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The purpose of this paper is to investigate the asymptotic behavior of random walks on

three-dimensional crystal structures. We focus our attention on the 1h structure of the ice

and the 2h structure of graphite. We establish the strong law of large numbers and the

asymptotic normality for both random walks on ice and graphite. All our analysis relies on

asymptotic results for multi-dimensional martingales.
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I. INTRODUCTION

A wide variety of materials present a repeating symmetrical arrangement of their atoms,

molecules or ions, known as crystal structures. Those underlying structures determine some

physical properties such as the toughness, the porosity or even the conductivity of the materials.

They can be looked further upon by studying the behavior of random walks in the crystal struc-

tures, see e.g. (20) for a study of energy trapping in crystal structure or (14) for the electrical

conductivity of Cu-graphite composites. In particular, random walks are widely used to determine

the diffusion of vacancies or point defects in crystals13.

Random walks represent a large class of Markov chains and several reference books9,19 are

devoted to the study of their properties, such as the probability of returning to their starting point,

the shape of typical trajectories or their long-time behavior. Polya18 was the first to observe the

influence of the dimension of the lattice on their properties, as the simple random walk on Zd

becomes transient when d ≥ 3. The model of a non simple random walk on periodic lattice is

quite convenient to study the properties of crystalline solids as stated in (16).

Cubic crystal structures were previously studied in terms of random walks10 or vacancy

diffusions3, see also (6) and (11) for planar honeycomb lattices. However, to the best of our

knowledge, three-dimensional hexagonal lattices still have to be considered. The goal of this pa-

per is to investigate the asymptotic behavior of random walks in two hexagonal crystal structures

in three dimensions, namely the 1h structure of the ice and the 2h structure of graphite. Both of

them can be seen as sheets of infinite hexagonal plane lattices stacked on top of each other, where

the way the consecutive sheets are stacked drastically changes the properties of the structure.

On the one hand, the properties of ice are theoretical and experimental research subjects since

decades, see e.g. the pioneering works (4) or (7). On the other hand, graphite composites finds

many applications in a wide range of fields, see e.g. (12) as well as the references therein, and

its 2h structure may be found in other materials17. In both cases, understanding the asymptotic

behavior of random walks in such structures is a key step in unveiling some of these materials

properties.

Random walks on the two-dimensional hexagonal structure of the graphene has been described

many times, especially in (5) where the authors studied the large deviation properties of the random

walk, using a parity argument based on the structure of such lattice. Our purpose is to extend

several results in (5) to the three-dimensional hexagonal structures we are interested in. In this
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paper, we assume that the transition probabilities are invariant by translating the unit cell of the

crystal. Our goal is to establish the strong law of large numbers and the asymptotic normality of

the random walk in both structures.

Our strategy is to separate the vertices of the lattice depending on their local geometry. In the

simple case of the random walk on ice (RWI), there are only two different types of vertices. On

the contrary, the random walk on the graphite (RWG) admits four different types of vertices and

this situation is much more difficult to handle.

The paper is organized as follows: the definition and description of the random walks and their

transition probabilities are given in Section 2. Section 3 is devoted to our main results. To be

more precise, we establish the strong law of large numbers and the asymptotic normality for both

RWI and RWG. The results concerning the RWI are proven in Section 4, while their counterparts

for the RWG are postponed to Section 5. All our analysis relies on asymptotic results for multi-

dimensional martingales. Finally, Section 6 contains concluding remarks and perspectives.

II. TWO POSSIBLE STRUCTURES

The two-dimensional hexagonal structure of the graphene was previously considered in (5)

where two different kind of vertices V0 and V1 are represented in Figure 1 with white and black

circles.

FIG. 1. Hexagonal structure of the graphene

In all the sequel, we shall focus our attention on two different type of structures. The first one

corresponds to the 1h structure of the ice. Sheets are stacked in such a way that the moving

particle can always jump from one sheet to another one with small probability, as shown in Figure

2.

One can observe that a particle located at a white vertex (resp. black vertex) is only allowed to

jump to a white vertex (resp. black vertex). The set of vertices are denoted once again by V0 and
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FIG. 2. Ice with 1h structure.

V1 where for i = 0,1,

Vi =

{(
a×
(

i+
3
2

k
)
,a×

(√3
2

k+
√

3`
)
, h×n

)
: k, `,n ∈ Z

}
where a stands for the distance between adjacent vertices located in the same sheet and h stands

for the distance between consecutive sheets of the ice. The index i = 0 if the vertex is white and

the index i = 1 if the vertex is black.

The random walk on the ice with 1h structure is as follows. At time zero, the particle starts at

the origin S0 = (0,0,0). Afterwards, at time n≥ 0, assume that the position of the particle is given

by Sn = (Xn,Yn,Zn). Then, the particle can jump to an adjacent sheet with small probabilities, that

is for i = 0,1 and for all (x,y,z) ∈ Vi,

P

Sn+1 =


x

y

z+h


∣∣∣∣∣∣∣∣∣ Sn =


x

y

z


= α p (1)

while

P

Sn+1 =


x

y

z−h


∣∣∣∣∣∣∣∣∣ Sn =


x

y

z


= (1−α)p (2)

where 0 6 p 6 1 and 0 < α < 1, the symmetrical case corresponding to α = 1/2. Otherwise, if

the particle remains on the same sheet, the transition probabilities are the same as those in (5), that

is for i = 0,1, for all (x,y,z) ∈ Vi and for j = 0,1,2,

P

Sn+1 =


x+acos

(2
3 jπ + iπ

)
y+asin

(2
3 jπ + iπ

)
z


∣∣∣∣∣∣∣∣∣ Sn =


x

y

z


= pi, j (3)
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where for i = 0,1,
2

∑
j=0

pi, j = 1− p.

The transition probabilities are represented in Figure 3. More precisely, if the particle is located in

a vertex of V0, it can jump to the sheets above or below in a vertex of V0 with small probabilities

α p and (1−α)p respectively, or it can reach the three adjacent vertices of V1 with probabilities

p0,0, p0,1 and p0,2. By the same token, if the particle is located in a vertex of V1, it can jump to the

sheets above or below in a vertex of V1 with small probabilities α p and (1−α)p respectively, or

it can reach the three adjacent vertices of V0 with probabilities p1,0, p1,1 and p1,2.

FIG. 3. Transition probabilities for the 1h structure of the ice.

A second type of structure we are interested in, is the 2h structure of the graphite represented

in Figure 4 where a particle located at a white vertex (resp. black vertex) can only jump to a black

vertex (resp. white vertex). In other words, white vertices (resp. black vertices) of a given sheet

are only connected to black vertices (resp. white vertices) of the graphite sheets just above or

below.

The set of vertices are now denoted by V0,0, V1,0 and V0,1, V1,1 where for i = 0,1 and j = 0,1,

Vi, j=

{(
a×
(
(−1)i+111 j=1 +

3
2

k
)
,a×

(√3
2

k+
√

3`
)
,

h× (2n+ 11i6= j)

)
with k, `,n ∈ Z

}
where as before a is the distance between adjacent vertices located in the same sheet and h is the

distance between consecutive sheets of graphene. The index i = 0 if the vertex is white and i = 1 if
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FIG. 4. Graphite with 2h structure.

the vertex is black (which refers to the horizontal local neighborhood), while the index j = 0 if the

particle can move to an adjacent sheet from this vertex and j = 1 otherwise. The main difference

with the 1h structure of the ice is that here the particle does not always have the possibility to jump

to an adjacent sheet.

The random walk on the graphite with 2h structure is as follows. At time zero, the particle

starts at the origin S0 = (0,0,0). Afterwards, at time n≥ 0, assume that the position of the particle

is given by Sn = (Xn,Yn,Zn). Then, for i = 0,1, if the particle is located in Vi,0, it has the possibility

to jump to an adjacent sheet with small probabilities, that is for i = 0,1 and for all (x,y,z) ∈ Vi,0,

P

Sn+1 =


x

y

z+h


∣∣∣∣∣∣∣∣∣ Sn =


x

y

z


= α p (4)

while

P

Sn+1 =


x

y

z−h


∣∣∣∣∣∣∣∣∣ Sn =


x

y

z


= (1−α)p (5)
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FIG. 5. Transition probabilities for the 2h structure of the graphite.

where 0 6 p 6 1 and 0 < α < 1, the symmetrical case corresponding to α = 1/2. Otherwise, for

i= 0,1, if the particle is located in Vi,0 and it remains on the same sheet, the transition probabilities

are given for all (x,y,z) ∈ Vi,0 and for k = 0,1,2, by

P

Sn+1 =


x+acos

(2
3kπ + iπ

)
y+asin

(2
3kπ + iπ

)
z


∣∣∣∣∣∣∣∣∣ Sn =


x

y

z


= pi,0,k (6)

where for i = 0,1,
2

∑
k=0

pi,0,k = 1− p.

Finally, for i = 0,1, if the particle is located in Vi,1, the transition probabilities are the same as

those in (5), that is for i = 0,1, for all (x,y,z) ∈ Vi,1 and for k = 0,1,2,

P

Sn+1 =


x+acos

(2
3kπ + iπ

)
y+asin

(2
3kπ + iπ

)
z


∣∣∣∣∣∣∣∣∣ Sn =


x

y

z


= pi,1,k

where for i = 0,1,
2

∑
k=0

pi,1,k = 1.

As it was previously done for the 1h structure of the ice, the transition probabilities for the 2h

structure of the graphite are given in Figure 5.

The goal of this paper is to investigate the asymptotic behavior of three-dimensional RWI and

RWG with this two different type of structures. Figures 6 and 7 shows two trajectories of length

n = 10000 of the RWI and RWG, respectively. The distance a between adjacent vertices and the

distance h between consecutive sheets are given by a = 1 and h = 1, while the probability to jump

to an adjacent sheet p = 1/5, α = 1/2 and the transitions probabilities are given, for i = 0,1 and

j = 0,1,2, by
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pi, j =
1
3
(1− p).

FIG. 6. Trajectory of the three-dimensional RWI.

FIG. 7. Trajectory of the three-dimensional RWG.

III. MAIN RESULTS

Our first result concerns the strong law of large numbers for the random walk on ice structure.

Let µ be the mean vector defined by

µ =


µ1

µ2

µ3

 (7)
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with

µ1 =
3a
4

(
−u0 +u1

)
,

µ2 =
a
√

3
4

(
v0− v1

)
,

µ3 = hp(2α−1),

where for i = 0,1, ui = pi,1 + pi,2 and vi = pi,1− pi,2.

Theorem III.1 For the RWI, we have the almost sure convergence

lim
n→∞

1
n

Sn = µ a.s. (8)

More precisely, ∥∥∥1
n

Sn−µ

∥∥∥2
= O

( logn
n

)
a.s. (9)

Our second result is devoted to the asymptotic normality for the random walk on ice structure. For

this purpose, denote

σ
2 =


σ2

1 σ1,2 0

σ1,2 σ2
2 0

0 0 σ2
3

 (10)

where

σ
2
1 = a2

(
p(1− p)+

3
8
(3−4p)

(
u0 +u1

)
− 9

8
(
u2

0 +u2
1
))

,

σ
2
2 =

3a2

8

((
u0 +u1

)
−
(
v2

0 + v2
1
))

,

σ
2
3 = h2 p

(
1− p

(
2α−1

)2
)
,

σ1,2 =
a2
√

3
8

((
−3+2p

)(
v0 + v1

)
+3
(
u0v0 +u1v1

))
.

In addition, let

θ =


θ1

θ2

0

 (11)

with

θ1 = a
(
(1− p)− 3

4
(u0 +u1)

)
,

θ2 =

√
3a
4
(
v0 + v1

)
.

9
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Theorem III.2 For the RWI, we have the asymptotic normality

1√
n

(
Sn−nµ

) L−→N (0,Γ) (12)

where the covariance matrix Γ is given by Γ = σ2 if p = 1, whereas if 0≤ p < 1,

Γ = σ
2−
( p

1− p

)
θθ

T . (13)

Our third result deals with the strong law of large numbers for the random walk on graphite struc-

ture. Denote by µ and m the mean vectors

µ =


µ1

µ2

µ3

 and m =


m1

m2

m3

 (14)

with

µ1 =
3a
8

(
−(u0,0 +u0,1)+(u1,0 +u1,1)

)
,

µ2 =
a
√

3
8

(
(v0,0 + v0,1)− (v1,0 + v1,1)

)
,

µ3 =
hp
2
(2α−1)

and

m1 =
3a
8

(
−(u0,0−u0,1)+(u1,0−u1,1)

)
,

m2 =
a
√

3
8

(
(v0,0− v0,1)− (v1,0− v1,1)

)
,

m3 =
hp
2
(2α−1)

where for i, j = 0,1, ui, j = pi, j,1 + pi, j,2 and vi, j = pi, j,1− pi, j,2. For the sake of clarity, we have

chosen to keep the same notation for the mean vector µ in both hexagonal structures. We shall

also make use of the vectors θ and ρ defined by

θ =


θ1

θ2

0

 and ρ =


ρ1

ρ2

0

 (15)
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with

θ1 = a
((

1− p
2

)
− 3

8

(
(u0,0 +u0,1)+(u1,0 +u1,1)

))
,

θ2 =
a
√

3
8

(
(v0,0 + v0,1)+(v1,0 + v1,1)

)
,

ρ1 = a
(
− p

2
− 3

8

(
(u0,0−u0,1)+(u1,0−u1,1)

))
,

ρ2 =
a
√

3
8

(
(v0,0− v0,1)+(v1,0− v1,1)

)
.

Theorem III.3 For the RWG with p > 0, we have the almost sure convergence

lim
n→∞

1
n

Sn = µ +
( p

2− p

)
m a.s. (16)

More precisely, ∥∥∥1
n

Sn−µ−
( p

2− p

)
m
∥∥∥2

= O
( logn

n

)
a.s. (17)

Remark III.1 In the special case where p = 0, the limiting value in (16) and (17) changes to

µ +ρ ,

lim
n→∞

1
n

Sn = µ +ρ a.s. (18)

and ∥∥∥1
n

Sn−µ−ρ

∥∥∥2
= O

( logn
n

)
a.s. (19)

If we denote u0 = u0,0, u1 = u1,1 and v0 = v0,0, v1 = v1,1, one can immediately see that the almost

sure convergences (8) and (18) are of course the same in the case p = 0.

Our fourth result is dedicated to the asymptotic normality for the random walk on the graphene.

To this end, let

ζ =


0

0

hp(2α−1)

 . (20)

Moreover, denote

σ
2 =


σ2

1 σ1,2 σ1,3

σ1,2 σ2
2 σ2,3

σ1,3 σ2,3 σ2
3

 and γ =


γ1 γ4 γ6

γ4 γ2 γ5

γ6 γ5 γ3

 (21)
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where

σ
2
1 =

a2

4

(
2p(1− p)+

9
4
(
s0,0 + s1,0 + s0,1 + s1,1

)
−3p

(
u0,0 +u1,0

))
,

σ
2
2 =

3a2

16

((
u0,0 +u1,0 +u0,1 +u1,1

)
−
(
v2

0,0 + v2
1,0 + v2

0,1 + v2
1,1
))

,

σ
2
3 =

h2 p
2

(
1− p(2α−1)2

)
,

σ1,2 =
a2
√

3
16

(
3
(
t0,0 + t1,0 + t0,1 + t1,1

)
+2p

(
v0,0 + v1,0

))
,

σ2,3 =
−ah
√

3
8

(
p(2α−1)

(
v0,0 + v1,0

))
,

σ1,3 =
ah
8

(
−4p(1− p)(2α−1)+3p(2α−1)

(
u0,0 +u1,0

))
,

and

γ1 =
a2

4

(
2p(1− p)+

9
4
(
s0,0 + s1,0− s0,1− s1,1

)
−3p

(
u0,0 +u1,0

))
,

γ2 =
3a2

16

((
u0,0 +u1,0−u0,1−u1,1

)
−
(
v2

0,0 + v2
1,0− v2

0,1− v2
1,1
))

,

γ3 =
h2 p
2

(
1− p(2α−1)2

)
,

γ4 =
a2
√

3
16

(
3
(
t0,0 + t1,0− t0,1− t1,1

)
+2p

(
v0,0 + v1,0

))
,

γ5 =
−ah
√

3
8

(
p(2α−1)

(
v0,0 + v1,0

))
,

γ6 =
ah
8

(
−4p(1− p)(2α−1)+3p(2α−1)

(
u0,0 +u1,0

))
,

with for all i = 0,1 and j = 0,1, si, j = ui, j(1−ui, j) and ti, j = vi, j(ui, j−1).

Theorem III.4 For the RWG with p > 0, we have the asymptotic normality

1√
n

(
Sn−nµ−n

( p
2− p

)
m
) L−→N (0,Γ) (22)

where the covariance matrix Γ is given by

Γ = σ
2 +

p
2− p

γ +
2

(2− p)2

((
ζ − pµ

)
mT +m

(
ζ − pµ

)T
)

− 4p
(2− p)3 mmT +

2
2− p

(
θρ

T +ρθ
T)+ 4

p(2− p)
ρρ

T . (23)

Remark III.2 In the special case where p = 0, we find that

1√
n

(
Sn−n(µ +ρ)

) L−→N
(
0,σ2 +δ

)
(24)

where the matrix δ is defined in (61). One can also observe that the asymptotic variances in (12)

and (24) coincide in the case p = 0.
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IV. PROOFS FOR THE RWI

Proof of Theorem III.1. In order to prove the almost sure convergence (8), denote by (ξn) the

increments of the RWI. Then, the position of the RWI is given, for all n≥ 0, by

Sn+1 = Sn +ξn+1 =
n+1

∑
k=1

ξk (25)

where

ξn+1 =


Xn+1−Xn

Yn+1−Yn

Zn+1−Zn

 .

Let (Fn) be the natural filtration associated with the RWI, that is Fn = σ
(
ξ1, . . . ,ξn

)
. We have

for all n ≥ 0, E[ξn+1|Fn] = E[ξn+1|Sn ∈ V0]11Sn∈V0 +E[ξn+1|Sn ∈ V1]11Sn∈V1 . Hence, it follows

from (1), (2) and (3) that

E[ξn+1|Fn]=


a
(

p0,0− 1
2(p0,1 + p0,2)

)
a
√

3
2

(
p0,1− p0,2

)
hp(2α−1)

11Sn∈V0

+


a
(
−p1,0 +

1
2(p1,1 + p1,2)

)
a
√

3
2

(
p1,2− p1,1

)
hp(2α−1)

11Sn∈V1 .

For i= 0,1, denote ui = pi,1+ pi,2 and vi = pi,1− pi,2. We clearly have for i= 0,1, pi,0 = 1− p−ui.

Consequently, E[ξn+1|Fn] reduces to

E[ξn+1|Fn] = (µ +θ)11Sn∈V0 +(µ−θ)11Sn∈V1 = µ +θεn (26)

where εn stands for the random variable

εn = 11Sn∈V0− 11Sn∈V1 (27)

and the vectors µ and θ are given by (7) and (11). Moreover, we have for all n≥ 0, E[ξn+1ξ T
n+1|Fn] =

E[ξn+1ξ T
n+1|Sn ∈ V0]11Sn∈V0 +E[ξn+1ξ T

n+1|Sn ∈ V1]11Sn∈V1 . We obtain once again from (1), (2) and

13
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(3) that

E[ξn+1ξ
T
n+1|Fn] =

a2(p0,0 +
1
4(p0,1 + p0,2)

)
−a2

√
3

4

(
p0,1− p0,2

)
0

−a2
√

3
4

(
p0,1− p0,2

) 3a2

4

(
p0,1 + p0,2

)
0

0 0 h2 p

11Sn∈V0

+


a2(p1,0 +

1
4(p1,1 + p1,2)

)
−a2

√
3

4

(
p1,1− p1,2

)
0

−a2
√

3
4

(
p1,1− p1,2

) 3a2

4

(
p1,1 + p1,2

)
0

0 0 h2 p

11Sn∈V1.

It implies that

E[ξn+1ξ
T
n+1|Fn] =

(
σ

2 +ν +(µ +θ)(µ +θ)T
)

11Sn∈V0

+
(

σ
2−ν +(µ−θ)(µ−θ)T

)
11Sn∈V1,

=
(

σ
2 +µµ

T +θθ
T
)
+
(

ν +µθ
T +θ µ

T
)

εn (28)

where the covariance matrix σ2 and the random variable εn are respectively given by (10) and

(27), while the deterministic matrix ν is defined by

ν =


ν1 ν3 0

ν3 ν2 0

0 0 0


with

ν1 =
3a2

8
(
u0−u1

)(
3−4p−3

(
u0 +u1

))
,

ν2 =
3a2

8

(
u0−u1− v2

0 + v2
1

)
,

ν3 =
a2
√

3
8

((
−3+2p

)(
v0− v1

)
+3
(
u0v0−u1v1

))
.

Hereafter, we have the martingale decomposition

Sn =
n

∑
k=1

(
ξk−E[ξk|Fk−1]

)
+

n

∑
k=1

E[ξk|Fk−1] = Mn +Rn (29)

where (Mn) is the locally square integrable martingale given by

Mn =
n

∑
k=1

(
ξk−E[ξk|Fk−1]

)
(30)

14
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and the centering term

Rn =
n

∑
k=1

E[ξk|Fk−1]. (31)

The predictable quadratic variation8 associated with (Mn) is the random matrix given, for all n≥ 1,

by

〈M〉n =
n

∑
k=1

(
E[ξkξ

T
k |Fk−1]−E[ξk|Fk−1]E[ξk|Fk−1]

T).
It follows from (26) and (28) that

〈M〉n =
n

∑
k=1

(
(σ2 +µµ

T +θθ
T )+(ν +µθ

T +θ µ
T )εk−1

−(µ +θεk−1)(µ +θεk−1)
T)

which reduces to

〈M〉n = nσ
2 + In−1ν (32)

where

In =
n

∑
k=0

εk.

Furthermore, we clearly have for all n≥ 0,

E[εn+1|Fn] = E[εn+1|Sn ∈ V0]11Sn∈V0 +E[εn+1|Sn ∈ V1]11Sn∈V1,

= (2p−1)11Sn∈V0 +(1−2p)11Sn∈V1,

= (2p−1)εn. (33)

Consequently, we obtain the second martingale decomposition

In =
n

∑
k=0

εk = 1+
n

∑
k=1

(
εk−E[εk|Fk−1]

)
+

n

∑
k=1

E[εk|Fk−1],

= 1+Nn +
n

∑
k=1

(2p−1)εk−1 = 1+Nn +(2p−1)In−1 (34)

where Nn is the locally square integrable martingale given by

Nn =
n

∑
k=1

(
εk−E[εk|Fk−1]

)
. (35)

We deduce from (33) that the predictable quadratic variation associated with (Nn) is given by

〈N〉n =
n

∑
k=1

(
E[ε2

k |Fk−1]−E2[εk|Fk−1]
)

= n−
n

∑
k=1

(2p−1)2
ε

2
k−1 = 4p(1− p)n. (36)

15
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Therefore, we immediately obtain that

lim
n→∞

1
n
〈N〉n = 4p(1− p) a.s. (37)

One can also observe that the increments of the martingale (Nn) are bounded by 2. Hence, by

virtue of the strong law of large numbers for martingales

lim
n→∞

1
n

Nn = 0 a.s. (38)

More precisely, it follows from the last part of Theorem 1.3.24 in (8) that

N2
n = O(n logn) a.s. (39)

However, we infer from (34) together with the definition of In that

2(1− p)In = 1+Nn− (2p−1)εn.

Consequently, if p < 1, we obtain from (38) that

lim
n→∞

1
n

In = 0 a.s. (40)

In addition, (39) clearly leads to

I2
n = O(n logn) a.s. (41)

Then, we find from (32) together with (40) that

lim
n→∞

1
n
〈M〉n = σ

2 a.s. (42)

In the special case where p= 1, we easily see that θ = 0 and ν = 0, thus (42) still holds. Therefore,

in both cases, we obtain from the strong law of large numbers for martingales that

lim
n→∞

1
n

Mn = 0 a.s. (43)

More precisely, one can observe that the increments of (Mn) are almost surely bounded. Hence,

by examining each component of the martingale (Mn), it follows once again from the last part of

Theorem 1.3.24 in (8) that

||Mn||2 = O(n logn) a.s. (44)

16
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The centering term Rn is much more easy to handle. As a matter of fact, we have from (26) and

(31) that Rn = nµ + In−1θ . Then, (29) implies that

Sn = Mn +nµ + In−1θ . (45)

Finally, if p < 1 we immediately deduce from (45) together with (43) and (40) that

lim
n→∞

1
n

Sn = µ a.s. (46)

More precisely, (39) together with (41) ensure that

∥∥∥1
n

Sn−µ

∥∥∥2
= O

( logn
n

)
a.s. (47)

which completes the proof of Theorem III.1.

Proof of Theorem III.2. The proof of Theorem III.2 relies on the central limit theorem for multi-

dimensional martingales given e.g. by Corollary 2.1.10 in (8). In the special case where p = 1,

we clearly have θ = 0 and ν = 0, which implies from (32) that 〈M〉n = nσ2, and the asymptotic

normality trivially holds as

1√
n

(
Sn−nµ

)
=

1√
n

Mn.

Hereafter, we assume that the parameter 0≤ p < 1. Let (Mn) be the martingale with values in R4,

given by

Mn =

Mn

Nn


where Mn and Nn were previously defined in (30) and (35), respectively. Its predictable quadratic

variation 〈M 〉n can be splited into four terms

〈M 〉n =

〈M〉n 〈C〉n
〈C〉Tn 〈N〉n


where 〈M〉n and 〈N〉n have been previously calculated in (32) and (36), while

〈C〉n =
n

∑
k=1

(
E[ξkεk|Fk−1]−E[ξk|Fk−1]E[εk|Fk−1]

)
.

17
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As before, we have for all n≥ 0, E[ξn+1εn+1|Fn] =E[ξn+1εn+1|Sn ∈V0]11Sn∈V0 +E[ξn+1εn+1|Sn ∈

V1]11Sn∈V1 . Hence, we get from (1), (2) and (3) that

E[ξn+1εn+1|Fn] =
1

∑
i, j=0

(−1)iE[ξn+111Sn+1∈Vi|Sn ∈ V j]11Sn∈V j ,

=
1

∑
j=0

(−1) j

(
2E[ξn+111Sn+1∈V j |Sn ∈ V j]11Sn∈V j

−E[ξn+1|Sn ∈ V j]11Sn∈V j

)
.

It clearly leads to

E[ξn+1εn+1|Fn] =
(
2ζ −E[ξn+1|Fn]

)
εn (48)

where

ζ =


0

0

hp(2α−1)

 .

Therefore, we deduce from (26), (33) and (48) that

〈C〉n =
n

∑
k=1

(
(2ζ −E[ξk|Fk−1])εk−1−E[ξk|Fk−1](2p−1)εk−1

)
,

=
n

∑
k=1

(
(2ζ −µ−θεk−1)εk−1− (2p−1)(µ +θεk−1)εk−1

)
,

=
n

∑
k=1

(
2(ζ − pµ)εk−1−2pθε

2
k−1
)
,

which implies that

〈C〉n =−2npθ +2
(
ζ − pµ

)
In−1.

Consequently, we immediately obtain from (40)

lim
n→∞

1
n
〈C〉n =−2pθ a.s. (49)

Hence, it follows from the conjunction of (37), (42) and (49) that

lim
n→∞

1
n
〈M 〉n = Λ =

 σ2 −2pθ

−2pθ T 4p(1− p)

 a.s. (50)

In addition, we already saw that the increments of the martingale (Mn) are almost surely bounded

which ensures that Lindeberg’s condition is satisfied. Hence, we deduce from Corollary 2.1.10 in

18
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(8) the asymptotic normality
1√
n
Mn

L−→N (0,Λ) . (51)

Since p 6= 1, we get from (34) that In = 1+Nn + (2p− 1)In−1 which implies that In−1 + εn =

1+Nn +(2p−1)In−1, leading to

In−1 =
1+Nn− εn

2(1− p)
.

Consequently, we have from (45) that

Sn−nµ = Mn + In−1θ = Mn +Nnθp +(1− εn)θp (52)

where

θp =
1

2(1− p)
θ .

The rest of the proof relies on identity (52) together with the well-known Cramér-Wold theorem

given e.g. by Theorem 29.4 in (2). We clearly obtain from (52) that for all u ∈ R3,

1√
n

uT(Sn−nµ
)
=

1√
n

vT Mn +
(1− εn)√

n
uT

θp (53)

where

v =

 u

θ T
p u

 .

On the one hand, it follows from (51) that

1√
n

vT Mn
L−→N

(
0,vT

Λv
)
. (54)

On the other hand, as (1− εn) ∈ {0,2}, we immediately have

lim
n→∞

(1− εn)√
n

= 0 a.s. (55)

Consequently, we deduce from (53) together with (54) and (55) that

1√
n

uT(Sn−nµ
) L−→N

(
0,vT

Λv
)
. (56)

However, we can easily see from (50) that

vT
Λv = uT

σ
2u−4puT

θθ
T
p u+4p(1− p)uT

θpθ
T
p u = uT

Γu

where

Γ = σ
2−4pθθ

T
p +4p(1− p)θpθ

T
p = σ

2−
( p

1− p

)
θθ

T .

19
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Finally, we find from (56) and the Cramér-Wold theorem that

1√
n

(
Sn−nµ

) L−→N (0,Γ) (57)

which completes the proof of Theorem III.2.

V. PROOFS FOR THE RWG

Proof of Theorem III.3. As in the proof of Theorem III.1, denote by (ξn) the increments of the

RWG. Then, the position of the RWG is given, for all n≥ 0, by

Sn+1 = Sn +ξn+1 (58)

where

ξn+1 =


Xn+1−Xn

Yn+1−Yn

Zn+1−Zn

 .

Let (Fn) be the natural filtration associated with the RWG, that is Fn = σ
(
ξ1, . . . ,ξn

)
. We have

for all n≥ 0,

E[ξn+1|Fn] =
1

∑
i=0

1

∑
j=0

E[ξn+1|Sn ∈ Vi, j]11Sn∈Vi, j .
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For i, j = 0,1, denote ui, j = pi, j,1 + pi, j,2 and vi, j = pi, j,1− pi, j,2. Hence, it follows from (4), (5)

and (6) that

E[ξn+1|Fn] =


a
(
(1− p)− 3

2u0,0
)

a
√

3
2 v0,0

hp(2α−1)

11Sn∈V0,0

+


a
(
−(1− p)+ 3

2u1,0
)

−a
√

3
2 v1,0

hp(2α−1)

11Sn∈V1,0

+


a
(
1− 3

2u0,1
)

a
√

3
2 v0,1

0

11Sn∈V0,1

+


a
(
−1+ 3

2u1,1
)

−a
√

3
2 v1,1

0

11Sn∈V1,1 .

This time, it is necessary to introduce three random variables to discriminate the different vertices.

More precisely, let

in = 11Sn∈V0,0∪V0,1− 11Sn∈V1,0∪V1,1 ,

jn = 11Sn∈V0,0∪V1,0− 11Sn∈V0,1∪V1,1 ,

kn = 11Sn∈V0,0∪V1,1− 11Sn∈V0,1∪V1,0.

The variable in keeps track of the local horizontal geometry, while jn depends on whether or not the

particle can jump vertically and kn only depends on the altitude of the particle. Then, E[ξn+1|Fn]

reduces to

E[ξn+1|Fn] =
(
µ +θ +m+ρ

)
11Sn∈V0,0

+
(
µ−θ +m−ρ

)
11Sn∈V1,0

+
(
µ +θ −m−ρ

)
11Sn∈V0,1

+
(
µ−θ −m+ρ

)
11Sn∈V1,1,

=µ +θ in +m jn +ρkn (59)
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where the vectors µ , m and θ , ρ are previously defined in (14) and (15) Moreover, we also have

for all n≥ 0,

E[ξn+1ξ
T
n+1|Fn] =

1

∑
i=0

1

∑
j=0

E[ξn+1ξ
T
n+1|Sn ∈ Vi, j]11Sn∈Vi, j .

Hence, we obtain once again from (4), (5) and (6) that

E[ξn+1ξ
T
n+1|Fn] =

a2((1− p)− 3
4u0,0

)
−a2

√
3

4 v0,0 0

−a2
√

3
4 v0,0

3a2

4 u0,0 0

0 0 h2 p

11Sn∈V0,0

+


a2((1− p)− 3

4u1,0
)
−a2

√
3

4 v1,0 0

−a2
√

3
4 v1,0

3a2

4 u1,0 0

0 0 h2 p

11Sn∈V1,0

+


a2(1− 3

4u0,1
)
−a2

√
3

4 v0,1 0

−a2
√

3
4 v0,1

3a2

4 u0,1 0

0 0 0

11Sn∈V0,1

+


a2(1− 3

4u1,1
)
−a2

√
3

4 v1,1 0

−a2
√

3
4 v1,1

3a2

4 u1,1 0

0 0 0

11Sn∈V1,1.

It implies that

E[ξn+1ξ
T
n+1|Fn] =(

σ
2 +ν + γ +δ +(µ +θ +m+ρ)(µ +θ +m+ρ)T

)
11Sn∈V0,0

+
(

σ
2−ν + γ−δ +(µ−θ +m−ρ)(µ−θ +m−ρ)T

)
11Sn∈V1,0

+
(

σ
2 +ν− γ−δ +(µ +θ −m−ρ)(µ +θ −m−ρ)T

)
11Sn∈V0,1

+
(

σ
2−ν− γ +δ +(µ−θ −m+ρ)(µ−θ −m+ρ)T

)
11Sn∈V1,1,

=
(

σ
2 +µµ

T +θθ
T +mmT +ρρ

T
)

+
(

ν +µθ
T +θ µ

T +mρ
T +ρmT

)
in

+
(

γ +µmT +mµ
T +θρ

T +ρθ
T
)

jn

+
(

δ +µρ
T +ρµ

T +θmT +mθ
T
)

kn (60)
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where the matrices σ2 and γ are given by (21), while the matrices ν and δ are defined by

ν =


ν1 ν4 ν6

ν4 ν2 ν5

ν6 ν5 0

 and δ =


δ1 δ4 δ6

δ4 δ2 δ5

δ6 δ5 0

 (61)

with

ν1 =
a2

4

( 9
4
(
s0,0− s1,0 + s0,1− s1,1

)
−3p

(
u0,0−u1,0

))
,

ν2 =
3a2

16

((
u0,0−u1,0 +u0,1−u1,1

)
−
(
v2

0,0− v2
1,0 + v2

0,1− v2
1,1
))

,

ν4 =
a2
√

3
16

(
3
(
t0,0− t1,0 + t0,1− t1,1

)
+2p

(
v0,0− v1,0

))
,

ν5 =
−ah
√

3
8

(
p(2α−1)

(
v0,0− v1,0

))
,

ν6 =
ah
8

(
3p(2α−1)

(
u0,0−u1,0

))
,

and

δ1 =
a2

4

( 9
4
(
s0,0− s1,0− s0,1 + s1,1

)
−3p

(
u0,0−u1,0

))
,

δ2 =
3a2

16

((
u0,0−u1,0−u0,1 +u1,1

)
−
(
v2

0,0− v2
1,0− v2

0,1 + v2
1,1
))

,

δ4 =
a2
√

3
16

(
3
(
t0,0− t1,0− t0,1 + t1,1

)
+2p

(
v0,0− v1,0

))
,

δ5 =
−ah
√

3
8

(
p(2α−1)

(
v0,0− v1,0

))
,

δ6 =
ah
8

(
3p(2α−1)

(
u0,0−u1,0

))
,

where for all i = 0,1 and j = 0,1, si, j = ui, j(1−ui, j) and ti, j = vi, j(ui, j−1). Therefore, we have

the martingale decomposition

Sn =
n

∑
`=1

(ξ`−E[ξ`|F`−1])+
n

∑
`=1

E[ξ`|F`−1] = Mn +Rn (62)

where (Mn) is the locally square integrable martingale given by

Mn =
n

∑
`=1

(ξ`−E[ξ`|F`−1]) (63)

and the centering term

Rn =
n

∑
`=1

E[ξ`|F`−1].
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The predictable quadratic variation associated with (Mn) is given by

〈M〉n =
n

∑
`=1

(
E[ξ`ξ T

` |F`−1]−E[ξ`|F`−1]E[ξ`|F`−1]
T).

We infer from (59) and (60) that

〈M〉n =
n

∑
`=1

((
σ

2 +µµ
T +θθ

T +mmT +ρρ
T)

+
(
ν +µθ

T +θ µ
T +mρ

T +ρmT)i`−1

+
(
γ +µmT +mµ

T +θρ
T +ρθ

T) j`−1

+
(
δ +µρ

T +ρµ
T +θmT +mθ

T)k`−1

−
(
µ +θ i`−1 +m j`−1 +ρk`−1

)(
µ +θ i`−1 +m j`−1 +ρk`−1

)T
)
.

However, it is not hard to see that for all n≥ 0, i2n = 1, j2
n = 1, k2

n = 1 as well as in jn = kn, jnkn = in,

and inkn = jn. Consequently,

〈M〉n =
n

∑
`=1

(
σ

2 +ν i`−1 + γ j`−1 +δk`−1
)

which reduces to

〈M〉n = nσ
2 + In−1ν + Jn−1γ +Kn−1δ (64)

where

In =
n

∑
`=0

i`, Jn =
n

∑
`=0

j`, Kn =
n

∑
`=0

k`.

Furthermore, we clearly have by construction that for all n≥ 0, in = (−1)n which implies that

In =

 1 if n is even,

0 if n is odd.
(65)

In addition, we also have from (4), (5) and (6) that for all n≥ 0,

E[ jn+1|Fn] = (2p−1)11Sn∈V0,0 +(2p−1)11Sn∈V1,0 (66)

+ 11Sn∈V0,1 + 11Sn∈V1,1,

= 2p
(

11Sn∈V0,0 + 11Sn∈V1,0

)
− jn,

= p− (1− p) jn. (67)
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In a similar way, we have for all n≥ 0,

E[kn+1|Fn] = (1−2p)11Sn∈V0,0 +(2p−1)11Sn∈V1,0 (68)

− 11Sn∈V0,1 + 11Sn∈V1,1,

=−2p
(

11Sn∈V0,0− 11Sn∈V1,0

)
+ kn,

= (1− p)kn− pin. (69)

Consequently, we obtain two more martingale decompositions

Jn =
n

∑
`=0

j` = 1+
n

∑
`=1

(
j`−E[ j`|F`−1]

)
+

n

∑
`=1

E[ j`|F`−1],

= 1+NJ
n +

n

∑
`=1

(
p− (1− p) j`−1

)
= 1+NJ

n +np− (1− p)Jn−1, (70)

Kn =
n

∑
`=0

k` = 1+
n

∑
`=1

(
k`−E[k`|F`−1]

)
+

n

∑
`=1

E[k`|F`−1],

= 1+NK
n +

n

∑
`=1

(
(1− p)k`−1− pi`−1

)
= 1+NK

n +(1− p)Kn−1− pIn−1, (71)

where NJ
n and NK

n are the locally square integrable martingales given by

NJ
n =

n

∑
`=1

(
j`−E[ j`|F`−1]

)
(72)

NK
n =

n

∑
`=1

(
k`−E[k`|F`−1]

)
. (73)

We already saw that for all n≥ 0, i2n = 1, j2
n = 1, k2

n = 1 and inkn = jn. Hence, we have from (67)

and (69) that the predictable quadratic variations associated with (NJ
n ) and (NK

n ) are respectively

given by

〈NJ〉n =
n

∑
`=1

(
2p(1− p)(1+ j`−1)

)
= 2p(1− p)

(
n+ Jn−1

)
, (74)

〈NK〉n =
n

∑
`=1

(
2p(1− p)(1+ i`−1k`−1)

)
= 2p(1− p)

(
n+ Jn−1

)
. (75)

It clearly ensures that 〈NJ〉n and 〈NK〉n are both bounded by 4np(1− p) almost surely which

immediately implies that

lim
n→∞

1
n

NJ
n = 0 and lim

n→∞

1
n

NK
n = 0 a.s.
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However, we have from (70) and (71) that

(2− p)Jn = 1+NJ
n +np− (1− p) jn,

pKn = 1+NK
n − (1− p)kn− pIn−1.

It allows us to deduce that in the case p > 0,

lim
n→∞

1
n

In = 0, lim
n→∞

1
n

Jn =
p

2− p
, lim

n→∞

1
n

Kn = 0 a.s. (76)

Therefore, it follows from the conjunction (74), (75) and (76) that

lim
n→∞

1
n
〈NJ〉n =

4p(1− p)
2− p

, lim
n→∞

1
n
〈NK〉n =

4p(1− p)
2− p

a.s. (77)

One can also observe that the increments of the martingales (NJ
n ) and (NK

n ) are bounded by 2.

Hence, the strong law of large numbers for martingales given in the last part of Theorem 1.3.24 in

(8) implies that (
NJ

n
)2

= O(n logn) a.s. (78)

which ensures that (Jn

n
− p

2− p

)2
= O

( logn
n

)
a.s. (79)

In addition, we also have (
NK

n
)2

= O(n logn) a.s. (80)

Hereafter, we find from (64) that

lim
n→∞

1
n
〈M〉n = σ

2 +
( p

2− p

)
γ a.s. (81)

Consequently, we obtain from the strong law of large numbers for martingales that

lim
n→∞

1
n

Mn = 0 a.s. (82)

More precisely, by examining each component of the martingale (Mn), it follows from the last part

of Theorem 1.3.24 in (8) that

||Mn||2 = O(n logn) a.s. (83)

As in the proof of Theorem III.1, Rn is much more easy to handle. It follows from (59) that

Rn = nµ + In−1θ + Jn−1m+Kn−1ρ . Then, we infer from (62) that

Sn = Mn +nµ + In−1θ + Jn−1m+Kn−1ρ. (84)
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Finally, we immediately deduce from (84) together with (76) and (82) that

lim
n→∞

1
n

Sn = µ +
( p

2− p

)
m a.s.

More precisely, we find from (79) and (83) that∥∥∥1
n

Sn−µ−
( p

2− p

)
m
∥∥∥2

= O
( logn

n

)
a.s. (85)

which achieves the proof of Theorem III.3 when p > 0. In the special case where p = 0, we have

Jn = In and Kn = n for every n≥ 1. Thus, (76) changes to

lim
n→∞

1
n

In = 0, lim
n→∞

1
n

Jn = 0, lim
n→∞

1
n

Kn = 1 a.s. (86)

which implies that

lim
n→∞

1
n
〈M〉n = σ

2 +δ a.s. (87)

Therefore (82) and (83) still hold and we get from (82), (84) and (86) that

lim
n→∞

1
n

Sn = µ +ρ a.s.

More precisely, ∥∥∥1
n

Sn−µ−ρ

∥∥∥2
= O

( logn
n

)
a.s.

which achieves the proof in the special case p = 0.

Proof of Theorem III.4. We shall once again make use of the central limit theorem for multi-

dimensional martingales given e.g. by Corollary 2.1.10 in (8). In the special case where p = 0, we

obtain with (87)
1√
n

Mn
L−→N

(
0,σ2 +δ

)
and we immediately get from (84) that

1√
n

(
Sn−n(µ +ρ)

) L−→N
(
0,σ2 +δ

)
. (88)

Hereafter, we assume that the parameter p > 0. Let (Mn) be the martingale with values in R5,

given by

Mn =


Mn

NJ
n

NK
n


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where Mn, NJ
n and NK

n were previously defined in (63), (72) and (73). Its predictable quadratic

variation 〈M 〉n can be splited into nine terms

〈M 〉n =


〈M〉n 〈C〉n 〈E〉n
〈C〉Tn 〈NJ〉n 〈D〉n
〈E〉Tn 〈D〉n 〈NK〉n


where 〈M〉n, 〈NJ〉n and 〈NK〉n have been previously calculated in (64), (74) and (75), while

〈C〉n =
n

∑
`=1

(
E[ξ` j`|F`−1]−E[ξ`|F`−1]E[ j`|F`−1]

)
,

〈D〉n =
n

∑
`=1

(
E[ j`k`|F`−1]−E[ j`|F`−1]E[k`|F`−1]

)
,

〈E〉n =
n

∑
`=1

(
E[ξ`k`|F`−1]−E[ξ`|F`−1]E[k`|F`−1]

)
.

For all n≥ 0, we get from (4), (5) and (6) that

E[ξn+1 jn+1|Fn] = E[ξn+111 jn+1= jn|Fn] jn

−E[ξn+111 jn+1 6= jn|Fn] jn,

= 2E[ξn+111 jn+1= jn |Fn] jn−E[ξn+1|Fn] jn,

= 2
(

11Sn∈V0,0 + 11Sn∈V1,0

)
ζ −E[ξn+1|Fn] jn,

= (1+ jn)ζ −E[ξn+1|Fn] jn, (89)

where ζ is defined in (20). Therefore, we deduce from (59), (67) and (89) that

〈C〉n =
n

∑
`=1

(
(1+ j`−1)ζ −E[ξ`|F`−1] j`−1

−E[ξ`|F`−1]
(

p− (1− p) j`−1
))
,

=
n

∑
`=1

(
(1+ j`−1)ζ − p(1+ j`−1)E[ξ`|F`−1]

)
,

=
n

∑
`=1

((
ζ − p(µ +m)

)(
1+ j`−1

)
− p
(
θ +ρ

)(
i`−1 + k`−1

))
,

which implies that

〈C〉n =
(
ζ − p(µ +m)

)(
n+ Jn−1

)
− p(θ +ρ)

(
In−1 +Kn−1

)
.

Hence, it follows from (76) that

lim
n→∞

1
n
〈C〉n =

( 2
2− p

)(
ζ − p(µ +m)

)
a.s. (90)
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In a similar way, we infer from (4), (5) and (6) that for all n≥ 0

E[ξn+1kn+1|Fn] = E[ξn+111kn+1=kn|Fn]kn−E[ξn+111kn+1 6=kn|Fn]kn,

= E[ξn+1|Fn]kn−2E[ξn+111kn+1 6=kn |Fn]kn,

= E[ξn+1|Fn]kn−2
(

11Sn∈V0,0 + 11Sn∈V1,0

)
knζ ,

= E[ξn+1|Fn]kn− (in + kn)ζ . (91)

Consequently, we find from (59), (69) and (91) that

〈E〉n =
n

∑
`=1

(
E[ξ`|F`−1]k`−1− (i`−1 + k`−1)ζ

−E[ξ`|F`−1]
(
(1− p)k`−1− pi`−1

))
,

=
n

∑
`=1

(
−ζ (i`−1 + k`−1)+ p(i`−1 + k`−1)E[ξ`|F`−1]

)
,

=
n

∑
`=1

((
p(µ +m)−ζ

)(
i`−1 + k`−1

)
+ p(θ +ρ)

(
1+ j`−1

))
,

which leads to

〈E〉n =
(

p(µ +m)−ζ
)(

In−1 +Kn−1
)
+ p(θ +ρ)

(
n+ Jn−1

)
.

Therefore, (76) implies that

lim
n→∞

1
n
〈E〉n =

( 2p
2− p

)(
θ +ρ

)
a.s. (92)

The last term 〈D〉n is much more easy to handle. As a matter of fact, we already saw that for all

n ≥ 0, jnkn = in. Thus, we deduce from (65), (67), (69) together with the elementary fact that

In−1 + In = 1 that

〈D〉n =
n

∑
`=1

(
i`−

(
p− (1− p) j`−1

)(
(1− p)k`−1− pi`−1

))
,

=
n

∑
`=1

((
−1+ p2 +(1− p)2)i`−1−2p(1− p)k`−1

)
,

=
n

∑
`=1

(
−2p(1− p)

(
i`−1 + k`−1

))
,

which means that

〈D〉n =−2p(1− p)
(
In−1 +Kn−1

)
.

Hence, (76) ensures that

lim
n→∞

1
n
〈D〉n = 0 a.s. (93)
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Consequently, it follows from the conjunction of (77), (81), (90), (92) and (93) that

lim
n→∞

1
n
〈M 〉n = Λ a.s. (94)

where the limiting matrix

Λ =
1

2− p


(2− p)σ2 + pγ 2

(
ζ − p(µ +m)

)
2p(θ +ρ)

2
(
ζ − p(µ +m)

)T 4p(1− p) 0

2p(θ +ρ)T 0 4p(1− p)

 .

Moreover, we already saw that the increments of the martingale (Mn) are almost surely bounded

which ensures that Lindeberg’s condition is satisfied. Whence, we obtain from Corollary 2.1.10 in

(8) the asymptotic normality
1√
n
Mn

L−→N (0,Λ) . (95)

Since p 6= 0, we have from (70) and (71) that

Jn−1 =
NJ

n +np+1− jn
2− p

, Kn−1 =
NK

n − pIn−1 +1− kn

p
.

Consequently, we obtain from (84) that

Sn−n
(
µ + pmp

)
= Mn +NJ

n mp +NK
n ρp +Rn (96)

where the remainder Rn stands for Rn = In−1
(
θ −ρ

)
+
(
1− jn

)
mp +

(
1− kn

)
ρp with

mp =
1

2− p
m and ρp =

1
p

ρ.

Hereafter, we shall once again make use of the Cramér-Wold theorem given e.g. by Theorem 29.4

in (2). We have from (96) that for all u ∈ R3,

1√
n

uT(Sn−n
(
µ + pmp

))
=

1√
n

vT Mn +
1√
n

uT Rn (97)

where the vector v ∈ R5 is given by

v =


u

mT
p u

ρT
p u

 .

On the one hand, it follows from (95) that

1√
n

vT Mn
L−→N

(
0,vT

Λv
)
. (98)
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On the other hand, as In ∈ {0,1}, (1− jn) ∈ {0,2} and (1− kn) ∈ {0,2}, we clearly have for all

u ∈ R3

lim
n→∞

1√
n

uT Rn = 0 a.s. (99)

Consequently, we obtain from (97) together with (98) and (99) that

1√
n

uT(Sn−n(µ + pmp)
) L−→N

(
0,vT

Λv
)
. (100)

It is not hard to see from (94) that

vT
Λv =

1
2− p

[
uT((2− p)σ2 + pγ

)
u

+2uT(
ζ − p(µ +m)

)
mT

p u+2uT mp
(
ζ − p(µ +m)

)T u

+2puT (θ +ρ)ρT
p u+2puT

ρp(θ +ρ)T u

+4p(1− p)uT mpmT
p u+4p(1− p)uT

ρpρ
T
p u
]
,

which leads to vT Λv = uT Γu where

Γ =
1

2− p

[
(2− p)σ2 + pγ +2

(
ζ − p(µ +m)

)
mT

p

+mp
(
ζ − p(µ +m)

)T
+2p(θ +ρ)ρT

p +2pρp(θ +ρ)T

+4p(1− p)mpmT
p +4p(1− p)ρpρ

T
p

]
,

= σ
2 +

p
2− p

γ +
2

(2− p)2

((
ζ − pµ

)
mT +m

(
ζ − pµ

)T
)

− 4p
(2− p)3 mmT +

2
2− p

(
θρ

T +ρθ
T)+ 4

p(2− p)
ρρ

T .

Finally, we deduce from (100) together with the Cramér-Wold theorem that

1√
n

(
Sn−n(µ + pmp)

) L−→N (0,Γ) (101)

which achieves the proof of Theorem III.4.

VI. CONCLUSION AND PERSPECTIVES

This paper explicitly gives a law of large numbers and a central limit theorem for random walks

in the three-dimensional hexagonal lattices of ice and graphite.
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They allow to determine the long time behavior of a particle or a defect site moving on these

lattices, provided that the jump probabilities along each direction are explicitly known. This kind

of considerations is frequent as this mode of propagation is often used to insert foreign bodies into

crystalline structures.

These results may be strengthened by determining a speed of convergence using classic results

about multidimensional martingales. Future developpements could include the long time behavior

of exclusion processes on such lattices, in order to better understand under which conditions sev-

eral defect sites can coalesce to create a fragility in the structure. The study of the center of mass15

of such random walks or elephant random walks1 in these lattices may be subjects of interest.
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14KOVÁČIK, J., BIELEK, J. Random walk in the Cu/graphite mixtures. Physical review. B,

Condensed matter, 54, 4000-4005, 1996.
15LO, C. H., WADE, A. R. On the centre of mass of a random walk. Stochastic Processes and

their Applications, 129(11):4663–4686, 2019.
16MONTROLL, E.W. Random walks in multidimensional spaces, especially on periodic lattices.

Journal of the Society for Industrial and Applied Mathematics 4, 241-260, 1956.
17PEREVISLOV, S.N. Structure, properties, and applications of Graphite-like hexagonal Boron

Nitride. Refract Ind Ceram 60, 291–295, 2019.
18POLYA, G. Uber eine aufgabe der wahrscheinlichskeitsrechnung betreffend die irrfahrt im

stratzennetz. Math. Ann., vol. 84, 149-160, 1921.
19RUDNICK, J., GASPARI, G. Elements of the random walk: An introduction for advanced

students and researchers. Cambridge: Cambridge University Press, 2004.
20ZUMOFEN, G., BLUMEN, A. Random-walk studies of excitation trapping in crystals. Chemical

Physics Letters, 88, Issue 1, 63-67, 1982.

33


