
HAL Id: hal-03347026
https://hal.science/hal-03347026

Submitted on 16 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial Algorithm For Learning From Interpretation
Transition

Tony Ribeiro, Maxime Folschette, Morgan Magnin, Katsumi Inoue

To cite this version:
Tony Ribeiro, Maxime Folschette, Morgan Magnin, Katsumi Inoue. Polynomial Algorithm For Learn-
ing From Interpretation Transition. 1st International Joint Conference on Learning & Reasoning, Oct
2021, (virtual), Greece. . �hal-03347026�

https://hal.science/hal-03347026
https://hal.archives-ouvertes.fr

Polynomial Algorithm For Learning From
Interpretation Transition

Tony Ribeiro1,2,3, Maxime Folschette4, Morgan Magnin2,3, and Katsumi Inoue3

1 Independant Researcher
2 Univ. Nantes, CNRS, Centrale Nantes, UMR 6004 LS2N, F-44000 Nantes, France
3 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430,

Japan
4 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Abstract. Learning from interpretation transition (LFIT) automati-
cally constructs a model of the dynamics of a system from the obser-
vation of its state transitions. The previously proposed General Usage
LFIT Algorithm (GULA) serves as the core block to several methods
of the framework that capture different dynamics. But its exponential
complexity limits the use of the whole framework to relatively small sys-
tems. In this paper, we introduce an approximated algorithm (PRIDE)
which trades the completeness of GULA for a polynomial complexity.
Both GULA and PRIDE source codes are available as open source at
https://github.com/Tony-sama/pylfit under GPL-3.0 License.

Keywords: logical modeling · dynamic systems · algorithm

1 Introduction

Modeling the dynamics of systems with many interactive components is crucial
in many applications such as physics, cellular automata or biological systems.
Learning From Interpretation Transition (LFIT) [1] is an Inductive Logic Pro-
gramming framework that addresses this challenge by automatically constructing
a model of the dynamics of a system from the observation of its state transitions.
Given some raw data, like time-series of gene expression, a discretization of those
data in the form of state transitions is assumed. From those state transitions,
according to the semantics of the system dynamics, several inference algorithms
modeling the system as a logic program have been proposed. In [2], we extended
this framework to learn systems dynamics independently of its update semantics.
For this purpose, we proposed a modeling of discrete memory-less multi-valued
systems as logic programs in which each rule represents that a variable possibly
takes some value at the next state. This modeling allows us to characterize op-
timal programs independently of the update semantics, allowing to model the
dynamics of a wide range of discrete systems. To learn such semantic-free op-
timal programs, we proposed GULA: the General Usage LFIT Algorithm that
now serves as the core block to several methods of the framework. But its com-
plexity is exponential, thus limiting its use to relatively small systems (about
13 Boolean variables). In this paper, we introduce a new algorithm (PRIDE)
whose polynomial complexity allow LFIT to deal with more complex systems.

https://github.com/Tony-sama/pylfit

2 T. Ribeiro et al.

2 Dynamical Multi-valued Logic Program

In this section, the concepts necessary to understand the learning algorithms we
propose are formalized. Let V = {v1, · · · , vn} be a finite set of n ∈ N variables,
Val the set in which variables take their values and dom : V → ℘(Val) a function
associating a domain to each variable. The atoms of multi-valued logic (MVL)
are of the form vval where v ∈ V and val ∈ dom(v). The set of such atoms is
denoted by A = {vval ∈ V × Val | val ∈ dom(v)}. Let F and T be a partition
of V, that is: V = F ∪ T and F ∩ T = ∅. F is called the set of feature variables,
which values represent the state of the system at the previous time step (t− 1),
and T is called the set of target variables, which values represent the state of
the system at the current time step (t). A MVL rule R is defined by:

R = vval0
0 ← vval1

1 ∧ · · · ∧ vvalm
m

where m ∈ N, and ∀i ∈ J0;mK, vvali
i ∈ A; furthermore, every variable is men-

tioned at most once in the right-hand part: ∀j, k ∈ J1;mK, j 6= k ⇒ vj 6= vk.
The rule R has the following meaning: the variable v0 can take the value val0 in
the next dynamical step if for each i ∈ J1;mK, variable vi has value vali in the
current dynamical step. The atom on the left side of the arrow is called the head
of R, denoted head(R) := vval0

0 , and is made of a target variable: v0 ∈ T . The
notation var(head(R)) := v0 denotes the variable that occurs in head(R). The
conjunction on the right-hand side of the arrow is called the body of R, written
body(R), and all variables in the body are feature variables: ∀i ∈ J1;mK, vi ∈ F .
In the following, the body of a rule is assimilated to the set {vval1

1 , · · · , vvalm
m };

we thus use set operations such as ∈ and ∩ on it, and we denote ∅ an empty
body. A dynamical multi-valued logic program (DMVLP) is a set ofMVL rules.

Definition 1 (Rule Domination). Let R1, R2 be MVL rules. R1 dominates
R2, written R1 ≥ R2 if head(R1) = head(R2) and body(R1) ⊆ body(R2).

The dynamical system we want to learn the rules of, is represented by a suc-
cession of states as formally given by Definition 2. We also define the “compati-
bility” of a rule with a state in Definition 3, and with a transition in Definition 4.

Definition 2 (Discrete state). A discrete state s on T (resp. F) of a DMVLP
is a function from T (resp. F) to N. It can be equivalently represented by the set
of atoms {vs(v) | v ∈ T (resp. F)} and thus we can use classical set operations
on it. We write ST (resp. SF) to denote the set of all discrete states of T (resp.
F), and a couple of states (s, s′) ∈ SF × ST is called a transition.

Definition 3 (Rule-state matching). Let s ∈ SF . TheMVL rule R matches
s, written R u s, if body(R) ⊆ s.

The final program we want to learn should both: (1) match the observations
in a complete (all transitions are learned) and correct (no spurious transition)
way; (2) represent only minimal necessary interactions (no overly-complex rules).
The following definitions formalize these desired properties.

Polynomial Algorithm For Learning From Interpretation Transition 3

Definition 4 (Rule and program realization). Let R be a MVL rule and
(s, s′) ∈ SF×ST . The rule R realizes the transition (s, s′) if Rus∧head(R) ∈ s′.
A DMVLP P realizes (s, s′) if ∀v ∈ T ,∃R ∈ P, var(head(R)) = v∧R realizes (s, s′).
P realizes a set of transitions T ⊆ SF × ST if ∀(s, s′) ∈ T, P realizes (s, s′).

Definition 5 (Conflict and Consistency). A MVL rule R conflicts with a
set of transitions T ⊆ SF × ST when ∃s ∈ ST ,∃(s1, s2) ∈ T, s = s1 ∧

(
R u

s ∧ ∀(s, s′) ∈ T, head(R) /∈ s′
)
. Otherwise, R is said to be consistent with T . A

DMVLP P is consistent with a set of transitions T if P does not contain any
rule R conflicting with T .

Definition 6 (Suitable and optimal program). Let T ⊆ SF×ST . A DMVLP
P is suitable for T if: P is consistent with T , P realizes T , and for any possible
MVL rule R consistent with T , there exists R′ ∈ P s.t. R′ ≥ R. If in addition,
for all R ∈ P , all the MVL rules R′ belonging to DMVLP suitable for T are
such that R′ ≥ R implies R ≥ R′, then P is called optimal and denoted PO(T).

3 PRIDE

The two following properties allow to build a polynomial version of GULA
which we name PRIDE for Polynomial Relational Inference of Discrete Events,
and which pseudo code is given in Algorithms 1 and 2. Theorem 1 states that for
any transition, we can build a rule that is consistent and realizes the transition.
Theorem 2 states that if removing any atom from a rule makes it inconsistent,
then this rule cannot be simplified and is part of the optimal program.

Theorem 1 (Consistent Rule Always exists). Let T ⊆ SF×ST , (s, s′) ∈ T
and vval ∈ s′. The rule R = vval ← s is consistent with T and realizes (s, s′).

Theorem 2 (Irreducible Rules are Optimal). Let R be a rule consistent
with a set of transitions T ⊆ SF ×ST . If ∀R′ ∈ {head(R)← body(R) \ {vval} |
vval ∈ body(R)}, R′ conflicts with T , then @R′′ 6= R consistent with T such that
R′′ ≥ R and thus, R ∈ PO(T).

PRIDE learns a program P ⊆ PO(T) sufficient to realize T , at the cost of
not being complete: usually, P (PO(T). For each atom vval of a target variable,
the sets of positive (Posvval) and negative (Negvval) examples are extracted from
T . A positive example is a state from which at least one transition has vval in
the next state, while a negative example is a state from which no transition has
vval in next state. PRIDE starts by arbitrary picking a positive example pos ∈
Posvval , then constructs a rule of PO(T) that matches it. For this, the (trivially)
non-dominated rule R = vval ← ∅ is iteratively revised for each negative example
neg ∈ Negvval that R matches. Revision consists in the addition of an atom that
appears in pos but not in neg ensuring both matching of pos and consistency with
neg. In the worst case, R becomes the most specific rule that matches pos (see
Theorem 1), ensuring termination. Then, the rule is minimized by iteratively
removing non-necessary conditions. If a condition cannot be removed on the

4 T. Ribeiro et al.

current rule, then it cannot be removed on its simplifications, since conflict is
transitive (see Theorem 2), thus each condition removal only needs to be checked
once. At the end of Algorithm 2, R is still consistent with T , matches pos and
all its conditions are necessary, thus R ∈ PO(T). All positives examples matched
by this rule can now be discarded (at least pos is removed, thus PRIDE is
guaranteed to terminate) and the same process is repeated until all positives
examples are matched. At the end, a set of optimal rules that forms a program
P ⊆ PO(T) is returned and P is guaranteed to realize T . All PRIDE operations
have a polynomial complexity regarding T and A thus PRIDE is polynomial.

Algorithm 1 PRIDE(A, T , F , T)

INPUT : A set of atoms A, a set of transitions T ⊆
SF × ST , two sets of variables F and T .
OUTPUT: A DMVLP P ⊆ PO(T) s.t. P realizes T

1: for each vval ∈ A such that v ∈ T do
2: // 1) Extract positives and negatives examples

3: Pos
vval := {s ∈ SF | ∃(s, s′) ∈ T, vval ∈ s′}

4: Neg
vval := {s ∈ SF | @(s, s′) ∈ T, vval ∈ s′}

5: // 2) Generate the rules of vval that are in
PO(T) and that match each state of Pos

vval

6: while Pos
vval 6= ∅ do

7: pick pos ∈ Pos
vval

8: R := search(vval, pos,Neg
vval)

9: // Clean other positives examples covered

10: Pos
vval := Pos

vval \{s |s ∈ Pos
vval , Rus}

11: P = P ∪ {R}
12: return P

Algorithm 2 search(vval, pos, Negvval)

INPUT : An atom vval ∈ A, a state pos ∈ SF

and a set of states Neg
vval ⊂ SF .

OUTPUT: AMVL rule R ∈ PO(T) s.t. R u pos

1: R := vval ← ∅
2: // Specialize R until consistency with Neg

vval

3: for each neg ∈ Neg
vval do

4: if R u neg then

5: pick c ∈ (pos \ neg)

6: R := head(R)← body(R) ∪ {c}
7: // Generalize R while keeping consistency

8: for each c ∈ body(R) do // Test each condition

9: R′ := head(R)← body(R) \ {c}
10: conflict := false

11: for each neg ∈ Neg
vval do

12: if R′ u neg then // Necessary condition

13: conflict := true; BREAK

14: if conflict == false then // R′ is valid

15: R := R′

16: return R

4 Conclusion

The polynomiality of PRIDE is obtained at the cost of not ensuring that all
possible optimal rules are learned. Still, the program learned by PRIDE is a
sufficient model of the observed dynamic of T in practice: it can reproduce all
observations and provides minimal explanation for each of them in the form of
optimal rules. PRIDE performances (see Table 1 in Appendix) allows us to
learn more complex systems and drastically reduce computation time of smaller
ones. The source code of GULA and PRIDE is available as open source5.
A user-friendly API allows to easily use both algorithms on different kinds of
datasets and is already being used in several research collaborations.

References

1. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine
Learning 94(1), 51–79 (2014)

2. Ribeiro, T., Folschette, M., Magnin, M., Roux, O., Inoue, K.: Learning dynamics
with synchronous, asynchronous and general semantics. In: International Conference
on Inductive Logic Programming. pp. 118–140. Springer (2018)

5 LFIT source code and API is available at https://github.com/Tony-sama/pylfit

https://github.com/Tony-sama/pylfit

Polynomial Algorithm For Learning From Interpretation Transition 5

A Appendix

Table 1: Average run time of GULA and PRIDE when learning Boolean
networks of PyBoolNet6 from at most 10,000 transitions from the 2n possi-
ble synchronous transitions, with n the number of variables in the system, i.e.,
n = |F| = |T |. Average over 3 runs with a time-out (T.O.) of 1,000 seconds,
conducted on one core of an Intel Core i7 (6700, 3.4 GHz) with 32 Gb of RAM.

System variables (n) 7 9 10 12 13 15 18 23
GULA run time 0.027s 0.157s 0.49s 2.62s 5.63s T.O. T.O. T.O.
PRIDE run time 0.005s 0.02s 0.06s 0.37s 0.484s 1.55s 6.39s 32.43s

A.1 Proofs Of Section 3

Theorem 1 (Consistent Rule Always exists) Let T ⊆ SF ×ST , (s, s′) ∈ T
and vval ∈ s′. The rule R = vval ← s is consistent with T and realizes (s, s′).
Proof. According to Definition 3, since body(R) = s,body(R) ⊆ s and thus
R u s. Since head(R) ∈ s′, according to Definition 4, R realizes (s, s′). And
according to Definition 5, R is consistent with T . ut

Theorem 2 (Irreducible Rules are Optimal) Let R be a rule consistent
with a set of transitions T ⊆ SF ×ST . If ∀R′ ∈ {head(R)← body(R) \ {vval} |
vval ∈ body(R)}, R′ conflicts with T , then @R′′ 6= R consistent with T such that
R′′ ≥ R and thus, R ∈ PO(T).
Proof. 1) According to Definition 1, if R is aMVL rule, then {R′′ MVL rule |
R′′ 6= R ∧ R′′ ≥ R} = {R′′ MVL rule | R′′ ≥ R′ ∧ R′ ∈ {head(R)← body(R) \
{vval} | vval ∈ body(R)}}.

2) Conflict is transitive: if R′ conflicts with T , then all rules R′′ such that
R′′ ≥ R′ conflict with T . If R′ conflicts with a set of transitions T ⊆ SF × ST ,
according to Definition 5, ∃(s, s′) ∈ T , R′ u s and @(s, s′′) ∈ T, head(R′) ∈
s′′. According to Definition 3, R′ u s =⇒ body(R′) ⊆ s and for a rule R′′,
body(R′′) ⊆ body(R′) =⇒ body(R′′) ⊆ s =⇒ R′′ u s and thus head(R′′) =
head(R′) implies that R′′ conflicts with T .

Using 1) and 2) we can deduce that no consistent rule dominates R (beside
itself) from the conflicts of all its direct generalizations R′. Since R is consistent
with T and R is not dominated by another rule consistent with T , by Definition 6,
R ∈ PO(T). ut
6 Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the gener-

ation, analysis and visualization of boolean networks. Bioinformatics33(5), 770–772
(2016).

	Polynomial Algorithm For Learning From Interpretation Transition

