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Abstract. Marine ecology models are used to study and anticipate pop-
ulation variations of plankton and microalgae species. These variations
can have an impact on ecological niches, the economy or the climate.
Our objective is the automation of the creation of such models. Learn-
ing From Interpretation Transition (LFIT) is a framework that aims
at learning the dynamics of a system by observing its state transitions.
LFIT provides explainable predictions in the form of logical rules. In this
paper, we introduce a method that allows to extract an influence graph
from a LFIT model. We also propose an heuristic to improve the model
against noise in the data.

Keywords: logical modeling - dynamic systems - heuristics - interaction
graph

1 Introduction

Marine ecosystems represent the majority of aquatic systems on Earth. These
ecosystems have an important impact, such as regulating climate change, provid-
ing food and maintaining biodiversity, etc. The understanding of these systems
is therefore particularly interesting, but their complexity makes it difficult to
create new models. A key component of these ecosystems is the phytoplankton,
which are microscopic organisms present at the surface of all aquatic ecosystems.
They are the basis of aquatic food as they are at the lowest level of the oceanic
food chain, in addition to being responsible for the production of a large part
of the planet’s oxygen. Since 1992, the SRN network has gathered samplings of
sea water in order to measure phytoplankton population variations along with
environmental factors [3].

Learning From Interpretation Transition (LFIT) [2] aims to automate the
construction of models of dynamic systems from their state transitions. LFIT
produces an explainable model that describes the whole system dynamics and
can also predict its probable future variations.

In this work, we use LFIT to learn causal models of marine ecosystems from
the dataset of the SRN network. The method we propose in this paper can help
biologists to identify which factors and species are in interaction. These models
are also useful to predict future population changes in plankton species, and thus
may help to predict the evolution of climate change.



2 O. Iken et al.

2 State Of The Art

LFIT The LFIT framework [2] is based on the notion of dynamical transition,
that is, an atomical transition in a discrete time series. Given a set of such
transitions, LFIT builds a model of the system dynamics under the form of a
set of rules as follows:
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Such a rule is said to match a given state if, for each i € {1,2,...,m}, the
variable v; has the value val; in the current state. Intuitively, the rule above
means that the variable vg can take the value valp in the next state if the
rule matches the current state. We distinguish two types of rules on a given
matched state: (1) likeliness rules, where the conclusion is observed in at least
one transition from this state, and (2) unlikeliness rules, where the conclusion
is never observed in any transition from this state. Each rule of both type is
weighted by the number of states it matches in the observations.

DATASET In this work we focus on the SRN dataset [3]. This dataset
includes long-term time series of marine phytoplankton and physical-chemical
measurements. Water samples were collected along the eastern English Channel
coast every 15 to 30 days from 1992 to 2020, at different depths and locations.
Each sample in the dataset is characterized by its sampling location and depth,
sampling date, name of the measured environmental factor or phytoplankton
species, and value of measurement. There are several hydrological factors like
temperature, oxygen or salinity, associated to different units, while for each phy-
toplankton species, the number of individuals is counted. Here we focus on one
location of interest: the coastal station 1 of Boulogne-sur-Mer, and focus only
on 11 hydrological factors and 12 phytoplankton species only sampled at sea
surface level, as it was done in [1].

3 Preprocessing

Data sampling being irregular, we re-sample the measurements for the different
factors and species on a monthly basis to minimize missing data. Furthermore,
since LFIT only works with abstract discrete values for state transitions, we also
need to discretize the measurements. This step has a significant impact on the re-
sults provided by the LFIT algorithms. Here, hydrological factors are discretized
in two values: below average and above average; phytoplankton species in three
values: low, below average and above average, where low encodes a population
too low to be counted.

After discretization, we have a time series of 308 data point from which are
extracted the 307 atomic transitions to be processed by LFIT. These transi-
tions are divided into 80% (253 transitions) for the learning set and 20% (54
transitions) for the test set. The fitted model has 1683 likeliness rules and 1981
unlikeliness rules, and its accuracy is about 67.0% on the test set.
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Cha(1) :- PO4(0), SALI(1), TEMP(1), Cha(1), Gus(0), Nit(0) Ske(2) :- PO4(0), SALI(1), SIOH(0), Cha(1), Led(1)
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Fig. 1: Distribution and Pareto frontier of weighted combinations for a likeliness
rule (left) and an unlikeliness rule (right). Correct weight is in abscissa and wrong
weight is in ordinate. The size of circles corresponds to the number of conditions
in the combination, green circles being the “best” alternatives to consider.

4 Rules Improvement

Training data being incomplete and noisy, the output of LFIT is not perfect, i.e.,
rules may be improved and some could be removed. Indeed, LFIT only learns
rules that are true on every single transition they match in the training set.
This is why we propose a heuristic to simplify rules, in order to improve their
quality and reduce their quantity, thus improving improve model accuracy and
readability.

For that, we simply generate all subsets of each rule body, and then count
how many transitions validate/falsify the new rule, thus giving us two weights: a
correct weight, and a wrong weight. For a likeliness rule, we want to maximize the
correct weight and minimize the wrong weight, and conversely for an unlikeliness
rule. We can then compute the Pareto frontier (of correct/wrong weights) to find
the best subsets of a given body, as shown in Figure 1.

From the Pareto front, we extract what we consider the best rules based
on the ratio of correct and wrong weights. We chose an arbitrary ratio of 2 for
likeliness rules and 1/2 for unlikeliness rules.

By eliminating the redundant rules (subsumed by another rule) from the
improved model, we obtain a set of 1609 likeliness rules and 1405 unlikeliness
rules. With this, we manage to obtain a new accuracy of 71.6% on the test set.

5 Influence Graph

From the detailed interactions in the form of rules, a more abstract view of the
system can be extracted in the form of an influence graph containing the mutual
influences between variables. This allows to identify whether an environmental
factor or a species is a strict activator or inhibitor of another. The point is
to identify which variable need to be controlled in order to impose a desired
behavior on a targeted species. We propose to extract such model from LFIT
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Fig.2: Left: an example of influence extraction on variables with 3 expression
levels (0, 1 and 2). Right: an example of the final influence graph of the phyto-
plankton species Led, where negative influences are in red, positive influences in
green, and color intensity corresponds to the certainty.
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output rules by comparing the value of the head of each rule with the value of
each feature of the body of the same rule. Figure 2 (left) shows an example of the
process on two rules of the same variable a. For instance, a positive influence is
considered when a given body value makes the head evolve the same way (such
as a” in the example which produces a’) and conversely for a negative influence.
This produces a score that allows to compute the influence between each pair of
variables. Figure 2 (right) shows the resulting influence graph restricted to one
phytoplankton species (Led) once all corresponding rules have been processed.

6 Conclusion

In this paper, we presented new methods to both improve a LFIT model and
extract an underlying influence graph that can be used by biologists to get new
insights of the studied data. The accuracy of the method could be improved with
a stricter pre-processing of the data, a fine-tuning of the rule improvement from
the Pareto frontier, and exploring other ways of building the influence graph.
Yet, it consists in a first encouraging step towards the automation of marine
ecosystem models.
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