Timo Zijlstra

Karim Bigou

Arnaud Tisserand

Lattice-based Cryptosystems on FPGA: Parallelization and Comparison using HLS

Keywords: post-quantum cryptography, public-key encryption, hardware implementation, high-level synthesis I

This paper deals with hardware implementations for lattice-based cryptography. Various CPA and CCA secure algorithms for LWE, RLWE and MLWE problems have been studied, parallelized, implemented and compared on FPGA using high-level synthesis. The impact of PRNG choices on the implementations performances and costs is also evaluated. HLS allows us to compare various sets of algorithms, architectures and parameters with a reduced design effort. Our results are often similar to state-of-the-art for various speed and cost trade-offs. Sometimes we obtain better results thanks to the exploration of numerous architecture and algorithm optimizations.

Index Terms-learning with errors

When comparing implementation solutions for PKC, hardware ones usually lead to faster computations and a lower energy consumption than software ones. FPGAs offer a cheap but very effective hardware implementation solution when dealing with wide cost-performance space exploration. Hardware implementations can be realized using high-level synthesis (HLS) and input languages such as C for a reduced design effort. HLS also allows to quickly explore numerous algorithms, architectures and optimizations solutions which would be tedious with HDL. But, as for HDL implementation, HLS requires some expertise for low-level optimizations especially for finite field arithmetic. HLS was used for instance by [START_REF] Homsirikamol | Toward a new HLS-based methodology for FPGA benchmarking of candidates in cryptographic competitions: The CAESAR contest case study[END_REF] for benchmarking authenticated encryption algorithms, and by [START_REF] Basu | NIST post-quantum cryptography -a hardware evaluation study[END_REF] for the post quantum standardization project.

Hardware implementations are easier to protect against physical attacks than software ones. In a previous work [START_REF] Zijlstra | FPGA Implementation and Comparison of Protections against SCAs for RLWE[END_REF] (available online), we proposed, implemented and compared on FPGA using HLS several countermeasures against side channel attacks (SCAs) for RLWE schemes.

Here, we reuse and extend our polynomial and modular arithmetic units from [START_REF] Zijlstra | FPGA Implementation and Comparison of Protections against SCAs for RLWE[END_REF] to:

• design, implement and compare various LWE, RLWE and MLWE hardware solutions with several security parameters for PKE/KEM (inspired from Frodo [START_REF] Bos | Frodo: Take off the Ring! Practical, Quantum-Secure Key Exchange from LWE[END_REF], NewHope [START_REF] Alkim | Post-quantum Key Exchange -A New Hope[END_REF] and Kyber [START_REF] Bos | CRYSTALS -Kyber: A CCA-Secure Module-Lattice-Based KEM[END_REF] candidates);

• implement various architectures and study the speed-up achieved for various levels of parallel computations in critical sequences of operations;

• implement the Fujisaki-Okamoto transform [START_REF] Fujisaki | Secure Integration of Asymmetric and Symmetric Encryption Schemes[END_REF] to obtain CCA secure KEMs for LWE, RLWE and MLWE; • evaluate the impact of PRNG and FPGA choices on the performance and cost of the most efficient MLWE PKE with: a fast and small implementation using Trivium [START_REF] Cannière | Trivium: A stream cipher construction inspired by block cipher design principles[END_REF]; a slower but more secure solution using SHAKE256 [START_REF] Dworkin | SHA-3 standard: Permutation-based hash and extendableoutput functions[END_REF]; and a hybrid one which uses both PRNGs. In our hybrid solution, Trivium generates the pseudorandom part of the public key while SHAKE256 samples the secret error terms during encryption. Using the same implementation methodology, tool, target FPGA, design and optimization efforts for all our implementations, we hope to provide a fair comparison between the various evaluated algorithms, parameters and architectures. Our source codes are available as open source [START_REF] Zijlstra | LWE crypto in HLS on FPGA[END_REF].

Background on PKE algorithms is recalled in Section III. Sections IV, V and VI respectively detail our LWE, RLWE and MLWE implementations with a focus on parallel computations. Our implementations of the CPA to CCA transformation and randomness generation methods are described in Section VII. An extensive comparison of our results with state of the art results is provided in Section VIII.

II. DEFINITIONS AND NOTATIONS

• Z q = Z/qZ and R q = Z q [x]/(x n + 1) for n, q > 0.

• R k×m q is the R q -module. An element from this module is k × m matrix of polynomials in R q .

• Bold font is used for vectors, matrices and polynomials.

• B λ denotes the symmetric binomial distribution centred around 0 with integer parameter λ. • a $ ← -B λ (Z q) denotes a random element in Z q sampled using B λ .

• a $ ← -B λ (R q) denotes a random polynomial in R q whose coefficients are sampled using B λ (Z q).

• A $ ← -B λ (R k×k q
) denotes a random matrix of polynomials sampled using B λ (R q).

• denotes the point-wise multiplication of vectors.

• a is the integer a closest to a in Z q such that a ≤ a.

• PK and SK respectively denote the public and secret keys.

• For e 0 and e 1 two λ-bit integers, we denote e 0 ||e 1 := e 0 + 2 w+w λ e 1 , where w = 1+ log 2 q and w λ = 1+ log 2 λ .

III. STATE OF THE ART

A. Learning with Errors Cryptography Definition 3.1 (LWE [START_REF] Regev | On Lattices, Learning With Errors, Random Linear Codes, and Cryptography[END_REF]): Let χ be an error distribution, that is, a probability distribution close to 0 and symmetric around 0. Let q and m positive integers; s ∈ Z m q be some secret vector; and a 1 , a 2 , . . . some vectors sampled from the uniform distribution over Z m q . Then the LWE problem is to find the vector s given a number of LWE samples of the form (a i , a i s + e i), where the error terms e i are sampled from χ.

LWR [START_REF] Banerjee | Pseudorandom functions and lattices[END_REF] replaces the random sampling of e i by a rounding mechanism adding a deterministic error to a i s.

Definition 3.2 (MLWE [START_REF] Langlois | Worst-case to Average-case Reductions for Module Lattices[END_REF]): For some integer parameter k > 0, an MLWE sample for some secret vector of polynomials s ∈ R k q is given by some uniformly random vector a $ ← -R k q , together with the polynomial b = a s + e, where e $ ← -B λ (R q). The search MLWE problem is to find s given a number of samples.

Note that for n = 1, MLWE is similar to LWE with vectors of length k. In MLWE, small matrices and vectors with polynomial coefficients are used. RLWE is obtained by taking k = 1. Table I reports the parameters (n, k, m) values used in our LWE, RLWE and MLWE implementations. Works [START_REF] Regev | On Lattices, Learning With Errors, Random Linear Codes, and Cryptography[END_REF], [START_REF] Lyubashevsky | On Ideal Lattices and Learning with Errors over Rings[END_REF], [START_REF] Langlois | Worst-case to Average-case Reductions for Module Lattices[END_REF] respectively show that LWE, RLWE and MLWE are at least as hard as solving some hard lattice problems using quantum algorithms.

We describe the framework used for instance by NewHope, Kyber and FrodoKEM. Variations of this framework include the use of deterministic errors [START_REF] D'anvers | Saber: Module-LWR Based Key Exchange, CPA-Secure Encryption and CCA-Secure KEM[END_REF] or Gaussian noise (used in FrodoKEM) instead of sampling the binomial distribution. The secret key SK is defined by sampling some s

$ ← -B λ (R k×m q).
The corresponding public key PK is determined by computing a number of LWE/RLWE/MLWE samples for this secret by sampling a uniform random

Input: Plaintext µ ∈ {0, . . . , 2 B } m 2 n , PK = (A, b) Output: Ciphertext (c 1 , c 2) e 1 , e 2 $ ← -B λ (R k×m q) e 3 $ ← -B λ (R m×m q) c 1 ← e 1 A + e 2 c 2 ← be 1 + e 3 + ENCODE B (µ)
Input: SK = s, ciphertext C = (c 1 , c 2) Output: Plaintext µ d ← c 2 -c 1 s µ ← DECODE B (d)
A $ ← -R k×k q and e 0 $ ← -B λ (R m×k q
), and computing PK given by (A, b) where b = s A + e 0 . Encryption and decryption algorithms are described in Figures 1 and2.

The number of bits encoded in each plaintext coefficient is equal to B + 1. For RLWE and MLWE, the parameter B is set to zero and ENCODE B (µ) lifts µ to the ring R q in a straightforward coefficient-wise manner and returns µ q 2 . The DECODE B (d) function maps coefficients of d to 0 if they are in the interval { -q 4 , . . . , q 4 }, else they are mapped to 1. In LWE each coefficient encodes a number of bits B ≥ 1. Encoding then lifts µ to the module Z m×m q and involves a scalar multiplication by q 2 B+1 . Decoding is generalized by dividing Z q up into 2 B+1 intervals as described by [START_REF] Bos | Frodo: Take off the Ring! Practical, Quantum-Secure Key Exchange from LWE[END_REF].

For n > 1 and k = m = 1, algorithms in Figures 1 and 2 are for the RLWE scheme. Ciphertexts, plaintexts and keys are then polynomials in R q . For n = 1 and k, m > 1 the ring R q is equal to Z q and the plain LWE scheme is obtained, with ciphertexts, plaintext and keys in the form of matrices over Z q . The intermediate parameter sets for which n, k > 1 define the MLWE variant of the scheme.

B. CPA to CCA Conversion

The cryptosystem described in Sec. III-A is secure against chosen plaintext attacks (CPA). The Fujisaki-Okamoto transform [START_REF] Fujisaki | Secure Integration of Asymmetric and Symmetric Encryption Schemes[END_REF] protects the decryption algorithm against chosen ciphertext attacks (CCA). It consists of computing a reencryption of the decrypted ciphertext and comparing it to the received ciphertext. The decrypted text is returned if and only if the two ciphertexts are equal. If they are not equal, then pseudorandom bits are returned. Since the ciphertext depends on the random error terms generated during encryption, the source of randomness is deterministic and computed by applying a hash function to the message and the public key. A third argument is added to the ENC function that specifies the source of randomness used for the binomial sampling. The CCAsecure algorithms in Figures 3 and4 use hash function H and G, and Algorithms 1 and 2. This CPA to CCA transformation and variants of it are used by Kyber, NewHope, Frodo and other lattice-based key exchange mechanisms.

Input: PK, random µ ∈ {0, 1} n Output: Ciphertext C and session key K Input: Ciphertext C, PK and SK Output: Session key K

1: (r 1 , r 2) ← H(PK||µ) 2: C ← ENC(µ, PK, r 1) 3: K ← G(C||r 2)
1: µ ← DEC(C, SK) 2: (r 1 , r 2) ← H(PK||µ) 3: C ← ENC(µ , PK, r 1) 4: if C = C then 5: K ← G(C ||r 2) 6: else 7: K $ ← -{0, 1} 256 8: end if

C. Implementation of Main Operations

1) Matrix multiplication: The multiplication of the public key A with the error matrix e 1 is the most expensive operation in the standard LWE scheme. It consists of k 2 m multiplications in the rings Z 2 15 or Z 2 16 . In [START_REF] Howe | Optimised Lattice-Based Key Encapsulation in Hardware[END_REF] the matrix multiplication is accelerated by computing partial products in parallel using up to 16 DSP blocks.

2) Polynomial multiplication: In RLWE and MLWE, the most expensive arithmetic operation is the polynomial multiplication. Multiplication in the ring R q is computed using the number theoretic transform (NTT). FPGA implementations of NewHope using the NTT for n = 1024 are given by [START_REF] Oder | Implementing the NewHope-Simple key exchange on low-cost FPGAs[END_REF] and [START_REF] Kuo | Post-Quantum Key Exchange on FPGAs[END_REF]. A fast and area optimized implementation for n = 256 is given by [START_REF] Roy | Compact ring-LWE cryptoprocessor[END_REF]. In [START_REF] Ozcan | High-level-synthesis of number-theoretic transform: A case study for future cryptosystems[END_REF] the usage of HLS for the implementation of the NTT is discussed. While implementations using schoolbook polynomial multiplication have been proposed in [START_REF] Pöppelmann | Area Optimization of Lightweight Lattice-Based Encryption on Reconfigurable Hardware[END_REF], [START_REF] Liu | Optimized Schoolbook Polynomial Multiplication for Compact Lattice-Based Cryptography on FPGA[END_REF], they are much slower than the NTT.

In [START_REF] Liu | Optimized Schoolbook Polynomial Multiplication for Compact Lattice-Based Cryptography on FPGA[END_REF] the schoolbook algorithm is optimized for coefficient multiplication on Xilinx DSP48E blocks with 18 × 25-bit hardwired integer multiplication. The coefficients sampled from the error distribution can be represented on a few bits. Therefore, a naive multiplication of a coefficient with w = log q + 1 bits by an error coefficient would underuse the DSP block. Paper [START_REF] Liu | Optimized Schoolbook Polynomial Multiplication for Compact Lattice-Based Cryptography on FPGA[END_REF] "packs" two error coefficients e 0 , e 1 of size w λ = 1 + log 2 λ into a new (w + 2w λ)bit coefficient e 0 + 2 w+w λ e 1 . If (w + 2w λ) < 25, then for any w-bit coefficient a the multiplication (e 0 + 2 w+w λ e 1)a can be computed on one DSP block. The product e 0 a can be read on the first w + w λ LSBs of the output. The product e 1 a is obtained by applying w + w λ right shifts to the output and again selecting the w +w λ LSBs of the remainder. The sign of the products is computed separately. Then two multiplications are obtained for the cost of one.

3) Binomial sampling: The B λ (Z q) distribution is sampled by generating 2λ random bits x 1 , . . . , x λ , y 1 , . . . , y λ and computing λ i=1 x i -y i mod q. The sampling requires 2λ random bits per coefficient. For a total of mn(2k + m) coefficients for the 3 errors e 1 , e 2 and e 3 , the amount of random bits needed is considerable. In the specifications of most of the NIST round 2 candidates it is suggested to use SHAKE256 or AES to supply the randomness. Some implementations however, such as [START_REF] Howe | Optimised Lattice-Based Key Encapsulation in Hardware[END_REF], use Trivium because it is faster. Precomputing random bits and storing them in BRAM is used in [START_REF] Howe | Standard Lattice-Based Key Encapsulation on Embedded Devices[END_REF] to improve the throughput of the PRNG.

4) Modular reduction: In the LWE scheme the modulus is a power of 2, so that no computation is required to compute modular reduction. In RLWE/MLWE however, for fast polynomial arithmetic, one often chooses to use the NTT which requires the existence of a 2n-th root of unity in Z q . This is the case if q is a prime for which q ≡ 1 mod 2n. The choices for q are therefore limited. For prime moduli of the form q = 2 l1 -2 l2 + 1 for some integers l 1 and l 2 , one has 2 l1 -2 l2 + 1 ≡ 1 mod 2n if l 2 ≥ log 2 (2n). For n = 256 suitable primes include 7681 = 2 13 -2 9 + 1 which is used in the original version of Kyber and for n = 1024 the prime q = 2 14 -2 12 + 1 = 12289 is used in NewHope. We use a modular reduction method in the style of [START_REF] Solinas | Generalized Mersenne Numbers[END_REF] for moduli of the form 2 l1 -2 l2 +1. Using the fact that 2 l1 ≡ 2 l2 -1 mod q, a modular reduction can be computed using only bitwise shifts, additions and subtractions.

D. Parameters Selected for our Implementations

We implement the CPA and CCA secure LWE, RLWE and MLWE schemes for the parameter sets shown in Table I.

We choose LWE parameters from FrodoKEM [START_REF] Bos | Frodo: Take off the Ring! Practical, Quantum-Secure Key Exchange from LWE[END_REF] except for the Gaussian distribution. We sample the B λ distribution instead, where λ is chosen such that the obtained B λ distributions are close to the Gaussian distributions from FrodoKEM. This allows us to make a fair comparison between LWE on one hand and RLWE and MLWE (both using binomial distributions) on the other. To the best of our knowledge, there does not exist any attack that exploits the small difference between the sampled distribution and the Gaussian distribution used in the security proof. The performance of the best algorithms solving LWE does not depend on the exact error distribution, which is why schemes such as Kyber [START_REF] Bos | CRYSTALS -Kyber: A CCA-Secure Module-Lattice-Based KEM[END_REF] also prefer binomial sampling.

Our parameters for RLWE and MLWE are those used by NewHope [START_REF] Alkim | Post-quantum Key Exchange -A New Hope[END_REF] and Kyber [START_REF] Bos | CRYSTALS -Kyber: A CCA-Secure Module-Lattice-Based KEM[END_REF] respectively. A newer version of Kyber [START_REF] Bos | CRYSTALS-kyber (version 2.0) -submission to round 2 of the NIST post-quantum project[END_REF] proposes to use the modulus q = 3329. On FPGA, there is hardly any speedup from replacing 13-bit operands by 12-bit when this does not reduce the number of required DSP blocks. Reducing q however, requires to implement quadratic extension field arithmetic. To avoid the overhead in computation time that this would cause, we first implement the original scheme using q = 7681. In section VI, we also implement the scheme with the new modulus and compared its performance to the original scheme.

The parameter sets are designed for the NIST security levels 1, 3 and 5, where level 1 corresponds to AES-128, 3 to AES-192 and 5 to AES-256. Level 1 is claimed by [START_REF] Bos | Frodo: Take off the Ring! Practical, Quantum-Secure Key Exchange from LWE[END_REF] for Frodo using parameter set LWE-640, and by [START_REF] Bos | CRYSTALS -Kyber: A CCA-Secure Module-Lattice-Based KEM[END_REF] for Kyber using parameters set MLWE-512. Level 3 proposals use parameter

IV. FPGA IMPLEMENTATION OF LWE

In Sections IV to VIII, we use Vivado HLS (version 2018.1) on an Artix-7 FPGA (XC7A200) from Xilinx for all our implementations since this FPGA family is frequently used in other works (see Table VII in Section VIII). We also verified several of our architectures for CPA-secure RLWE on a ZedBoard card with a Zynq XC7Z020 FPGA (we do not have an Artix-7 card) where performance and cost results obtained on the Zynq FPGA card accurately confirm the synthesis and place&route (SPR) results. Below we report SPR results on the Artix-7 family.

A. Matrix Arithmetic for LWE

We extend the method from [START_REF] Liu | Optimized Schoolbook Polynomial Multiplication for Compact Lattice-Based Cryptography on FPGA[END_REF] to speed-up schoolbook polynomial multiplication, described in Sec. III-C, to the matrix multiplication for the standard LWE scheme. Matrices A and e 1 coefficients are 15 and w λ = 1 + log 2 λ bits wide respectively. We pack two coefficients e 00 ||e 10 to reduce the 8 × k matrix e 1 with w λ -bit elements to a 4 × k matrix with (w + 2w λ)-bit ones. Then multiplying one coefficient from A by one from e 1 requires a single DSP block.

The coefficients of the public key matrix A are generated by the PRNG. At each clock cycle, one coefficient is generated. During the first clock cycle, a 00 is generated and multiplied by all 4 coefficients in the first column vector of e 1 .

The resulting vector is added to the first column of the output matrix. All the coefficients that are loaded in the first clock cycle are coloured blue in Figure 5. During the second clock cycle, the red coefficients are loaded. The resulting integer products are all added to the first column of the output matrix. The first column of this output matrix is completely computed after k (+ pipeline depth) clock cycles. Only then the computation of the second column begins. Each row of e 1 is stored in one BRAM (i.e. matrix e 1 uses 4 BRAMs). The architecture of the matrix multiplication is shown in Figure 6. To increase the level of parallelism by a factor two, the blue and red multiplications can be performed at the same time. Then twice as many DSP blocks are required for the matrix multiplication and two coefficients of A have to be generated at the same time. For higher degrees of parallelism, multiple elements on the same row of e 1 have to be read simultaneously. Therefore the rows of e 1 have to be implemented on multiple BRAMs each.

B. Parallelization using HLS

The C source code of the matrix multiplication c 1 ← e 1 A, illustrated in Figure 5, is reported in Figure 7. The loops labelled col_A and row_A iterate over the columns and rows of A respectively. Column of the output matrix are loaded and stored by loops copy1 and copy2. The prng function generates the next coefficient of A, and comp_2prods computes a • (e||e) for coefficients a, e, e using the error encoding method described in paragraph III-C2.

In order to specify optimization to the HLS tool, we use various directives (see [START_REF]Vivado HLS optimization methodology guide[END_REF]). Applying the pipeline directive to the loop row_A, ensures that this loop is pipelined and the subloop row_E is completely unrolled. That is, all 4 iterations of the loop row_E are computed at the same time on 4 DSPs. Arrays are implemented on a single BRAM by default. Without any specifications, the HLS tool would try to implement E1 on a single BRAM. However, all 4 elements of each column have to be loaded simultaneously. Therefore we use the array_partition directive on E1 to partition the local memory into 4 parallel BRAMs.

We parallelize the computation even further by applying the unroll directive on loop row_A using several unrolling factors: 2, 4, 8 and 16. For unrolling factors 4, 8 and 16, multiple elements on the same row have to be accessed at the same time. Therefore the array E1 has to be partitioned in the second dimension as well, using the array_partition directive, to prevent simultaneous accesses to the same BRAM. A similar effect can be obtained using the array_reshape directive, which results in fewer additional BRAMs than array_partition. Using the array_map directive, multiple arrays can be implemented on one single BRAM. This may have a negative impact on the computation time, as some arrays need to be accessed during the same clock cycle.

Other examples of directives used in our implementations includeinline, allocation and dependence. To find the optimal choice of directives, we have tried dozens of directive combinations including

• different factors for array_partition, unroll and array_reshape with different options, • pipelining using different initiation intervals,

• array_map for different variables,

• inline and dependence for various loops and functions, • allocation to set a strict limit to the number of DSPs used by the implementation for various limits.

The same (somewhat) exhaustive approach to the exploration of the design space is used for RLWE and MLWE implementations in sections V and VI. In total we have tested over 100 different configurations, which would not be possible in reasonable time using HDL (and debugging so many architectures would be tedious). Clearly, this demonstrates the interest of HLS for PKC implementations. The complete set of directives used for our source codes is available online in our repository [START_REF] Zijlstra | LWE crypto in HLS on FPGA[END_REF].

C. Implementation results

The implementation results are reported in Table II. The error encoding technique for packing two error terms in one w + 2w λ bits integer allows to compute 8 multiplications in parallel using 4 DSP blocks for the parameters sets of k = 640 and k = 1344. For k = 976 however, the error terms are still 5-bit integers while the coefficient size is increased to 16 bits (see Table I). Therefore w + w λ > 25 and extra DSP blocks are needed for the multiplications. For k = 1344 the size of the error terms decreases to 4 bits.

The matrix multiplication using 4 parallel DSP blocks is computed in roughly k 2 = 409600 cycles for k = 640. This operation takes up 90 percent of the total encryption time. The impact of parallelism on the timing and area implementation results is shown in Figure 8. These results are for the LWE-640 encryption algorithm only. The unrolling factor 2 divides the total encryption time by almost 2 while the overhead in terms of DSPs is lower than 2. In terms of slices, LUTs and BRAMs, the trade-off is even more favourable for the parallelized implementation, which even holds for the more parallelized implementations using unrolling factors 4, 8 and 16. For these Fig. 9. Binomial sampler (yellow part) using PRNG for the error polynomials in the NTT domain (red part). The negative wrapped convolution is computed using a shift and add based multiplier (green part), exploiting the fact that the binomial samples are small. The NTT uses one butterfly operator (BF) that consists of a single DSP block and integer addition/subtraction operators.

V. NEW OPTIMIZED RLWE IMPLEMENTATIONS

We re-used the finite field and polynomial arithmetic units from our previous work [START_REF] Zijlstra | FPGA Implementation and Comparison of Protections against SCAs for RLWE[END_REF], and we added the implementation of the CPA secure RLWE cryptoscheme for n = 256 and n = 1024. Our new architectures include modular reduction, NTT and the binomial sampler, as illustrated in figure 9. The negative wrapped convolution computes the products of small error terms with the 2n-th roots of unity. multiplications are computed using a shift and add based multiplier. The constant geometry variant [START_REF] Pease | An Adaptation of the Fast Fourier Transform for Parallel Processing[END_REF] of the NTT is used. Bitreversal is avoided by using the decimation-in-frequency (DIF) algorithm for the forward NTT and decimation-in-time (DIT) for the inverse, as proposed in [START_REF] Pöppelmann | High-Performance Ideal Lattice-based Cryptography on 8-bit ATxmega Microcontrollers[END_REF].

Our new (CPA and area optimized) implementation results reported in Table III are compared to our non-CPA version from [START_REF] Zijlstra | FPGA Implementation and Comparison of Protections against SCAs for RLWE[END_REF] and RLWE-1024. The sequential architecture requires only one DSP block but doubles the encryption time. In the parallel architecture, 2 forward NTTs are computed simultaneously with n 2 log n less cycles in the encryption function, resulting in a smaller latency. The parallel architecture also leads to a higher frequency than the sequential one, resulting in an even more significant speed-up. The unrolled architecture unrolls loops of the point-wise computations by a factor 2. There is a small speedup compared to the parallel architecture but with some area overhead in terms of DSPs and BRAMs. Thanks to HLS, adding CPA protection was possible in a moderate design time.

VI. MLWE IMPLEMENTATIONS AND COMPARISON

A. Modifying the RLWE Implementation for MLWE

We transform our RLWE-1024 implementation for MLWE using slight changes, starting by changing n from 1024 to 256. The arithmetic units are re-used for computations in R q and MLWE. This includes our architecture in Figure 9 (modified for n = 256) that generates binomial samples in the NTT domain and now denoted BN. The same operations are performed but on polynomial coefficients of k-dimensional vectors over R q . The MLWE scheme is thus implemented by applying the operators used in RLWE to each of the k polynomials (each of degree n) of the vectors in a sequential manner. This is achieved by modifying the control accordingly. Each vector consists of 14 • 256 • k bits and is stored in one 18 kb BRAM. For k = 4, around 14 kb are used in each BRAM, while for k = 2, only 7 kb are used. In a sequential architecture, the number of BRAMs is the same for k ∈ {2, 3, 4}. Extra additions and a modified control are needed to support the multiplication of matrices and vectors of dimension k. To avoid storing the k × k random matrix A, which is part of the public key, we use the PRNG to generate the coefficients of the polynomials in matrix A on the fly, as suggested by [START_REF] Bos | CRYSTALS -Kyber: A CCA-Secure Module-Lattice-Based KEM[END_REF]. The public key to be stored in the architecture only consists of the vector b ∈ R k q and the seed for the PRNG. We apply one step of rejection sampling in order to avoid too much bias in the distribution of the coefficients (see section VII-A), as proposed for instance for Kyber in [START_REF] Bos | CRYSTALS -Kyber: A CCA-Secure Module-Lattice-Based KEM[END_REF].

As seen in Sec. III-D, several values of the security parameter k ∈ {2, 3, 4} are used for MLWE based candidates. We provide implementations for all those values with results in Table IV. Having a generic source code for HLS allows us to select k easily. In HDL, this would not be simple to optimize the performances using pipelining. k determines the number of required multiplications in R q . During the encryption, k 2 + k multiplications in R q and 2k forward NTTs are needed. The decryption consists of k multiplications in R q , with only one inverse NTT.

Figure 10 compares, for a similar security level, RLWE with n = 1024 and MLWE with k = 4 implementations. For encryption, MLWE is slightly faster but for decryption MLWE is twice as fast as RLWE with only one additional BRAM and even less slices. The impact of k on the decryption time of MLWE is limited, since only the size of the computation c 1 • s depends on k. During the encryption however k 2 + k multiplications in R q and 2k NTTs have to be computed. The encryption time is therefore heavily impacted by increasing the parameter k. In order to estimate the performance of Kyber from the Round 2 specification, we modify the implementation by using modulus q = 3329. The fast modular reduction algorithm for modulus 7681 cannot be used and must be replaced. Moreover, there are no 2n-roots of unity in Z 3329 , therefore the NTT has to be modified as well, and quadratic extension field arithmetic has to be added to replace the pointwise multiplications. As a result, the latency is increased and extra DSP blocks are required as reported in Table IV. Adding a quadratic extension for the field arithmetic is not simple. But using HLS this corresponds to a few days of design and debug (using HDL this would be tedious).

B. Parallelization of Operations in R k q

We also propose parallelized implementations of MLWE encryption and decryption whose computation time is independent of the vector length k. While the computations in Z q are still performed sequentially, hardware is added to compute the operations on a higher level (matrix-vector operations) in parallel. During the encryption the k components of the error vectors e 1 and e 2 have to be sent to the NTT domain. All of these 2k transforms are computed simultaneously. The operation (for k = 2)

e 1 , e 2 →
NTT(e

(0) 1) NTT(e (1) 1)
,

NTT(e

(0) 2) NTT(e (1)
2) is computed in the time it takes to compute one NTT, that is, n 2 log(n)+δ cycles for where δ is the pipeline depth. Similarly, PRNGs and binomial samplers are added to sample the 2k error polynomials simultaneously. The k 2 multiplications in R q for the computation of c 1 ← A e 1 + e 2 and the k multiplications in R q needed to compute c 2 are also computed in parallel. For k = 2, the operation

e 1 , A → a (00) e (0)
1 + a (01) e

(1) 1 a (10) e

(0)
1 + a (11) e

(1) 1

is computed in just over n cycles, which is the time it takes to compute one single point-wise multiplication. For the computation of A e 1 , in order to compute the k 2 multiplications over R q in parallel, we need to access all k 2 coefficients of A at the same time. Therefore, we generate a seed for the PRNG for each of the k 2 coefficients of A. The public key then consists of a vector b ∈ R k q and a seed for the PRNG used to generate the k 2 seeds for the k × k matrix A. The parallel architecture for k = 3 using the BN unit described in the previous section is shown in Figure 11.

C. Parallel Implementation using HLS

The C source code in Figure 12 is an excerpt of the MLWE encryption. It computes the matrix-vector product A e 1 where all the matrix and vector coefficients are in the NTT domain.

A standard matrix-vector product can be recognized in the loops labelled col and row. The coeff loop iterates over the coefficients of the polynomials in matrices A and e 1 . The matrix A is not read from memory, but computed "on the fly". The k 2 internal PRNG states are read from memory and the PRNG is used to generate the coefficients of the k 2 polynomials in A. The reduce and reduce_fast functions perform modular reduction, the prng function samples a 13bit signed integer, and the DW macro casts the operands of the multiplication to the int26 type, to get a 26-bit signed integer as result.

In order to generate a parallel architecture, some directives have to be specified accordingly in Vivado HLS. To compute all of the k 2 polynomial multiplications simultaneously, we set the pipeline directive on the coeff loop. It forces all subloops to be completely unrolled. Then the k 2 operations in the col and row loops are performed in parallel.

We use the array_partition directive to partition the arrays E1[k][n] and C1 [k][n] into k different arrays. This distributes them over k different BRAMs each. Then k values can be loaded from the array E1 at the same time and k values can be written to C1 at the same time. We apply the same directive to both dimensions of the k × k array Trivium_States. Clearly doing this type of architecture exploration in HDL would be labor intensive.

To generate an architecture for a different vector length k, we use a SageMath script that creates a new header file defining k and computes a new set of valid keys (the C preprocessor in Vivado HLS is not able to perform such mathematical computations). The C source code remains the same and the same directives apply. Our SageMath script also generates all the constants used in the architecture, such as nth roots of unity and exponents parametrizing the modulus. A simple change of parameters in the script is all that is needed to generate architectures for different values of (n, q, k) without changing the C source code. We can even switch between RLWE (k = 1) and MLWE implementations (k = 2, 3 or 4) by simply generating a new header file. For area optimization, we add some specific directives depending on the parameter k. The allocation directive for instance, allows to set a limit to the number of DSP blocks in the implementation.

D. Implementation Results

The PRNG is instantiated with the Trivium stream cipher [START_REF] Cannière | Trivium: A stream cipher construction inspired by block cipher design principles[END_REF]. The results are shown in Table V (in clock cycles) of the arithmetic part of the scheme is then the same for k = 2, 3 and 4. A slight increase in encryption and decryption time is due to the loading and storing of public keys and ciphertexts of increased size. In Table V, increasing k means adding n cycles to the decryption latency, during which the k • n coefficients of the ciphertext part c 1 are loaded. The encryption latency increases by 2n cycles since both b and c 1 consist of k • n coefficients.

The throughput and area (in DSP blocks) trade-offs of our LWE, RLWE and MLWE implementations, with various parallelism levels, are shown in Figure 13. Sequential architectures for RLWE and MLWE using only 1 DSP block and no other optimizations than pipelining are compared to the slightly parallel (computing NTTs simultaneously) and full parallel ones. For RLWE and MLWE implementations, the throughput is increased by computing parallel NTTs during the encryption. Further parallelism is obtained by unrolling loops. This almost doubles the throughput of the slightly parallel architecture for MLWE-1024. However for RLWE-1024, the speedup is limited to only 7 percent compared to the slightly parallel version. This is due to the memory access patterns of the NTTs which limit further parallelism. In RLWE these NTTs consist of 10 stages of 512 butterfly operations each, while in MLWE only 8 × 128 butterfly operations are necessary. The potential for parallel architectures provided by the matrix structure, is clearly an advantage for MLWE compared to RLWE. For the LWE implementations, the throughput increases when Obtaining optimized implementations for such a set of architectures and algorithms in HDL would have been very difficult and costly.

VII. RANDOMNESS GENERATION AND CCA IMPLEMENTATIONS

In this section, we investigate various links between area, performances and security of our solutions. We evaluate the use of: rejection sampling for public-key generation; a more secure PRNG; CCA transformation for higher security.

A. Rejection Sampling

To generate the coefficients of the public key A, uniform sampling over Z q is needed. The naive way for sampling the uniform distribution over Z q is to generate w = log 2 (q) random bits defining a w-bit number a and returning a mod q. This results in a biased distribution: for any a 0 ∈ {0, . . . , 2 wq -1} and a 1 ∈ {2 w -q, . . . , q -1}, the probability of obtaining a 0 is twice as high as the probability of obtaining a 1 . The bias is determined by the probability of obtaining an integer in the range {q, . . . , 2 w -1}, which is equal to 2 w -q 2 w ≈ 2 -4 for q = 7681. To reduce the bias in the obtained distribution, rejection sampling can be performed as proposed for instance in Kyber [START_REF] Bos | CRYSTALS -Kyber: A CCA-Secure Module-Lattice-Based KEM[END_REF]. This requires generating a number of random integers a 0 , . . . , a r and selecting one that is in the interval [0, q -1]. The sampling algorithm using r rejection steps, has a probability of returning an integer in the range {q, . . . , 2 w -1} of approximately 2 -4(1+r) . We implemented rejection sampling for r = 0, 1, 2, 3 and 4. The impact of the number of rejection steps on the area utilization is shown in Figure 14. There is a small area overhead in slices, LUTs and flipflops as rejection steps are added (the maximum for r = 4 is less than 3 percent). The number of clock cycles is not impacted by the additional r rejection steps for the range of r considered in Figure 14. The number of DSPs and BRAMs also remains the same. Rejection sampling can thus be efficiently implemented without much overhead.

B. Alternative PRNG

While Trivium leads to fast and small circuits, his 80-bit key space is smaller than the number of security bits (128, 192 or 256, depending on the parameter set) targeted by Kyber, NewHope and Frodo. An attacker has no direct access to the PRNG output used for error sampling. However, the correctness of a Trivium key guess can be checked by reconstructing e 1 using the PRNG and verifying that e 1 A ≈ c 1 . The Trivium key can therefore be found in 2 80 operations. If the Trivium key is compromised, an attacker may compute c 2 -be 1 ≈ q 2 µ to recover the message. An exhaustive search in the 80-bit key space could thus be used for message recovery attacks.

In Kyber, NewHope and Frodo it is suggested to use SHAKE256 or similar algorithms as PRNG. Other schemes propose to use the less secure SHAKE128 to generate the public key part A. We implement a hybrid version using Trivium for the public key and SHAKE256 for the error samples, as presented in [START_REF] Howe | Optimised Lattice-Based Key Encapsulation in Hardware[END_REF]. We also implement a version that uses SHAKE256 for both error sampling and publickey generation

C. CCA Secure Solutions

As proposed for Frodo [START_REF] Bos | Frodo: Take off the Ring! Practical, Quantum-Secure Key Exchange from LWE[END_REF], NewHope [START_REF] Alkim | Post-quantum Key Exchange -A New Hope[END_REF] and Kyber [START_REF] Bos | CRYSTALS -Kyber: A CCA-Secure Module-Lattice-Based KEM[END_REF], we transform our CPA-only secure LWE, RLWE and MLWE implementations (with hybrid sampling mode) into CCA secure implementations using algorithms in Figures 3 and4 CPA-only implementations and the CCA implementations is shown in Figure 18. For LWE, the computation time of the hash functions is small compared to the matrix multiplication. The computation time difference between CPA-secure and CCA-secure encryption are almost entirely accounted for by the matrix multiplication in the encryption algorithm. For MLWE and RLWE however, this is not the case. The difference in computation time between CPA-enc and CCAenc is due to the hash functions, as can be expected from the encapsulation algorithm in Figure 3. This also holds for the difference between CCA-dec and the sum of CPA-enc and CPA-dec. Additional slow-down is caused by a drop in obtained frequency for CCA implementations. The impact on the area is shown in Figure 19. There is a clear increase in DSPs for RLWE and MLWE, showing that the sharing of resources is not optimal.

VIII. COMPARISON WITH OTHER WORKS

Table VI summarizes results for encryption and encapsulation, including this work (TW) and the best FPGA implementations from the literature. State-of-the-art implementations use handwritten HDL to get optimized FPGA implementations (with more extensive implementation effort). All cited results have been implemented on Xilinx FPGAs (7 series and Ultrascale families), except the recent work [START_REF] Andrzejczak | The Low-Area FPGA Design for the Post-Quantum Cryptography Proposal Round5[END_REF] implemented on Intel/Altera FPGA, which makes direct comparisons difficult. Results in Table VI are first grouped by algorithms (R/M/LWE), second by size and then by type (CCA, CPA or KE). For each group, the results are reported by increasing execution time. } MLWR and RLWR-based schemes are often chosen with a modulus q that is a power of 2 to ease modular reduction (see [START_REF] D'anvers | Saber: Module-LWR Based Key Exchange, CPA-Secure Encryption and CCA-Secure KEM[END_REF], [START_REF] Baan | Round5: Compact and fast post-quantum public-key encryption[END_REF]). . Another advantage is that there is no need for binomial error sampling, as the errors are generated by setting a number of LSBs to zero.

The work [START_REF] Dang | Implementing and Benchmarking Three Lattice-Based Post-Quantum Cryptography Algorithms Using Software/Hardware Codesign[END_REF] provides hardware/software solutions for many PKE/KEM algorithms and sizes. The obtained results are interesting but cannot be compared to pure hardware ones (for instance the area required by a A53 Cortex core cannot be compared with FPGA resources).

For LWE, our implementation of the CCA secure LWE-640 takes more time (increased by a factor 2.45) but uses less DSP blocks (decreased by a factor 3.2) compared to the HDL optimized implementation [START_REF] Howe | Optimised Lattice-Based Key Encapsulation in Hardware[END_REF] using hybrid PRNG. Our implementation uses more slices, but it includes decapsulation whereas [START_REF] Howe | Optimised Lattice-Based Key Encapsulation in Hardware[END_REF] does not.

For RLWE, our results are given for q = 7681. Our CPAsecure RLWE-1024 implementation has an execution time very close to [START_REF] Zhang | Highly Efficient Architecture of NewHope-NIST on FPGA using Low-Complexity NTT/INTT[END_REF] (63µs vs. 62µs), but is less optimized in term of hardware resource consumption (4 vs. 2 DSPs). This shows some potential for HLS implementation.

For MLWE-1024 on Artix-7 FPGAs, our solution is slower (116µs vs. 67.9µs) and larger (factor 5) than [START_REF] Xing | A compact hardware implementation of CCA-secure key exchange mechanism CRYSTALS-KYBER on FPGA[END_REF] (published after our initial submission). Using the same HLS code, we are able to get a much faster solution on a more efficient FPGA (UltraScale+).

As presented in Fig. 15, changing from Hybrid PRNG to a complete SHAKE256 solution adds a time overhead about 30% for RLWE-1024 and 20% for MLWE-1024 due to the frequency drop. It also leads to 30% to 50% area increase. Thus, even with a complete SHAKE solution the results remain good using HLS.

Clearly, recent optimized HDL solutions outperform our HLS ones. But at the time of our initial submission, our HLS solutions were comparable, and sometimes better, to published results based on HDL implementation. Unfortunately, we are not able to compare the respective design efforts to implement many solutions for various algorithms, architectures and parameters. This would be interesting.

IX. CONCLUSION

We implemented several CPA and CCA secure LWE, RLWE and MLWE based cryptosystems on FPGA using HLS for the first time. At the submission time of this paper, our architectures generated using HLS lead to comparable, and sometimes better, results compared to the best references from the state of the art using HDL (such as [START_REF] Kuo | Post-Quantum Key Exchange on FPGAs[END_REF], [START_REF] Oder | Implementing the NewHope-Simple key exchange on low-cost FPGAs[END_REF], [START_REF] Andrzejczak | The Low-Area FPGA Design for the Post-Quantum Cryptography Proposal Round5[END_REF], [START_REF] Howe | Standard Lattice-Based Key Encapsulation on Embedded Devices[END_REF]) but probably for a much smaller design effort. Recent HDL based solutions (such as [START_REF] Zhu | LWRpro: An energy-efficient configurable crypto-processor for module-LWR[END_REF], [START_REF] Xing | A compact hardware implementation of CCA-secure key exchange mechanism CRYSTALS-KYBER on FPGA[END_REF]) are faster and smaller than ours. We showed how HLS can be used effectively to parallelize implementations. We also evaluated the impact of the choice of the PRNG on the performance of the encryption. Using Trivium instead of SHAKE to generate the pseudorandom part of the public key, the encryption can be accelerated. Even more speed-up is obtained when using Trivium for the error sampling as well, although this decreases the theoretical security of the scheme. HLS seems to us, for a first use of this type of hardware implementation method, an interesting solution for PQC algorithms in a tight design budget and for exploration of solutions. So many different implementations and optimizations would have not been possible during a PhD thesis using HDL. We plan to implement other cryptosystems (e.g. isogenies, codes) using HLS and work on arithmetic support libraries for HLS.

Fig. 1 .

 1 Fig. 1. Encryption algorithm ENC(µ, PK).

Fig. 2 .

 2 Fig. 2. Decryption algorithm DEC(C, SK).

Fig. 3 .

 3 Fig. 3. CCA-secure encapsulation function ENCAPS.

Fig. 4 .

 4 Fig. 4. CCA-secure decapsulation function DECAPS.

eFig. 5 .Fig. 6 .

 56 Fig.5. Matrix multiplication e 1 A: each element of A is multiplied with a column vector of e 1 .

Fig. 7 .

 7 Fig. 7. Source code for matrix multiplication c 1 ← e 1 A.

Fig. 8 .

 8 Fig. 8. Comparison of the LWE-640 base implementation (blue) to parallel ones with unrolling factors 2 (green), 4 (red), 8 (cyan) and 16 (magenta).

Fig. 10 .

 10 Fig.10. Comparison of CPA-secure MLWE (using q = 7681) with RLWE (q = 12289) PKE FPGA implementations for the same security level.

Fig. 11 . 1 Fig. 12 .

 11112 Fig.11. Proposed parallel architecture for the matrix-vector multiplication in MLWE-768. The PRNG ("PR") generating matrix A uses the internal PRNG states stored in RAM. The modular arithmetic unit ("MA") computes modular multiplication and addition with the error coefficients supplied by the BN units. The polynomial products are summed up to obtain c 1 = A e 1 + e 2 .

Fig. 13 .

 13 Fig.[START_REF] Fujisaki | Secure Integration of Asymmetric and Symmetric Encryption Schemes[END_REF]. Throughput (in k-encryptions per second) vs area (in DSPs) trade-offs for various parallelism levels. The most left point of each curve corresponds to a sequential architecture, the middle point embeds parallel NTTs (for RLWE/MLWE) and the most right point is a full parallel architecture.

Fig. 14 .

 14 Fig. 14. Area/timing overhead of CPA-secure MLWE-1024 implementation due to rejection sampling.

Fig. 15 .Fig. 16 .

 1516 Fig. 15. Impact of the PRNG choice (Trivium, Hybrid, SHAKE) on the encryption time for CPA-secure MLWE and RLWE architectures.

Fig. 17 .

 17 Fig.[START_REF] D'anvers | Saber: Module-LWR Based Key Exchange, CPA-Secure Encryption and CCA-Secure KEM[END_REF]. Impact of the choice of PRNG on time × area for CPA-secure MLWE and RLWE architectures.

Fig. 18 .Fig. 19 .

 1819 Fig. 18. Encryption and decryption time for CCA2 and CPA implementations. RLWE and MLWE times are in µs, while ms are used for LWE.

TABLE I PARAMETER

 I SETS USED IN OUR IMPLEMENTATIONS.

	Scheme	n	m	k	q	λ
	LWE	1	8	640 / 976 / 1344 2 15 / 2 16 / 2 16	15 / 10 / 4
	RLWE	1024	1	1	12289	8
	MLWE	256	1	2 / 3 / 4	7681	5 / 4 / 3
	sets LWE-976 and MLWE-768, while LWE-1344, RLWE-
	1024 and MLWE-1024 are used in level 5.	

 . In the parallel MLWE implementation, the impact of k on the encryption time is mitigated by adding BRAMs and DSP blocks. The latency

		RAM	RAM			RAM	RAM			RAM	RAM	
		13	288	288			13	288	288			13	288	288	
	BN	PR	PR	PR	BN	BN	PR	PR	PR	BN	BN	PR	PR	PR	BN
	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
		MA	MA	MA			MA	MA	MA			MA	MA	MA	
		13	13	13			13					13	13	13	
							ADD	ADD ADD						

TABLE VI CPA

 VI AND CCA-SECURE ENCRYPTION OR ENCAPSULATION (CPA, CCA) OR 'CLIENT' PART IN SERVER-CLIENT-SERVER KEY EXCHANGE (K-E). "HYBRID" IN THE PRNG COLUMN MEANS TRIVIUM + SHAKE. NOTATIONS: SYMBOL * DENOTES RESULTS FOR BOTH ENCRYPTION AND DECRYPTION, TW STANDS FOR "THIS WORK".

		Lvl. of	Scheme			FPGA	Freq. Time Area
	Source Parallel.	type-size	Algorithm PRNG Type	family (model)	MHz	µs DSP, 18kb BRAM, Slices, LUT
	[18]	high	LWE-640	Frodo	Hybrid CCA	Artix-7	171	1212 16, 0, 1692, 5796
	[18]	medium	LWE-640	Frodo	Hybrid CCA	Artix-7	177	2342 8, 0, 1485, 5155
	TW	low	LWE-640		Hybrid CCA	Artix-7 (200)	159	2972 5, 37, 12951, 39077 *
	[18]	low	LWE-640	Frodo	Hybrid CCA	Artix-7	183	4624 4, 0, 1338, 4620
	[25]		LWE-640	Frodo	Hybrid CCA	Artix-7 (35T)	167 19608 1, 11, 1855, 6745
	[18]	high	LWE-976	Frodo	Hybrid CCA	Artix-7	168	2857 16, 0, 1782, 6188
	[18]	medium	LWE-976	Frodo	Hybrid CCA	Artix-7	175	5464 8, 0, 1608, 5562
	TW	low	LWE-976		Hybrid CCA	Artix-7 (200)	167	6317 14, 37, 13468, 41100 *
	[18]	low	LWE-976	Frodo	Hybrid CCA	Artix-7	180 10638 4, 0, 1455, 4996
	[25]		LWE-976	Frodo	Hybrid CCA	Artix-7 (35T)	166 45455 1, 16, 1985, 7209
	TW	low	LWE-1344		Hybrid CCA	Artix-7 200	167 11606 6, 62, 12299, 37342 *
	[20]		RLWE-1024 NewHope SHAKE K-E	Zynq-7 (20)	131	79 8, 14, n.a. 20826
	[19]		RLWE-1024 NewHope SHAKE K-E	Artix-7 (35T)	117	1532 2, 4, n.a., 4498
	TW	medium RLWE-512		Hybrid CPA	Artix-7 (200)	211	50 5, 12, 7797, 16338 *
	[34]		RLWE-1024 NewHope SHAKE CPA	Zynq-7 (20)	200	62 2, 8, n.a, 6781 *
	TW	medium RLWE-1024		Trivium CPA	Artix-7 (200)	259	63 4, 10, 3701, 10112 *
	[31]		RLWR-1018	Round5 SHAKE CPA Cyclone V (5csea5) 133	1000 4116 ALM, 10753 bytes *
	TW	medium RLWE-1024		Hybrid CCA	Artix-7 200	167	137 9, 17, 14026, 42062 *
	[31]		RLWR-1170	Round5 SHAKE CCA Cyclone V (5csea5) 130	1350 6337 ALM, 11765 bytes *
	[36]		MLWR-512	Saber	SHAKE CPA	UltraScale+	100	5.2 85, 12, n.a., 34886
	[36]		MLWR-768	Saber	SHAKE CPA	UltraScale+	100	11.6 85, 12, n.a., 34886
	[36]		MLWR-1024	Saber	SHAKE CPA	UltraScale+	100	21.0 85, 12, n.a., 34886
	[35]		MLWE-512	Kyber	SHAKE CCA	Artix-7 (12T)	161	30.5 2, 6, 2126, 7412
	TW	medium MLWE-512		Hybrid CCA	Artix-7 (200)	170	60 11, 16, 11028, 34206 *
	[37]	high	MLWR-768	Saber	SHAKE CCA UltraScale+ (9eg)	250	26 0, 2, n.a., 23600 *
	[35]		MLWE-768	Kyber	SHAKE CCA	Artix-7 (12T)	161	47.6 2, 6, 2126, 7412
	TW	medium MLWE-768		Hybrid CCA	Artix-7 (200)	167	88 11, 16, 11890, 34145 *
	[38]		MLWR-768	Saber	SHAKE CCA	Zynq-7 (20)	125	4147 28, 4, n.a., 7400 *
	TW	medium MLWE-1024		Hybrid CCA UltraScale+ (9eg)	417	48 9, 16, 9314, 44964 *
	[35]		MLWE-1024	Kyber	SHAKE CCA	Artix-7 (12T)	161	67.9 2, 6, 2126, 7412
	TW	medium MLWE-1024		Hybrid CCA	Artix-7 (200)	170	116 11, 16, 11567, 33707 *
	[39]		MLWE-1024	Kyber	SHAKE CCA	Artix-7 (35T)	60	6900 4, 34, n.a., 1738

TABLE VII CCA

 VII -SECURE MLWE-1024 USING SHAKE256 FOR ERROR SAMPLING FOR DIFFERENT FPGA FAMILIES, USING VIVADO VERSION 2018.3.

		Freq.	Time µs	Area
	FPGA family	MHz	enc/dec	DSP, BRAM, Slices, LUT
	Artix-7	200	99/110	11, 16, 11322, 35607
	Kintex-7	286	70/77	9, 16, 12066, 34175
	Virtex-7	286	70/77	9, 16, 12508, 35718
	Zynq UltraScale+	417	48/53	9, 16, 9314, 44964
	Kintex UltraScale	333	61/68	9, 16, 7238, 43101
	Virtex UltraScale	286	69/77	9, 16, 6474, 33979

ACKNOWLEDGMENT

This work has been supported by a PhD grant from PEC/DGA/Région Bretagne.