Polynomial Algorithm For Learning From Interpretation Transition

Tony Ribeiro^{1,3}, Maxime Folschette², Morgan Magnin^{1,3}, Katsumi Inoue³ (1) Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France (2) Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France (3) National Institute of Informatics, 2–1–2 Hitotsubashi, Chiyoda-ku, Tokyo 101–8430, Japan tony.ribeiro@ls2n.fr,maxime.folschette@irisa.fr,morgan.magnin@ls2n.fr,oliver.roux@ls2n.fr,inoue@nii.ac.jp

Motivations: Learning Dynamics

• Given a set of input/output states of a black-box system, learn its internal mechanics. • **Discrete system:** input/output are vectors of same size which contain discrete values. • **Dynamic system:** input/output are states of the system and output is the next input.

Algorithm: PRIDE

Theorem 1 (Consistent Rule Always exists). Let $T \subseteq S^{\mathcal{F}} \times S^{\mathcal{T}}$, $(s, s') \in T$ and $v^{val} \in s'$. The rule $R = v^{val} \leftarrow s$ is consistent with T and realizes (s, s').

Theorem 2 (Irreducible Rules are Optimal). Let R be a rule consistent with a set of transitions $T \subseteq S^{\mathcal{F}} \times S^{\mathcal{T}}$. If $\forall R' \in \{\text{head}(R) \leftarrow \text{body}(R) \setminus \{v^{val}\} \mid v^{val} \in \text{body}(R)\}, R' \text{ conflicts with } T$, then $\nexists R'' \neq R$ consistent with T such that $R'' \geq R$ and thus, $R \in P_{\mathcal{O}}(T)$.

Idea:

• given positives/negatives examples of occurrence of a target atom v^{val} in T; • we can find a rule $R \in P_{\mathcal{O}}(T)$ to explain each positive example s

• Goal: produce an artificial system with the same behavior, i.e., a digital twin. • **Representation:** propositional logic programs encoding multi-valued discrete variables. • Method: learn the dynamics of systems from its state transitions.

Formalization: MVL and DMVLP

Definition 1 (Atoms). Let $\mathcal{V} = \{v_1, \ldots, v_n\}$ be a finite set of $n \in \mathbb{N}$ variables, and dom : $\mathcal{V} \to \mathbb{N}$. The atoms of \mathcal{MVL} (denoted \mathcal{A}) are of the form v^{val} where $v \in \mathcal{V}$ and $val \in [[0; dom(v)]]$. **Definition 2** (Multi-valued logic program). A MVLP is a set of MVL rules:

• starting from $v^{val} \leftarrow s$ remove body atom until conflict is not avoidable Algorithmic properties:

• it is faster to start from $v^{val} \leftarrow \emptyset$, specialise it until consistency and then generalise • adding only the atoms of s ensure to matches s, in worst case we reach $v^{val} \leftarrow s$ • more variable in the system, more generalization is avoided

We extract positive and negatives examples (feature states) of each target atom occurrence. Rules should match a positive and no negative while being irreducible.

Implementation: python library and user API

PyLFIT Library

- Open source python library: pip install pylfit
- Contain all LFIT algorithms and a simple user API
- Built-in data/model conversion/usage User API

Definition 3 (Dynamic $\mathcal{M}VLP$). Let $\mathcal{T} \subset \mathcal{V}$ and $\mathcal{F} \subset \mathcal{V}$ such that $\mathcal{F} = \mathcal{V} \setminus \mathcal{T}$. A $\mathcal{D}\mathcal{M}VLP$ *P* is a $\mathcal{M}VLP$ such that $\forall R \in P$, var(head(R)) $\in \mathcal{T}$ and $\forall v^{val} \in body(R)$, $v \in \mathcal{F}$.

Definition 4 (Discrete state). A discrete state s on \mathcal{T} (resp. \mathcal{F}) of a \mathcal{DMVLP} is a function from \mathcal{T} (resp. \mathcal{F}) to \mathbb{N} . $\mathcal{S}^{\mathcal{T}}$ (resp. $\mathcal{S}^{\mathcal{F}}$) denote the set of all discrete states of \mathcal{T} (resp. \mathcal{F}). **Definition 5** (Transition). A transition is a couple of states $(s, s') \in S^{\mathcal{F}} \times S^{\mathcal{T}}$.

Definition 6 (Semantics). A <u>dynamical semantics</u> is a function of $(\mathcal{DMVLP} \rightarrow (\mathcal{S}^{\mathcal{F}} \rightarrow \wp(\mathcal{S}^{\mathcal{T}}) \setminus$ $\{\emptyset\}$) where \mathcal{DMVLP} is the set of \mathcal{DMVLPs} (\wp is the power set symbol).

- R_1 dominates R_2 , written $R_1 \ge R_2$ if $head(R_1) = head(R_2)$ and $body(1) \subseteq body(2)$.
- *R* matches $s \in S^{\mathcal{F}}$, written $R \sqcap s$, if $body() \subseteq s$.
- R realizes the transition $(s, s') \in S^{\mathcal{F}} \times S^{\mathcal{T}}$, if $R \sqcap s$, $head(R) \in s'$.

• *R* conflicts with $T \subseteq S^{\mathcal{F}} \times S^{\mathcal{T}}$ when $\exists (s, s') \in T, (R \sqcap s \land \forall (s, s'') \in T, head(R) \notin s'')$.

Definition 7 (Suitable program). Let $T \subseteq S^{\mathcal{F}} \times S^{\mathcal{T}}$. A \mathcal{DMVLP} P is suitable for T when: P is *complete, consistent with* T, *realizes* T and $\forall R$ not conflicting with T, $\exists R' \in P$ s.t. $R \geq R'$. If in addition, $\forall R \in P$, all the rules R' belonging to a MVLP suitable for T are such that $R \ge R'$ implies $R' \ge R$ then P is unique, called optimal and denoted $P_{\mathcal{O}}(T)$.

Problem: Combinatorial Explosion

GULA and PRIDE:

- In [2] we proposed an Algorithm (GULA) to learn $P_{\mathcal{O}}(T)$ but with exponential complexity.
- We introduce an heuristics algorithm **PRIDE** which trades the completeness of **GULA** for

• Load raw data of different format into a Dataset object

• Choose desired model type and run corresponding LFIT algorithm

• Use model object for predictions, analysis or convert it to other format

Predictions:

• \mathcal{DMVLP} and \mathcal{CDMVLP} (constraints) can be used for predicting possible target states

• WDMVLP model both possibility and impossibility, it also adds weights to rules w.r.t. observations to allow probabilistic predictions of target atom occurrence in a transition

 \mathcal{WDMVLP}

Unlikeliness rules Likeliness rules $(3, a^0 \leftarrow b^1)$ $(30, a^0 \leftarrow c^1)$ $(15, a^1 \leftarrow b^0)$ $(5, a^1 \leftarrow c^0)$

 $predict(a^{1}, \{a^{1}, b^{1}, c^{0}\} = (0.75, (15, a^{1} \leftarrow b^{0}), (5, a^{1} \leftarrow c^{0}) \longrightarrow \text{Likely}$ $predict(a^{0}, \{a^{1}, b^{1}, c^{0}\} = (0.09, (3, a^{0} \leftarrow b^{1}), (30, a^{0} \leftarrow c^{1}) \longrightarrow \text{Unlikely}$

• The API provide metrics to evaluate prediction accuracy and quality of explanation rules

a polynomial complexity. PRIDE learns a subset of $P_{\mathcal{O}}(T)$ sufficient to realise T.

Run Time

System variables (<i>n</i>)	7	9	10	12	13	15	18	23
GULA run time	0.027s	0.157s	0.49s	2.62s	5.63s	Т.О.	T.O .	Т.О.
PRIDE run time	0.005s	0.02s	0.06s	0.37s	0.484s	1.55s	6.39s	32.439

Average run time of GULA and PRIDE when learning Boolean networks of PyBoolNet [3] from at most 10,000 over 3 runs with a time-out (T.O.) of 1,000 seconds.

PRIDE performances allows to learn more complex systems and drastically reduce computation time of smaller ones.

Summary

- The polynomiality of **PRIDE** is obtained at the cost of completeness over $P_{\mathcal{O}}(T)$.
- Still, the program learned can reproduce all observations and provides minimal explanation for each of them in the form of optimal rules.
- The source code is available as open source on github and pypi.org (see QR code).
- A user-friendly API allows to easily use LFIT algorithms on different kinds of datasets and is already being used in several research collaborations [4].

[1] Katsumi Inoue, Tony Ribeiro, Chiaki Sakama: Learning from interpretation transition. *Machine Learning* 94(1), 51–79 (2014)

[2] Tony Ribeiro, Maxime Folschette, Morgan Magnin, Olivier Roux, Katsumi Inoue: Learning dynamics with synchronous and general semantics. In: International Conference on Inductive Logic Programming. pp. 118–140. Springer (2018) [3] Hannes Klarner, Adam Streck, Heike Siebert: PyBoolNet: a Python package for the generation, analysis and visualization of Boolean networks. Bioinformatics 33(5), 770–772 (2016).

[4] Alfonso Ortega, Julian Fiérrez, Aythami Morales, Zilong Wang, Tony Ribeiro: Symbolic AI for XAI: Evaluating LFIT Inductive Programming for Fair and Explainable Automatic Recruitment. WACV (Workshops) 2021: 78-87