782, 6188
[18] medium LWE-976 Frodo Hybrid CCA Artix-7 175 5464 8, 0, 1608, 5562
TW low LWE-976 Hybrid CCA Artix-7 (200) 167 6317 14, 37, 13468, 41100 *
[18] low LWE-976 Frodo Hybrid CCA Artix-7 180 10638 4, 0, 1455, 4996
[25] LWE-976 Frodo Hybrid CCA Artix-7 (35T) 166 45455 1, 16, 1985, 7209
TW low LWE-1344 Hybrid CCA Artix-7 200 167 11606 6, 62, 12299, 37342 *
[20] RLWE-1024 NewHope SHAKE K-E Zynq-7 (20) 131 79 8, 14, n.a. 20826
[19] RLWE-1024 NewHope SHAKE K-E Artix-7 (35T) 117 1532 2, 4, n.a., 4498
TW medium RLWE-512 Hybrid CPA Artix-7 (200) 211 50 5, 12, 7797, 16338 *
[34] RLWE-1024 NewHope SHAKE CPA Zynq-7 (20) 200 62 2, 8, n.a, 6781 *
TW medium RLWE-1024 Trivium CPA Artix-7 (200) 259 63 4, 10, 3701, 10112 *
[31] RLWR-1018 Round5 SHAKE CPA Cyclone V (5csea5) 133 1000 4116 ALM, 10753 bytes *
TW medium RLWE-1024 Hybrid CCA Artix-7 200 167 137 9, 17, 14026, 42062 *
[31] RLWR-1170 Round5 SHAKE CCA Cyclone V (5csea5) 130 1350 6337 ALM, 11765 bytes *
[36] MLWR-512 Saber SHAKE CPA UltraScale+ 100 5.2 85, 12, n.a., 34886
[36] MLWR-768 Saber SHAKE CPA UltraScale+ 100 11.6 85, 12, n.a., 34886
[36] MLWR-1024 Saber SHAKE CPA UltraScale+ 100 21.0 85, 12, n.a., 34886
[35] MLWE-512 Kyber SHAKE CCA Artix-7 (12T) 161 30.5 2, 6, 2126, 7412
TW medium MLWE-512 Hybrid CCA Artix-7 (200) 170 60 11, 16, 11028, 34206 *
[37] high MLWR-768 Saber SHAKE CCA UltraScale+ (9eg) 250 26 0, 2, n.a., 23600 *
[35] MLWE-768 Kyber SHAKE CCA Artix-7 (12T) 161 47.6 2, 6, 2126, 7412
TW medium MLWE-768 Hybrid CCA Artix-7 (200) 167 88 11, 16, 11890, 34145 *
[38] MLWR-768 Saber SHAKE CCA Zynq-7 (20) 125 4147 28, 4, n.a., 7400 *
TW medium MLWE-1024 Hybrid CCA UltraScale+ (9eg) 417 48 9, 16, 9314, 44964 *
[35] MLWE-1024 Kyber SHAKE CCA Artix-7 (12T) 161 67.9 2, 6, 2126, 7412
TW medium MLWE-1024 Hybrid CCA Artix-7 (200) 170 116 11, 16, 11567, 33707 *
[39] MLWE-1024 Kyber SHAKE CCA Artix-7 (35T) 60 6900 4, 34, n.a., 1738

TABLE VII
CCA-SECURE MLWE-1024 USING SHAKE256 FOR ERROR SAMPLING

FOR DIFFERENT FPGA FAMILIES, USING VIVADO VERSION 2018.3.

Freq. Time µs Area
FPGA family MHz enc/dec DSP, BRAM, Slices, LUT

Artix-7 200 99/110 11, 16, 11322, 35607
Kintex-7 286 70/77 9, 16, 12066, 34175
Virtex-7 286 70/77 9, 16, 12508, 35718

Zynq UltraScale+ 417 48/53 9, 16, 9314, 44964
Kintex UltraScale 333 61/68 9, 16, 7238, 43101
Virtex UltraScale 286 69/77 9, 16, 6474, 33979

and optimizations would have not been possible during a PhD
thesis using HDL. We plan to implement other cryptosystems
(e.g. isogenies, codes) using HLS and work on arithmetic
support libraries for HLS.

ACKNOWLEDGMENT

This work has been supported by a PhD grant from
PEC/DGA/Région Bretagne.

REFERENCES

[1] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer,” SIAM J. Sci. Statist.
Comput., vol. 26, p. 1484, 1997.

[2] O. Regev, “On Lattices, Learning With Errors, Random Linear Codes,
and Cryptography,” in Proc. ACM Symposium on Theory of Computing,
May 2005, pp. 84–93.

[3] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and
Learning with Errors over Rings,” in Proc. Conf. on the Theory and
Applications of Cryptographic Techniques. Springer, 2010, pp. 1–23.

[4] A. Langlois and D. Stehlé, “Worst-case to Average-case Reductions for
Module Lattices,” Designs, Codes, and Cryptography, vol. 75, no. 3,
pp. 565–599, 2015.

[5] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom functions and
lattices,” in Proc. Int. Conf. on the Theory and Applications of Crypto-
graphic Techniques, Cambridge, UK, 2012, pp. 719–737.

[6] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and
D. Smith-Tone, “Report on post-quantum cryptography,” NIST, Tech.
Rep., 2016.

[7] E. Homsirikamol and K. G. George, “Toward a new HLS-based
methodology for FPGA benchmarking of candidates in cryptographic
competitions: The CAESAR contest case study,” in Proc. Int. Conf. on
Field Programmable Technology (ICFPT). IEEE, 2017, pp. 120–127.

[8] K. Basu, D. Soni, M. Nabeel, and R. Karri, “NIST post-quantum
cryptography - a hardware evaluation study.” IACR Cryptol. ePrint Arch.,
p. 47, 2019.

[9] T. Zijlstra, K. Bigou, and A. Tisserand, “FPGA Implementation and
Comparison of Protections against SCAs for RLWE,” in Proc. Int. Conf.
on Cryptology in India (IndoCrypt), Dec. 2019. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02309481

[10] J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko,
A. Raghunathan, and D. Stebila, “Frodo: Take off the Ring! Practical,
Quantum-Secure Key Exchange from LWE,” in Proc. ACM Conf. on
Computer and Communications Security, Oct. 2016, pp. 1006–1018.

[11] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum
Key Exchange - A New Hope,” in Proc. USENIX Security Symposium,
2016, pp. 327–343.

11

https://hal.archives-ouvertes.fr/hal-02309481

[12] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS - Kyber:
A CCA-Secure Module-Lattice-Based KEM,” in Proc. IEEE European
Symp. on Security and Privacy (EuroS&P), Apr. 2018, pp. 353–367.

[13] E. Fujisaki and T. Okamoto, “Secure Integration of Asymmetric
and Symmetric Encryption Schemes,” in Proc. Int. Cryptology Conf.
Springer, 1999, pp. 537–554.

[14] C. De Cannière, “Trivium: A stream cipher construction inspired by
block cipher design principles,” in Proc. Int. Conf. on Information
Security. Springer, 2006, pp. 171–186.

[15] M. Dworkin, “SHA-3 standard: Permutation-based hash and extendable-
output functions,” NIST FIPS 202, 2015.

[16] T. Zijlstra, K. Bigou, and A. Tisserand, “LWE crypto in HLS on FPGA,”
Online: https://sourcesup.renater.fr/www/lwe-hls-fpga/, 2020.

[17] J. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren, “Saber:
Module-LWR Based Key Exchange, CPA-Secure Encryption and CCA-
Secure KEM,” in Proc. Int. Conf. Progress in Cryptology in Africa
(AFRICACRYPT), May 2018, pp. 282–305.

[18] J. Howe, M. Martinoli, E. Oswald, and F. Regazzoni, “Optimised
Lattice-Based Key Encapsulation in Hardware,” in Second PQC Stan-
dardization Conference. NIST, 2019.

[19] T. Oder and T. Güneysu, “Implementing the NewHope-Simple key ex-
change on low-cost FPGAs,” in Proc. Conf. Cryptology and Information
Security in Latin America (LATINCRYPT), 2017, pp. 128–142.

[20] P. Kuo, W. Li, Y. Chen, Y. Hsu, B. Peng, C. Cheng, and B. Yang, “Post-
Quantum Key Exchange on FPGAs,” IACR Cryptology ePrint Archive,
p. 690, 2017.

[21] S. Roy, F. Vercauteren, N. Mentens, D. Chen, and I. Verbauwhede,
“Compact ring-LWE cryptoprocessor,” in Proc. Workshop Cryptographic
Hardware and Embedded Systems (CHES), Sep. 2014, pp. 371–391.

[22] E. Ozcan and A. Aysu, “High-level-synthesis of number-theoretic trans-
form: A case study for future cryptosystems,” IEEE Embedded Systems
Letters, pp. 1–1, 2019.

[23] T. Pöppelmann and T. Güneysu, “Area Optimization of Lightweight
Lattice-Based Encryption on Reconfigurable Hardware,” in Proc. IEEE
Int. Symp. on Circuits and Systemss (ISCAS), Jun. 2014, pp. 2796–2799.

[24] W. Liu, S. Fan, A. Khalid, C. Rafferty, and M. O’Neill, “Optimized
Schoolbook Polynomial Multiplication for Compact Lattice-Based Cryp-
tography on FPGA,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, pp. 1–5, 2019.

[25] J. Howe, T. Oder, M. Krausz, and T. Güneysu, “Standard Lattice-
Based Key Encapsulation on Embedded Devices,” IACR Transactions
on Cryptographic Hardware and Embedded Systems (TCHES), no. 3,
pp. 372–393, aug 2018.

[26] J. A. Solinas, “Generalized Mersenne Numbers,” Center for Applied
Cryptographic Research, Univ. Waterloo, Tech. Rep. corr-99-39, 1999.

[27] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-kyber
(version 2.0) – submission to round 2 of the NIST post-quantum project,”
Specification document (part of the submission package), Mar. 2019.

[28] “Vivado HLS optimization methodology guide UG1270 (v2017.4),”
Xilinx, Dec. 2017.

[29] M. C. Pease, “An Adaptation of the Fast Fourier Transform for Parallel
Processing,” J. ACM, vol. 15, no. 2, pp. 252–264, 1968.

[30] T. Pöppelmann, T. Oder, and T. Güneysu, “High-Performance Ideal
Lattice-based Cryptography on 8-bit ATxmega Microcontrollers,” in
Proc. Int. Conf. on Cryptology and Information Security in Latin
America (LATINCRYPT), Aug. 2015, pp. 346–365.

[31] M. Andrzejczak, “The Low-Area FPGA Design for the Post-Quantum
Cryptography Proposal Round5,” in Proc. Federated Conf. on Computer
Science and Information Systems (FedCSIS). IEEE, 2019, pp. 213–219.

[32] H. Baan, S. Bhattacharya, S. Fluhrer, O. Garcia-Morchon, T. Laarhoven,
R. Rietman, M. Saarinen, L. Tolhuizen, and Z. Zhang, “Round5:
Compact and fast post-quantum public-key encryption,” in Proc. Int.
Conf. on Post-Quantum Cryptography. Springer, May 2019, pp. 83–
102.

[33] V. B. Dang, F. Farahmand, M. Andrzejczak, and K. Gaj, “Implementing
and Benchmarking Three Lattice-Based Post-Quantum Cryptography
Algorithms Using Software/Hardware Codesign,” in Proc. Int. Conf. on
Field-Programmable Technology (ICFPT). IEEE, 2019, pp. 206–214.

[34] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly Effi-
cient Architecture of NewHope-NIST on FPGA using Low-Complexity
NTT/INTT,” IACR Trans. on Cryptographic Hardware and Embedded
Systems (TCHES), pp. 49–72, 2020.

[35] Y. Xing and S. Li, “A compact hardware implementation of CCA-secure
key exchange mechanism CRYSTALS-KYBER on FPGA,” IACR Trans-

actions on Cryptographic Hardware and Embedded Systems (TCHES),
no. 2, pp. 328–356, Feb. 2021.

[36] Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei, and
L. Liu, “LWRpro: An energy-efficient configurable crypto-processor for
module-LWR,” Transactions on Circuits and Systems I: Regular Papers,
vol. 68, pp. 1146–1159, Mar. 2021.

[37] S. Sinha Roy and A. Basso, “High-speed instruction-set coprocessor
for lattice-based key encapsulation mechanism: Saber in hardware,”
IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES), no. 4, pp. 443–466, Aug. 2020.

[38] J. M. B. Mera, F. Turan, A. Karmakar, S. S. Roy, and I. Verbauwhede,
“Compact domain-specific co-processor for accelerating module lattice-
based key encapsulation mechanism,” IACR crypto ePrint archive, 2020.

[39] E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and R. Petri, “ISA
extensions for finite field arithmetic - accelerating Kyber and NewHope
on RISC-V,” Cryptology ePrint Archive, Report 049, 2020.

[40] C.-M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C.-J. Shih, and
B.-Y. Yang, “NTT multiplication for NTT-unfriendly rings: New speed
records for Saber and NTRU on Cortex-M4 and AVX2,” IACR Trans-
actions on Cryptographic Hardware and Embedded Systems (TCHES),
no. 2, pp. 159–188, Feb. 2021.

Timo Zijlstra was PhD student at CNRS and Lab-
STICC laboratory at the time of writing and is now
security evaluator at SERMA Safety & Security.
His research interests are post quantum cryptography
and side channel attacks.

Karim Bigou received the M. Sc. degree in cryp-
tography in 2011 and the Ph. D. degree in computer
science in 2014 from the University of Rennes 1. He
is now associate professor at University of West-
ern Brittany (UBO) in computer science in Lab-
STICC laboratory. His research interests include
computer arithmetic, applied cryptography, digital
security, hardware and software implementations of
cryptography.

Arnaud Tisserand is senior researcher at CNRS
(French National Center for Scientific Research)
in computer science in Lab-STICC laboratory. His
research interests include computer arithmetic, com-
puter architecture, digital security, VLSI and FPGA
design, design automation, low-power design and
applications in applied cryptography, scientific com-
puting, digital signal processing.

12

https://sourcesup.renater.fr/www/lwe-hls-fpga/

	Introduction
	Definitions and Notations
	State of the Art
	Learning with Errors Cryptography
	CPA to CCA Conversion
	Implementation of Main Operations
	Matrix multiplication
	Polynomial multiplication
	Binomial sampling
	Modular reduction

	Parameters Selected for our Implementations

	FPGA Implementation of LWE
	Matrix Arithmetic for LWE
	Parallelization using HLS
	Implementation results

	New Optimized RLWE Implementations
	MLWE Implementations and Comparison
	Modifying the RLWE Implementation for MLWE
	Parallelization of Operations in \Rq^k
	Parallel Implementation using HLS
	Implementation Results

	Randomness Generation and CCA Implementations
	Rejection Sampling
	Alternative PRNG
	CCA Secure Solutions

	Comparison with other Works
	Conclusion
	Acknowledgment
	References
	Biographies
	Timo Zijlstra
	Karim Bigou
	Arnaud Tisserand

