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Abstract: Multi-Object Tracking (MOT) is an integral part of any autonomous driving pipelines
because it produces trajectories of other moving objects in the scene and predicts their future motion.
Thanks to the recent advances in 3D object detection enabled by deep learning, track-by-detection has
become the dominant paradigm in 3D MOT. In this paradigm, a MOT system is essentially made of an
object detector and a data association algorithm which establishes track-to-detection correspondence.
While 3D object detection has been actively researched, association algorithms for 3D MOT has
settled at bipartite matching formulated as a Linear Assignment Problem (LAP) and solved by the
Hungarian algorithm. In this paper, we adapt a two-stage data association method which was
successfully applied to image-based tracking to the 3D setting, thus providing an alternative for data
association for 3D MOT. Our method outperforms the baseline using one-stage bipartite matching for
data association by achieving 0.587 Average Multi-Object Tracking Accuracy (AMOTA) in NuScenes
validation set and 0.365 AMOTA (at level 2) in Waymo test set.

Keywords: multi-object tracking; data association; autonomous vehicles

1. Introduction

Multi-object tracking have been a long standing problem in computer vision and
robotics community since it is a crucial part of any autonomous systems. From the early
work of tracking with hand-craft features, the revolution of deep learning which results
in highly accurate object detection models [1–3] has shifted the focus of the field to the
track-by-detection paradigm [4,5]. In the framework of this paradigm, tracking algorithms
receive a set of object detection, usually in the form of bounding boxes, at each time step
and they aim to link detection of the same object across time to form trajectories.

While image-based methods of this paradigm have reached a certain maturity, 3D
tracking is still in its early phase where most of the published approaches are originated
from successful 2D exemplars. One popular method is [6] which extends [4] into 3D space.
In these works, detections are linked to tracks by solving a bipartite matching with the
Hungarian algorithm [7], then states of tracks are updated by a Kalman filter. Taking a
similar approach to establishing detection-to-track correspondence, [8] trains a network
for calculating the matching cost instead of using the 3D Intersection over Union (IoU).
In [9,10], objects’ poses in the current and several future frames are predicted by deep
neural networks. Thus, tracks can be formed by greedy closest-point matching.

Even though 3D tracking has been progressed rapidly thanks to the availability of
standardized large scale benchmarks such as KITTI [11], NuScenes [12], Waymo Open
Dataset [13], the focus of the field is placed on developing better object detection models
rather than developing better tracking algorithm as shown in Table 1 which presents the
performance measured by the AMOTA metric of tracking algorithms following the track-
by-detection paradigm and the performance of their object detector measured by mean
Average Precision (mAP). AMOTA is a scalar value representing how well the algorithm
does in limiting:
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• ID switches (IDS): the number of times tracks are associated with wrong detections;
• False Positives (FP): the number of times real objects are missed detected;
• False Negatives (FN): the number of times the tracking algorithm reports tracks in

places where there are no real objects present.

There are two trends that can be observed in this table. First, tracking performance
experiences a boost when a better object detection model is introduced. Second, the method
of AB3DMOT [6] , which uses the Hungarian algorithm on some metrics (e.g., 3D IoU,
Mahalanobis distance) to perform data association, Kalman Filters to update tracks’ states
once they have associated detections, and set of heuristic rules to manage birth and death
of tracks, is favored by most recent 3D tracking systems.

Table 1. Summary of tracking methods which details are published in the leader board of NuScenes and Waymo
Open Dataset.

Dataset Method Name Tracking Method AMOTA Object Detector mAP

NuScenes

CenterPoint [9] Greedy closest-point matching 0.650 CenterPoint 0.603

PMBM Poisson Multi-Bernoulli
Mixture filter [14] 0.626 CenterPoint 0.603

StanfordIPRL-TRI [15]
Hungarian algorithm with

Mahalanobis distance as cost
function and Kalman Filter

0.550 MEGVII [16] 0.519

AB3DMOT [6]
Hungarian algorithm with 3D

IoU as cost function and
Kalman Filter

0.151 MEGVII 0.519

CenterTrack Greedy closest-point mathcing 0.108 CenterNet [17] 0.388

Waymo

HorizonMOT [18]
3-stage data associate, each

stage is an assignment problem
solved by Hungarian algorithm

0.6345 AFDet [19] 0.7711

CenterPoint Greedy closest-point matching 0.5867 CenterPoint 0.7193

PV-RCNN-KF Hungarian algorithm and
Kalman Filter 0.5553 PV-RCNN [20] 0.7152

PPBA AB3DMOT
Hungarian algorithm with 3D

IoU as cost function and
Kalman Filter

0.2914 PointPillars and
PPBA [21] 0.3530

The reason for AB3DMOT’s popularity is that despite its simplicity, it achieves com-
petitive result in challenging datasets at significantly high frame rate (more than 200 FPS).
However, such simplicity comes at the cost of the MOT system being vulnerable to false
associations due to occlusion or imperfect detections which is case for objects in a clutter or
far away from the ego vehicle.

Aware of the shortage of a generic 3D tracking algorithm which can better handle the
occlusion and imperfect detections, yet remains relatively simple, we adapt the image-based
tracking method proposed by [22] to the 3D setting. Specifically, this method is a two-stage
data association scheme. In this scheme, each tracked trajectory is called a tracklet and is
assigned a confidence score computed based on how well associated detection matches
with tracklet. The first association stage aims to establish the correspondence between
high-confident tracklets and detection. The second stage matches the left over detection
with the low confident tracklets as well as link low-confident tracklets to high-confident
ones if they meet a certain criterion.

In this paper, we make two contributions

• Our main contribution is the adaptation of an image-based tracking method to the
3D setting. In details, we exploit a kinematically feasible motion model, which is
unavailable in 2D, to facilitate the prediction of objects’ poses. This motion model
defines the minimal state vector needed to be tracked.
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• Extensive experiment carried out in various datasets proves the effectiveness of our
approach. In fact, our better performance, compared to AB3DMOT-style models, show
that adding a certain degree of re-identification can improve the tracking performance
while keeping the added complexity to the minimum.

• Our implementation is available at https://github.com/quan-dao/track_with_confidence.

2. Related Work

A multi-object tracking system in the track-by-detection paradigm consists of an
object detection model, a data association algorithm and a filtering method. While the last
two components are domain agnostic, object detection models, especially learning-based
methods, are tailored to their operation domain (e.g images or point clouds). This paper
targets autonomous driving where objects’ poses are required thus being interested in 3D
object detection models. However, developing such a model is not in the scope of this
paper, instead we use the detection result provided by baseline models of benchmarks
(e.g., PointPillars of NuScenes) to focus on the data association algorithm and to have a fair
comparison. Interested readers are referred to [23] for a review of 3D object detection.

Data association via the Hungarian algorithm was early explored in [24] where a
2-stage tracking scheme was proposed for offline 2D tracking. Firstly, detections are
linked frame-by-frame to form tracklets by associate detections to tracklets via solving a
LAP with the Hungarian algorithm. The cost matrix of this LAP is computed based on
geometric and appearance cue. While the geometric cue is the 2D IoU, the appearance
cue is the correlation between two bounding boxes. Secondly, tracklets are associated
with each other to compensate trajectory fragments and ID switches due to occlusion.
Similar to the previous step, this association is also formulated as a LAP and solved by the
Hungarian algorithm.

Due to its batch-processing nature, the method of [24] cannot be applied to online
tracking. The authors of [4] overcomes this by eliminating the second stage, which effec-
tively sacrifices the ability of re-identifies objects after a period of occlusion. Despite its
simplicity, SORT — the method proposed by [4] – achieves competitive result in MOT15
[25] with lightning-fast inference speed (260 Hz). The success of SORT inspired [6] to adapt
it to 3D setting by using 3D IoU as the affinity function. The performance of SORT in 3D
setting is later improved in [15] showing the superiority over 3D IoU of the Mahalanobis
distance which is the magnitude of difference between the expected detection given the
ego vehicle pose and the real detection while taking into account their uncertainty. In
[26], the authors integrate the 3D version of SORT into a complete perception pipeline for
autonomous vehicles.

The two-stage association scheme is adapted to online tracking in [22] which proposes
a confidence score to quantify tracklets quality. Based on this score, tracklets are associated
with detections or another tracklets, or terminated. The appearance model learned by
ILDA in [22] is improved by deep learning in the follow-up work [27]. Recently, this
association scheme is revisited in the context of image-based pedestrian tracking by [28]
which proposed to use the rank of the Hankel matrix as tracklets motion affinity. To be
specific, this technique estimates a tracklet ’s dynamic by a linear regressor taking its
previous states as input. In noise-free scenarios, the order of such a regressor (i.e., the
number of past states needed to estimate the current state) is equal to the rank of the Hankel
matrix which formula can be found in [28]. The intuition behind this technique is that if
two tracklets belong the same trajectory, explaining their merged trajectory would require
a low order regressor. This technique is popular in image-based tracking despite being
prone to deterioration due to noise because of the absence of an accurate motion model
in this space. However, objects’ motion in 3D can be well explained by their kinematic
models. Therefore, our approach employs two different kinematic models for two different
categories of objects to have more computationally efficient and accurate motion affinity.

Differently from [22] and its related works, this paper applies the two-stage association
scheme to online 3D tracking. In addition, we can provide competitive result despite relying

https://github.com/quan-dao/track_with_confidence
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solely on geometric cue to compute tracklet affinity by exploiting the Constant Turning
Rate and Velocity (CTRV) motion model which can accurately predict objects position in
3D space by exploiting their kinematic.

3. Method
3.1. Problem Formulation

Online MOT in the sense of track-by-detection aims to gradually grow the set of track-
lets T0:t = {T i}|T0:t |

i=1 by establishing correspondences with the set of detections received at

every time step Dt = {dj
t}
|D|
j=1 and updating tracklets state accordingly. A detection dj

t at
time step t encapsulates information of an object as a 3D bounding box

dj
t =

[
x y z θ w l h

]T , (1)

here, [x, y, z] is the position of the box’s center, θ is its heading direction, and [w, l, h] is its
size. It is worth noticing that in the context of autonomous driving, objects are assumed to
remain in contact with the ground; therefore, their detections are up-right bounding boxes
which orientation is described by a single number — the heading angle. A tracklet is a
collection of state vectors corresponding to the same object T i = {xi

k|0 ≤ ti
s ≤ k ≤ ti

e ≤ t},
here ti

s, ti
e are respectively the starting- and ending-time of the tracklet.

The correspondence between T0:t and Dt can be formally defined as finding the set
T∗0:t that maximizes its likelihood given Dt.

T∗0:t = argmax
T0:t

p(T0:t|Dt) (2)

Due the exponential growth of possible associations between T0:t and Dt, Equation (2)
is computationally intractable after a few time steps. In this paper, such a correspondence is
approximated by the two-stage data association proposed by [22] as shown in the following.

3.2. Two-Stage Data Association
3.2.1. Tracklet Confidence Score

The reliability of a tracklet is quantified by a confidence score which is calculated
based on how well associated detections match with its states across its life span and how
long its corresponding object was undetected.

conf
(
T i
)
=

 1
Li ∑

k∈[ti
s ,ti

e ]|vi(k)=1

Λ
(
T i, dj

k

)× exp
(
−β

W
Li

)
(3)

where vi(k) is a binary indicator which takes 1 if the tracklet has a detection dj
k associated

with it at time step k, and 0 otherwise. Li is the number of time step that the traklet gets
associated with a detection. Λ(·) is the affinity function which evaluates the similarity
between a track and a detection. Its detail will be presented in the following subsection.
β is a tuning parameter which takes high value if the object detection model is accurate.
W = t− ti

s − Li + 1 is the number of time step that tracklet was undetected (i.e., did not
have associated detection) calculated from its birth to the current time step t.

Applying a threshold τc this confidence score divides the set T0:t into a subset of high-
confident tracklets Th

0:t = {T i,h|conf
(
T i) > τc} and a subset of low-confident tracklets

Tl
0:t = {T i,l |conf

(
T i) ≤ τc}. These two subsets are the fundamental elements of the

two-stage association pipeline showed in Figure 1
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Figure 1. The pipeline of two-stage data association. The first stage — local association establish the correspondences
between detections at this time step Dt and high-confident tracklets Th

0:t. Then, global association stage matches each
low-confident tracklets T i,l with either a high-confident tracklet or a left-over detection, or terminates it.

3.2.2. Affinity Function

Affinity function Λ(·) is to compute how similar a detection to a tracklet or a tracklet
to another. As mentioned earlier, due to the lack of colorful texture in point cloud, the
affinity function used in this work is just comprised of geometric cue. Specifically, it is the
sum of position affinity and size affinity.

Λ(T i, dj
t) = Λ(T i, dj

t)
p + Λ(T i, dj

t)
s (4)

The scheme for computing position affinity between a tracklet and a detection or
between two tracklets are shown in Figure 2

(a) tracklet-to-detection position affinity (b) tracklet-to-tracklet position affinity

Figure 2. The computational scheme of position affinity. The filled triangles (or rectangles) are subsequent states of a tracklet.
The colored arrow represents the time order: the closer to the tip, the more recent the state. The triangle (or rectangle) in
dash line is the state propagated forward (or backward) in time. The covariance of these propagated states are denoted by
ellipses with the same color. The two-headed arrows indicate the Mahalanobis distance. In the subfigure (a), the blue circle
denotes a detection.

As shown in Figure 2a, the position affinity Λ(T i, dj
t)

p between a tracklet T i and a
detection dj

t is defined as the Mahalanobis distance between tracklet’s last state propagated
to the current time step t and the measurement vector zj

t extracted from dj
t

Λ(T i, dj
t)

p =
(
h
(

x̄i
e

)
− zj

t

)T
· S−1 ·

(
h
(

x̄i
e

)
− zj

t

)
(5)

where x̄i
e is last state of tracklet T i propagated to the current time step using the motion

model which will be presented below. h(·) is the measurement model computing the
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expected measurement using the inputted state and the measurement vector zj
t extracted

from dj
t

zj
t = [x, y, z, θ]T (6)

The matrix S is the covariance matrix of the innovation (i.e., the difference between
expected measurement h

(
x̄i

e
)

and its true value zj
t)

S = H · P ·HT + R (7)

here, H = δh/δx is the Jacobian of the measurement model. P, R are covariance matrix of
x̄i

e and zj
t, respectively. These covariance matrices are calculated based on training data

using the approach proposed by [15].
In the case of two tracklets T i and T j, assuming T j starts after T i ended, their motion

affinity is, according to Figure 2b, is the sum of

• Mahalanobis distance between the last state of T i propagated forward in time and the
first state of T j

• Mahalanobis distance between the first state of T j propagated backward in time and
the last state of T i

Λ(T i, T j)p = Λ(T j, x̄i
e)

p + Λ(T i, x̄j
s)

p (8)

here, x̄i
e is the last state of tracklet T i propagated forward in time to the first time step of

tracklet T j, while x̄j
s is the first state of tracklet T j propagated backward in time to the last

time step of tracklet T i. The size affinity Λ(T i, dj
t)

s is computed as follows:

Λ
(
T i, dj

t

)s
= −|w

i
e − wj

t|
wi

e + wj
t

· |l
i
e − l j

t |
li
e + l j

t

· |h
i
e − hj

t|
hi

e + hj
t

(9)

here, [wi
e, li

e, hi
e] are the size of the last state of tracklet T i, while [wj

t, l j
t , hj

t] are the size of
the detection dj

t. In the case of two tracklets T i and T j, assuming T j starts after T i ended,
their size affinity is

Λ
(
T i, T j

)s
= −|w

i
e − wj

s|
wi

e + wj
s
· |l

i
e − l j

s|
li
e + l j

s
· |h

i
e − hj

s|
hi

e + hj
s

(10)

The subscript e, s in Equation (10) respectively denote the ending and starting state of
a tracklet.

To reduce the risk of false association, a threshold is applied to the affinity

Λ(T i, dj
t) =

{
Λ(T i, dj

t), if Λ(T i, dj
t) < σ

∞, otherwise
(11)

3.2.3. Local Association

In this association stage, high-confident tracklets (Th
0:t) are extended by their corre-

spondence in the set of detections Dt. This tracklet-to-detection is found by solving the
linear assignment problem characterized by the cost matrix L as follows:

L =
[
li,j
]
∈ Rh×d, with li,j = −Λ

(
T i,h, dj

t

)
, T i,h ∈ Th

0:t (12)

where h, d are respectively the number of high-confident tracklets and the number of
detections. The intuition of this association stage is that because tracklets with high-
confident have been tracked accurately for several time steps, the affinity function can
identify if a detection is belong to the same object as the tracklet with high accuracy, thus
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limiting the possibility of false correspondences. In addition, low-confident tracklets are
usually resulted from fragment trajectories or noisy detections, excluding them from this
association stage help reduces the ambiguity.

3.2.4. Global Association

As shown in Figure 1, the global association stage carries out the following tasks

• Matching low-confident tracklets with high-confident ones
• Matching low-confident tracklets with detections left over by the local association stage
• Deciding to terminate low-confident tracklets

These tasks are simultaneously solved as a LAP formulated by the following cost matrix

G(l+d′)×(h+l) =

[
Al×h Bl×l
∞d′×h Cd′×l

]
(13)

here, l, d are respectively the number low-confident tracklets and detections left over by
the local association stage. ∞d′×h is the matrix of size d′ × h with every element is set to ∞.
Recall h is the number of high-confident tracklets. Submatrix A is the cost matrix of the
event where low-confident tracklets are matched with high-confident ones

A = [ai,j] ∈ Rl×h, with ai,j = −Λ
(

Ti,l , T j,h
)

(14)

Submatrix B represents the event where low-confident tracklets are terminated.

B = [bi,j] ∈ Rl×l , with bi,j =

{
− log

(
1− conf

(
T i)), if i = j

∞, otherwise
(15)

Finally, submatrix C is the cost of the associating low-confident tracklets with detec-
tions left over by local association stage.

C = [ci,j] ∈ Rd′×l , with ci,j = −Λ
(
T j, di

t

)
(16)

The solution to the LAP in this stage and in the Local Association stage is the associ-
ation that minimize the cost and can be either found by the Hungarian algorithm for the
optimal solution or by a greedy algorithm which iteratively picks and removes correspon-
dence pair with the smallest cost until there is no pair has cost less than a threshold. The
detail of this greedy algorithm can be found in [15] or in Section 3.4.

Once a detection is associated with a tracklet, its position and heading is used to
update the tracklet’s state according to the equation of the Kalman Filter, while its sizes
is averaged with tracklet’s sizes in the past few time steps to result in updated sizes.
Detections do not get associated in the global association stage are used to initialize new
tracklets.

3.3. Motion Model and State Vector

Exploiting the fact that objects are tracked in 3D space of a common static reference
frame which can be referred to as the world frame, motion of objects can be described by
more kinematically accurate models, compared to the commonly used Constant Velocity
(CV) model. In this work, we use the Constant Turning Rate and Velocity (CTRV) model to
predict motion of car-like vehicles (e.g., cars, buses, trucks), while keeping the CV model
for pedestrians.

For car-like vehicles, its state can be described by

x = [x, y, z, θ, v, θ̇, ż]T (17)



Sensors 2021, 1, 0 8 of 15

here, [x, y, z] is the location in the world frame of the center of the bounding box represented
by the state vector, θ is the heading angle, v is longitudal velocity (i.e., velocity along the
heading direction), θ̇, ż are respectively velocity of θ and z.

The motion on x-y plane of car-like vehicles can be predicted using CTRV as follows:

xt+1 = xt +



v
θ̇

(
sin(θ + θ̇∆t)− sin(θ)

)
v
θ̇

(
− cos(θ + θ̇∆t) + cos(θ)

)
ż∆t
θ̇∆t

0
0
0


(18)

where ∆t is the sampling time. Please note that in Equation (18), z is assumed to evolve
with constant velocity. In the case of zero turning rate (i.e., θ̇ = 0),

xt+1 = xt +
[
v cos(θ) v sin(θ) ż∆t θ̇∆t 0 0 0

]T (19)

The state vector of a pedestrian is

x =
[
x y z θ ẋ ẏ ż θ̇

]T (20)

The motion of pedestrians is predicted according to CV model

xt+1 = xt +
[
ẋ ẏ ż θ̇ 0 0 0 0

]T · ∆t (21)

3.4. Complexity Analysis

As shown in Figure 1, our data association pipeline is made of four components: Local
Association, Global Association, Update Tracklets’ States, Update Tracklets’ Confidence.
This section gives an analysis of the time complexity referred to as complexity of these
four components.

Let d and h be the number of detections and the number of high confident tracklets,
respectively. The time complexity of the Local Association step is the sum of the complexity
of computing the cost matrix L in Equation (12) and solving the LAP represented by L.
Since L has the size of h× d, the complexity of computing L is O(hd).

The LAP represented by L can be solved by either the Hungarian algorithm or a
greedy algorithm [15]. The complexity of the Hungarian algorithm is O(hd2). On the other
hand, the greedy algorithm is made of two steps presented in Algorithm 1.

The first step of sorting the flattened cost matrix C ∈ Rr×c has the complexity of
O(rc log(rc)) = O(rc log(c)) assuming c > r. The complexity of the second step in the best
case scenario where the for loop is stopped at k = 0, meaning there is no valid association,
is O(1). The worst case scenario happens when the For Loop proceeds till the last value
of k, which means every possible association has its affinity less than the threshold σ. In
this case, the complexity is O(|c f lat|) = O(rc). As the result, the complexity of the greedy
algorithm is

O(rc log(c)) +O(rc) = O(rc log(c)) (22)

Using Equation (22), the complexity of the Local and Global Association step solved
by the greedy algorithm are O(hd log(d)) and O((l + d′)(h + l)) log(l + d′), respectively.
Recall l and d′ are the number of low-confident tracklets and the number of detections left
over by the Local Association step.

The other steps, Update Tracklets’ States and Update Tracklets’ Confidence, have the
linear complexity because they are made of one loop through all tracklets.
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Algorithm 1: Greedy algorithm for solving LAP

Input: Cost matrix C ∈ Rr×c and cost threshold σ
Result: List of pairs of indices. Each pair of (i, j) denotes the correspondence

between a row i and a column j of the inputted cost matrix C
Flatten C into an array c f lat and sort c f lat into the ascending order ;
P = ∅ ;
for k ∈ {0, 1, ..., |c f lat| − 1} do

if c f lat > σ then
break ;

else
j = k mod c ;
i = (k− j)/c;
if both i and j aren’t in any pairs in P then

add (i, j) to P
end

end
end

4. Experiments

The effectiveness of our method is demonstrated by benchmarking against SORT-style
baseline models on three large scale datasets: KITTI, NuScenes, and Waymo. In addition,
we perform an ablation study using NuScenes dataset to better understand the impact of
each component on our system’s general performance.

4.1. Tuning the Hyper Parameters

There are three hyper parameters in our data association pipeline: the confidence
threshold τc, the detection model accuracy β in Equation (3), and the affinity threshold σ.

The confidence threshold τc is set to 0.5 according to [22]. It is worth noticing that [22]
suggests that this parameter does not have any significant effect on the tracking perfor-
mance. The value of β is chosen empirically such that a high-confident tracklet becomes
low-confident after being undetected for three frames.

As observed from experiments, the position affinity Λ(·, ·)p is the dominant compo-
nent in the tracklet-to-detection and tracklet-to-tracklet affinity. Since the position affinity,
which is the Mahalanobis distance between expected detection and real detection, is χ2

distributed, the affinity threshold σ in Equation (11) is chosen according to the percentile
of χ2 distribution where the position affinity resulted from a correct association is expected
to fall into. Notice that the degree of freedom of the χ2 distribution of our interest is 4 due
to the dimension of the measurement vector z in Equation (6).

Intuitively, the affinity threshold σ determines how conservative our tracking algo-
rithm is. Small σ makes our algorithm be more skeptical by rejecting detections that are
close, but not close enough to the prediction of tracks’ states. This works well in the scenario
where a large number of false-positive detections presents (e.g., Waymo dataset). However,
too small σ can reject correct detections thus deteriorating the tracking performance. The
method used for searching for a good value of σ is

• Performs a coarse grid search with the expected percentile of χ2 distribution in
the set {10%, 50%, 90%, 95%, 97.5%, 99%} which means the value of σ is in the set
{0.53, 1.67, 3.89, 4.75, 5.57, 6.64}, while keeping the rest of hyper parameters unchanged.
Please note that here the value of the threshold σ is just half of the corresponding
value in χ2 Distribution Table. This is because the motion affinity is scaled by half in
our implementation to reduce its dominance over the size affinity.

• Once a performance peak is identified at σ̂, a fine grid search is performed on the set
{σ̂− 0.2, σ̂− 0.1, σ̂, σ̂ + 0.1, σ̂ + 0.2}
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The resulted value of σ on KITTI, NuScenes, and Waymo are respectively 6.5, 4.5,
and 1.5.

4.2. Tracking Results

Evaluation Metrics: Classically, MOT systems are evaluated by the CLEAR MOT
metrics [29] which compute tracking performance based on three cores quantities which
are the number of False Positives, False Negatives, and ID Switches (the definition of these
quantities can be found in Section 1). Intuitively, this set of metrics aims at evaluating a
tracker’s precision in estimating tracks’ states as well as its consistency (i.e., keeping a
unique ID for each even in the presence of occlusion). As pointed out by [30] and later
by [6], there is a linear relation between MOTA and object detectors’ recall rate, as a result,
MOTA does not provide a well-rounded evaluation performance of trackers. To remedy
this, [6] proposes to average MOTA and MOTP over a range of recall rate, resulting in two
integral metrics AMOTA and AMOTP which become the norm in recent benchmarks.

Datasets: To verify the effectiveness of our method, we benchmark it on three popular
autonomous driving datasets which offer 3D MOT benchmark: KITTI, NuScenes, and
Waymo. These datasets are collections of driving sequences collected in various envi-
ronment using a multi-modal sensor suite including LiDAR. KITTI tracking benchmark
interests in two classes of object which are cars and pedestrians. Initially, KITTI tracking
was designed for MOT in 2D images and recently [6] adapts it to 3D MOT. NuScenes
concerns a larger set of objects which comprises of cars, bicycles, buses, trucks, pedestrians,
motorcycles, trailers. Waymo shares the same interest as NuScenes but groups car-like
vehicles into a meta class.

Public Detection: As can be seen in Table 1, AMOTA highly depends on the precision
of object detectors. Therefore, to have a fair comparison, the baseline detection results made
publicly available by the benchmarks are used as the input to our tracking system. Specifi-
cally, we use Point-RCNN detection for KITTI dataset, MEGVII detection for NuScenes,
and PointPillars with PPBA detection for Waymo.

The performance of our model compared to the SORT-style baseline model in three
popular benchmarks are shown in Table 2.

Table 2. Quantitative performance of our model on KITTI validation set, NuScenes validation set, and Waymo test set.
AMOTA is the primary metric of these benchmarks. FP, FN IDS and FRAG are absolute numbers in the case of KITTI and
NuScenes, while they are divided by the total number of objects in Waymo. The performance on Waymo is calculated at the
difficulty of LEVEL 2.

Dataset Method AMOTA↑ AMOTP↓ MT↑ ML↓ FP↓ FN↓ IDS↓ FRAG↓

KITTI (val) Ours 0.415 0.691 NA NA 766 3721 10 259
AB3DMOT [6] 0.377 0.648 NA NA 696 3713 1 93

NuScenes (val) Ours 0.583 0.748 3617 1885 13,439 28,119 512 511
StanfordIPRL-TRI [15] 0.561 0.800 3432 1857 12,140 28,387 679 606

Waymo (test @ L2) Ours 0.365 0.263 NA NA 0.089 0.533 0.014 NA
PPBA-AB3DMOT 0.291 0.270 NA NA 0.171 0.535 0.003 NA

As can be seen, our model consistently outperforms the baseline model in term of
the primary metric AMOTA, thus proving the effectiveness of the 2-stage data association.
Specifically, the improvements are 10.080%, 3.922%, and 25.430% for KITTI, NuScenes and
Waymo, respectively. It is worth noticing that our approach has more track fragmentations
(FRAG), 259 compared to 93 of the base line, in KITTI. The reason for this is that at each
time step tracklets have no matched detections are not reported by our approach, while
the baseline predicts their pose using the constant velocity model (CV) and reports this
prediction.

The comparison runtime on KITTI dataset of our tracking algorithm against AB3DMOT [6]
is shown in Table 3. Despite the additional complexity added by the second stage of the
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data association (i.e., the Global Association step), our approach can achieve a runtime
that is close to AB3DMOT on KITTI and exceeds the real-time speed by a large margin.
On more challenging datasets, the object detector generates a significantly larger number
of detections per frame on average, 57.50 on NuScenes and 264.18 on Waymo, compared
to 10.04 of KITTI. This large number of detections enlarges the cost matrix of the Local
and Global Association step, thus making the LAPs represented by them more costly to
solve. Therefore, the runtime of our approach is reduced to 1.44 frames-per-second (fps) on
NuScenes and 0.35 fps on Waymo. This runtime can be greatly improved if our approach
is re-implemented in a compiling language such as C++.

Table 3. Comparison of our approach’s runtime on KITTI dataset against AB3DMOT’s.

Class of Objects Our Runtime (fps) AB3DMOT’s Runtime (fps)

Car 115 186

Pedestrian 497 424

Cyclist 1111 1189

The qualitative performance on NuScenes is illustrated by drawing the bird-eye view
of a scene with tracking result, ground truth objects and detection result accumulated
through time as in Figures 3 and 4.

Figure 3. The bird-eye view of the tracking result for class car compared to the ground truth of scene 0796 (NuScenes)
accumulated through time. Each rectangle represents a car and each color is associated with a track ID.

The difficulty of the 3D MOT can be appreciated by the noisy detection with several
false positives denoted by the clutter in the top of Figure 4-Detection and false negatives,
as shown by the absence of one trajectory in the top left corner of Figure 3-Detection.
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Figure 4. The bird-eye view of tracking result for class pedestrian compared to the ground truth of scene 0103 (NuScenes)
accumulated through time. Each dot represents a pedestrian and each color is associated with a track ID.

4.3. Ablation Study

In this ablation study, the default method is the method presented in Section 3
which has

• Two stages of data association (local and global). Each stage is formulated as a LAP
and solved by a greedy matching algorithm [15].

• The affinity function the sum of position affinity and size affinity (as in Equation (4)).
• The motion model is Constant Turning Rate and Velocity (CTRV) for car-like objects

(cars, buses, trucks, trailers, bicycles) and Constant Veloctiy (CV) for pedestrians.
• As mentioned in Section 4.1, the value of hyperparameters are set as follows: β = 1.35

(in Equation (3)), tracklet confidence threshold τc = 0.45, and the affinity threshold
σ = 4.5 (in Equation (11))

To understand the effect of each component on the system’s general performance, we
modify or remove each of them and carry out experiment with the rest of the system being
kept the same as the default method and the same hyperparameters. The changes and the
resulted performance are shown in Table 4.

Table 4. Ablation study using NuScenes dataset.

Method AMOTA↑ AMOTP↓ MT↑ ML↓ FP↓ FN↓ IDS↓ FRAG↓

Default 0.583 0.748 3617 1885 13,439 28,119 512 511
Hungarian for LAP 0.587 0.743 3609 1880 13,667 28,070 596 573

No ReID 0.583 0.748 3616 1882 13,429 28,100 504 510
Global assoc only 0.327 0.924 2575 2244 26,244 38,315 4215 3038

Const Velocity only 0.567 0.781 3483 1966 12,649 29,427 718 606
No size affinity 0.581 0.748 3595 1904 13,423 28,448 512 508

3D IoU as affinity 0.535 0.898 3090 2075 9168 33,041 550 528

It can be seen that solving the matching problem (formulated as a LAP) with the
Hungarian algorithm instead of the greedy matching algorithm of [15] results in a marginal
increase of AMOTA; however, this increased performance comes at the cost of increased
execution time since the Hugarian algorithm has higher time complexity (cubic time
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compared to quadratic time.). In addition, using Constant Velocity model only reduces
the AMOTA by 2.744% compared to the Default setting which shows the effectiveness
of the Constant Turning Rate and Velocity model in predicting motion of car-like vehicle.
Finally, performing global association only deteriorates the tracking performance confirms
the importance of the local association step which significantly reduce the association
ambiguity for the second stage.

5. Conclusions and Perspectives

In conclusion, this paper successfully adapted an image-based tracking method to
the 3D space. Particularly, extensive experiments carried out in various datasets shows
that our two-stage data association pipeline can result in significant improvement in the
tracking accuracy by adding a certain degree of re-identification while keeping the added
complexity to the minimum. Nevertheless, medium and long-term occlusion remains
challenging for our approach due to the fact that the affinity function relies mostly on
tracklets position whose prediction’s reliability reduces with the length of the prediction
horizon. In the domain of image-based MOT, this problem is offend solved by exploiting
tracklets’ appearance with Siamese networks [31,32]. However, the extension of this
method to 3D space is not straightforward due to the lack of color and texture in point
cloud. A possibility to resolve this issue is to associate 3D tracklets to 2D object detections,
then carry out re-identification in images. Taking a different approach, a recent work in
graph neural networks [33] proposes to jointly learn affinity function from point clouds
and images.
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The following abbreviations are used in this manuscript:

MOT Multi-Object Tracking
IoU Intersection over Union
LAP Linear Assignment Problem
CTRV Constant Turning Rate and Velocity
CV Constant Velocity
AMOTA Average Multi-Object Tracking Accuracy
AMOTP Average Multi-Object Tracking Precision
MT Mostly Track
ML Mostly Lost
FP False Positive
FN False Negative
IDS ID Switches
FRAG Fragment
FPS Frames Per Second
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