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STACKS

NICOLE MESTRANO AND CARLOS SIMPSON

Abstract. We explore several different facets of the notion of stack, and how
they relate to the applications of stacks in geometry.

1. Introduction

The theory of stacks is part of a more general trend in modern geometry, to
combine geometrical structures with structures from algebraic topology. The notion
of stack allows us to make such a combination in novel ways. Homotopy types from
algebraic topology are allowed to show up on a punctual scale with respect to the
geometry.

In this chapter, we describe some of the motivating examples and considerations
leading towards the theory of higher Artin stacks. The guiding idea undergoes a
transformation, changing from using algebraic topology to introduce fine structural
information into algebraic geometry, to the idea of using algebraic geometry to
attach new structure to homotopy types and thereby permit their utilisation in
algebraic contexts. At the end we shall see, with an example, how shape theory
implied by the idea of nonabelian cohomology, permits to gain insight about the
homotopical structure of non-simply connected spaces.

The discussion here is not uniform in level. It is not our intention to provide a
mathematical introduction to the main definitions inherent in the theory. On the
other hand, we would like to illustrate the genesis of stack theory by refering to the
most basic examples. Therefore, some parts of the discussion will treat examples a
student would learn very early in any study of the theory, whereas other parts of
the discussion will float rather lightly over some of the most advanced concepts.

We would also like to say that we shall be dealing with the notion of stack
as it occurs in algebraic geometry. Many closely related if not identical notions
are current in nearby fields such as differential geometry. These are the subjects
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2 N. METRANO AND C. SIMPSON

of other chapters in the book and our present emphasis on the vantage point of
algebraic geometry is meant to be complementary to them.

We don’t attack the question of philosophy head-on. Instead, we hope that
our discussion will illustrate some of the basic philosophical ideas that arose as
consequences of fundamental constructions and examples.

2. Spaces and coordinate charts

A basic element of the modern notion of “space” is the idea of a coordinate chart.
This is something that allows us to give a precise measurement of the relationship
between nearby points. One should think of a coordinate chart as expressing a view
of the space, from a certain given viewpoint. For example, if we fix a point p ∈ X ,
then a neighborhood p ∈ U ⊂ X corresponds to a collection of “points near to p”,
and a coordinate system U → kn provides a way of viewing nearby points as being
determined by their numerical coordinates (x1, . . . , xn) ∈ k

n where p corresponds
to the origin (0, . . . , 0).

Seen from a different point, with a different neighborhood q ∈ V ⊂ X , we would
have a different system of coordinates (y1, . . . , yn). The global structure of the
space is obtained from the collection of coordinate change expressions which say,
for example, how the new coordinates are related to the old ones:

(y1(x1, . . . , xn), y2(x1, . . . , xn), . . . , yn(x1, . . . , xn)).

Differentiating this expression gives the well-known Jacobian matrix, in turn pro-
viding glueing data to define the tangent bundle.

We have just described the most down-to-earth way that the structure of a
space is built up out of its coordinate charts. One of the original objectives of the
notion of stack was to give a fully general setting to this idea. Among other things,
the notion of “point” itself can become secondary: rather than viewing coordinate
charts as corresponding to neighborhoods of specific points, we just remember the
maps U → X . On the other side, the coordinate functions (x1, . . . , xn) : U →
kn are abstracted to any kind of concrete algebraic structure which allows for a
computational description of U .

A space is now viewed as something which is covered by a collection of maps
pα : Uα → X , where the Uα themselves have a concrete algebraic structure. For the
notion of scheme, the covering objects are affine schemes of the form Uα = Spec(Aα)
with Aα a commutative ring, usually of finite presentation:

Aα =
k[z1, . . . , zn]

(f1, . . . , fm)
.

It can be convenient to collect all of the charts together into a single object
U :=

∐
α Uα. The coordinate change transformations correspond to the cartesian

diagram

R := U ×X U //

��

U

��

U // X.

The object R together with its map R→ U×U is the equivalence relation glueing U
to itself to obtainX . In other words, the above cartesian diagram is also cocartesian
in an appropriate sense.
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Defining the correct notion of pushout in order to make that work requires some
kind of descent. Typically, this is where the notion of Grothendieck site comes in:
we fix a convenient category with a Grothendieck topology, and our objects are
considered as sheaves on the site. Then the glueing property says that X should be
the coequalizer of our two maps R⇒ U , in the category of sheaves on the site. The
passage to sheaves insures that the glueing notion is invariant with respect to the
choice of covering: a different covering should give rise to the same object—that
wouldn’t be the case if we took just quotient presheaves.

This level of generality leads, for example, to Artin’s notion of algebraic space
which is something obtained by glueing together affine schemes by etale equivalence
relations.

Once we have written things in this way, the motivation for introducing a notion
of stack is easy to see: what happens if we try to construct a coequalizer

R ⇒ U → X

but where the map R → U × U is not injective? Geometrically, given two points
r and s in R which map to the same pair (u, u′) it means that we would like to
glue u to u′ in two different ways. Now, one might like to keep track of which way
was used to glue. Then, the composition of these two glueings will look like an
automorphism of our point u.

The interpretation of non-injectivity of our relation in terms of groups, is also
seen when we consider the transitivity condition for an equivalence relation R. In
the case R →֒ U × U , transitivity may be viewed as a composition operation

R×U R→ R

relative to U × U , using the first map of the first factor R and the second map
of the second factor; the remaining two maps are absorbed in the fiber product
expression.

In order to generalize to the case of a not-necessarily-injective map R→ U×U , it
is most natural to keep the composition map as a part of the data, then to impose
associativity (which was automatic in the injective case). Existence of inverses
corresponds to the symmetry property of a relation, and existence of identities
corresponds to reflexivity. Altogether, U , R and these maps now have a structure
of groupoid. That is to say, they form an internal category with the invertibility
property of a groupoid, in whatever category of spaces we are looking at.

Sometimes, a stack X is given to us most naturally as a functor from the base
category1 to the category of groupoids, or more generally as a fibered category.2

This is what happens for most moduli problems. In this case, we then choose in
some way charts covering the functor. The union of charts gives us U , and we may
put R := U ×X U . If R is representable, and if the map U → F has the right
smoothness properties, then we get a groupoid R ⇒ U , and the stack X is the
“quotient” of this groupoid in the same way as discussed above.

What we have just described is the concrete way of looking at a stack: it is
viewed as a quotient of a groupoid. The more abstract approach will be described
in Section 5.3 below.

1For us in algebraic geometry the objects of the base category are usually some kind of schemes
and the category is provided with a Grothendieck topology making it into a site.

2See Section 5 for further discussion of the definitional aspects.
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3. Stacks in algebraic geometry

Consider a very simple example of a stack in algebraic geometry. Suppose we
are given the action of a finite group, say G = Z/2, on a smooth curve X . Suppose
p ∈ X is an isolated fixed point. The quotient curve Y := X/G will also be smooth,
but it has a point y ∈ Y the image of p, which is special in some way because the
map X → Y is ramified over y. The inverse image of y consists only of the point p,
whereas the inverse image of a nearby point y′ would contain two points x1 and x2
exchanged by the group action. We would then like to include the group-theoretical
information of the stabilizer group Z/2 of the inverse image point p, located at the
point y ∈ Y . This information is included in the quotient stack Y := X//G. We view
the stabilizer group as corresponding to the homotopy type of a space K(Z/2, 1)
located over y ∈ Y .

The groupoid presentation of this quotient stack is easy to describe, it is an
example of the general notion of action groupoid. Let R := X ×G with two maps
(x, g) 7→ x and (x, g) 7→ gx to X . The groupoid structure map R ×X R → R is
given by ((x, g), (x′, g′))gx=x′ 7→ (x, g′g), and the resulting groupoid represents our
quotient stack Y.

This kind of example is known as an orbifold in differential or analytic geometry,
and as a Deligne-Mumford stack in algebraic geometry.

3.1. The moduli stack of curves of genus g. Deligne and Mumford introduced
the theory in their paper [13], motivated by what is undoubtedly the first main
example: their moduli stack Mg of smooth projective curves of genus g ≥ 2, and

its completionMg parametrizing stable nodal curves. In order to put this example
in its natural setting, Deligne and Mumford looked at stacks in the etale topology,
with coordinate charts such that the transformations between different charts are
etale maps.

Over the complex numbers, a smooth projective curve is the same thing as a
compact Riemann surface. These quite naturally come in “families”: a family
of curves is a flat map X → S whose fibers are curves. The moduli problem
consists in finding a scheme Mg such that families of curves X → S correspond
to morphisms S →Mg. The optimal way of solving such a moduli problem would
be to have a universal family Xg →Mg such that for any X/S corresponding to a
parametrization map S →Mg, we have X = S ×Mg

Xg.
While there does exist a moduli space Mg in the category of schemes, it doesn’t

admit a universal family. This is mainly due to the existence of curves with auto-
morphisms, and that is one of the main motivations to introduce the moduli stack
Mg. Working in the world of stacks, there is a universal family Xg →Mg solving
the moduli problem in the best possible way.

In order to get back to a variety or scheme, we use the following definition.

Definition 3.1. Suppose X is a stack. We say that a morphism

X → Xcoarse

from X to a scheme Xcoarse is the coarse moduli space if, for any other map to a
scheme X → V there is a unique factorization X → Xcoarse → V .

Deligne and Mumford construct both the moduli stack of curves and its coarse
moduli space. While the coarse moduli space Mg = (Mg)

coarse is a scheme, it
doesn’t admit a universal family.
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Another indication of the advantage of usingMg is the question of smoothness.

The moduli stack, and even its natural compactification Mg are smooth Deligne-
Mumford stacks of dimension 3g − 3. However, at points corresponding to curves
with automorphisms, the moduli schemeMg is quite singular in general: it has finite
quotient singularities, the local charts being indeed the quotients of the smooth
charts inMg by the finite automorphism groups.

The complex analytic stack associated to Mg is a smooth orbifold (except for
g = 2 where it also involves a gerbe, see below). The local charts are open balls in
C3g−3, as we shall understand further in the upcoming example. In the analytic or
differential geometric setting, this moduli stack has a global quotient structure

(Mg)
an = Tg/Γ

where Tg is the famous Teichmüller space [32] and Γ is the mapping class group of
oriented automorphisms of the topological surface up to isotopy.

3.2. Natural charts at fully degenerate curves. The principle of natural local
charts that are smooth, is perfectly illustrated by looking at the degenerate bound-
ary points in the compactificationMg. These boundary points are the stable curves
which are unions of smooth curves meeting at nodes. Typical examples would be
the “stick figures” in P3 composed of rational lines, if we assume that no more than
two lines intersect at any given point.

Deligne and Mumford said that a curve is stable if any rational component has
at least three nodes. A curve that isn’t rational can be deformed, and given a
rational component with four or more nodes, it can also be deformed or “broken”
into a union of rational curves with less nodes. Thus, the most degenerate points
in the boundary, corresponding to 0-dimensional strata, are the ones where each
component curve is rational, i.e. P1, with exactly three nodes.

Recall that the universal deformation space of a nodal curve singularity is one-
dimensional. The universal family may be written down very easily as just xy = t,
with t being the deformation parameter. At t = 0 we have a nodal curve xy = 0
whereas for t 6= 0 the curve is smooth. We could cut out this deformation along a
sphere centered at the origin, and then glue it into a global picture.

Suppose Y =
⋃k
i=1 Yi is a union of smooth rational curves meeting at nodes

z1, . . . , zr. Let Y − be the curve obtained by cutting out small disks around each
of the nodes, and glue the universal deformation spaces considered in the previous
paragraph at each of the nodes. We get a family of curves parametrized by a smooth
parameter space with r parameters t1, . . . , tr, say for example parametrized by ∆r

where ∆ is the unit disk.
The genus of Y is given by

g(Y ) = 1 +# nodes −# components = 1 + r − k.

In the fully degenerate case where each component has three nodes, a node is
contained in two components so 2r = 3k. Thus g(Y ) = 1 + r − 2

3r = 1 + 1
3r, in

other words

r = 3g(Y )− 3.

This tells us that our deformation space obtained by combining together the univer-
sal deformations of each of the singularities, has the same dimension as the moduli
space Mg of genus g curves, and indeed one may calculate that the tangent map
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Figure 1. A curve Y of genus g = 4 with 9 = 3g − 3 nodes and
automorphism group G = Aut(Y ) = (S3 × S3)⋊ Z/2

from Cr to the deformation space Def(Y ) is an isomorphism. Therefore, we would
like to think of our family as providing a chart for the moduli space.

It is a particularly nice chart. The boundary divisor of singular curves ap-
pears transparently as a divisor with normal crossings, being given by the equation
t1t2 · · · tr−1tr = 0.

In general, our nodal curve Y will have automorphisms. One can form the
dual graph D with k vertices one for each component Yi, and r edges joining two
components when they intersect in a node. In our fully degenerate case, Aut(Y ) =
Aut(D), and it is easy to write down graphs with automorphisms (Figure 1).

We now have a completely concrete situation showing the benefits of the notion
of stack. In the moduli stackMg, the family defined above is a coordinate chart,

showing howMg has a structure of “smooth space” at the point Y . The automor-
phisms of Y induce automorphisms of the coordinate chart since they permute the
nodes, but these maps are etale.

The only kind of variety we can get, the coarse moduli space Mg will have a
quotient singularity at the point [Y ] (isomorphism class of Y ), given by taking the
quotient of ∆r by the automorphism group of Y (see Figure 2).

It is clear that we would rather like to look at the smooth neighborhoods of Y
with highly natural coordinate systems discussed above. On the smooth charts,
the coordinate functions, defining the boundary divisor components, correspond to
the nodes. The possibility of looking at such charts is afforded by the notion of
Deligne-Mumford stack.

This example was for us primordial. Explained by the first author to the second,
it showed in a concrete way what the notion of stack was all about.

3.3. Orbifolds and DM-stacks. Such considerations date back quite a long ways.
The classical Kuranishi theory provided versal deformation spaces, and the problem
of automorphisms led quite early on to the definition of V -manifold by Satake. A V -
manifold is essentially the same thing as a smooth Deligne-Mumford stack, but the
generic stabilizer group is assumed trivial. In topology, the corresponding notion
was called an orbifold.
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r

U ⊂ C3g−3

→Mg ← r

U/G

⊂Mg

x
G = Aut(Y )

Y [Y ]

Figure 2. The chart overMg and its image in Mg

The definition of Deligne and Mumford provides us with a few useful generaliza-
tions going beyond the notion of orbifold. For example, the stack doesn’t need to
be smooth or even reduced. This reflects the fact that we might very well, for some
reason, have wanted to consider a compatible collection of singular subschemes of
the coordinate charts.

Singular DM-stacks can fit as points in moduli spaces, giving new kinds of com-
pactifications. Abramovich and Vistoli [1] introduced the notion of twisted curve,
a nodal DM-curve with orbifold points at the normal crossings where the cyclic
stabilizer groups of the orbifold points on the two branches are identified. Sev-
eral authors [2] [12] [30] have constructed moduli stacks of twisted curves giving
interesting compactifications ofMg.

The other direction of generalization is quite interesting and leads to a more
intricate topological structure. The local automorphism group in the stack, coming
from the stabilizer group of a group action or the automorphism group of the
objects whose moduli we are looking at, is not necessarily required to be trivial at
the generic point. In other words, we can have “stacky” behavior over the whole
space rather than just concentrated at some points lower down in a stratification.
This is reflected in the notion of gerbe.

4. Gerbes

The generalization to gerbes is quite natural and would in due course have nec-
essarily been included in any development of the original notion of V -manifold.
Indeed, consider some subvariety of a V -manifold over which the automorphism
groups are nontrivial. Then this subspace has an induced stack structure, but the
generic stabilizer is nontrivial.

When there is a nontrivial generic stabilizer group, but that group stays “the
same” over all points of the stack, then we have a gerbe. A gerbe over a point is just
a stack of the form BG where G is a group. If G is a finite group (or a group scheme
etale over the base field in positive characteristic) then BG is a Deligne-Mumford
stack. More general cases include for example G an algebraic group scheme, in
which case BG is an Artin stack.
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Let us look at the easiest case when G is a finite group. Suppose X is a variety.
Then a gerbe over X with group G is a stack Y together with a map p : Y → X ,
such that X has an etale covering {ai : Ui → X} and Ui ×X Y ∼= Ui ×BG. There
will not exist in general a global trivialization, nor even a trivialization over a
Zariski open covering. And there need not even exist local sections. The G-gerbes
over X are classified by the 2-stack BAut(BG). This is a connected 2-stack whose
π1 is Out(G) = Aut(G)/G the group of outer automorphisms, and whose π2 is
the center Z(G). Thus, a G-gerbe over X corresponds first to a cohomology class
α ∈ H1(X,Out(G)) which is to say an Out(G)-torsor over X , and secondly if this
is trivial a class in H2(X,Z(G)).

4.1. Stratification by automorphism group in Mg. Such structures may be

found within the moduli stack Mg of stable curves of genus g. We feel that this
phenomenon is an interesting question for study. It furthermore illustrates how
gerbes occur “in nature”.

A first example is, of course, the whole moduli stack M2 of curves of genus 2:
any genus 2 curve is hyperelliptic so it has an involution, and the generic stabilizer
group onM2 is Z/2Z.

More generally, there is a decomposition into locally closed subsets

Mg =
∐

G

SG

where SG is the locus of curves whose automorphism group is isomorphic to G. Now
SG is itself a stack, and it is a G-gerbe over its coarse moduli space SG, where we
have the corresponding decomposition MG =

∐
G SG of the coarse moduli space.

It is an interesting question to try to understand the structure of these gerbes.
A very combinatorial version is obtained by restricting to the dimension 1 pieces of
the boundary stratification, corresponding to nodal unions of rational curves such
that one component has four nodes and the rest have only three nodes.

These questions have been studied by many authors. Some references include,
non-exhaustively: [14] [15] [16] [27] [44] [45].

4.2. Classification of gerbes. The theory of stacks is a bridge from geometry and
algebra to topology. A basic building block is the gerbe BG over a point. It is the
stack classifying G-torsors, but we may also think of it as the unique (up to weak
homotopy equivalence) connected pointed topological space with π1(BG, o) = G.
The correspondence between groupoids and 1-truncated homotopy types is the link
between algebra and topology in this simplest case.

Theorem 4.1 (Giraud [17]). Suppose G is a sheaf of groups over a site. There
is a 2-stack BAut(BG) over the site, and a universal G-gerbe over it, such that
for any object (or indeed stack) X, the 2-groupoid of G-gerbes over X is naturally
equivalent to the 2-groupoid of maps X → BAut(BG). If G is a constant group
then and this 2-stack has a fibration sequence

K(Z(G), 2)→ BAut(BG)→ BOut(G).

The obstruction classes in cohomology of X discussed previously are direct con-
sequences.

Giraud gave the proof [17] in purely categorical terms. One can phrase the
statement and give its proof in terms of cocycles and 2-cocycles. Breen discusses
the generalization to 2-gerbes in this light [10].



STACKS 9

In order to give a rather more simple view of the idea, we discuss the topologi-
cal version of the statement, classifying fibrations with fiber BG, in subsection 4.4
below. We consider the case of a constant discrete group G. The case of a sheaf
of groups is more general, and indeed one should note that Giraud’s theory treats
the most general situation of gerbes under a lien, which basically means a sheaf of
“groups up to inner automorphism” [17] [43]. This results in the complicated alge-
braic structures discussed in [17], that will not really be covered by our topological
discussion.

4.3. Structure theorem for DM-curves. The classification of gerbes works
equally well if the base X itself is a stack. This is useful since we have the fol-
lowing structure theorem for 1-dimensional Deligne-Mumford stacks:

Theorem 4.2. Suppose X is a smooth 1-dimensional Deligne-Mumford stack.
Then there is a smooth 1-dimensional orbifold Xorb, that is to say a DM-stack with
trivial generic stabilizer or equivalently a V -manifold, and a map p : X → Xorb

such that p is a G-gerbe for G the generic stabilizer group of X . Furthermore, Xorb

is a root stack

Xorb = X [
1

n1
D1, . . . ,

1

nk
Dk]

over the coarse moduli space X a smooth curve, for points D1, . . . , Dk ∈ X with
integer multiplicities ni ≥ 1.

The local structures are determined by the integer multiplicities, so the new
topological information is contained in the gerbe p.

4.4. Classification of fibrations. In order to gain some insight into what is going
on in Theorem 4.1, let us consider a fixed discrete group G and look at how to
classify fibrations Y → X such that the fiber is isomorphic to the space BG. Our
discussion takes place in the world of topology.

Theorem 4.3. Suppose F is a space. There is a space BAut(F ) classifying fibra-
tions with fiber F . It has a universal fibration, and given a fibration Y/X with fiber
F , the space of homotopy classes of pairs (f, ζ) where f : X → BAut(F ) and ζ is
a homotopy equivalence between Y/X and the pullback of the universal fibration, is
contractible. In the case when G is a discrete group and F = BG then BAut(BG)
is a connected, 2-truncated space with

π1(B Aut(BG)) = Out(G) and π2(BAut(BG)) = Z(G).

This theorem comes from Segal’s theory of classifying spaces [37]. The “group”
of self-homotopy equivalences Aut(F ) may be viewed as a grouplike Segal space in
the following way. Define a simplicial set T· with T0 = ∗, and T1 ⊂ Map(F, F )
equal to the union of connected components corresponding to maps which are weak
homotopy equivalences. Let Tn := T1×· · ·×T1 with the various face and degeneracy
maps defined by the monoid structure of T1. This tautologically satisfies the Segal
conditions. Since the maps in T1 are invertible up to homotopy, this simplicial space
also satisfies Segal’s grouplike condition. We may therefore look at the realization

BAut(F ) := |T·|,

and Segal shows that it is a space such that the tautological map

Aut(F ) = T1 → Ω∗|T·|
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is a homotopy equivalence. One constructs the universal family and shows that
BAut(F ) is the classifying space.3

In the case F = BG,

π1(BAut(BG)) = π0(Aut(BG)) = Out(G),

π2(BAut(BG)) = π1(Aut(BG)) = Z(G).

The fibrations Y/X with fibers BG are essentially the same thing as G-gerbes. The
2-stack in Theorem 4.1, for the case of a constant group G, is just the constant 2-
stack with value equal to the Poincaré 2-stack of the space BAut(F ) of the previous
theorem.

In this topological framework we can easily understand how to get obstruction
classes for gerbes. Suppose given a fibration Y/X with fiber BG. The classifying
map X → BAut(BG) composes with the map from BAut(BG) to BOut(G), to
give a class in H1(X,Out(G)) or equivalently an Out(G)-torsor overX . This torsor
measures the way in which the fundamental groups of the fibers of Y/X change as
we move around loops in the base. Since Y/X doesn’t necessarily have a section, the
fundamental groups of the fibers are not well-defined, but one can choose sections
locally and a change of section corresponds to an inner automorphism of G. The
monodromy of the system of fundamental groups is therefore an element of the
group of outer automorphisms of G.

Suppose this torsor is trivial. It means that the map X → BAut(BG) may
be viewed as going into the fiber of the projection to BOut(G) (more precisely, a
choice of trivialization of the torsor corresponds to a choice of homotopy to a map
into the fiber). That fiber is the Eilenberg-MacLane space B2S(G) = K(Z(G), 2)
of degree 2. Thus, we get a cohomology class in H2(X,Z(G)). This class is the
obstruction to existence of a section. If this class is trivial too, then there exists a
section and our fibration is trivial, Y = X ×BG.

More generally, given an Out(G) torsor α we get a local system Z(G)α; and a
gerbe with that Out(G) torsor gives a classifying element of H2(X,Z(G)α).

This very brief tour of obstruction theory and classification of fibrations is de-
signed to correspond to Giraud’s classification of gerbes within the theory of stacks
[17]. Some kind of work needs to be done in order to obtain the analogous classifi-
cation theory for stacks over a site, for example to treat the case when G is sheaf
of groups or even a lien.

A modern treatment of the proof of Theorem 4.1 might appeal to the theory of
simplicial presheaves in order to transpose somewhat more directly the topological
classification theory presented here to the relative situation. We are not sure if a
full treatment in this spirit has yet been proposed.

5. The abstract notion of higher stack

The discussion of the previous section concerned the classification of fibrations
over a base topological space. In algebraic geometry, gerbes and more generally

3Suppose we have a fibration with fiber F over the realization of a simplicial set X = |X·|. For
x ∈ X0 choose a weak equivalence Yx ∼= BG. For any u1 ∈ X1 we have a fibration over ∆1, and
choice of a trivialization compared with the previous choices at the endpoints gives a self homotopy

equivalence of BG, hence a point in T1. For u2 ∈ X2, its faces are u2(01), u2(12), u2(02) ∈ T1.
The 2-cell u2 may be seen as a homotopy in T1 between u2(12) ◦ u2(01) and u2(02). Continuing
in this way, we can build a homotopy coherent map from X· to the simplicial space T·, yielding
the classifying map X → |T·| for the fibration.
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stacks exist over base algebraic varieties. For example we have considered the
natural gerbes over strata SG ⊂ Mg in the moduli space of stable curves. In such
a situation, the notion of fibration of topological spaces is replaced by the notion
of stack itself, and stacks are viewed as families of spaces over algebraic varieties.

Such a dialogue between algebraic geometry and algebraic topology has proven
fundamental to recent developments including the gradual move towards the idea
of ∞-stacks:

sets groupoids n-groupoids ∞-groupoids

discrete spaces K(π, 1)’s n-truncated homotopy types all homotopy types
presheaves prestacks n-prestacks ∞-prestacks
sheaves stacks n-stacks ∞-stacks

5.1. Glueing and descent data. The goal of this section 5 is to discuss the more
abstract definitional aspects of the notion of stack, those having been postponed in
the earlier more geometric sections.

We start by explaining with some pictures the basic idea for going from the
presheaf/prestack line to the sheaf/stack line in the above table. Recall that the
property characterizing sheaves among all presheaves, is that they are required to
satisfy a glueing condition. In this subsection, we’ll assume that we are talking
about objects (sheaves, stacks, . . . ) over a base topological space X .

A presheaf F over X is just a functor from the opposite of the category of opens
of X , to sets. Thus, it consists of a collection of sets F(U) for any open set U ⊂ X ,
together with restriction functors a 7→ a|U ′ whenever U ′ ⊂ U , satisfying the natural
transitivity condition.

Suppose given two intersecting open subsets:

U V
U ∩ V

For a presheaf F , the set of locally defined sections, or descent data with respect
to the covering of U ∪ V by these two open sets, is the set of pairs (a, b) where
a ∈ F(U) and b ∈ F(V ) such that a|U∩V = b|U∩V in F(U ∩ V ).

A presheaf F is a sheaf, if F(U ∪ V ) is always isomorphic to the set of these
locally defined sections. This is viewed as a glueing condition: given sections a and
b over U and V respectively, such that they “agree” on U ∩ V , then they should
“glue” i.e. come from a (unique) section over U ∪ V . In other words, the diagram

(5.1) F(U ∪ V ) //

��

F(U)

��

F(V ) // F(U ∩ V )
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is cartesian, the upper left corner being the limit of the lower right angle diagram.
Going rightward in the above table, we would like to generalize from presheaves

that are families of sets F(U) indexed by opens U ⊂ X , to 1-, n- or ∞-prestacks
that are families of spaces. For now let’s just think of one of these as being a
functor from the opposite category of opens of X , to spaces. The case of 1-stacks
is, as indicated in the second column of the table, the case where these spaces are
K(π, 1)’s.

In case of two open sets intersecting as pictured above, we would like to define a
space of locally defined sections in a way that is adapted to homotopy theory. So,
instead of requiring an equality of points a|U∩V = b|U∩V in the space F(U ∩ V ),
it is better to ask for a path. Since the choice of path is not unique, it should
be considered as part of the data. Thus, we arrive at the space of locally defined
sections as being the space of triples (a, b, p) where a ∈ F(U) and b ∈ F(V ) are
points, and p : [0, 1]→ F(U ∩ V ) is a path joining a|U∩V = p(0) to b|U∩V = p(1).

The condition for being a stack (relative to two-subset coverings, at least) is
that the map from F(U ∪ V ) to the above space of locally defined sections, should
be a weak homotopy equivalence. This says that we can glue together sections a
over U and b over V , if a and b agree up to homotopy over U ∩ V , and the glueing
is uniquely defined up to homotopy once the path p has been specified. In other
words, the diagram (5.1) should be homotopy cartesian, the upper left being the
homotopy limit of the lower right angle.

In the case of finite coverings of a space they can always be considered as gotten
from a sequence of two-subset coverings as in the picture, and the above definition
of the descent condition is sufficient.

Let us look, nonetheless, at what the natural notion of locally defined section
should be for a more complicated covering, say just one with three open subsets:

U V

U∩V ∩W

W

Our descent data will start with:

a ∈ F(U), b ∈ F(V ), c ∈ F(W ),

then it should also have:
–a path p between a|U∩V and b|U∩V in F(U ∩ V ),
–a path q between b|V ∩W and c|V ∩W in F(V ∩W ), and
–a path r between a|U∩W and c|U∩W in F(U ∩W ).
So far, if we project all of those things into the space F(U ∩ V ∩ W ) by the
appropriate restriction maps, denoting their images by [a] := a|U∩V ∩W etc., we get
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the following picture:

s s

s

[a] [b]

[c]

[r] [q]

[p]

This suggests what the last piece of the descent data should be: a triangle mapping
into F(U ∩ V ∩W ) whose boundary is [p] ∪ [q] ∪ [r].

For 1-prestacks where the spaces are K(π, 1)’s, existence of the triangle is a
condition often called the cocycle condition. For the case of higher prestacks, this
homotopy is itself part of the data.

More abstractly, the space of descent data as above may be expressed as a homo-
topy limit (holim), namely the homotopy limit of the diagram formed by the spaces
F(U), F(V ), F(W ), F(U ∩V ), F(V ∩W ), F(U ∩W ) and F(U ∩V ∩W ) with the
restriction maps between them. With more open sets, the reader may imagine the
collection of higher-dimensional homotopy data called higher coherencies entering
into the homotopy limit space of descent data.

The descent condition4 for a prestack to be a stack, is that for any covering the
map from the space assigned to the union of open sets, to the homotopy limit of
the corresponding diagram, should be a weak homotopy equivalence.

5.2. Topology relative to a site. If the pictures in the previous subsection were
drawn with a topological space as base, it is most often necessary to consider stacks
over a more general kind of abstract structure designed precisely to allow the kinds
of arguments that proceed from the intuition of glueing.

So, the first ingredient in the whole theory is the notion of site, a category C
provided with a Grothendieck topology τ . It means that for any object X ∈ C we
know when a family Ui → X is said to “cover” X . This information is supposed
to obey appropriate axioms. When C admits disjoint unions it suffices to consider
one-object coverings U → X obtained from the previous by setting U :=

∐
Ui, and

we shall generally assume this notational simplification. The topology allows us to
say that something is happening “locally on X”, meaning that it happens on some
covering, in a coherent way.

A topological space relative to a site (C, τ) should be viewed as a “presheaf of
spaces” over the category C. Such presheaves could come in many flavors. For
instance, in many treatments of stack theory (the reader is referred to [41] in par-
ticular) the fundamental objects are fibered categories, whose fibers are groupoids.
A fibered category is a kind of weak presheaf of groupoids: the assignment of a

4The reader is encouraged to consult [40] for some more technical and philosophical discussion
about descent.
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functor between fibers to every map in the base, is not necessarily strictly compat-
ible with composition but only compatible up to a natural equivalence satisfying
further axioms. Nonetheless, a standard strictification process allows one to replace
such weak presheaves by strict presheaves, so another valid viewpoint is to start
from the beginning with strict presheaves of spaces over the category underlying
our Grothendieck site.

The Grothendieck topology is taken into account via the condition of descent.
One generalizes over a site the discussion we had in the previous subsection, where
the base was the category of open subsets of a topological space.

For a presheaf of discrete or 0-truncated spaces, corresponding to a presheaf
of sets F , the descent condition is the condition of being a sheaf: for a covering
U → X the diagram

F(X)→ F(U) ⇒ F(U ×X U)

should be an equalizer diagram of sets. In other words, an element of F(X) is
the same thing as a ∈ F(U) such that p∗1(a) = p∗2(a) in F(U ×X U). This latter
condition is what we meant when we said “in a coherent way” three paragraphs
ago.

For a 1-truncated presheaf of spaces, corresponding to a presheaf of groupoids
F , the descent condition is that of a stack. It means that the diagram

F(X)→ F(U) ⇒ F(U ×X U)
3
→ F(U ×X U ×X U)

should express the groupoid F(X) as being equivalent to the “homotopy limit”, or
groupoid of descent data of the sequence on the right. An object of the homotopy
limit consists of an object a ∈ F(U) and an isomorphism η : p∗1(a)

∼= p∗2(a) in
F(U ×X U), such that the natural diagram we can write in F(U ×X U ×X U)
commutes (corresponding to the triangle in 5.1). Notice that now the “coherence”
becomes a datum, that of the isomorphism η, which is itself required to satisfy a
higher coherence condition.

The descent condition says that any such “descent datum” should be equivalent
to an object coming from F(X). The morphisms in the groupoid of descent data
are defined using the sheaf condition of the previous paragraph, and we also require
that this set of morphisms be isomorphic to the set of morphisms in F(X).

The discussion of subsection 4.4 brings out an important phenomenon: if 1-
stacks came up when we look for classifying spaces of regular objects having au-
tomorphisms, similarly when we try to classify 1-stacks we end up talking about
a 2-stack such as BAut(BG). In general, the classifier for n-stacks is an (n + 1)-
stack. In this sense we can’t avoid going upwards in the ladder of degrees, and it
becomes natural to consider the notion of n-stack for any n. Of course in many
practical situations it suffices to stop after going up a level or two: for instance,
when speaking of 1-stacks, it is occasionally useful to talk about 2-stacks but we
usually don’t need to look at 3-stacks in the same context.

Another force pushing upwards is the following question: what happens with a
groupoid

R⇒ U

where U is a scheme, but the morphism object R is itself a 1-stack? In this case the
quotient is a 2-stack, as we shall see in the explicit example of 6.6 below. Continuing
leads to n-stacks for any n, in a way closely related to the Artin condition to be
discussed in the next section.
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The descent conditions generalize directly to the case of n-truncated5 presheaves,
saying that the space of sections over an object is equal to the homotopy limit of
the space of sections over the nerve of a covering. An n-stack in n-groupoids is
an n-truncated presheaf of spaces satisfying this descent condition. When we go
to n = ∞ with arbitrary, non-truncated spaces, it turns out that there are two
natural flavors of descent: hyperdescent and finite descent. This distinction was
pointed out by Lurie, among others, and he closely investigated the difference [26].
The case of hyperdescent corresponds to the locality condition in the Jardine closed
model structure on simplicial presheaves [21].

The idea of doing topology relative to a site connects naturally with the notion
of nonabelian cohomology. Giraud’s classification of gerbes was one of the first
instances. From the topological version of this discussion described above, we see
that nonabelian cohomology really means looking at maps into some space. In
algebraic geometry, this is happening relative to a site: spaces are replaced by
presheaves of spaces required to satisfy a “descent condition”. We’ll get back to
the idea of nonabelian cohomology in this setting later.

5.3. Definitions of stacks. We present, for comparison, some of the possible
definitions following the discussion of the previous section. Suppose C is a category
provided with a Grothendieck topology τ . We restrict here to the case of stacks of
groupoids. There are now many different definitions of n-category, which have been
shown to be equivalent by the axiomatic approach of Barwick and Schommer-Pries
[5], but for groupoids this can be understood easily in that an n-groupoid may be
viewed as the same thing, up to homotopy, as an n-truncated space.

Definition 5.1. A 1-prestack over C is a functor of categories F → C with the
property of being a fibered category, such that the fibers Fx are 1-groupoids.

An n-prestack over C is a functor of n-categories F → C with the property of
being a fibered category, such that the fibers Fx are n-groupoids.

Definition 5.2. A 1-prestack over C is a functor F : Cop → 1Gpd, that is a
presheaf of groupoids.

An n-prestack over C is a functor F : Cop → nGpd, that is a presheaf of n-
groupoids.

Definition 5.3. A 1-prestack over C is a presheaf of spaces F : Cop → Top, such
that F (x) is a 1-truncated space.

An n-prestack over C is a presheaf of spaces F : Cop → Top, such that F (x) is
an n-truncated space.

Here, Top may profitably be replaced by the category of simplicial sets, so 1- or
n-prestacks may be viewed as simplicial presheaves over C.

Given a prestack F → C in the sense of 5.1, let F (x) be the 1-groupoid of sections
of C/x→ F . This has strict pullbacks corresponding to restriction of sections, so it
is a presheaf of groupoids in the sense of 5.2. In the other direction, given a presheaf
of groupoids F we can let F :=

∫
C
F be the Grothendieck integral, also known as the

5Recall that a space Y is said to be n-truncated if πi(Y ) is trivial for i > n. Allowing n = ∞,

an ∞-groupoid is a space with no truncation condition. The theory of ∞-categories is not yet
well developed, but for (∞, n)-categories, those ∞-categories in which morphisms are invertible
in degrees > n, the various theories and their equivalence are fairly well understood. We leave it
to the reader to investigate the numerous references on this aspect.
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category of elements of F . The objects of F are the pairs (x, u) where x ∈ Ob(C)
and u ∈ F (x), and morphisms are defined in a natural way. These constructions are
inverse up to equivalence. The same discussion relates 5.1 and 5.2 for n-prestacks.

To go between 5.2 and 5.3, recall that to a groupoid G we can associate its
classifying space |G| which is a 1-truncated space, described for example as the
realization of the simplicial set nerve of G. Given a 1-truncated space, its Poincaré
groupoid is the corresponding groupoid. Again, these constructions extend to the
equivalence between n-groupoids and n-truncated spaces, if one is not actually
taking n-truncated spaces as the definition of n-groupoids. Being functorial, these
constructions extend to the case of presheaves.

We may now use interchangeably any of the above definitions for prestacks.
Given a prestack F/C, we obtain its higher groupoid of sections Γ(C,F), which
should be calculated in a suitable way to give an answer invariant under homotopy
equivalences relative to C. The best way to do that is to use Quillen model cate-
gory structures, although for sections of a 1-prestack there is an algebraic definition
predating model category theory. Taking the point of view that ∞-groupoids cor-
respond to homotopy types, the higher groupoid of sections is the homotopy limit:

Γ(C,F) = holimCF .

A prestack is called a stack if it satisfies the descent condition. There are many
different viewpoints on this notion, and it is not our purpose to give an extensive
discussion here. The idea is to encode the property we first saw in subsection 5.1.
One way to say it is as follows:

Definition 5.4. Suppose x ∈ C, and suppose given a covering of x for the topology
τ . The covering determines a sieve which is a subcategory B ⊂ C/x. The descent
condition says that the map

F(x) ∼ Γ(C/x,F|C/x)→ Γ(B,F|B)

should be an equivalence (of 1-groupoids or n-groupoids or spaces), for any x and
any covering sieve B. A prestack satisfying this condition is called a stack.

The homotopy theory of n-stacks is obtained by using the homotopy theory of n-
prestacks i.e. diagrams of spaces, restricted to the subcategory of n-stacks. Jardine
first constructed this homotopy theory by constructing a closed model category of
simplicial presheaves, where the weak equivalences are “local” weak equivalences.
An n-stack6 is any n-truncated simplicial presheaf which is levelwise equivalent to
a fibrant object in Jardine’s model structure.

5.4. Homotopy group sheaves. A local weak equivalence is a map that induces
weak equivalences on the “stalks” (defined, over sites with enough points, using a
homotopy colimit in the same way as for sheaves). It can also be measured using
the homotopy group sheaves. If F is a prestack, then the presheaf x 7→ π0(F(x))
has associated sheaf denoted π0(F). Similarly if u ∈ Γ(C,F) is a section then

6If n = ∞ then there is a distinction [26] between descent for coverings, and descent for hyper-
coverings. We presented here descent for a covering. The descent condition for a hypercovering
can be expressed in the same way, but the sieve is replaced by the category of elements of the

hypercovering which has a functor B → C/x.
Without a truncation condition, in other words for n = ∞, the fibrant objects in Jardine’s

model structure are the prestacks which satisfy hyperdescent; Lurie constructs a model category
where the fibrant objects are the ones satisfying just descent for coverings [26].
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πi(F , u) is the sheafification of the presheaf x 7→ πi(F(x), u(x)). These notions are
often most useful when restricted to slice categories C/x. A map is a local weak
equivalence if and only if it is an Illusie weak equivalence: it induces isomorphisms
of homotopy group sheaves. The sheafification process used to define the homotopy
group sheaves is the key aspect of this condition. In the same way as for sheaves, the
stack associated to a prestack is the canonical model of its local weak equivalence
class, the universal element that the other ones map to.

6. Artin stacks

Once we have the theoretical framework to talk about stacks—and those could
now mean ordinary 1-stacks, n-stacks, or similar generalizations—we can return
to the original geometrical motivation. We wanted to represent objects presented
as “quotients” of some kind of chart, by a generalized equivalence relation. The
quotient is viewed as an object in our category of stacks.7 The question can therefore
be rephrased, what stacks F should be considered to admit a good presentation of
the form

R ⇒ U → F

as discussed in Section 2?
For 1-stacks this condition was originally formulated by Artin [4]. He called

such stacks algebraic stacks, but nowadays the terminology Artin stacks may be
preferred, or—particularly in the higher context—geometric stacks.

As we have seen before, the dynamical relationship between the idea of a stack
as a quotient of an equivalence relation, and the idea of a stack as a functor with
values in groupoids, n-groupoids or ∞-groupoids (spaces or simplicial sets) can go
in both directions. We might start with a natural chart and hence with a groupoid,
or we might start with a functor and proceed later to look for a chart. In either
case, we do eventually reach the situation of having a chart, and should therefore
ask what good conditions such a chart might satisfy in order to make it useful for
studying the properties of the stack.

The basic idea is that the map U → X from the chart to the stack should be
smooth. That is, as shall be seen from the example of BG below, the best possible
condition we can hope for in general, allowing to study the infinitesimal structure
of X . Artin’s observation is that smoothness of U → X is reflected in smoothness
of the two maps R→ U .

By looking at Artin’s condition in the right way, it generalizes immediately to the
case of n-stacks. This was pointed out to us by Charles Walter, during discussions
we were having with André Hirschowitz. It led to the preprint [38]. The discussion
there is straightforward and self-contained; we will just sketch the basic outline,
after the motivating example of BG in the next subsection.

7To define the quotient technically, suppose we are given a groupoid R ⇒ U in schemes.
It represents a functor Cop → 1Gpd. From this 1-prestack we take the associated stack. In
terms of simplicial presheaves, take the Jardine fibrant replacement, but that can also be done
by composing three times the functor of taking the groupoid of descent data. The result is a

1-stack, the universal 1-stack to which our prestack maps. It may also be viewed as the homotopy
colimit of the groupoid (considered as a simplicial scheme) in the 2-category of stacks. Taking
the associated stack makes it so that the resulting object stays the same even if we replace U by
a different chart, say a smooth cover U ′ → U .
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6.1. A chart for BG. Consider first one of the basic cases, the stack BG for G
a group. If G is finite, BG is a Deligne-Mumford stack. It is natural to want
to expand the collection of groups we can consider here, while staying within the
algebro-geometric context. So let’s look at BG for an algebraic group scheme G.
To fix ideas for simplicity say we work over a field k of characteristic zero. The
most canonical map from a scheme to BG is just the basepoint

∗ → BG.

This is a map whose fiber is G, indeed suppose f : X → BG is any map. Then
f corresponds to a G-torsor or principal G-bundle F → X . The fiber product
X×BG ∗ is the space representing trivializations of this principal bundle, so in fact

X ×BG ∗ = F

itself. We see that the map X ×BG ∗ → X has fiber isomorphic (non-canonically)
to G, and this is what it means that ∗ → BG is “a map with fiber G”.

If G has positive dimension, this map is not etale, but since G is a group scheme
and we are working in characteristic zero, it is smooth. Indeed, in the above
formula X×BG ∗ = F the projection to X is the structural map of the torsor which
is smooth, and since we know it for any X → BG, it means that the map ∗ → BG
is smooth.

The idea of Artin stacks is to allow “coordinate charts” which are smooth maps,
rather than just etale ones. An important further property of our map ∗ → BG
is that it is representable, meaning that for any map X → BG the fiber product
as above is representable (it is best to require representability in the category of
algebraic spaces). Now we can say that our stack BG is locally a scheme, that is to
say it has a smooth representable map from a scheme. Call this chart U := ∗ → BG.

The scheme of relations is

R := U ×BG U = ∗ ×BG ∗ = G.

Both maps R → U = ∗ are of course the same; and the map R ×U R → R is just
the composition in the group G. We get the groupoid

(G⇒ ∗) ∼= BG.

6.2. The geometricity condition. With the example of BG as motivation, we
can now describe rather easily the general definition of an Artin stack. The point
of view we shall present here was explained to us by Walter, and he suggested
that it would generalize immediately to the case of higher stacks. The classical
terminology used by Artin was “algebraic stack”, but as Walter pointed out, it
seems more intuitive to call the condition “geometricity”.

Notice that if F is a 1-stack, and if X and Y are schemes, in particular they are
0-stacks, then the fiber product X ×F Y is 0-truncated8.

8More generally, if F is n-truncated and X, Y are k-truncated for k < n then X ×F Y is
n− 1-truncated. At the topological level this may be seen by considering the exact sequences for
homotopy groups (cf 5.4), first of the fibration X/F :

πn+1(F ) → πn(fiber(X/F )) → πn(X)

showing πn(fiber(X/F )) trivial; then of the fibration X×F Y/Y , noting that the fiber is the same
as before:

πn(fiber(X/F )) = πn(fiber(X ×F Y/Y )) → πn(X ×F Y ) → πn(Y )

showing that πn(X ×F Y ) is trivial.
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We say that a map of 1-stacks A → B is representable if for any map from a
schemeX → B, the fiber productX×BA is representable by an algebraic space. We
say that a representable map is smooth if for any such X , the map X×BA→ X is a
smooth map of algebraic spaces. Now, the geometricity condition for a 1-stack F is
that there exists a “smooth chart”, that is to say a surjective smooth representable
map from a scheme X → F .

If that exists, then we can give a presentation for F as a quotient of a nice
equivalence relation: representability applies in particular to our chart itself, so the
fiber product R := X ×F X is an algebraic space, and the two projection maps
R → X are smooth. There is a natural composition R ×X R → R and (X,R)
gains a structure of groupoid in the category of algebraic spaces. Our stack F is
the quotient F = X//R.

Following Walter’s suggestion, the above definition generalizes immediately to
the case of n-stacks. We define by induction on n simultaneously the notions of
geometricity for an n-stack, for a morphism of n-stacks, and smoothness for a
geometric morphism of n-stacks. Assuming these are known for (n− 1)-stacks, the
definitions for n are exactly as before: a morphism A → B from an (n − 1)-stack
to an n-stack is geometric (resp. smooth geometric) if for any map from a scheme
X → B, the (n − 1)-stack (see the previous footnote) X ×B A is geometric (resp.
X ×B A is geometric and the map X ×B A → X is a smooth map to a scheme);
an n-stack F is geometric if it admits a geometric smooth surjective map X → F
from a scheme of finite type, called a “chart”; and a map F → Y from a geometric
n-stack to a scheme is smooth if for any chart X → F , the composed map X → Y
is smooth. The reader may check that these definitions work together inductively
to give the required notions, as is discussed in more detail in [38].

Notice that we start with a 0-geometric stack being an algebraic space. One can
naturally go from just the notion of scheme, to the notion of algebraic space, by
adding an additional step of the same form in the induction.

It has now become usual terminology to say that an Artin n-stack is an n-stack
satisfying the above geometricity condition.9

6.3. First examples. The first examples of Artin 1-stacks are BG for G an alge-
braic group scheme. One may consider these as quotients BG = ∗//G for the trivial
action of G on a point. More generally, if G acts on an algebraic variety X , then
the stack quotient X//G is an Artin 1-stack. The map X → X//G is a smooth

9
The Grothendieck-Pridham condition: There is another way to look at the condition

of being an Artin stack, much more directly related to the simplicial point of view. Pridham [36]
has shown the very nice characterization that an n-stack F is Artin if and only if it admits a
presentation as a simplicial scheme X· (take the simplicial presheaf associated to the simplicial
scheme and take the associated stack, or equivalently replace it by a fibrant object in the Jardine
model structure) such that the pieces Xi are schemes of finite type, and such that the attaching
maps

Xi → lim
i→j<i

Xj = (cski−1(X·))i

are smooth. This condition was mentioned by Grothendieck in [18] as a possible definition of
schematic homotopy type, so Pridham’s theorem says that Grothendieck’s intuition gives rise to
the same very natural notion of Artin n-stack for which an inductive definition was discussed

above.
Many of the basic properties are easy to see from the geometricity definition, but not immedi-

ately clear from Grothendieck’s definition. One could therefore view Pridham’s theorem as a way
of showing that Grothendieck’s definition satisfies the properties one would want.
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chart, and the relation is

R = X ×X//G X ∼= G×X

with the two maps G×X → X being the projection, and the group action respec-
tively.

The quotient construction gives a huge array of examples, indeed most moduli
spaces are obtained by a quotient construction using Mumford’s GIT. The corre-
sponding moduli stacks are then quotient stacks of the above form.

One can play around with small examples. An interesting and useful one is the
quotient

A := A1/Gm.

This stack has two points, corresponding to the two orbits [0] and [1]. The stabilizer
group of [0] is Gm while the stabilizer group of [1] is trivial. This stack has many
different uses, for example families V → A may be viewed as filtered objects with
V[1] being the underlying object and V[0] being the “associated graded” with its
Gm-action. This viewpoint is very useful for nonabelian filtrations occuring in
nonabelian Hodge theory.

In a somewhat different direction, A is a classifier for Cartier divisors: given a
scheme X , there is a one-to-one correspondence between Cartier divisors on X and
morphisms X → A, with the divisor being the pullback of [0].

6.4. The Artin-Lurie representability theorem. Artin’s approximation theo-
rem is essential for translating charts constructed in an analytic or formal way, such
as the Kuranishi deformation spaces, into algebro-geometric charts. This typical
procedure for transforming a moduli problem, given as a functor, into an Artin
stack, was codified in the Artin representability theorem [4]. The statement com-
bines the local infinitesimal considerations needed to get a formal chart, with the
algebraicity assumptions needed for the approximation theorem, to get to maps
from global schemes.

Lurie proves a vast generalization to higher stacks [25], and particularly to higher
derived stacks. The introduction of derived structure is crucial for getting a good
control of the local infinitesimal theory. It would go outside of our scope to delve into
the details. See for example Pridham’s paper [35] for discussion and simplification.

6.5. The higher stack of perfect complexes. Amotivating example for going to
higher stacks and looking at Artin n-stacks is the stack Perf of perfect complexes.
Fix a function b : Z → N which is zero outside of finitely many values, and let
Perf≤b be the higher stack whose value on a scheme X is the∞-category of perfect
complexes C· over X , such that at any point x ∈ X we have hi(C·

x) ≤ b(i). It is an
n-stack, where n is the length of the interval on which b is nonzero. A main theorem
says that Perf≤b is an Artin n-stack of finite type. This was stated without proof
in [20] and first proven by Toën and Vaquié [42]. They proved, in fact, a vast
generalization concerning the moduli stack of perfect complexes relative to any
projective scheme, and they considered its natural structure as a derived stack.

It is interesting to contemplate the structure ofPerf≤b. For one thing, it has only
finitely many points, much like in the example A. We can enumerate the points of
Perf≤b. Indeed, a perfect complex over an algebraically closed field of characteristic
zero is determined up to equivalence by the dimensions of its cohomology groups.



STACKS 21

Thus, the points of Perf≤b are in one-to-one correspondence with the functions
h : Z→ N such that hi ≤ b(i).

On the other hand, the local coordinate charts of Perf≤b are the very classical
Buchsbaum-Eisenbud schemes. If we fix a point, corresonding to a function (hi),
then let V i be the vector space of dimension hi, and let BE(h·) be the scheme
which parametrizes collections of differentials di : V i → V i+1 such that di+1di = 0.
Clearly BE(h·) parametrizes perfect complexes in the sense that there is a tauto-
logical perfect complex over it, and by semicontinuity the cohomology dimensions
are ≤ hi ≤ b(i) so we get a map

BE(h·)→ Perf≤b.

These very natural charts were what we had in mind in [20], but they don’t appear
explicitly in the much more general situation of [42]. Benzeghli [6] proved that
they do indeed provide smooth charts for the Artin n-stack, and furthermore that
these charts may be naturally completed to a simplicial scheme satisfying Pridham’s
smoothness criterion for giving an Artin n-stack.

Thus we may view the stack Perf≤b as being the natural quotient of the collec-
tion of Buchsbaum-Eisenbud schemes, by the relation of weak equivalence. Notice
that if one wanted to remain in the realm of 1-stacks, by taking the 1-truncation of
the quotient, the geometricity property would no longer hold. We need to use the
notion of n-stack in order to give this quotient its most natural nice property.

The theory of perverse coherent sheaves [3] [7] allows one to isolate a 1-truncated
substack for which the previous comment doesn’t apply, yielding an Artin 1-stack
of moduli.

Kapranov and Pimenov have recently constructed derived schemes generalizing
the Buchsbaum-Eisenbud schemes [22]. It is natural to expect that these should
provide charts for the derived moduli stack of perfect complexes as it was con-
structed by Toën and Vaquié (applying [42] with X being a single point). We don’t
know if that has been done yet.

The Artin property of Perf≤b means that it can be considered as a geometric
object of the same kind as a usual algebraic variety. One may propose the following

Question 6.1. What does the cohomology H∗(Perf≤b,Q) look like? What is its
mixed Hodge structure?

Cohomology classes η ∈ Hi(Perf≤b,Q) provide characteristic classes for perfect
complexes whose cohomology is bounded by b. One should note that if we take the
direct limit over bigger and bigger bounding functions b, then the structure of the
cohomology becomes rather more simple and the only characteristic classes are the
usual Chern classes of the cohomology sheaves. Preliminary calculations suggest
that if we maintain a fixed bound b there can be more.

6.6. An example: perfect complexes of type ≤ (1, 1). Let us close this section
by examining explicitly the case of perfect complexes with Betti numbers (1, 1) and
(0, 0). We will get something that looks a lot like the 1-stack A seen at the start of
the section, but with an Artin 2-stack structure instead. This example, accessible
without too much technical baggage, provides a useful window on the ideas behind
higher Artin stacks.

Consider the simplest function defined by b(0) = b(1) = 1 but b(i) = 0 else-
where. Use the superscript ≤ (1, 1). The Euler characteristic is a locally constant
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function on Perf≤(1,1) so we can fix the open and closed substack A′′ ⊂ Perf≤(1,1)

of complexes with Euler characteristic zero.10 This stack has two closed points cor-
responding to cohomology dimensions (0, 0) and (1, 1) respectively (the dimensions
are required to be zero outside of degrees i = 0, 1). These points may be viewed as
the complexes

e1 : k
1
−→ k

and

e0 : k
0
−→ k

respectively. The complex e1 is quasiisomorphic to 0→ 0 i.e. it is the zero complex,
in particular its space of automorphisms is reduced to a single point. It is the open
point of A′′, very analogous to the point 1 ∈ A considered at the beginning of the
section.

The group of automorphisms of the complex e0, on the other hand, is Gm×Gm.
This is different from the automorphism group Gm of the point 0 ∈ A. In order to
understand this difference, we should note thatA′′ is a 2-stack rather than a 1-stack,
so we should consider not the group of all automorphisms of e0 but rather the 1-
stack of automorphisms modulo homotopy. The identity endomorphism i : e0 → e0
has self-homotopies, and in fact the sheaf of homotopies is Ga, corresponding to
the functions e10 → e00. The automorphism group Gm × Gm acts on the sheaf of
homotopies via the product map. We therefore obtain a picture of the 1-stack of
automorphisms of e0 as having homotopy group sheaves (cf 5.4) represented by
π0 = Gm×Gm and π1 = Ga. In terms of dimensions everything works out because
this automorphism group stack still has dimension 1, so e0 has dimension −1 and
it is still a codimension 1 closed substack of A′′ as was the case for 0 ∈ A.

The Buchsbaum-Eisenbud scheme providing a neighborhood of the point e0 is
just the affine line A1 parametrizing complexes of the form

et : k
t
−→ k

so our Artin 2-stack A′′ may be thought of as a different way of taking a quotient
of the affine line with the open subset of nonzero points as single open orbit.

Consider the relation R→ A1×A1 defining A′′. Itself a 1-stack, R is the quotient
of a variety R0 by an action of the group scheme Ga as follows. The variety R0 is the
space of quadruples (s, t, g, h) where (s, t) is a pair of elements in the parametrizing
Buchsbaum-Eisenbud scheme A1, and (g, h) form a map of complexes

k
s

//

g

��

k

h
��

k
t

// k

meaning that tg = hs, such that furthermore (g, h) is a quasiisomorphism. The
quasiisomorphism condition means that if either s = 0 or t = 0 then g and h are
nonzero. Thus, R0 is the open subset of the affine variety tg = sh in A4, defined by
removing the two planes (s = 0, g = 0) and (t = 0, h = 0). The action of Ga is by
a : (s, t, g, h) 7→ (s, t, g+ as, h+ at). The quotient R = R0/Ga is a 1-stack, and this
1-stack projects by (s, t) to A1 × A1. It has a groupoid structure and the quotient
2-stack is A′′.

10The two other components corresponding to Betti numbers (1, 0) and (0, 1) are just BGm’s.
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We see again that the automorphism group of e1, the fiber of R over s = t = 1,
is given by equation g = h modulo g 7→ g+ a and h 7→ h+ a; this quotient of A1 by
Ga is trivial. The automorphism group of e0, the fiber of R over s = t = 0, is the
“quotient” of the space of (g, h) with g 6= 0 and h 6= 0, by the trivial action of Ga.
Thus the automorphism group of e0 is isomorphic as a stack to Gm × Gm × BGa
although the group multiplication law is twisted.

This simplest example gives an idea of what the n-stack Perf≤b looks like in
general, and of what it means to have a higher Artin structure. It illustrates the
idea that we might have a groupoid where the relation object is itself a stack,
leading to a 2-stack.

7. Nonabelian cohomology

The introduction of higher algebraic stacks paves the way towards a new possi-
bility of using them to investigate the structure of spaces, a technique that could
go by the generic name of “shape theory”.

Very roughly speaking the shape of a space means the nonabelian cohomology
functor it defines. In this section, we start by explaining the motivation, then
we discuss an extended example that shows how shape theory using nonabelian
cohomology leads to a new perspective on non-simply connected spaces, and then
we get to a general discussion of the categories of coefficients that might be used.

7.1. From topologizing algebraic geometry to algebro-geometrizing topol-

ogy. Our discussion up until now has focused on the idea that new more compli-
cated kinds of algebraic varieties, known as stacks, have local and even global
topological structures attached to them, and indeed these topological structures
are essential for the definition and theory of stacks. Here, topology is viewed as a
tool needed to understand structures which arise naturally in algebraic geometry,
and we can say that algebraic-geometry becomes “topologized”.

Developing this idea leads to the quite general point of view of presheaves of
spaces (simplicial presheaves) over a Grothendieck site. But now, such a theory
allows us to envision a new and different direction: algebro-geometrizing topology.
By this, we mean envisioning new and more complicated kinds of “enriched spaces”,
where the additional structure is of an algebro-geometric nature. A first and typical
example is the stack BGLn. It is an Artin 1-stack classifying rank n vector bundles.
Giving a morphism from an algebraic variety X to BGLn is the same thing as
giving a rank n vector bundle over X . Natural transformations between morphisms
correspond to isomorphisms between bundles. 11

One salient feature is that π1(BGLn, o) = GLn is a sheaf of groups, the sheaf
represented by the group scheme GLn. Thus, we can view BGLn as a new kind
of “space”, whose homotopy groups are group schemes rather than just discrete

11Here is the construction of the stack BGLn as a presheaf of spaces. For each affine scheme
Spec(A), consider the group GLn(A) and form its classifying simplicial set B(GLn(A)). The set of
k-simplices here is GLn(A)k−1 with face maps given by projections to factors and multiplication.
These simplicial sets are organized into a simplicial presheaf over our site. It is a 1-prestack

because each simplicial set is 1-truncated. Then BGLn is the associated stack, which may for
example be described as the fibrant replacement of the prestack in the Jardine model structure.
A more explicit description of the “stackification” is possible, generalizing the explicit description
of the sheafification of a presheaf.
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groups. Generalizing this idea to higher stacks leads to the schematization of ho-
motopy. The schematization operation was one of Grothendieck’s overall aims in
Pursuing Stacks [18]. Breen had an early paper on the schematic sphere [9], and
one should note that his paper on cohomology calculations [8] provides in retrospect
the foundation for schematization. More recently, Katzarkov Pantev and Toën [23]
[24], Pridham [34] and others [28] defined the schematization in full generality and
developed Hodge theory for it.

In the simply connected case, the schematization recovers the usual rational
homotopy type. As indicated in the notation, if X is a simply connected homotopy
type then the schematization X⊗k corresponds to tensoring the rational homotopy
type, considered for example as a dg commutative algebra, with the field k over Q.
Even in this case, additional insight is gained by thinking of X⊗k as a higher stack,
rather than just “the homotopy type whose dgca would be the tensor product one”.

In the non-simply connected case, the schematization X ⊗ k provides a stack
whose fundamental group is the pro-algebraic completion of π1(X, x). That is to
say, the inverse limit of linear k-algebraic group schemes G over the index category
of representations ρ : π1 → G. The map

π1(X, x)→ π1(X ⊗ k, x)

is the universal representation to an affine group scheme over k. The higher homo-
topy of X⊗ k records the relative Malcev completions of the homotopy of X , at all
of the representations ρ.

When X is not simply connected, the schematization X ⊗ k doesn’t provide a
fully satisfactory answer to the problem of finding homotopical invariants “over
k”. It can be a very big object when π1(X) admits families of representations. In
that case π1(X ⊗ k) contains a big direct product of all the target groups for the
representations in the family, but the direct product doesn’t reflect the continuous
structure in the variation of these representations. If k′ : k is a transcendental field
extension then X ⊗ k′ is not just the extension of scalars of the stack X ⊗ k from k
to k′, because we have a lot of new representations defined over k′ so the algebraic
fundamental group gets a lot of new factors.

7.2. Shape theory. One possible answer to this question is to adopt a point of
view of shape theory using nonabelian cohomology as the basic structure.

We let C be an appropriate site of schemes. For our purposes we consider a
field k of characteristic zero and look at the site C := Aff ft

k of affine k-schemes of
finite type, with the etale topology. Let Stack denote the ∞-category of stacks of
∞-groupoids over C, with Stackn denoting the subcategory of n-stacks.

Suppose P is an ∞-category with a functor ζ to Stack. If X is a space, let X
denote the constant ∞-stack whose values are the Poincaré ∞-groupoid of X . In
terms of simplicial presheaves, it means to take the (fibrant replacement of) the
constant simplicial presheaf with values X . We define the P-shape of X to be the
functor

PShapeX : P → Stack, T 7→ Hom(X, ζ(T )).

We’ll discuss more about the choice of P below (and once chosen, it may usually
be dropped from the notation).

Getting back to the simply-connected case to begin, the k-rational homotopy
type, or schematization, of a simply connected space may be viewed as an object
representing the shape for an appropriate choice of category P. For this, let P be
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the full subcategory of Stackn consisting of the n-stacks which are 1-connected and
whose higher homotopy group sheaves are of the form Gka. Recall that Ga ∼= A1

is the group scheme represented by the affine line, which as a sheaf is just the
structure sheaf O. So we are asking that the higher homotopy group sheaves be of
the form Ok.

Then, for any simply connected finite CW-complex X there is an n-stack (X ⊗
k)≤n ∈P together with a map

XC → (X ⊗ k)≤n

representing the functor PShapeX . For i ≤ n we have

πi((X ⊗ k)≤n) = πi(X)⊗Z k

in the sense that the left side is the sheaf of groups over C represented by the
k-vector space on the right considered as an affine k-scheme.

This gives a functorial point of view to rational homotopy theory for simply-
connected spaces, although it doesn’t lead to the introduction of any really new
invariants.

7.3. An example of shape in the non-simply connected case. One of the
main motivations for introducing nonabelian cohomology and for looking at the
associated shape theory, is the well-known problem that rational homotopy theory
doesn’t behave very well for non-simply connected spaces. Shape theory gives us
new structures to use in this context, leading to a rather good improvement in some
aspects.

This is an area where new ideas from the theory of stacks can shed light on
phenomena in algebraic topology. Our goal in this subsection is to illustrate with
an example.

We should clearly enlarge the category P of target stacks to include some non-
simply connected ones. In the present subsection, we look at a first example. Our
relatively simple example will have abelian fundamental group, so for simplicity we
consider target stacks whose fundamental group scheme is just Gm.

Let T1 := K(Gm, 1). Let us consider 3-stacks T with maps T → T1 inducing
τ≤1(T ) ∼= T1. We impose the condition that π2(T ) and π3(T ) be abelian group
schemes of the form Gna . Throughout this subsection, fix P to be the 4-category
of stacks of this form.

Consider the space X := S1 ∨ S2. We note that Γ := π1(X) = Z, and the

universal cover X̃ is a wedge sum of one copy of S2 for each element of Γ. Thus,
π2(X) = H2(X̃) = Z[Γ]. On the other hand, the higher homology groups vanish so

π3(X)⊗Q = Sym2(π2(X)⊗Q) = Sym2(Q[Γ]).

As a Q[Γ]-module, it has infinite type.
Our goal in this paragraph is to illustrate how nonabelian cohomology with

stack coefficients provides an invariant which has better finiteness properties yet
still allows us to distinguish different classes in π3(X)⊗Q.

The functor

ShapeX : P → Stack3

is defined by ShapeX(T ) := Hom(X,T ) where X is the constant prestack with
value X .
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The image of this functor lies in the subcategory Artin3 ⊂ Stack3 of Artin 3-
stacks of finite type, see Proposition 7.2 in subsection 7.4 below.

The Artin finite-type property is what we mean by a better finiteness condition.
The functor ShapeX relates categories of objects of finite type in this sense.

We would now like to see how the shape functor distinguishes elements of π3(X).
The shape functor has a pointed version: fix a basepoint x ∈ X , and look at pointed
stacks (T, t). Let Shape∗X(T ) be the space of pointed maps (X, x)→ (T, t).

An element of π3(X, x) is a pointed map ϕ : S3 → X inducing a natural trans-
formation

Shape∗ϕ(T ) : Shape
∗
X(T )→ Shape∗S3(T ).

That may also be extended to the case when ϕ ∈ π3(X, x)⊗Q.

Proposition 7.1. Different elements ϕ 6= ψ in π3(X, x)⊗Q give different natural
transformations: Shape∗ϕ 6= Shape∗ψ from the X-shape to the S3-shape. 12

12

Proof. Consider pointed stacks Ta,b which are as follows:

F a,b // Ta,b

��
BGm

where, in turn,

K(V a+b, 3) // F a,b

��

K(V a ⊕ V b, 2)

with V a being the sheaf represented by an affine line which as a Gm-module of rank one has t
acting by ta. The structure of F a,b is the standard map

µ : Sym2(V a ⊕ V b) → V a+b.

The basepoint t comes from the standard ones in the Eilenberg-Maclane stacks.
A pointed map (X, x) → (T, t) is given by a pair of pointed maps S1 → T and S2 → T , so up

to homotopy it is just given by a triple (t, v′, v′′) where t ∈ Gm, v′ ∈ V a and v′′ ∈ V b. Thus

π0Shape
∗

X(Ta,b) = Gm × V a × V b.

Similarly a pointed map S3 → T is given by w ∈ V a+b,

π0Shape
∗

S3(T
a,b) = V a+b.

Recall that we denote Γ := π1(X) ∼= Z. An element of π3(X) may be written, rationally, as

ϕ =
∑

i,j

pijγ
iγj ∈ Sym2

Q(Q[Γ])

with pij = pji, and where γi ∈ Γ is the i-th multiple (power) of the generator. We get an element
of π3(X) ⊗Q by letting pij be any rational coefficients.

The action of such a map ϕ on the shape is

π0Shape
∗

ϕ(T
a,b) : Gm × V a × V b → V a+b

(t, v′, v′′) 7→
∑

i,j

pijµ((t
i · (v′, v′′))(tj · (v′, v′′)))

=
∑

i,j

pij(t
ai+bj + taj+bi)v′v′′ = 2

∑

i,j

pijt
ai+bj .

The last equation is due to the symmetry pij = pji.
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In this example the shape functor, with reasonable finiteness properties, is rich
enough to distinguish the elements of the infinite-type group π3(X, x)⊗Q.

It will be interesting to see how the result of the proposition generalizes to
other fundamental groups and homotopy groups in higher degrees. The shape can
certainly fail to see some parts of the fundamental group, such as the intersection
of subgroups of finite index. Characterizing the homotopical information carried
by the shape is undoubtedly a subtle problem.

7.4. Coefficients for nonabelian cohomology. Our new kinds of geometrized
spaces allow us to envision a rich theory of nonabelian cohomology. As we can see
from our discussion of the classification of gerbes, a nonabelian cohomology theory
involves, in its simplest incarnation, fixing a target space T and looking at the
functor

X 7→ Hom(X,T ).

The abelian case is when T = K(A, n) and Hn(X,A) = π0Hom(X,T ). The first
degree nonabelian cohomology with coefficients in a group G is given by taking
T = BG = K(G, 1), and Hom(X,T ) is the 1-truncated space corresponding to the
nonabelian cohomology groupoid H1(X,G) of G-torsors over X .

In usual cohomology theory we pretty quickly want to pass to cohomology with
coefficients over, say, a field k. Thus in the examples of the previous paragraph, A
would be a k-vector space (such as k itself) and G would be an algebraic k-group
scheme. In these cases we can say explicitly how the cohomology retains a similar
algebraic structure over k.

A general nonabelian cohomology situation will be when T is some kind of space
with homotopy groups in various different degrees. What does it mean for T to be
“algebraic over a field k”? This is where the idea of algebro-geometrizing topology
comes in: rather than looking for just a space T , we look for a simplicial presheaf,

or n-stack, over a conveniently chosen site such as Aff = Aff ft,et
k the affine schemes

of finite type over k with the etale topology. This is the site we shall refer to in the
subsequent discussion.

If T is an n-stack over Aff and X is a space, then Hom(X,T ) is again an n-stack
over Aff, by the formula

Hom(X,T )(SpecA) := Hom(X,T (SpecA)).

Suppose ψ =
∑
i,j qijγ

iγj is a different element, such that

π0Shape
∗

ϕ(T
a,b) = π0Shape

∗

ψ(T
a,b)

for any a, b. It means that ∑

i,j

pijt
ai+bj =

∑

i,j

qijt
ai+bj

for any t ∈ Gm. Separating terms, we get that for any integer k,

(7.1)
∑

ai+bj=k

(pij − qij) = 0.

We claim this implies pij = qij . Indeed, let Σ ⊂ Z × Z be the set of pairs where (pij − qij) 6= 0.
If it is nonempty, then we can choose a corner (i0, j0) of its convex hull, and fix a rational slope
of line which meets the convex hull only at that corner. That determines a, b, k such that the

intersection of ai+ bj = k with Σ consists of just one point (i0, j0). The above relation (7.1) says
pi0j0 − qi0j0 = 0 but that contradicts the choice of (i0, j0) ∈ Σ. Hence Σ is empty and pij = qij ,
so ϕ = ψ in the rational homotopy group. This completes the proof of the proposition. �
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Thus, if T is an n-stack over k, so is the nonabelian cohomology stack Hom(X,T ).
This satisfies our requirement for having a theory of coefficients relative to k.

For Hodge theory with nonabelian coefficients, it is particularly necessary to
have a theory of coefficients relative to the ground field of complex numbers C,
indeed the natural structures of abelian Hodge theory exist only on cohomology
with complex coefficients and the same is true in the nonabelian case.

Consideration of some more or less pathological examples shows that we need
to do more in order to obtain a nice theory of coefficients. We would like our
cohomology stacks Hom(X,T ) to have a geometrical structure. For example, the
first nonabelian cohomology H1(X,G) = Hom(X,BG) with coefficients in a linear
algebraic group G, has a structure of Artin algebraic stack whose coarse moduli
stack is the classical character variety of π1(X) with coefficients in G.

So it is natural to look for an appropriate kind of geometrical structure to impose
on the coefficients, in such a way that the cohomology stack maintains the same
kind of structure. The notion of Artin n-stack provides such a structure, as is shown
by the following proposition.

Proposition 7.2. The category of Artin n-stacks of finite type is closed under
finite products and fiber products. If X is a finite CW-complex and T is an n-
stack, then Hom(X,T ) is in the category of n-stacks generated by products and
fiber products starting with T . Therefore, if T is an Artin n-stack of finite type, so
is the nonabelian cohomology stack Hom(X,T ).

7.5. Nonabelian de Rham cohomology. Hodge theory for a complex algebraic
variety X is about the relationship between Betti cohomology, the cohomology of
the usual topological spaceXtop, and other cohomologies defined using the algebraic
structure of X , such as de Rham or Dolbeault cohomology.

Very briefly, we can define the nonabelian de Rham cohomology of X by intro-

ducing the sheaf XdR on the site Aff ft,et
C defined by

XdR(Y ) := X(Y red).

When X is smooth, the de Rham stack XdR is defined by a formal groupoid whose

object object is X and whose morphism object is the completion X̂ ×X of the
diagonal in X × X . The morphism object injects into X × X so it is really just
a relation whose quotient is a sheaf: one should think of it as “glueing together
infinitesimally near points”.

If T is an n-stack on Aff ft,et
C , the nonabelian de Rham cohomology13 of X with

coefficients in T is Hom(XdR, T ). One may check that this recovers the usual
notions of nonabelian de Rham cohomology. When T = BG for a complex linear
algebraic group, a map XdR → BG consists, firstly, of a map X → BG i.e. a

principal G-bundle over X ; and secondly, of glueing data over the relation X̂ ×X
with a coherence condition, amounting to providing the principal bundle with a flat
connection. Therefore, Hom(XdR, BG) is the Artin 1-stack of principal G-bundles
with flat connection.

13The natural extension to Dolbeault cohomology, and the Hodge filtration, are obtained by
considering the deformation of this formal groupoid to its normal cone. The attachments between

infinitesimally near points are deformed to loops located at each point, so XDol is the formal
completion of the zero-section in the tangent bundle of X. Nonabelian Dolbeault cohomology is
the moduli space of Higgs bundles in degree one, and reflects the Dolbeault cohomology of Higgs
bundles in higher degrees.
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When T = K(Ga, n), Hom(XdR, T ) yields Grothendieck’s algebraic de Rham
cohomology Hn

dR(X,C).
One of the main tools used to link Betti and de Rham cohomology is Serre’s

GAGA theorem, saying that cohomology of a projective algebraic variety is the
same as cohomology of the corresponding analytic variety. If we want to promote
our abelian theory to one that involves nonabelian coefficients, then not only should

the coefficients be “defined over C” corresponding to n-stacks over Aff ft,et
C , but also

there should hold an appropriate GAGA principle.
Consider a basic example: suppose T = K(Gm, n). This is an Artin n-stack. But

for n ≥ 2, Hom(XdR,K(Gm, n)) on the algebraic site, is very different from the same
space computed on the analytic site. The algebraic cohomology is torsion, whereas
the analytic one is isomorphic to the Betti cohomology with C/Z coefficients.

This example shows that we need to impose some condition on the higher homo-
topy group schemes of our coefficient stack T . A similar example in degree n = 1
shows that we can’t use an abelian variety A: again Hom(XdR,K(A, 1)) on the
algebraic site would be very different from the corresponding analytic cohomology
group.

With these examples in mind, we make the following definition.

Definition 7.3. A connected very presentable stack T is an n-stack on Aff ft,et
C

such that π0(T ) = ∗, π1(T ) = G is a linear algebraic group, and for 2 ≤ i ≤ n,
πi(T ) is a direct sum of copies of Ga.

For connected very presentable coefficient stacks T , which are in particular Artin
n-stacks, GAGA works in the usual way, as may be seen by induction on the
Postnikov tower.

If X is a smooth projective complex algebraic variety, we obtain an algebraic de
Rham cohomology stack Hom(XdR, T ) which is an Artin n-stack whose analytifi-
cation is the Betti cohomology:

Hom(XdR, T )an ∼= Hom(Xtop, T )an.

Recall that Xtop is a finite CW complex so the Betti cohomology is an Artin n-stack
by Proposition 7.2.

If X is only quasiprojective, then Hom(XdR, T ) will in general be considerably
bigger, due to the presence of maps XdR → BG corresponding to G-bundles with
irregular connections. For example there are nontrivial such maps when X = A1.
The de Rham shape, restricted to the 1-truncated stacks, recovers the information
of the differential Galois group. We feel that the higher de Rham shape should lead
to an interesting extension of differential Galois theory.

One might want to consider coefficient stacks T that are not necessarily “con-

nected”. Then π0(T ) is a sheaf of sets on Aff ft,et
C . It is somewhat more subtle to

write down the conditions analogous to Definition 7.3. One may in some cases still
obtain a good structure on the de Rham cohomology, such as the case suggested
by Bertrand Toën of coefficients in the stack Perf≤b that we looked at above. The
cohomology stack

Hom(XdR,Perf
≤b)

has a rich structure not yet completely elucidated [39]. For quasiprojective X it
should give a new differential Galois invariant.
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8. Prospects

The theory of stacks has shown its usefulness in a wide variety of geometrical
situations. Following current thinking that integrates a homotopical direction into
geometry, higher stacks will find their place and contribute.

The theory of higher stacks involves a combination of working relative to a
Grothendieck site, and looking at functors with values in higher homotopical struc-
tures such as∞-categories. This allows us to perceive a rich and intricate interplay
between homotopy, algebra and geometry.

These inputs come at different scales. In the application of stacks to moduli
problems in algebraic geometry, the homotopical information is often concentrated
at the infinitesimally tiny scale of points or subvarieties where the parametrized
objects acquire extra automorphisms; but in the case of a gerbe we may think of a
small scale homotopical phenomenon spread out over the variety and manifesting
global cohomological behavior. In the other direction, the theory of stacks allows
us to enrich homotopy theory by providing algebraic structure to homotopy types.
Here, the component pieces of a homotopy type, for example the homotopy groups,
gain structure of algebraic group schemes.

The mixture of geometrical and homotopical directions leads to new ideas: higher
stacks become the natural coefficient systems for higher nonabelian cohomology,
leading to new geometrical structures spreading across the homotopical directions.
The enrichment to an algebraic structure allows us to consider nonabelian de Rham
cohomology. The shape theory implied by the schematization of homotopy types
can allow us to get a new and useful viewpoint on the structure of non-simply
connected homotopy types.

We have seen a number of specific questions that seem interesting for future
research. These include, of course, the abstract questions about further develop-
ment of the foundations and theory. Let us think instead about some more explicit
geometrical questions.

One is the structure of substacks of the moduli space of stable curves. Substacks
can be generically nontrivial gerbes, and little is understood about the classification
of what possibilities can occur here. On the boundary, the same question takes on
a distinctly combinatorial feel.

What does the moduli 2-stack of DM-curves look like?
Similar questions for moduli stacks of vector bundles and other sheaves move

already from the realm of Deligne-Mumford stacks to Artin 1-stacks where the
stabilizer groups can be positive dimensional. Understanding the local geometry
here is already significantly more complicated; yet there still remain important
questions about classification of gerbes that can occur.

The fine structure of Artin 1-stacks gives an internal approach to various aspects
of geometric invariant theory [19].

As we move on to higher stacks, a first main question is to understand what
kinds of Artin n-stacks can be produced by natural constructions such as moduli
of objects in dg-categories.

The moduli stacks of perfect complexes Perf≤b are very natural first examples
of n-stacks with only finitely many closed points. In this case, the stabilizer groups
of the closed points are all of the form GLr (more precisely they are higher groups
whose 0-truncations are GLr). Are there other nice examples of n-stacks with
finitely many closed points, say with other groups appearing as stabilizers?
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Once we have some basic examples, it opens up the question of whether more
general Artin n-stacks can be mapped into our example stacks such as Perf≤b, and
if such maps can form an embedding, say when combined with maps to ordinary
projective space. For Deligne-Mumford stacks, this is the notion of generating sheaf
[31] [29].

The classification question relates to nonabelian cohomology: we can ask what
kinds of Artin n-stacks occur as nonabelian cohomology stacks, depending on the
domain variety and the target coefficient stack. The notions of shifted symplectic
and Poisson structures [33] [11] provide important constraints.

We can then ask how the position of nonabelian cohomology stacks in this classifi-
cation relates to the geometry and homotopy theory of the domain variety. Indeed,
this classification interacts with the construction problem for homotopy types of
algebraic varieties. Information on the range of possibilities for the nonabelian
cohomology stacks of algebraic varieties (satisfying various conditions such as pro-
jective and smooth) should give information about the special properties of their
homotopy theory.

This aspect is closely related to nonabelian Hodge theory: higher stacks, as
natural coefficient systems for nonabelian cohomology, need to be given further
data in order to generate nonabelian Hodge structures on the cohomology. The
foundational structure of what this data should look like, and then the geometry
of the resulting cohomology, are basic areas open for further study.

A fundamental question raised by the present project is, how do stacks and the
various roles they play in the study of geometry, interact with the new notions of
space presented in the other chapters of this book?
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23. L. Katzarkov, T. Pantev, B. Toën. Schematic homotopy types and non-abelian Hodge theory.

Compos. Math. 144 (2008), 582-632.
24. L. Katzarkov, T. Pantev, B. Toën. Algebraic and topological aspects of the schematization

functor. Compos. Math. 145 (2009), 633-686.
25. J. Lurie. Derived Algebraic Geometry. PhD thesis, MIT (2004).
26. J. Lurie. Higher topos theory. Annals of Math. Studies 170, Princeton University Press

(2009).

27. Binru Li, S. Weigl. The locus of curves with Dn-symmetry inside Mg. Rendiconti del Circolo

Matematico di Palermo 65 (2016), 33-45.
28. A. Mikhovich. Proalgebraic crossed modules of quasirational presentations. Extended Abstracts

Spring 2015, Springer (2016), 109-114.
29. F. Nironi. Moduli spaces of semistable sheaves on projective Deligne-Mumford stacks. Preprint

Arxiv:0811.1949 (2008).
30. M. Olsson. (Log) twisted curves. Compositio Math. 143 (2007), 476-494.
31. M. Olsson, J. Starr. Quot functors for Deligne-Mumford stacks. Comm. Algebra 31 (2003),

4069-4096.
32. A. Papadopoulos, ed. Handbook of Teichmüller theory, Volumes I-IV, IRMA Lectures in

Mathematics and Theoretical Physics, EMS (2007-2014).
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