
Polynomial Algorithm For Learning From Interpretation Transition
Tony Ribeiro1,3, Maxime Folschette2, Morgan Magnin1,3, Katsumi Inoue3(1) Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France(2) Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France(3) National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
tony.ribeiro@ls2n.fr, maxime.folschette@irisa.fr, morgan.magnin@ls2n.fr, oliver.roux@ls2n.fr, inoue@nii.ac.jp

•Given a set of input/output states of a black-box system, learn its internal mechanics.
•Discrete system: input/output are vectors of same size which contain discrete values.
•Dynamic system: input/output are states of the system and output is the next input.

Input Output? Discrete
State

Discrete
State

Dynamic
System

Problem

•Goal: produce an artificial system with the same behavior, i.e., a digital twin.
•Representation: propositional logic programs encoding multi-valued discrete variables.
•Method: learn the dynamics of systems from its state transitions.

Digital
Twin

Real
System

00

10

01

11

20

22

12

2102

00

10

01

11

20

22

12

2102

? 00

10

01

11

20

22

12

2102

00

10

01

11

20

22

12

2102

a(0,T) :- a(2,T-1)
a(1,T) :- a(0,T-1), b(0,T-1).
a(2,T) :- a(1,T-1)
a(2,T) :- a(0,T-1), b(2,T-1).

b(0,T) :- a(1,T-1).
b(1,T) :- b(0,T-1).
b(2,T):- b(2,T-1).

DATA

RESULTS

Goal

Motivations: Learning Dynamics

Definition 1 (Atoms). Let V = {v1, . . . , vn} be a finite set of n ∈ N variables, and dom : V → N.
The atoms of MVL (denoted A) are of the form vval where v ∈ V and val ∈ J0; dom(v)K.
Definition 2 (Multi-valued logic program). A MVLP is a set of MVL rules:

vval00︸︷︷︸
head

← vval11 ∧ vval22 ∧ vval33 ∧ · · · ∧ vvalmm︸ ︷︷ ︸
body

Definition 3 (Dynamic MVLP). Let T ⊂ V and F ⊂ V such that F = V \ T . A DMVLP P is
a MVLP such that ∀R ∈ P, var(head(R)) ∈ T and ∀vval ∈ body(R), v ∈ F .
Definition 4 (Discrete state). A discrete state s on T (resp. F ) of a DMVLP is a function
from T (resp. F ) to N. ST (resp. SF ) denote the set of all discrete states of T (resp. F ).
Definition 5 (Transition). A transition is a couple of states (s, s′) ∈ SF × ST .
Definition 6 (Semantics). A dynamical semantics is a function of

(
DMVLP→ (SF → ℘(ST )\

{∅})) where DMVLP is the set of DMVLPs (℘ is the power set symbol).

•R1 dominates R2, written R1 ≥ R2 if head(R1) = head(R2) and body(1) ⊆ body(2).
•R matches s ∈ SF , written R u s, if body() ⊆ s.
•R realizes the transition (s, s′) ∈ SF × ST , if R u s, head(R) ∈ s′.
•R conflicts with T ⊆ SF × ST when ∃(s, s′) ∈ T ,

(
R u s ∧ ∀(s, s′′) ∈ T , head(R) /∈ s′′

).
Definition 7 (Suitable program). Let T ⊆ SF ×ST . A DMVLP P is suitable for T when: P is
complete, consistent with T , realizes T and ∀R not conflicting with T , ∃R ′ ∈ P s.t. R ≥ R ′.
If in addition, ∀R ∈ P , all the rules R ′ belonging to a MVLP suitable for T are such that
R ≥ R ′ implies R ′ ≥ R then P is unique, called optimal and denoted PO(T ).

Formalization: MVL and DMVLP

GULA and PRIDE:
• In [2] we proposed an Algorithm (GULA) to learn PO(T ) but with exponential complexity.
•We introduce an heuristics algorithm PRIDE which trades the completeness of GULA fora polynomial complexity. PRIDE learns a subset of PO(T ) sufficient to realise T .

System variables (n) 7 9 10 12 13 15 18 23
GULA run time 0.027s 0.157s 0.49s 2.62s 5.63s T.O. T.O. T.O.
PRIDE run time 0.005s 0.02s 0.06s 0.37s 0.484s 1.55s 6.39s 32.43s

Average run time of GULA and PRIDE when learning Boolean networks ofPyBoolNet [3] from at most 10,000 over 3 runs with a time-out (T.O.) of 1,000 seconds.

Run Time

PRIDE performances allows to learn more complex systems and drastically reduce compu-tation time of smaller ones.

Problem: Combinatorial Explosion

Theorem 1 (Consistent Rule Always exists). Let T ⊆ SF × ST , (s, s′) ∈ T and vval ∈ s′. The
rule R = vval← s is consistent with T and realizes (s, s′).
Theorem 2 (Irreducible Rules are Optimal). Let R be a rule consistent with a set of transitions
T ⊆ SF × ST . If ∀R ′ ∈ {head(R) ← body(R) \ {vval} | vval ∈ body(R)}, R ′ conflicts with T ,
then @R ′′ 6= R consistent with T such that R ′′ ≥ R and thus, R ∈ PO(T ).
Idea:
• given positives/negatives examples of occurrence of a target atom vval in T ;
•we can find a rule R ∈ PO(T ) to explain each positive example s
• starting from vval← s remove body atom until conflict is not avoidable

Algorithmic properties:
• it is faster to start from vval← ∅, specialise it until consistency and then generalise
• adding only the atoms of s ensure to matches s, in worst case we reach vval← s
•more variable in the system, more generalization is avoided

00 01

00 10

00 11

10 1000 00

Positive
examples

Negative
examples

a=0

00

11 01

11 10

11 00

01

10

11

Observations

01 01 11 11

4 T. Ribeiro et al.

current rule, then it cannot be removed on its simplifications, since conflict is
transitive (see Theorem 2), thus each condition removal only needs to be checked
once. At the end of Algorithm 2, R is still consistent with T , matches pos and
all its conditions are necessary, thus R ∈ PO(T ). All positives examples matched
by this rule can now be discarded (at least pos is removed, thus PRIDE is
guaranteed to terminate) and the same process is repeated until all positives
examples are matched. At the end, a set of optimal rules that forms a program
P ⊆ PO(T ) is returned and P is guaranteed to realize T . All PRIDE operations
have a polynomial complexity regarding T and A thus PRIDE is polynomial.

Algorithm 1 PRIDE(A, T , F , T )

INPUT : A set of atoms A, a set of transitions T ⊆
SF × ST , two sets of variables F and T .
OUTPUT: A DMVLP P ⊆ PO(T ) s.t. P realizes T

1: for each vval ∈ A such that v ∈ T do
2: // 1) Extract positives and negatives examples

3: Pos
vval := {s ∈ SF | ∃(s, s�) ∈ T, vval ∈ s�}

4: Neg
vval := {s ∈ SF | �(s, s�) ∈ T, vval ∈ s�}

5: // 2) Generate the rules of vval that are in
PO(T ) and that match each state of Pos

vval

6: while Pos
vval �= ∅ do

7: pick pos ∈ Pos
vval

8: R := search(vval, pos, Neg
vval )

9: // Clean other positives examples covered

10: Pos
vval := Pos

vval \{s |s ∈ Pos
vval , R�s}

11: P = P ∪ {R}
12: return P

Algorithm 2 search(vval, pos, Negvval)

INPUT : An atom vval ∈ A, a state pos ∈ SF

and a set of states Neg
vval ⊂ SF .

OUTPUT: A MVL rule R ∈ PO(T ) s.t. R � pos

1: R := vval ← ∅
2: // Specialize R until consistency with Neg

vval

3: for each neg ∈ Neg
vval do

4: if R � neg then

5: pick c ∈ (pos \ neg)

6: R := head(R) ← body(R) ∪ {c}
7: // Generalize R while keeping consistency

8: for each c ∈ body(R) do // Test each condition

9: R� := head(R) ← body(R) \ {c}
10: conflict := false

11: for each neg ∈ Neg
vval do

12: if R� � neg then // Necessary condition

13: conflict := true; BREAK

14: if conflict == false then // R� is valid

15: R := R�
16: return R

4 Conclusion

The polynomiality of PRIDE is obtained at the cost of not ensuring that all
possible optimal rules are learned. Still, the program learned by PRIDE is a
sufficient model of the observed dynamic of T in practice: it can reproduce all
observations and provides minimal explanation for each of them in the form of
optimal rules. PRIDE performances (see Table 1 in Appendix) allows us to
learn more complex systems and drastically reduce computation time of smaller
ones. The source code of GULA and PRIDE is available as open source5.
A user-friendly API allows to easily use both algorithms on different kinds of
datasets and is already being used in several research collaborations.

References

1. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine
Learning 94(1), 51–79 (2014)

2. Ribeiro, T., Folschette, M., Magnin, M., Roux, O., Inoue, K.: Learning dynamics
with synchronous, asynchronous and general semantics. In: International Conference
on Inductive Logic Programming. pp. 118–140. Springer (2018)

5 LFIT source code and API is available at https://github.com/Tony-sama/pylfit

We extract positive and negatives examples (feature states) of each target atomoccurrence. Rules should match a positive and no negative while being irreducible.

PRIDE

Algorithm: PRIDE

PyLFIT Library
•Open source python library: pip install pylfit

• Contain all LFIT algorithms and a simple user API
•Built-in data/model conversion/usage

User API
• Load raw data of different format into a Dataset object
• Choose desired model type and run corresponding LFIT algorithm
•Use model object for predictions, analysis or convert it to other format

Raw
Data

LFIT
Algorithm

Encoding
State

Transitions
Logic

Program

Final
Model

Decoding

PyLFIT 

API
tabular

CSV

Time
Series

Formated
data

Prolog

Boolean
Network

Process
Hitting

explanations predictions

... ...

Dataset Model

PyLFIT

Predictions:
• DMVLP and CDMVLP (constraints) can be used for predicting possible target states
•WDMVLP model both possibility and impossibility, it also adds weights to rules w.r.t.observations to allow probabilistic predictions of target atom occurrence in a transition

Likeliness rules(3, a0← b1)(15, a1← b0). . .
Unlikeliness rules(30, a0← c1)(5, a1← c0). . .

predict(a1, {a1, b1, c0} = (0.75, (15, a1← b0), (5, a1← c0) −→ Likely
predict(a0, {a1, b1, c0} = (0.09, (3, a0← b1), (30, a0← c1) −→ Unlikely

WDMVLP

• The API provide metrics to evaluate prediction accuracy and quality of explanation rules

Implementation: python library and user API

• The polynomiality of PRIDE is obtained at the cost of completeness over PO(T ).
• Still, the program learned can reproduce all observations and provides minimal explanationfor each of them in the form of optimal rules.
• The source code is available as open source on github and pypi.org (see QR code).
• A user-friendly API allows to easily use LFIT algorithms on different kinds of datasets andis already being used in several research collaborations [4].

Summary

[1] Katsumi Inoue, Tony Ribeiro, Chiaki Sakama: Learning from interpretation transition. Machine Learning 94(1), 51–79 (2014)[2] Tony Ribeiro, Maxime Folschette, Morgan Magnin, Olivier Roux, Katsumi Inoue: Learning dynamics with synchronous, asynchronous and general semantics. In: International Conference on Inductive Logic Programming. pp. 118–140. Springer (2018)[3] Hannes Klarner, Adam Streck, Heike Siebert: PyBoolNet: a Python package for the generation, analysis and visualization of Boolean networks. Bioinformatics 33(5), 770–772 (2016).[4] Alfonso Ortega, Julian Fiérrez, Aythami Morales, Zilong Wang, Tony Ribeiro: Symbolic AI for XAI: Evaluating LFIT Inductive Programming for Fair and Explainable Automatic Recruitment. WACV (Workshops) 2021: 78-87

https://hal.archives-ouvertes.fr/hal-03347026
https://github.com/Tony-sama/pylfit

