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Human brain white matter undergoes a protracted maturation that continues well
into adulthood. Recent advances in diffusion-weighted imaging (DWI) methods allow
detailed characterizations of the microstructural architecture of white matter, and
they are increasingly utilized to study white matter changes during development and
aging. However, relatively little is known about the late maturational changes in the
microstructural architecture of white matter during post-adolescence. Here we report on
regional changes in white matter volume and microstructure in young adults undergoing
university-level education. As part of the MRi-Share multi-modal brain MRI database,
multi-shell, high angular resolution DWI data were acquired in a unique sample of 1,713
university students aged 18–26. We assessed the age and sex dependence of diffusion
metrics derived from diffusion tensor imaging (DTI) and neurite orientation dispersion
and density imaging (NODDI) in the white matter regions as defined in the John Hopkins
University (JHU) white matter labels atlas. We demonstrate that while regional white
matter volume is relatively stable over the age range of our sample, the white matter
microstructural properties show clear age-related variations. Globally, it is characterized
by a robust increase in neurite density index (NDI), and to a lesser extent, orientation
dispersion index (ODI). These changes are accompanied by a decrease in diffusivity.
In contrast, there is minimal age-related variation in fractional anisotropy. There are
regional variations in these microstructural changes: some tracts, most notably cingulum
bundles, show a strong age-related increase in NDI coupled with decreases in radial
and mean diffusivity, while others, mainly cortico-spinal projection tracts, primarily show
an ODI increase and axial diffusivity decrease. These age-related variations are not
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different between males and females, but males show higher NDI and ODI and lower
diffusivity than females across many tracts. These findings emphasize the complexity of
changes in white matter structure occurring in this critical period of late maturation in
early adulthood.

Keywords: MRI, diffusion, white matter, DTI, NODDI, post-adolescence, cohort, cross-sectional

INTRODUCTION

Early adulthood is characterized by significant changes in lifestyle
and behavior for many, when individuals explore their identity
and various life possibilities to become fully independent. For
some, it involves the attainment of higher education and training
to acquire new skills and knowledge necessary for their planned
vocation. Although the most dramatic development in the human
brain takes place earlier in life, with the total brain volume
reaching 90% of the adult volume by the age of 5 years (Dekaban,
1978; Lenroot and Giedd, 2006), both global and regional changes
in brain structure and function persist throughout childhood
and adolescence, and some of the maturational changes continue
well into adulthood (Dumontheil, 2016). In particular, the
white matter (WM) of the brain shows a protracted course of
development, with its total volume continuing to increase up to
the fourth or fifth decade of life (Walhovd et al., 2011; Lebel
et al., 2012). The development of WM microstructure is also
sensitive to common life experiences in young adults, including
exposure to alcohol and tobacco, and other recreational drugs
(Bava et al., 2013; Gogliettino et al., 2016; Silveri et al., 2016),
changes in sleep patterns (Elvsåshagen et al., 2015; Telzer et al.,
2015), and intensive motor and cognitive training (Scholz et al.,
2009; Lövdén et al., 2010; Mackey et al., 2012; Schlegel et al.,
2012; Lakhani et al., 2016). Detailed characterization of the late
maturational processes of the WM in young adults is crucial
for elucidating how the learning and other life experiences may
shape the structural and functional organization of the brain
through their impact on the brain wiring. Understanding the
normative development during this period may also shed light
on the vulnerability of this particular period in life to various
neuropsychiatric disorders, such as substance abuse, mood and
anxiety disorders (Kessler et al., 2007).

What we know about normative WM development primarily
comes from non-invasive neuroimaging of typically developing
individuals with magnetic resonance imaging (MRI). In addition
to the macro-structural changes that can be measured with T1-
weighted images, diffusion-weighted imaging (DWI) methods
allow detailed characterizations of the WM microstructural
properties. Over the past two decades, studies using DWI
have provided much insight into the WM microstructural
changes during development (reviewed in Lebel and Deoni, 2018;
Tamnes et al., 2018; Lebel et al., 2019). The majority of these
studies quantify DWI through a diffusion tensor imaging (DTI)
model representing the direction and magnitude of diffusion
of tissue water molecules as a single tensor in each voxel
(Tournier et al., 2011). Most commonly, fractional anisotropy
(FA), which measures the degree of diffusion directionality,
is used to quantify maturational changes, with an increase

in FA attributed to myelination and increased axonal size or
packing. Other DTI measures include axial and radial diffusivity
(AD/RD), representing diffusion along the longest and shortest
axis, respectively, of the tensor modeled in each voxel, and
mean diffusivity (MD), representing the average magnitude of
diffusion. Across studies, FA increases and overall decreases in
diffusivity with increasing age are observed in most WM regions
through childhood and adolescence (e.g., Bonekamp et al., 2007;
Lebel et al., 2008; Giorgio et al., 2010; Tamnes et al., 2010; Lebel
and Beaulieu, 2011; Brouwer et al., 2012; Simmonds et al., 2014;
Pohl et al., 2016). In a large-scale, multi-cohort study, we have
recently demonstrated that such changes continue up to early to
mid-adulthood (Beaudet et al., 2020).

However, being a “signal” based model, the DTI model only
describes the diffusion process in each voxel and does not
attempt to delineate signals attributable to different biological
tissue components (Ferizi et al., 2017). Thus, changes in DTI
metrics only indicate alterations in magnitude or directionality of
diffusivity, and different biological processes that affect diffusion
properties of the tissue cannot be distinguished (Jones et al.,
2013). More concretely, FA can be increased due to myelination
or increased axonal packing but would decrease with increasing
fiber population complexity (e.g., crossing fibers). In contrast,
“tissue” based models attempt to estimate the components of
underlying tissue, typically using DWI acquisitions with multiple
b-values, and likely provide more biologically specific insights
(Alexander et al., 2019). One such model is neurite orientation
dispersion and density imaging (NODDI), which models three
tissue compartments (intra- and extra-cellular and cerebrospinal
fluid). It estimates separate indices for neurite density (neurite
density index, NDI) and fiber orientation complexity (orientation
dispersion index, ODI), together with the isotropic volume
fraction (i.e., cerebrospinal fluid compartment, IsoVF) (Zhang
et al., 2012). Several recent studies have used NODDI to examine
developmental changes in the WM microstructural properties
through infancy (Jelescu et al., 2015; Dean et al., 2017), childhood
to adolescence (Genc et al., 2017; Mah et al., 2017; Dimond
et al., 2020; Lynch et al., 2020). These studies have indicated an
age-related increase in NDI, with very little change observed in
ODI in the first two decades of life (Mah et al., 2017; Dimond
et al., 2020; Lynch et al., 2020), although studies covering a
wider age range indicate that ODI in many WM tracts starts to
increase in early adulthood (Chang et al., 2015; Slater et al., 2019).
Nevertheless, a large-scale study focusing on the period of early
adulthood to detail the late maturational changes in regional WM
properties is still lacking.

In the present study, we characterize variations in WM-
related metrics, including regional volumes and microstructural
properties measured using both DTI and NODDI, in the
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MRiShare database, a large cross-sectional cohort of young
adults undergoing university-level education (Tsuchida et al.,
2020). This study’s primary goal is to document the age-related
variations in the regional WM properties in this cohort. We also
report on the interrelations among the age effects on different
WM metrics in an effort to better understand biophysical
processes underlying the late maturational changes in the WM.
The secondary goal is to gain much-needed insights into the
sexual dimorphism of developmental processes (Lebel et al.,
2019) by investigating the effects of sex on these WM metrics and
their age-related variations.

MATERIALS AND METHODS

Participants
The MRi-Share study protocol was approved by the local
ethics committee (CPP2015-A00850-49). All participants
were recruited through the larger i-Share cohort study
(for internet-based Student Health Research enterprise).1

Participants signed an informed written consent form and
received compensation for their contribution. Out of 2,000
individuals who were enrolled between October 2015 and June
2017, 1,823 completed the MRI acquisition protocol for both
structural (T1-weighted and FLAIR) and diffusion imaging.
While the study protocol allowed enrollment of students
up to 35 years of age, almost 95% of our sample was under
26 years old. In this study, we present the estimated age effect
on WM metrics in the sub-sample of participants aged 18–26
(mean ± SD = 21.7 ± 1.8 years, N = 1,713). Age distribution
was similar in males (mean ± SD = 21.9 ± 1.8 years, N = 467)
and females (mean ± SD = 21.7 ± 1.7 years, N = 1,246), with
only a marginal difference in their mean (2 months difference in
age, p = 0.066, Welch’s t-test). The higher proportion of females
relative to males in MRi-Share is a feature observed among
university students at the French national level that is amplified
in the i-Share cohort due to an over-recruitment of students
coming from faculties in which an even greater proportion of
women are observed.

MRI Acquisition
The complete MRi-Share brain imaging acquisition and analysis
protocols of the MRi-Share study have been detailed in Tsuchida
et al. (2020). Briefly, all MRI data were acquired on the
same Siemens 3T Prisma scanner with a 64-channels head
coil (gradients: 80 mT/m–200 T/m/s) in the 2 years between
November 2015 and November 2017. The MRi-Share acquisition
protocol closely emulated that of the UKB MR brain imaging
study (Alfaro-Almagro et al., 2018), in terms of both modalities
and scanning parameters, with the exception of task-related
functional MRI that was not acquired in MRi-Share participants.
Here, we will focus on the MRi-Share structural (T1 and T2-
FLAIR) and DWI brain imaging protocol. The key acquisition
parameters for these scans were as follows;

1www.i-share.fr

- T1-weighted sagittal 3D-MPRAGE [repetition time
(TR)/echo time (TE)/inversion time (TI) = 2,000/2.0/880
ms, in-plane acceleration factor (R) = 2, spatial
resolution = 1 × 1 × 1 mm3 isotropic, matrix
size = 192× 256× 256, duration = 4 min 54 s].

- T2-weighted sagittal 3D-SPACE-FLAIR
[TR/TE/TI = 5,000/394.0/1,800 ms, R = 2, partial Fourier
(PF) = 7/8, spatial resolution = 1 × 1 × 1 mm3 isotropic,
matrix size = 192× 256× 256, duration = 5 min 50 s].

- 2D axial DWI (multi-band factor = 3, TR/TE = 3,540/75.0
ms, R = 1, PF = 6/8, fat-saturation, spatial resolution = 1.75
× 1.75× 1.75 mm3 isotropic, matrix size = 118× 118× 84,
duration = 9 min 45 s).

For the DWI we acquired 8, 32, and 64 directions each for
b-values 300, 1,000, and 2,000 s/mm2, respectively, and acquired
eight pairs of b = 0 images acquired in Anterior-Posterior (AP)
and the reverse PA phase encoding, interleaved during the b > 0
acquisition. The spatial resolution of the DWI was 1.75× 1.75×
1.75 mm3 isotropic, which was slightly better than that of UKB (2
× 2× 2 mm3 isotropic).

Image Processing
The acquired images were managed and processed with the
Automated Brain Anatomy for Cohort Imaging platform
(ABACI, IDDN.FR.001.410013.000.S.P.2016.000.31235; details
in Tsuchida et al., 2020). Below we briefly describe the
processing steps in each pipeline pertaining to the generation
of the JHU atlas ROI image-derived phenotypes presented in
the current paper.

T1 and T2-FLAIR Structural Pipeline
Our structural pipeline processed T1 and FLAIR images
for multi-channel volume- and surface-based morphometry,
primarily with SPM122 and Freesurfer v6.0.3 For generating the
regional WM volumes based on JHU atlas, we used the Jacobian-
modulated WM probability map (1 mm isotropic) outputted by
the “Unified Segmentation” framework (Ashburner and Friston,
2005) in the SPM-based volume processing branch of our
pipeline (for details, see Tsuchida et al., 2020). The same Jacobian-
modulated WM map was also used to obtain the total WM
volume (TWMV). We also obtained the total intracranial volume
(TIV) estimate based on the Freesurfer-branch of our pipeline.

Field Map Generation Pipeline
As in the UKB (Alfaro-Almagro et al., 2018), we estimated the
fieldmap images from the b = 0 images with opposing AP-PA
phase-encoding directions from DWI scans rather than from
“traditional” fieldmaps based on dual echo-time gradient-echo
images. We used all eight pairs of AP/PA b = 0 images that
were interspersed in the DWI scan to estimate the susceptibility
induced field and motion across the interspersed b = 0 scans using
the topup tool (Andersson et al., 2003) from the FMRIB Software
Library (FSL, v5.0.10).4 The resulting subject motion parameters

2https://www.fil.ion.ucl.ac.uk/spm/
3http://surfer.nmr.mgh.harvard.edu/
4https://fsl.fmrib.ox.ac.uk
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and the estimate of susceptibility induced off-resonance field
were passed to the DWI pipeline. It also generated the brain mask
based on the average distortion-corrected b0 maps, also used for
the distortion corrections in the DWI pipeline.

Diffusion MRI Pipeline
A detailed description of the preprocessing steps of DWI is
provided by Tsuchida et al. (2020). Briefly, the DWI data were
first corrected for susceptibility and eddy-current distortion
using the FSL Eddy tool, with replacement of outlier slices
(eddy_openmp as implemented in FSL v5.0.10 patch; Andersson
et al., 2016; Andersson and Sotiropoulos, 2016) and denoised
by applying non-local means filter using “nlmeans” denoising
tool (Coupe et al., 2008, 2011) as implemented in the Dipy
package (0.12.0; Garyfallidis et al., 2014).5 The resulting image
was then used to fit (1) DTI (Diffusion-Tensor Imaging; Basser
et al., 1994) modeling and (2) microstructural model fitting with
NODDI (Neurite Orientation Dispersion and Density Imaging;
Zhang et al., 2012). For fitting DTI, volumes with the highest
b-value (b = 2,000 s/mm2) were stripped from the data, as the
accuracy of the fit starts to decrease above b = 1,000 s/mm2

(Jensen and Helpern, 2010). Note that it still used multi-shell
data, using volumes with both b = 300 and 1,000 s/mm2 in
addition to b = 0 images. The diffusivity maps were further
cleaned by removing diffusivity value outliers using Random
Sample Consensus (RANSAC) approach (Choi et al., 2009), as
implemented in the scikit-learn package (0.19.1).6 The denoising,
DTI computation, and the RANSAC outlier removal were
performed by wrapping Scipy scripts, developed by Sherbrooke
Connectivity Imaging Lab.7 For NODDI, the full set of multi-
shell data was used for the fitting. We also used the empirical
values of cohort-specific isotropic and parallel diffusivity as the
dPar and dIso parameters for fitting NODDI (set to 1.5 × 10−3

and 2.4 × 10−3 mm2/s, respectively), which were obtained by
computing the mean MD within lateral ventricles and mean
AD within the corpus callosum in individual T1 space for
each subject. The preprocessing and DTI fitting were performed
using tools from FSL and the Dipy package, while the AMICO
(Accelerated Microstructure Imaging via Convex Optimization)
tool (Daducci et al., 2015) was used for NODDI fitting. For each
participant, the DWI processing pipeline produced seven images
in native space: fractional anisotropy (FA), mean, axial, and radial
diffusivity (MD, AD, and RD), based on DTI modeling, neurite
density index (NDI), orientation dispersion index (ODI), and
isotropic volume fraction (IsoVF), derived from NODDI.

Generation of JHU Atlas Region WM Phenotypes
We used the JHU ICBM-DTI-81 white matter labels atlas (Mori
et al., 2008; Oishi et al., 2008) to generate regional phenotypes
for each of the following metrics: regional WM volume and mean
values for 4 DTI (FA, MD, AD, and RD) and 3 NODDI (NDI,
ODI, and IsoVF) metrics. We used the atlas packaged with FSL
v5.0.10, which does not have the orientation or labeling issues

5https://dipy.org
6https://scikit-learn.org/stable/index.html
7https://scilpy.readthedocs.io/en/latest/

noted in other versions (Rohlfing, 2013) but is missing medial
longitudinal fasciculus and inferior fronto-occipital fasciculus
ROIs described by the authors of the atlas (Mori et al., 2008).
We extracted the WM volume and mean DTI/NODDI values
for 48 ROIs in this atlas, but in the absence of strong evidence
for the hemispheric asymmetry in the age-related changes (Lebel
and Beaulieu, 2011; Slater et al., 2019; Dimond et al., 2020), we
combined values across the right and left hemispheres for the 21
pairs of ROIs present in each hemisphere by taking the average
between the pair of ROIs, which were weighted by the respective
volumes of each ROI in the case of DTI/NODDI metrics,
to reduce the number of comparisons. Table 1 provides the
abbreviations of ROIs used in the figures and tables throughout
the manuscript, and Figure 1 presents the locations of these
ROIs. They are organized according to the broad classification
used by the author of the atlas: (1) tracts in the brainstem,
(2) projection fibers, (3) association fibers, and (4) commissural
fibers (Mori et al., 2008).

For extracting the regional DTI and NODDI values, we first
computed the rigid transform for aligning DTI and NODDI maps
to the native T1 reference space (1 × 1 × 1 mm3 isotropic)
with the SPM12 “Coregister” function. This transform was then
aggregated with the deformation field generated in the structural
pipeline to transform DTI/NODDI maps in the native DWI
space to the standard template space in one step, using the
SPM12 “Normalize” function. When computing the mean values
within each of the 48 ROIs, we used the subject-specific, spatially
normalized WM probability map, thresholded at 0.5, as an
inclusive mask. It ensured that the mean values were computed
within regions that are primarily WM, and minimized the partial
volume effects from the surrounding non-WM tissues. Figure 2
provides the example images of WM tissue map and DTI/NODDI
maps from a representative subject, with the outlines of JHU
ROIs to show the quality of alignment.

Quality Control
A detailed description of the quality control (QC) procedure for
image analysis is provided in Tsuchida et al. (2020). Briefly, all
structural scans were reviewed by one of the three experienced
MD investigators of the MRiShare study to check for major
artifacts or structural abnormalities before processing. During
image processing of the structural or DWI pipelines, pipeline-
specific QC images were generated for each subject. For the
structural pipeline that generated reference T1 images for other
modalities, a trained rater (N.B.) reviewed individual subject-
specific QC images for each step of the processing for all
subjects and verified that the quality of the SPM-based tissue
segmentation and spatial normalization were satisfactory. For
the DWI pipeline, a number of subject-specific QC images
and quantifiable QC metrics mainly related to the quality
of DWI data were generated (see Supplementary Material).
Additional QC metrics for the spatial normalization were
extracted by computing the image similarity of individual WM
tissue probability map and DTI and NODDI scalar maps to
the cohort-average maps, using Fisher z-transformed Pearson’s
correlation r between the two images. Two investigators (A.T.
and L.P.) identified and reviewed the subject-specific QC images
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TABLE 1 | Abbreviations of JHU atlas ROI names.

ROI name Abbreviation Hemisphere side ROI name Abbreviation Hemisphere side

Brainstem Association

Middle cerebellar peduncle MCP Both Fornix FX Both

Pontine crossing tract PCT Both Fornix cres or stria terminalis FX/ST Right/Left

Corticospinal tract CST Right/Left Cingulum cingulate gyrus CgC Right/Left

Medial lemniscus ML Right/Left Cingulum hippocampus CgH Right/Left

Superior cerebellar peduncle SCP Right/Left Superior fronto-occipital fasciculus SFO Right/Left

Inferior cerebellar peduncle ICP Right/Left Superior longitudinal fasciculus SLF Right/Left

Projection External capsule EC Right/Left

Anterior corona radiata ACR Right/Left Uncinate fasciculus UNC Right/Left

Superior corona radiata SCR Right/Left Sagittal stratum SS Right/Left

Posterior corona radiata PCR Right/Left Commissural

Anterior limb of the internal capsule ALIC Right/Left Genu corpus callosum GCC Both

Posterior limb of the internal capsule PLIC Right/Left Body corpus callosum BCC Both

Retrolenticular part of the internal capsule RLIC Right/Left Splenium corpus callosum SCC Both

Posterior thalamic radiation PTR Right/Left Tapetum TAP Right/Left

Cerebral peduncle CP Right/Left

for those with extreme values in any of the QC metrics, but
none of them showed any obvious signs of noticeable problems
in the raw DWI or the scalar DTI and NODDI maps and their
spatial normalization, except in a few cases where midsagittal
plots of the raw DWI revealed a zig-zag pattern indicative of the
within-volume motion in a few volumes.

Similarly, we checked the group-level distributions at the
level of individual phenotypes for any missing values and the
extreme outliers. Four subjects did not have any volumetric or
DTI/NODDI values for fornix (FX), as the WM probability map
did not overlap with this small ROI in the standard space. For the
same reason, one subject was missing data for the tapetum (TAP).
In addition, for corticospinal tract (CST; n = 4) and inferior
cerebellar peduncle (ICP; n = 6) ROIs, mean DTI/NODDI values
were not computed in the pipeline since these ROIs extended
beyond the bounding box of the DWI-derived images in the
standard space. Beyond these missing data, the extreme outliers
were rare, and each phenotype was roughly normally distributed.
Exceptions were some ROIs, in particular those surrounded by
cerebrospinal fluid and/or relatively small ROIs (e.g., FX, TAP,
brainstem ROIs), which had slightly skewed distributions, most
likely caused by slight misalignments in DWI-derived images and
structural images in standard space.

We checked for the impact of both phenotypic and QC metric
outliers by removing the “far out” outliers (Tukey, 1977), defined
as those with values below or above three times interquartile
range (IQR) from the first or third quartile, respectively, for
either the individual phenotype or any of the quantitative QC
metrics. In addition to the phenotypic and QC metric outlier
removal, we investigated the effect of including a global image
quality metric as a covariate in the model. For the WM volume,
we used the Euler number computed by Freesurfer that has
been shown to be consistently correlated with the manual rating
of the quality of the structural image (Rosen et al., 2018). For
the DWI-based metrics, we used the mean relative RMS of the
volume to volume displacement that quantifies the in-scanner

motion since a recent study has demonstrated that both DTI and
NODDI mean values were impacted by this QC metric (Pines
et al., 2020). However, the effects of outliers or inclusion of these
global quality metrics on the analyses were relatively minor (see
Supplementary Material). For simplicity, here we report the
results without any outlier removal, with total sample size of
1,713 for all ROI-metric combinations, except for FX (N = 1,709),
TAP (N = 1,712), CST (N = 1,709), and ICP (N = 1,707) ROIs.

Statistical Analysis
The primary goal of the present manuscript is to describe
the age-related variations in the regional WM volumes and
microstructural properties in young adults. Although not our
primary focus, we included sex as a covariate, and report the
global pattern, mainly to characterize any overall differences
between the two sexes at this age range and to examine any sex
dependency in the observed age effects by including age by sex
interaction term. Given our sample’s narrow target age range,
we expected most of the age-related variations in the volumetric
and diffusion metrics to be captured by a linear age model.
Indeed, the inspection of raw scatter plots (see Supplementary
Material) did not suggest any ROIs showing any clear non-linear
patterns of age-dependency. Also, a preliminary comparison of
models with and without quadratic age effect to capture any
non-linear trend showed that linear age effect models were
sufficient for each metric and ROI combinations, as judged by
the Bayesian information criterion (BIC; data not shown). Thus,
for all metrics, we tested the following model;

Y ∼ α + βAgeAge + βSexSex + βAge×SexAge× Sex

We also checked the consistency of the reported age effect
estimates on the regional WM volumes when correcting for
the global volume (TIV), and in the case of the DTI/NODDI
metrics, examined the effects of correcting for both the
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FIGURE 1 | Illustration of JHU ROIs used in the analysis. Locations of the 27 ROIs (6 medially located plus 21 pairs of ROIs in each hemisphere) from the JHU
ICBM-DTI-81 white matter labels atlas are shown in the glass brain for each broad group; (A) brainstem, (B) projection, (C) association, and (D) commissural fibers.
See Table 1 for the full ROI name corresponding to the abbreviations in the figure.

global (TIV) and regional (ROI) volumes, and report them in
Supplementary Material.

In an effort to better understand biophysical processes
underlying the late maturational changes in the WM, we
performed an exploratory analysis of the interrelations among

the age effect estimates of the WM metrics. For this, we first
computed the standardized parameter estimates (β∗) of the age
effect for each of the eight WM metrics across the 27 ROIs,
and calculated pairwise Pearson’s correlations between the β∗

values in the 27 ROIs for given metrics (e.g., FA vs. NDI, NDI
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FIGURE 2 | Examples of the WM tissue map and DTI/NODDI maps from a representative subject in the stereotaxic space. A selected axial slice from (A) the
Jacobian-modulated WM tissue map, (B) FA, (C) MD, (D) AD, (E) RD, (F) NDI, (G) ODI, (H) IsoVF maps in the stereotaxic space is shown for a representative
subject. Outlines of the JHU ICBM-DTI-81 white matter labels atlas are shown for each image to show the quality of the alignment.

vs. ODI, etc.). Note that it quantifies the correlation between
the estimates of age effects across the 27 ROIs, and not the
raw correlations between metric values in the ROIs, although
perfect correlations in the underlying raw data would result in
the perfect correlations in the estimated effects of age and sex as
well. That is, if two metrics measure a single property of WM
and are perfectly correlated, the age or sex effect estimates for
such hypothetical metrics would also be perfectly correlated. In
reality, if two metrics represent related but distinct properties that
are differentially sensitive to age or sex, correlation structures for
the respective effects would be different. To illustrate this point,
we also present a similar correlation structure for the estimated
mean values in the ROIs across the sexes (to account for the fact
that the age effect estimates also represent the value across both
sexes) using the metric values standardized across the ROIs.

All model fits were performed in R, version 3.4.4 (R Core
Team, 2018). We used the lm function as implemented in the
stats library for fitting the model. The goodness of fit was assessed
with adjusted R2. The Sex contrast was deviation-coded using
“contr.sum” setting so that parameter estimate (β) and t statistics
for non-categorical variables (i.e., age in our case) represent
those across sexes, and not for the specific reference sex (as
would be in the case of treatment-coding, in the presence of
interaction terms). Age was mean-centerd so that the intercept
represented the value at group mean age. For all analyses, we
report p-values as significant when below 0.05 after Bonferroni
correction for multiple tests (27 ROIs × 8 measures, nominal
p threshold = 0.05/216 = 0.00023). We also report generalized
eta squared (η2

G) as a measure of effect size (Olejnik and
Algina, 2003), obtained using aov_car function in afex package
(Singmann et al., 2021), including all terms in the model as the
“observed” variables. The specification of the observed variables

(as opposed to manipulated variables in other research designs)
allows the correction of the effect size estimate, which makes
this measure less dependent on specific research design features
(Olejnik and Algina, 2003).

Visualizations of statistical summaries were created with
ggplot2 (Wickham, 2016), and tables were created with the gt
package (Iannone et al., 2020) in R. Linear fitting of age effects
for each sex was performed by predicting the given WM property
in each sex using the emmeans package (Lenth, 2021). For
evaluating the interrelations between the age-related variations
in the regional WM volumes and diffusion metrics, we first
computed the β∗ values for the respective terms in each metric
using the robust standardization through refitting, implemented
with the effectsize package (Ben-Shachar et al., 2020). Then, the β∗

values across 27 ROIs were used to compute Pearson’s correlation
between the pairwise metrics. The computation of correlation
values and visualization of the results was performed using the
Ggally package (Schloerke et al., 2021).

RESULTS

The Main Effect of Age
Table 2 presents the parameter estimates (β) for age effects
for each metric (WM volume, 4 DTI and 3 NODDI metrics)
across the ROIs, and Figure 3 visually presents the summary
by showing the t statistics and effect sizes (η2

G) as heatmaps,
filtering out those that did not survive Bonferroni corrections.
Supplementary Tables 1–8 provide the complete model results,
including the confidence intervals of age β, uncorrected p-values
and η2

G, and total variance explained by the model for each
metric and ROI. Figure 4 provides selected scatter plots of age
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TABLE 2 | Summary of age effects for each diffusion phenotype across JHU ROIs.

Volume FA (×10−3) MD (×10−6) AD (×10−6) RD (×10−6) NDI (×10−3) ODI (×10−3) IsoVF (×10−3)

Brainstem

MCP −25.2 −0.0 −0.9* −1.4* −0.6 1.1* 0.7* −0.6*

PCT −2.7 −0.7 −1.9 −3.3* −1.2 0.3 1.3* −1.9*

CST −1.8 −1.3* −2.6* −5.6*** −1.1 0.2 1.9* −2.0*

ML −1.2 −1.1 −2.4* −5.1*** −1.1 2.2* 1.3 −1.5*

SCP −2.3* −0.3 −2.0*** −4.1*** −0.9* 2.0*** 0.9* −1.2***

ICP −0.4 −0.3 −2.1** −3.6*** −1.4* 2.4*** 1.1* −1.2*

Projection

ACR 3.2 1.4** −2.0*** −1.4* −2.3*** 2.9*** −0.2 −0.1

SCR 5.6 −0.6 −1.3*** −2.6*** −0.6* 2.2*** 1.2*** −0.1

PCR 3.3 0.6 −1.3** −1.3* −1.2* 2.8*** 0.4 0.5*

ALIC 1.7 0.6 −2.0*** −2.8*** −1.6*** 3.1*** 0.7* −0.4

PLIC −0.5 −0.7* −1.4*** −3.4*** −0.5 1.8** 1.3*** −0.6**

RLIC −0.9 0.8* −1.6*** −1.8** −1.5*** 3.4*** 0.5* −0.1

PTR −1.4 0.3 −1.4*** −2.2** −1.0* 2.1*** 0.5* 0.1

CP −3.9 −1.2* −2.2* −5.8*** −0.4 1.4 2.4*** −1.6*

Association

FX 2.6*** 0.7 0.3 1.1 −0.1 3.5*** 1.4* 2.0*

FX/ST −0.2 0.9* −2.2*** −3.0*** −1.7*** 3.7*** 0.8* −0.6*

CgC 8.3** 2.3*** −2.0*** −0.5 −2.7*** 3.8*** −0.5 −0.3

CgH 5.1*** 1.2* −3.0*** −3.6*** −2.8*** 6.6*** 1.6** −0.2

SFO 0.5 0.1 −1.8*** −2.8*** −1.3* 3.5*** 0.6 −0.1

SLF 6.3 1.0* −1.3*** −0.8 −1.5*** 2.6*** −0.1 0.1

EC 3.8 1.2** −1.7*** −1.4** −1.9*** 3.3*** 0.3 0.2

UNC −0.3 1.0 −1.8*** −2.1* −1.7** 4.1*** 0.8* 0.7*

SS −0.8 1.6*** −2.0*** −1.2* −2.4*** 3.9*** −0.0 0.1

Commissural

GCC 5.1 1.7*** −1.7*** −0.8 −2.1*** 2.4*** −0.4 −0.3

BCC 21.7 0.7 −1.3*** −1.5* −1.2** 2.4*** 0.3 −0.1

SCC 31.5* 1.4*** −1.5*** −1.0 −1.7*** 2.6*** 0.1 −0.5*

TAP −2.7* 2.0* −1.4* 0.5 −2.4* 2.3* −0.3 0.5

Non-standardized parameter estimates (β) for age effects for each phenotype and ROI are shown (see Table 1 for the full names of abbreviated ROIs). The unit of the age
effect is mm3/year for the volume, mm2/s/year for the diffusivity measures (MD, AD, and RD), and/year for FA and the NODDI phenotypes (NDI, ODI, IsoVF). Statistical
significance symbols (uncorrected for multiple comparisons) *0.05 < p < 0.001, **0.001 < p < 0.0001, ***p < 0.0001. Bold symbols indicate Bonferroni-corrected
significant p-values.

effects for each sex to present examples of such effects. Similar
plots of age effects for the entire metrics and ROIs are also
provided in Supplementary Figures 5–12. As evident in Table 2
and Figure 3, a number of WM ROIs showed robust age-related
variations in one or more metrics we examined.

Significant age-related increases in WM volumes were
observed only in cingulum hippocampus (CgH) and fornix (FX).
The cingulum in the cingulate gyrus (CgC) showed a significant
age-related increase when TIV or TWMV was accounted for by
including them in the model (see Supplementary Material).

In contrast, robust age effects in DTI and NODDI metrics
were observed across many ROIs, most pronounced for MD and
NDI (Figure 3). Those with significant age effects all showed an
age-related increase in NDI, and decreases in diffusivity metrics.

Many of these ROIs showed a tendency for the volumetric
increase as well, but some showed a significant NDI increase
and diffusivity decrease without any trend for volumetric increase
(see Figure 4 for examples in CgH, with the volumetric increase,
and uncinate fasciculus (UNC), without). CgH additionally
showed a significant age-related decrease in AD and a trend
for an ODI increase. The AD decrease was also observed
across many ROIs in projection fibers and brainstem ROIs
with varying degrees but was particularly pronounced in the
ROIs that represent a connected pathway of projection fibers:
superior corona radiata (SCR), posterior limb of the internal
capsule (PLIC), and cerebral peduncle (CP) (see Figure 4 for
example in PLIC), all of which also showed a significant ODI
increase with age.
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FIGURE 3 | Patterns of significant age effects across WM volume and diffusion phenotypes and ROIs. Relative statistical strengths and effect sizes of age effects
across diffusion phenotypes and ROIs are shown as heatmaps of (A) t statistics and (B) η2

G values (see Table 1 for the full names for the abbreviated ROIs). Those
that did not survive Bonferroni corrections for multiple comparisons were filtered out (set to 0) to facilitate comparisons within significant results. Positive t-scores in
pink indicate an age-related increase and negative values in green indicate an age-related decrease.

Interrelations Among the Age Effects on
the WM Properties
Figure 5 shows the correlation plot of the standardized parameter
estimates (β∗) for the age effect between pairs of metrics across
the 27 ROIs. For a comparison, Supplementary Figure 13
shows a similar plot computed for the simple regional mean
values of these metrics, calculated after standardizing values
across the ROIs.

The correlation structure of the age effect β∗ values indicated
that overall, the degree of age-related variations in the regional
mean FA values was negatively associated with RD and positively
with AD. Thus, although both AD and RD decreased with age
across the most ROIs, regions with faster age-related decreases
in RD relative to AD showed overall age-related increases in FA.
The degree of age-related variations in FA was also negatively
associated with ODI. These patterns are expected since FA is,
by definition, higher when diffusivity along the axial axis is
higher than along the radial axis and when fiber orientation
dispersion is lower. Indeed, such patterns were more evident
in the correlations of simple mean values of the regional WM
metrics, which showed a strong positive correlation between the
regional FA and AD values and also strong negative correlations
between the regional FA and RD or ODI values.

In contrast, the correlation patterns for NDI were distinct
between the regional age effects and the simple mean values: the
degree of age-related increases in NDI was positively associated
with the degree of age-related variations in the regional WM
volume and FA, and negatively associated with the age-related
decrease in RD (i.e., regions with more NDI increases showing
more volumetric and FA increases and RD decreases). In the

regional mean values, the higher NDI values were not strongly
associated with the regional WM volumes or FA and RD
values. Another difference was the non-significant but negative
correlation between the age effects on NDI and ODI, indicating
the ROIs showing more age-related increases in NDI tended
to show less ODI increases, while in the regional mean values,
NDI and ODI were weakly but positively associated, indicating
higher NDI values in ROIs with higher ODI. Note that despite
the weak correlations between the age effects on the regional
volume and FA, RD, and NDI values, the age effects in these
microstructural properties were not affected by the inclusion
of the regional volumes as a covariate in the model (see
Supplementary Material).

Dependency of Age-Related Variations
on Sex
Summary of t statistics and η2

G values for the sex effect on each
of the eight WM properties across the JHU ROIs are presented in
Figure 6 (see also Supplementary Tables 1–8).

Not surprisingly, males had larger WM volumes than females
across most of the ROIs examined. However, the difference
diminished considerably when global volume differences were
taken into account by including either TIV or TWMV in the
model (see Supplementary Material). For the diffusion metrics,
females showed higher diffusivity than males across many ROIs,
while males showed higher NDI and ODI overall. There were
relatively few regionally specific patterns in the sex effects,
although the differences were most robust in the brainstem ROIs.

Despite the widespread main effects of sex, we did not observe
any significant sex differences in the age-related variations in
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FIGURE 4 | Scatter plots of individual age effects in (A) the cingulum-hippocampus (CgH), (B) uncinate fasciculus (UNC), (C) posterior limb of the internal capsule
(PLIC), and (D) superior cerebellar peduncle (SCP) ROIs. Predicted linear regression lines are superimposed for each sex (dark red: females, dark cyan: males), with
shades indicating the 95% confidence intervals.

the WM properties (the lowest uncorrected p = 0.0008). Overall,
any non-significant sex differences in the age-related trajectory
tended to show a steeper slope in males than in females, in
particular for AD and ODI (see for example in the SCP, Figure 4
and Supplementary Figures 5–12).

DISCUSSION

The primary objective of the present study was to characterize
the late maturational changes in the regional WM properties
during post-adolescence in the large and unique sample from

the MRi-Share database. We also examined sex differences in
the WM of this sample and assessed whether the age-related
changes differed between the two sexes. Below we discuss our
main findings in relation to the existing literature, comment on
the specific features of our dataset, and methodological strengths
and limitations of the present study.

Age-Related Variations in Regional WM
Properties
We observed widespread age-related increases in the NDI as
well as decreases in diffusivity (MD, AD, and RD) across many
of the JHU ROIs in our sample of young adults aged between
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FIGURE 5 | The inter-relations between the age-related variations in the regional WM properties. Pairwise correlations of the standardized parameter estimates (β*)
for age effects in the 27 ROIs are shown. The diagonal of the plot matrix shows the distributions of β*Age for the regional WM volume and DTI/NODDI values. The
upper triangle shows Pearson’s correlation (r) values. The lower triangle shows the pairwise scatter plots of β*Age, with the colors indicating the ROI groups (blue:
brainstem, pink: projection, green: association, yellow: commissural). Statistical significance symbols (uncorrected for multiple comparisons) *0.05 < p < 0.001,
**0.001 < p < 0.0001, ***p < 0.0001. Bold-face indicates a significant correlation after Bonferroni correction for multiple comparisons (28 correlations).

18 and 26 years. Changes in FA were statistically weaker, but
ROIs with significant age effects all showed an increase with
age. Regional volumes did not vary significantly with age for
the most part but showed trends for an age-related increase
in some ROIs. The degree of age-related increases in FA and
volume in each ROI were nonetheless correlated with the degree
of age-related variations in the NDI and diffusivity. Regionally,
we observed that many ROIs in projection and brainstem fiber
groups showed primarily significant age-related decreases in
AD. In contrast, those in association and commissural fiber

groups were more characterized by decreases in RD. Several ROIs
in the corticospinal pathway additionally showed age-related
increases in ODI.

The global patterns we observed in our sample are consistent
with a wealth of literature showing a relatively protracted
maturation of human brain WM: both developmental and life-
span studies of WM volume and DTI metrics have indicated
continued increases in global WM volume and FA into young
adulthood, together with decreases in diffusivity that peaks
sometime in young to mid-adulthood (Hasan et al., 2007,
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FIGURE 6 | Patterns of significant sex effects across WM volume and diffusion phenotypes and ROIs. Relative statistical strengths and effect sizes of sex effects
across WM phenotypes and ROIs are shown as heatmaps of (A) t statistics and (B) η2

G values (see Table 1 for the full names for the abbreviated ROIs). Those that
did not survive Bonferroni corrections for multiple comparisons were filtered out (set to 0) to facilitate comparisons within significant results. Positive t-scores in pink
indicate higher values in females than in males and negative values in green indicate the opposite.

2010; Westlye et al., 2010; Lebel et al., 2012; Slater et al.,
2019; Beaudet et al., 2020; Tsuchida et al., 2020). More recent
studies using NODDI have also shown the continuous increase
of NDI through development (Genc et al., 2017; Mah et al.,
2017; Dimond et al., 2020; Lynch et al., 2020; Pines et al.,
2020) and adulthood (Billiet et al., 2015; Chang et al., 2015;
but see Kodiweera et al., 2016), peaking around the fourth
and fifth decade of life (Slater et al., 2019; Qian et al., 2020).
ODI, on the other hand, has not been reported to change
noticeably during development (Dimond et al., 2020) or show
a slight decrease in some tracts (Lynch et al., 2020) but starts
to increase during young adulthood (Chang et al., 2015; Slater
et al., 2019) that continues through aging (Billiet et al., 2015;
Beck et al., 2021).

More robust and wide-spread increase in NDI than FA
observed in our data likely results from the fact that we sampled
the FA values from the entire WM regions within each ROI,
rather than a limited “core” region with high FA values, a
common approach in studies using the same JHU atlas, as
discussed in the section on Potential limitations below. When
sampling over regions with more complex fiber organizations,
NODDI can provide more specific insights than FA, since FA can
be influenced by both the fiber density and myelination as well
as by the composition of fiber orientations (among other things)
in the sampled voxel (Zhang et al., 2012; Jones et al., 2013). This
point is corroborated by the relationships we observed between
the age effects on the regional FA and NDI or ODI; while the age-
related increase in FA was positively correlated with that of NDI,
it was negatively correlated with the degree of age-related increase
in ODI. It suggests that concomitant increases in NDI and ODI

can have an opposing impact on the regional FA, rendering it less
sensitive to the effects of age.

Regionally, we observed that cingulum WM showed a
prominent age-related increase in NDI as well as MD and RD
decreases. With concurrent RD reduction, the NDI increase is
suggestive of increased myelination (Song et al., 2005). Cingulum
WM in hippocampal region (CgH) also showed a robust
volumetric increase as well, both in terms of raw volume and
relative to TIV or TWMV. However, in these and other ROIs, the
regional volume had little impact on the observed age effects on
other WM properties, suggesting the distinct biological processes
governing the age-related changes in WM volumes and other
metrics related to microstructural properties (Lebel et al., 2019).
Previous studies have indicated cingulum to be one of the last
major tracts to mature during development, reaching peak values
in FA or minimum values in MD later than other tracts (Tamnes
et al., 2010; Westlye et al., 2010; Lebel et al., 2012). Similarly,
a higher rate of NDI growth in limbic tracts that include CgC
and CgH has been reported in a sample of 66 healthy subjects
with a mean age of 25 years (Chang et al., 2015). A more recent
and larger-scale lifespan study on regional DTI and NODDI
metrics in 801 individuals aged 7–84 years has also indicated a
relatively late peak age for NDI in CgC and CgH (Slater et al.,
2019). The cingulum bundle primarily contains fibers that link
cingulate gyrus and hippocampus (Mori et al., 2008), but also
consists of many short association fibers that interconnect medial
parts of the frontal, parietal, and temporal regions (Heilbronner
and Haber, 2014). With the diverse fiber populations that make
up this bundle, neuroimaging studies in healthy subjects as well
as in clinical populations have implicated this region for a wide
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range of cognitive functions: these include executive control,
motivation, and pain in anterior/dorsal cingulate and memory
in hippocampal region (reviewed in Bubb et al., 2018). Several
studies have also shown the link between the microstructural
integrity of the cingulum bundle and cognitive performance
in children (Bathelt et al., 2019) and older adults (Kantarci
et al., 2011; Bettcher et al., 2016). In this context, robust age-
related changes observed in the cingulum ROIs in our sample of
young adults undergoing higher-level education are particularly
interesting. Future studies should investigate the relevance of
volumetric and microstructural differences across subjects in
cingulum to cognitive and academic performance and emotional
and behavioral development.

Beyond the cingulum bundle, all association ROIs tended
to show a higher increase in NDI (average annual percentage
increase, computed from the base value at age 18) of 0.55%/year,
ranging from 0.37%/year in SLF to 0.89%/year in CgH) than
commissural (average of 0.35%/year, ranging from 0.32%/year
in GCC and 0.41%/year in TAP) and projection ROIs (average
of 0.34%/year, ranging from 0.16%/year in CP and 0.45%/year
in ACR and RLIC). The NDI increase was smallest in the
brainstem ROIs (average of 0.16%/year) and least statistically
significant. Of note, the brainstem ROIs also had the highest
estimated NDI at age 18 [mean (range) = 0.89 (0.84–0.96)],
while association fiber ROIs had the lowest estimated NDI at
the same age [mean (range) = 0.71 (0.62–0.80)]. It suggests that
most of the NDI growth in brainstem ROIs likely takes place
earlier than the age range of our sample. The observed pattern
is broadly consistent with previous DTI studies suggesting
earlier maturation in the commissural and projection fibers,
followed by association fibers, especially in fronto-temporal
regions (Tamnes et al., 2010; Westlye et al., 2010; Lebel et al.,
2012). More recent studies with NODDI also support similar
regional patterns of the developmental trajectory (Dean et al.,
2017; Slater et al., 2019; Lynch et al., 2020). For instance, in
a recent study examining the maturational timing of regional
NODDI parameters in a cross-sectional sample of 104 subjects
aged between 0 and 18 years, the NDI growth in callosal
fibers reached a plateau the earliest, followed by projection and
association fibers (Lynch et al., 2020).

While relatively modest in terms of NDI growth, we found that
the connected ROIs of projection fibers, from superior corona
radiata (SCR), through the posterior limb of the internal capsule
(PLIC), then to cerebral peduncle (CP), showed the age-related
increase in ODI and decrease in AD. It suggests the increasing
fiber complexity in this large WM bundle that contains the
pyramidal and cortico-pontine tracts. This observation is novel,
and has not been reported in previous studies examining age-
related variations in regional NODDI values in subjects with age-
range that overlaps with our study (Billiet et al., 2015; Chang et al.,
2015; Slater et al., 2019; Pines et al., 2020). None of these studies
reported notable age-related ODI increase in this projection fiber
pathway that stood out from other regions (e.g., non-brainstem
projection fiber ROI in Chang et al., 2015 and tractography-
based corticospinal tract in Slater et al., 2019). However, different
methodology in defining the tract ROI as well as modeling
strategies makes the direct comparison difficult. Future studies

are needed to confirm the validity of our observation and
investigate the functional relevance of such age-related changes.

Biophysical Interpretation of
Age-Related Variations in DTI and NODDI
The present study demonstrates the usefulness of NODDI
metrics in at least partially disambiguating the factors that
can result in the observed patterns of age-related variations
in DTI metrics: the overall age-related decreases in diffusivity
were associated with two uncorrelated increases in NDI and
ODI, with NDI increases associated with decreases in RD and
ODI with decreases primarily in AD. It indicates that the
age-related variations in DTI metrics at this age range likely
result from changes in both the intra-neurite fraction and fiber
complexity. However, it should be cautioned that as in any
other models, NODDI makes certain assumptions that over-
simplify the underlying microstructure, and it has been criticized
in recent years that some of these assumptions are invalid
and can introduce biases in the estimates (Jelescu et al., 2015;
Lampinen et al., 2017). In particular, the assumption of a single
and fixed intrinsic diffusivity for both intra- and extracellular
space that causes non-negligible biases in ODI and IsoVF,
as well as large uncertainty in the IsoVF estimation (Jelescu
et al., 2015). NDI has also been shown to be overestimated in
the tissue with lower diffusivity than assumed in the model,
such as in the gray matter and in pathology (Lampinen et al.,
2017). Even when the estimates are free from biases, the
underlying biological phenomena are not as specific as the
naming of NDI (“neurite density” index) suggests, since any
microstructural changes that can affect intra-neurite fraction
directly (increase in the number and density of axons) or
indirectly by affecting the volume of the extra-axonal space (for
example myelination). Such ambiguity is evident in a number
of speculative interpretations in the clinical applications of
NODDI in the literature (Kamiya et al., 2020). Ultimately, precise
biological interpretations of observed changes or variations
in NODDI should be validated through comparisons with
histological studies and with complementary or higher-order
diffusion models (Jelescu et al., 2020). Nonetheless, in the case
of the white matter in normal development, it is likely that
the observed patterns of NODDI and DTI metrics reflect the
myelination and remodeling of myelin, rather than an increase in
the number of axons (de Graaf-Peters and Hadders-Algra, 2006;
Sampaio-Baptista and Johansen-Berg, 2017). The correlation of
the age-related increases in NDI with decreases in RD, but
not with AD, is consistent with this interpretation. Future
studies should investigate the validity of this observation, and
also examine how such changes in young adults are affected
by cognitive and physical activities, and other lifestyle and
environmental factors.

Sex Differences in the WM Properties
and the Patterns of Age-Related
Variations
In many ROIs, we detected significant sex differences in the
regional WM properties but found very little evidence for sex
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differences in the age-related variations in the WM properties at
this age range. The sex differences in the regional WM volumes
were most likely due to differences in overall head size, as the
inclusion of TIV or TWMV diminished most of the differences.
However, we also observed globally higher diffusivity (MD, AD,
and RD) in females than in males and higher NDI and ODI in
males than in females, which cannot be accounted for by the head
size differences. While there are some studies reporting lower MD
values in males than in females in young adults and adolescents
(e.g., Lebel and Beaulieu, 2011; Herting et al., 2012), such sex
differences are often more regionally specific and not universally
detected across studies (e.g., Lebel et al., 2008; Tamnes et al.,
2010). Nonetheless, we did observe greater MD and AD over the
entire WM skeleton in females than in males in our recent large-
scale multi-cohort study (total N > 20,000) that covered most
of the adult life span (Beaudet et al., 2020), suggesting that the
greater diffusivity in females is not unique to this sample. With
regard to NODDI, one study with a young to middle-age sample
(age range of 18–55 years) reported a robustly higher NDI and
ODI in males than in females (Kodiweera et al., 2016), similar
to our findings; however, most studies do not report any sex
differences in childhood and adolescence (Genc et al., 2017; Mah
et al., 2017; Dimond et al., 2020; Lynch et al., 2020).

Despite the main effects of sex, we did not detect strong
evidence for the sex differences in the age-related variations in
our data. It is consistent with prior studies that report no or
minimal interaction between sex and age after post-childhood
in DTI (Hsu et al., 2010; Hasan et al., 2010; Tamnes et al., 2010;
Inano et al., 2011; Lebel et al., 2012; Pohl et al., 2016) or NODDI
(Cox et al., 2016; Kodiweera et al., 2016; Slater et al., 2019;
Lynch et al., 2020). It suggests that any sex-related differences
in the WM properties develop relatively early in development.
Indeed, some studies reported steeper age-related changes in both
FA and MD in boys than girls during childhood (Simmonds
et al., 2014; Reynolds et al., 2019). However, further studies are
needed to determine factors that may influence apparent sex
differences in the WM properties and their rate of change with
age in specific cohorts, such as body mass index, physical and
intellectual activities, and other behavioral differences between
the sexes that may modulate the WM properties.

Potential Limitations
As we describe more in detail in Tsuchida et al. (2020),
our sample from the MRi-Share database is drawn from
students undergoing university-level education in Bordeaux,
and as such, not necessarily a representative sample of healthy
young adults. As a consequence, our sample is dominated by
female participants, for example, and likely have different socio-
demographic backgrounds and levels of education than the rest
of the population of the same age range. They are also not
guaranteed to be perfectly “healthy,” as the i-Share study, from
which the MRi-Share participants were drawn, was designed to
investigate the physical and mental health of students, and did
not exclude those with a past or current history of mental illness,
alcohol intake, smoking habits, and/or use of any recreational
drugs and psychotropic medications. While this undoubtedly

increases the variance unaccounted for in our data, it also makes
our data more representative of the sampled population.

The MRi-Share database is also currently cross-sectional,
limiting our inference of maturational trajectory from the age-
related variations in the data. The analysis of age effects based on
cross-sectional data has been shown to lead to spurious findings
unsupported from longitudinal analysis, especially when using
quadratic models to describe non-linear patterns of age-related
changes (Fjell et al., 2010; Pfefferbaum and Sullivan, 2015). In
our sample with a relatively limited age range of 18–26 years, we
found that linear age trends were sufficient for characterizing age-
related variations in the data, thus avoiding some of the pitfalls of
fitting quadratic age models. While we still need to exert caution
when interpreting the apparent age-related variations in our data,
our findings were found to be broadly consistent with the known
age-related trajectories in WM properties.

Though our DWI preprocessing pipeline included standard
steps with susceptibility and eddy-current distortion correction
and was similar to the official UKB DWI pipeline [with additional
denoising using non-local means filter (Coupe et al., 2008, 2011)],
our study did not make use of additional preprocessing steps
such as bias field correction and Gibbs ringing correction. Recent
work has highlighted the potential impact of such preprocessing
choices on diffusion metrics and the observed age associations
(Maximov et al., 2019). We also used the version of Eddy (patch
5.0.10) before the option to correct for within-volume movement
(Andersson et al., 2017) and interactions between susceptibility
and motion (Andersson et al., 2018) implemented in the latest
version of the tool. Future investigations with this dataset may
benefit from the updated preprocessing pipeline that incorporates
these steps and examine the reliability of the findings from
the current study.

Regarding the specific methodology for characterizing the
regional WM properties, we used the ROIs based on the JHU
ICBM-DTI-81 white matter labels atlas, computing the mean
DTI/NODDI values within regions with high WM probability
based on the multi-channel tissue segmentation with T1 and
FLAIR scans. The ROIs in this atlas represent the WM regions
with relatively well-organized structures that are clearly visible
in the color-coded map of the tensor fields and should not
be conflated with tracts obtained through tractography-based
methods: The naming of these ROIs is based on the primary
WM fiber population passing through the region, but these ROIs
often represent a limited portion of a given tract, with arbitrary
boundaries, and also may contain different fiber populations. For
example, the corticospinal tract (CST) ROI in this atlas represents
a portion of the CST at the level of medulla and pons, whereas
the CST in the tractography-based methods usually refers to
the fiber population that spans from corona radiata, passing
through the internal capsule, then to the midbrain (Thiebaut de
Schotten et al., 2011; Chenot et al., 2019). Another example is the
sagittal stratum (SS) ROI, which, according to the authors of the
atlas, includes both the inferior longitudinal fasciculus and the
projection fibers from the internal capsule, therefore including
both projection and association fibers (Mori et al., 2008). We also
note that recent anatomical studies have seriously questioned the
presence of superior fronto-occipital fasciculus (SFO) in humans
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(Türe et al., 1997; Forkel et al., 2014; Meola et al., 2015; Liu et al.,
2020). Thus, this ROI most likely represents anterior thalamic
radiation, as has been noted by the authors (Mori et al., 2008).

Although tractography-based methods allow a more direct
characterization of any given tract in the WM, averaging of
diffusion metrics along the entire length of tracts of interest can
be problematic, in particular for DTI metrics, which can vary
considerably along the tract due to the variability in the fiber
tract geometry (Lebel et al., 2008; Vos et al., 2012). For this
reason, more detailed comparisons of metrics at arbitrary points
along the tract (“tract profiling”) have been proposed (Jones
et al., 2005; Colby et al., 2012; Yeatman et al., 2012; Cousineau
et al., 2017). Regardless of how to sample values from the tracts
of interests, the choice of specific tracts to be extracted, the
tracking or extraction criteria (seeding and exclusion regions
for tracking specific tracts, or inclusion or exclusion criteria
when extracting specific tracts from a whole-brain tractogram),
tracking algorithms and their hyperparameters can complicate
comparisons across studies (Côté et al., 2013). To avoid the bias
introduced by study-specific protocols, a number of automated
or semi-automated methods to extract major WM tracts have
been proposed in recent years (Zhang et al., 2008; Yendiki et al.,
2011; Yeatman et al., 2012; Wassermann et al., 2016; Wasserthal
et al., 2018; Warrington et al., 2020), but no one method has
been applied widely to characterize age-related changes in WM
properties (Lebel et al., 2019). Also, more work is needed to assess
the reproducibility and anatomical validity of different protocols
for tract reconstructions (Rheault et al., 2020).

Within the studies using the ROI-based approach, and in
particular the ROIs based on the same JHU ICBM-DTI-81 atlas,
many use the framework of Tract-Based Spatial Statistics (TBSS,
Smith et al., 2006), included with the FSL package. TBSS was
developed to overcome the limitations of voxel-based analyses
as applied to DTI metrics, namely the difficulty of aligning
complex fiber architecture across subjects and the problem of
smoothing images with highly heterogeneous noise such as FA.
Its approach is to project the highest local FA values onto
the non-linearly aligned group average or a template FA map
that has been “skeletonized” by only taking the regions with
maximal FA values with low inter-subject variability (Smith
et al., 2006). The DTI or any other maps of diffusion metrics
can then be projected to the FA-based skeleton to perform a
voxel-based comparison within the skeleton or an ROI-based
comparison using the atlas, such as the JHU atlas used in
the present study. The focus on the WM skeleton with high
FA values across subjects resolves the issue of alignment and
correspondence across multiple subjects, but by design, it biases
the characterization of the WM microstructural properties to the
very small portion of WM inside the skeleton that is only one
voxel in width, with relatively simple fiber orientations (Lebel
et al., 2019). When used together with the ROI-based approach,
the number of voxels contributing to the analyses are further
reduced. In the present study, we used less restrictive sampling
based on the WM probability map rather than the TBSS-style
FA skeleton to allow for a more complete characterization of the
regional microstructural properties. This approach also allowed
for the direct comparison of the variations in the regional volume

based on the Jacobian-modulated WM probability map and the
variations in the microstructural properties in the same region.
The inclusion of voxels outside the FA skeleton likely explain the
relative lack of age or sex effects for mean FA values in our study,
since it averages over regions with more complex fiber geometry
and makes it difficult to dissociate changes related to the axonal
diffusion properties from those related to the complexity of fiber
orientations. However, multi-component tissue models such as
NODDI can offer more specific inferences about the variations or
differences in the microstructural properties without restricting
the analysis to the WM skeleton, as we demonstrated in our study.

Another critical difference between the TBSS-based approach
and the current study is the method of spatial normalization:
after non-linear alignment of FA map to the template space,
the TBSS projects the highest FA values onto a template FA
skeleton in the standard space. Although it is meant to improve
the alignment of the core of WM tracts, concerns have been
raised with regard to the anatomical inaccuracies introduced
by such a method (Bach et al., 2014). In the present study, we
used the “Unified Segmentation” framework (Ashburner and
Friston, 2005) to perform spatial normalization based on tissue
segmentation of the structural scans, a common approach in
voxel-based morphometry studies (e.g., Takao et al., 2011; Powell
et al., 2012; Shiino et al., 2017). The non-linear deformation field
obtained from the spatial normalization of the structural scans
was then applied to DTI and NODDI maps, together with affine
transformations that co-register these maps to the reference T1
scan of each subject. Although this is not necessarily the best
available method to non-linearly align images (Klein et al., 2009),
we believe that the sampling and averaging of values within
the regions comprising hundreds of voxels (or thousands, in
many ROIs), defined based on both the template atlas label and
subject-specific WM probability map, would limit the effects of
small misalignments, especially with the large sample size in our
study. Having said that, the robustness of the findings should be
confirmed using state-of-the-art methods to align images, such as
registrations based on diffusion tensor images (Zhang et al., 2006)
or fiber orientation distributions (Raffelt et al., 2011).

CONCLUSION

In a large cohort of university students, we found a widespread
increase in NDI, with a more regionally specific increase in
ODI, indicating a continuing modulation of WM properties at
this age range. We also demonstrated the distinct patterns of
interrelations among the estimated age effects on different WM
properties that were consistent with remodeling of myelin in
post-adolescence. We did not find any evidence for a strong
sex dependency in the patterns of age-related variations. These
findings highlight the complexity of the patterns of regional WM
properties and individual variations in such patterns. Although
we focused on the basic characterization of age and sex effects
in the present study, they represent a small portion of the
variance in data, and there are large individual differences in the
regional WM volumes and microstructure. Future studies should
investigate how the maturational processes in the WM influence,
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or are influenced by, genetic, cognitive, behavioral, lifestyle and
social factors, and how they are altered in neuropsychiatric
conditions that manifest in early adulthood.
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Supplementary Material

1. The effect of phenotypic and QC metric outlier removal and inclusion of a global QC
metric in the model

While the quality of the acquired image and specific processing steps were visually reviewed and
verified for all subjects for the structural scans (T1w and FLAIR images), we focused on identifying
the outliers in a number of quantitative QC metrics for the DWI pipeline, then reviewing the
subject-specific QC images for those subjects. Both the visual QC images and quantitative QC
metrics were mainly related to the quality of DWI data: for example, visual QC images included the
plots of relative motion (measured as the mean relative root mean square (RMS) of the
displacement), the number of outlier slices as identified by Eddy tool (Bastiani et al., 2019) and
percent outliers as determined by ‘3dTOutcount’ tool from AFNI (Cox, 1996) per each frame, and
contrast-to-noise ratio (CNR) and temporal signal-to-noise ratio (tSNR) images as well as midsagittal
plots of raw images for each b-values, and maps of DTI residuals and “physically implausible
voxels” where the mean intensity level of the b = 0 images is below one or more nonzero b-value
images (Tournier et al., 2011). The quantifiable QC metrics represented their numerical summary. It
included 1) the mean relative total RMS and “restricted” RMS, 2) the mean number of Eddy-based
outlier slices and AFNI-based percent voxels per volume, 3) the mean CNR (for each b > 0 image)
and tSNR (for each b-value) inside the brain, and 4) the mean DTI residuals and fraction of
implausible voxel inside brain mask (for their distribution, see Supplemental Material in Tsuchida et
al., (2020)). We additionally computed the image similarity between the spatially normalised
individual image and the corresponding cohort average map (the WM tissue map, and DTI and
NODDI maps) using Pearson’s correlation to spot any subjects whose spatially normalised image
deviated significantly from the cohort average.

Although the reviewing of individual QC images for subjects who had an outlier value in one or
more quantitative DWI QC metrics revealed some indication of within-volume motion in those with
multiple outlier QC values, the number of volumes affected was relatively small even in the worst
case, and it was not immediately clear if the image quality rendered the data unusable. For this
reason, we kept the entire sample for the present study but checked the effect of the quality metrics
by 1) removing the subjects with an outlier value in any of the quantitative QC metrics or phenotypic
values and 2) including a global metric of image quality as a covariate in the model.

For DTI and NODDI metrics, we used a total of 26 QC metrics (18 related to DWI quality and eight
similarity metrics representing the quality of spatial normalisation). We used Tukey’s method (Tukey,
1977) to identify “far out” outliers whose QC values were above three times the interquartile range
(IQR) for any of the QC metrics (all the QC metrics were transformed if necessary so that the higher
value indicated the lower quality). It identified 79 subjects (4.6% of the total sample) as having at
least one outlier value in the QC metrics. For each DTI/NODDI metric in each JHU ROI, we used the
same method to identify and remove the phenotypic outliers, removing up to 102 subjects, or about
6.0% of the total sample. We then applied the same model described in the main manuscript to check
the impact of the outlier removal. In addition, to further control for any remaining effect of image
quality, we used the mean relative RMS as a covariate in the model to check the robustness of our
findings. The mean relative RMS is a measure of in-scanner motion, and a recent study has
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demonstrated its impact on various DWI-derived metrics, including DTI and NODDI (Pines et al.,
2020). Supplemental Figure 1 shows the visual comparison of age and sex effects with (“noOL”) or
without (“main”) the outlier removal, and with outlier removal plus the additional inclusion of RMS
in the model (“noOL + RMS”). Overall, the cleaning of data with outlier removal slightly improves
the sensitivity to the age effects on diffusivity metrics and NDI. The impact on the estimated sex
effects is minimal. The additional inclusion of RMS does not have any discernible effect on either
age or sex effect estimates in our data.

Supplemental Figure 1. The effect of outlier removal and addition of RMS in the model on
DTI/NODDI phenotypes.
Effects of QC and phenotypic outlier removal and inclusion of RMS on the estimated age and sex
effects in the regional DTI/NODDI phenotypes. The t statistics for (A) age and (B) sex effects are
shown for each DTI/NODDI metric in the JHU ROIs. Each column represents t statistics derived
from the analysis with no outlier removal (“main”, i.e. identical to the analysis described in the main
text), with outlier removal (“noOL”), and with outlier removal plus the inclusion of RMS in the
model (“noOL + RMS”). Those that did not survive Bonferroni corrections for multiple comparisons
were filtered out (set to 0) to facilitate comparisons of significant results. See Table 1 of the main text
for the full names of abbreviated ROIs.

Even though the quality of both tissue segmentation and spatial normalisation of segmented tissues
were visually verified for all participants, we investigated the impact of similar QC and phenotypic
outliers on the regional WM volume analyses as well. For this, we used the following quantifiable
QC metrics related to SPM12-based tissue segmentation quality: 1) tissue-specific SNR computed for
grey matter (GM), WM, and cerebrospinal fluid (CSF) for both T1w and FLAIR images, 2)
GM-to-WM and WM-to-CSF CNR for T1w and FLAIR images, 3) FLAIR to T1 coregistration cost
function, and 4) Freesurfer-based Euler number (Dale et al., 1999). The Euler number is a measure of
cortical complexity computed during Freesurfer-based surface reconstruction, but it has been
demonstrated to be a highly reliable measure of image quality (Rosen et al., 2018). We also used the
image similarity of the individual WM tissue map to the cohort average WM map to quantify the
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quality of the spatial normalisation. We identified the “far out” outliers across the total of 13 QC
metrics, which identified only 18 QC outlier subjects, or about 1% of the sample. Similar to the
comparison performed for DTI/NODDI metrics, we compared the effects of removing these QC
outliers as well as individual phenotypic outliers removing up to 22 subjects (1.3% of the sample),
and also the addition of Euler number as the global image QC metric. Not too surprisingly, the
removal of such a small portion of the total sample did not have any discernible impact on the
estimated age or sex effects. In our dataset, the addition of Euler number also did not have any
measurable impact, likely due to the high overall quality of our structural images (the lowest Euler
number that represents the poorest quality in our sample was -85; in comparison, a cutoff used to
discard images for the dataset in Rosen et al., 2018 was -217).

2. The effect of global or regional volume corrections on the analyses

2.1. Effects of global volume correction on regional WM volumetry

The estimates of age and sex effects on the regional WM volumes partly depend on if and how global
brain volume or head size is corrected. While we reported the age and sex effects on regional WM
volumes without global volume correction in the main manuscript, such correction is particularly
important when quantifying the sex differences since males typically have larger head size than
females. We have also previously shown that the total WM volume (TWMV) significantly increased
with age in this sample, only when controlling for overall head size by including TIV in the model
(Tsuchida et al., 2020). Here, we investigated how the estimates of age- and sex-related variations in
the regional WM volumes were modulated by the inclusion of TIV or TWMV in the model. We
tested and compared the following variations of our primary models (1) and (2) described in the main
manuscript:

1) “noVol”: a model without any global volume correction (i.e. out primary model)

2) “TIV”: a model that includes the TIV as a covariate

3) “TWMV”: a model that includes the TWMV as a covariate

4) “TIV + TWMV”: a model that includes both TIV and TWMV

Supplemental Figure 2 compares the total variance explained by each of the four models (adjusted
R2), and also shows their impact on the t statistics for age and sex. Not surprisingly, the inclusion of
either TIV or TWMV significantly increased the total amount of variance explained. The inclusion of
global volumes also affects the estimated age effects. For example, the cingulum in the cingulate
gyrus (CgC) showed a significant age-related volumetric increase only if the global volume is taken
into account by including either the TIV or TWMV. Other ROIs showed significant age-related
increases when the TIV was controlled for, but not when TWMV was used instead, or vice versa (e.g.
superior corona radiata (SCR), superior longitudinal fasciculus (SLF), and superior cerebellar
peduncle (SCP)). Notably, the cingulum in the hippocampus (CgH) showed a significant age-related
volumetric increase regardless of how or if the global volume was controlled.

For sex effects, males had significantly larger WM volumes than females across all the ROIs if the
global volume was not taken into account. Many of these differences disappeared when TIV or
TWMV was included in the model, and in a few cases, reversed, with females showing significantly
larger relative volume than males, most notably in SCP. However, some ROIs exhibited attenuated
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but still significant sex differences, with males having larger volumes than females, after global
volume corrections (e.g. external capsule (EC), uncinate fasciculus (UNC)).

Supplemental Figure 2. Effects of global volume correction on the total variance explained and
the age and sex effects in the WM JHU ROI volumes.
Comparisons of (A) adjusted R2, (B) t statistics for age and (C) sex in the four models described in
the text. Those that did not survive Bonferroni corrections for multiple comparisons were filtered out
(set to 0) to facilitate comparisons within significant results. See Table 1 of the main text for the full
names of abbreviated ROIs.

2.2. Effects of global or regional volume correction on DTI/NODDI metrics

Unlike for volumetry, the effects of global volume on mean DTI or NODDI values are not intuitive
and less well-understood; however, we have previously shown that TIV significantly impacts mean
DTI or NODDI metrics in WM skeleton or WM mask (Beaudet et al., 2020) (Beaudet et al., 2020;
Tsuchida et al., 2020). For the regional mean values of DTI/NODDI metrics, a previous study has
demonstrated that the mask volume for a given ROI could impact the mean DTI value inside the
ROI, presumably due to the partial volume effect (Vos et al., 2011). Here we investigated the impact
of the global volume (TIV) or the local ROI volume (ROIV) on the mean DTI/NODDI metrics and
the estimates of age and sex effects. We tested and compared the following models:

1) “noVol”: a model without any global or local volume correction (i.e. our primary model)

2) “TIV”: a model that includes the TIV

3) “ROIV”: a model that includes the ROIV

4) “TIV + ROIV”: a model that includes both the TIV and ROIV

4

https://sciwheel.com/work/citation?ids=8901103&pre=&suf=&sa=0


Supplemental Figure 3 compares the changes in model quality across the four models. The Bayesian
information criterion (BIC) values indicated that the most parsimonious model (those with the lowest
BIC value) varied across ROIs and DTI/NODDI metrics. Having global or local volumes as
covariates tended to improve the model fit across metrics in a number of ROIs. The overall variance
explained by the inclusion of these volumes increased slightly in many ROIs, particularly for NDI in
which inclusion of TIV visibly increased adjusted R2.

Supplemental Figure 4 summarises the contributions of TIV and ROIV on DTI/NODDI metrics
directly by visualising the t statistics of TIV and ROIV terms in the models (2) and (3), respectively.
It also shows their impact on the estimated age and sex effects across the models. Larger TIV or
ROIV was associated with higher NDI in many ROIs, although NDI in a few ROIs were negatively
associated with TIV (anterior corona radiata (ACR), TAP). They were also associated with higher
IsoVF in most ROIs as well, except in the brainstem ROIs. For DTI metrics, the effects of TIV and
ROIV were more variable and mixed across different ROIs.

Despite the significant relationships between global and local volumes with the mean DTI/NODDI
values in these ROIs, their impact on age effect estimates was minimal. Most of the age-related
variations observed for DTI/NODDI metrics in the 27 ROIs remained significant across the models
with or without TIV or ROIV as covariates. The sex differences were modulated slightly by the
inclusion of TIV across many metrics and ROIs, typically attenuating the degree of significance.

Supplemental Figure 3. Comparisons of model quality for models with or without global and/or
local volume correction for the mean DTI/NODDI values in JHU ROIs.
Comparisons of (A) relative BIC values and (B) adjusted R2 in the four models described in the text.
See Table 1 of the main text for the full names of abbreviated ROIs.
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Supplemental Figure 4. Effects of global and local volumes on the mean DTI/NODDI values in
JHU ROIs and their impact on the estimated age and sex effects.
Comparisons of the t statisics for (A) TIV and ROIV in “TIV” and “ROIV” models, respectively, (B)
age and (C) sex effects across the four models described in the text. Those that did not survive
Bonferroni corrections for multiple comparisons were filtered out (set to 0) to facilitate comparisons
within significant results. See Table 1 of the main text for the full names of abbreviated ROIs.

3. Complete tables of model results and age scatter plots for each metric and ROI

Due to limited space, we provided a table of raw parameter estimates only for the age effect in the
main manuscript. Here we summarise parameter estimates (β), p values, and generalised 𝜂2 for both
age and sex effects, as well as for the interaction between age and sex (although none of the
interactions survived the correction for multiple comparisons), and also provide adjusted R2 for each
metric and ROI. We also provide the raw scatter plots of age effects for each metric and ROI.

Supplemental Table 1. Model results for WM JHU ROI volumes.
The raw parameter estimate (β) values and their 95 % confidence intervals (in square brackets) are in
mm3/year for Age and Age x Sex, and in mm 3 for Sex effects. The first columns give the abbreviated
JHU ROIs (see Table 1 of the main text for their full names). Statistical significance symbols
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(uncorrected for multiple comparisons) *: 0.05 < p <0.001, **: 0.001 < p < 0.0001,  ***: p < 0.0001.
Bold symbols indicate Bonferroni-corrected significant p-values.

Age Sex Age X Sex

adj. R2β [95%CI] p value η2
G β [95%CI] p value η2

G β [95%CI] p value η2
G

Brainstem

MCP
-25.2

[ -56.6, 6.3] >0.1 0.001
-664.7***

[-721.4, -607.9] <0.00001 0.236
16.6

[ -14.9, 48.1] >0.1 <.001 0.235

PCT
-2.7

[ -6.1, 0.6] >0.1 0.001
-78.5***

[-84.6, -72.4] <0.00001 0.273
2.4

[ -1.0, 5.7] >0.1 <.001 0.272

CST
-1.8

[ -4.6, 1.1] >0.1 <.001
-67.9***

[-73.1, -62.8] <0.00001 0.281
1.6

[ -1.3, 4.4] >0.1 <.001 0.28

ML
-1.2

[ -2.6, 0.2] 0.0986 0.001
-30.4***

[-32.9, -27.8] <0.00001 0.242
1.0

[ -0.4, 2.5] >0.1 <.001 0.241

SCP
-2.3*

[ -4.0, -0.6] 0.0076 0.004
-19.6***

[-22.7, -16.6] <0.00001 0.085
-0.1

[ -1.8, 1.6] >0.1 <.001 0.087

ICP
-0.4

[ -2.0, 1.3] >0.1 <.001
-27.7***

[-30.6, -24.7] <0.00001 0.167
0.6

[ -1.0, 2.2] >0.1 <.001 0.166

Projection

ACR
3.2

[ -10.4, 16.9] >0.1 <.001
-345.1***

[-369.7, -320.5] <0.00001 0.307
4.1

[ -9.6, 17.8] >0.1 <.001 0.307

SCR
5.6

[ -7.8, 19.1] >0.1 <.001
-345.5***

[-369.7, -321.3] <0.00001 0.314
-0.0

[ -13.5, 13.4] >0.1 <.001 0.315

PCR
3.3

[ -3.5, 10.1] >0.1 <.001
-194.8***

[-206.9, -182.6] <0.00001 0.365
-0.7

[ -7.4, 6.1] >0.1 <.001 0.366

ALIC
1.7

[ -3.1, 6.5] >0.1 <.001
-120.0***

[-128.6, -111.4] <0.00001 0.304
-0.7

[ -5.5, 4.1] >0.1 <.001 0.304

PLIC
-0.5

[ -7.3, 6.4] >0.1 <.001
-164.3***

[-176.7, -152.0] <0.00001 0.286
0.6

[ -6.3, 7.4] >0.1 <.001 0.285

RLIC
-0.9

[ -5.1, 3.2] >0.1 <.001
-114.4***

[-121.8, -107.0] <0.00001 0.349
0.1

[ -4.0, 4.2] >0.1 <.001 0.349

PTR
-1.4

[ -8.5, 5.7] >0.1 <.001
-182.5***

[-195.2, -169.7] <0.00001 0.315
0.4

[ -6.7, 7.5] >0.1 <.001 0.314

CP
-3.9

[ -8.1, 0.2] 0.0636 0.001
-93.9***

[-101.4, -86.4] <0.00001 0.262
1.3

[ -2.9, 5.4] >0.1 <.001 0.261

Association

FX
2.6***

[ 1.3, 3.8] <0.00001 0.009
-11.6***

[-13.8, -9.4] <0.00001 0.057
-0.0

[ -1.3, 1.2] >0.1 <.001 0.068

FX/ST
-0.2

[ -1.9, 1.5] >0.1 <.001
-33.6***

[-36.7, -30.5] <0.00001 0.209
-0.6

[ -2.3, 1.1] >0.1 <.001 0.209

CgC
8.3**

[ 3.8, 12.8] 0.0003 0.005
-107.9***

[-116.0, -99.8] <0.00001 0.283
-1.5

[ -6.0, 3.0] >0.1 <.001 0.291
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CgH
5.1***

[ 2.7, 7.4] <0.00001 0.009
-41.0***

[-45.2, -36.8] <0.00001 0.173
-1.0

[ -3.4, 1.3] >0.1 <.001 0.185

SFO
0.5

[ -0.5, 1.4] >0.1 <.001
-21.6***

[-23.4, -19.9] <0.00001 0.262
0.1

[ -0.8, 1.1] >0.1 <.001 0.263

SLF
6.3

[ -5.6, 18.3] >0.1 <.001
-339.3***

[-360.8, -317.9] <0.00001 0.36
-1.9

[ -13.8, 10.1] >0.1 <.001 0.361

EC
3.8

[ -2.6, 10.2] >0.1 <.001
-174.4***

[-186.0, -162.9] <0.00001 0.339
4.4

[ -2.1, 10.8] >0.1 <.001 0.341

UNC
-0.3

[ -1.3, 0.7] >0.1 <.001
-14.0***

[-15.7, -12.2] <0.00001 0.125
0.1

[ -0.9, 1.1] >0.1 <.001 0.124

SS
-0.8

[ -4.7, 3.1] >0.1 <.001
-107.4***

[-114.3, -100.4] <0.00001 0.348
-0.2

[ -4.0, 3.7] >0.1 <.001 0.348

Commissural

GCC
5.1

[ -12.8, 22.9] >0.1 <.001
-354.4***

[-386.5, -322.2] <0.00001 0.215
0.4

[ -17.5, 18.2] >0.1 <.001 0.215

BCC
21.7

[ -4.5, 47.9] >0.1 0.001
-563.9***

[-611.1, -516.6] <0.00001 0.243
-15.0

[ -41.2, 11.2] >0.1 <.001 0.245

SCC
31.5*

[ 3.2, 59.7] 0.0289 0.002
-554.7***

[-605.5, -503.8] <0.00001 0.211
3.0

[ -25.2, 31.2] >0.1 <.001 0.214

TAP
-2.7*

[-4.5, -0.9] 0.0039 0.005
-6.5**

[-9.7, -3.2] 0.0001 0.009
-0.2

[-2.0, 1.6] >0.1 <.001 0.013

Supplemental Table 2. Model results for mean FA in JHU ROIs.
The raw parameter estimate (β) values and their 95 % confidence intervals (in square brackets) are
x10-3/year change in FA for Age and Age x Sex effects and x10-3 for Sex effect. The first columns
give the abbreviated JHU ROIs (see Table 1 of the main text for their full names). Statistical
significance symbols (uncorrected for multiple comparisons) *: 0.05 < p <0.001, **: 0.001 < p <
0.0001,  ***: p < 0.0001. Bold symbols indicate Bonferroni-corrected significant p-values.

Age Sex Age X Sex

adj. R2β [95%CI] p value η2
G β [95%CI] p value η2

G β [95%CI] p value η2
G

Brainstem

MCP
-0.0

[-0.6, 0.6] >0.1 <.001
4.0***

[ 2.9, 5.1] <0.00001 0.027
-0.2

[-0.8, 0.4] >0.1 <.001 0.026

PCT
-0.7

[-1.7, 0.4] >0.1 <.001
7.1***

[ 5.1, 9.0] <0.00001 0.029
-0.0

[-1.1, 1.0] >0.1 <.001 0.029

CST
-1.3*

[-2.4, -0.1] 0.0312 0.003
0.4

[-1.6, 2.5] >0.1 <.001
0.7

[-0.4, 1.9] >0.1 <.001 0.001

ML
-1.1

[-2.4, 0.2] >0.1 0.001
-0.8

[-3.2, 1.6] >0.1 <.001
0.4

[-0.9, 1.8] >0.1 <.001 −0.000
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SCP
-0.3

[-1.1, 0.6] >0.1 <.001
4.5***

[ 2.9, 6.1] <0.00001 0.017
1.0*

[ 0.1, 1.9] 0.0238 0.003 0.019

ICP
-0.3

[-1.2, 0.7] >0.1 <.001
2.2*

[ 0.5, 3.8] 0.0092 0.004
0.1

[-0.8, 1.0] >0.1 <.001 0.003

Projection

ACR
1.4**

[ 0.6, 2.2] 0.0003 0.008
-0.4

[-1.7, 1.0] >0.1 <.001
0.0

[-0.7, 0.8] >0.1 <.001 0.008

SCR
-0.6

[-1.4, 0.1] 0.0905 0.002
1.6*

[ 0.2, 2.9] 0.022 0.003
0.0

[-0.7, 0.8] >0.1 <.001 0.004

PCR
0.6

[-0.3, 1.4] >0.1 <.001
4.1***

[ 2.5, 5.6] <0.00001 0.016
0.2

[-0.6, 1.0] >0.1 <.001 0.015

ALIC
0.6

[-0.1, 1.2] 0.0966 0.002
-3.7***

[-4.9, -2.6] <0.00001 0.022
0.1

[-0.5, 0.8] >0.1 <.001 0.024

PLIC
-0.7*

[-1.4, -0.1] 0.0185 0.003
-1.8*

[-2.9, -0.7] 0.0017 0.006
0.3

[-0.4, 0.9] >0.1 <.001 0.007

RLIC
0.8*

[ 0.2, 1.5] 0.0111 0.004
3.2***

[ 2.0, 4.3] <0.00001 0.017
0.3

[-0.4, 0.9] >0.1 <.001 0.021

PTR
0.3

[-0.4, 1.1] >0.1 <.001
3.4***

[ 2.0, 4.7] <0.00001 0.014
-0.2

[-1.0, 0.5] >0.1 <.001 0.012

CP
-1.2*

[-2.0, -0.4] 0.0039 0.005
-3.5***

[-5.0, -2.0] <0.00001 0.012
0.7

[-0.1, 1.5] 0.0846 0.002 0.015

Association

FX
0.7

[-0.3, 1.7] >0.1 <.001
5.4***

[ 3.6, 7.2] <0.00001 0.019
0.3

[-0.7, 1.4] >0.1 <.001 0.019

FX/ST
0.9*

[ 0.1, 1.7] 0.0348 0.003
4.0***

[ 2.5, 5.5] <0.00001 0.016
0.2

[-0.6, 1.0] >0.1 <.001 0.018

CgC
2.3***

[ 1.4, 3.1] <0.00001 0.015
1.2

[-0.4, 2.7] >0.1 0.001
-0.2

[-1.1, 0.6] >0.1 <.001 0.016

CgH
1.2*

[ 0.3, 2.2] 0.0093 0.004
6.9***

[ 5.3, 8.6] <0.00001 0.037
0.3

[-0.6, 1.3] >0.1 <.001 0.041

SFO
0.1

[-1.0, 1.2] >0.1 <.001
2.6*

[ 0.6, 4.6] 0.0125 0.004
0.6

[-0.5, 1.7] >0.1 <.001 0.003

SLF
1.0*

[ 0.3, 1.7] 0.0051 0.005
0.9

[-0.4, 2.2] >0.1 0.001
0.2

[-0.5, 0.9] >0.1 <.001 0.006

EC
1.2**

[ 0.6, 1.8] 0.0002 0.008
-1.9*

[-3.0, -0.7] 0.0012 0.006
0.1

[-0.5, 0.7] >0.1 <.001 0.016

UNC
1.0

[-0.1, 2.0] 0.0633 0.002
1.2

[-0.7, 3.1] >0.1 <.001
0.1

[-0.9, 1.2] >0.1 <.001 0.002

SS
1.6***

[ 0.9, 2.3] <0.00001 0.011
6.4***

[ 5.1, 7.6] <0.00001 0.054
-0.3

[-1.0, 0.4] >0.1 <.001 0.062

Commissural
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GCC
1.7***

[ 0.9, 2.5] <0.00001 0.01
-0.2

[-1.6, 1.3] >0.1 <.001
-0.3

[-1.1, 0.5] >0.1 <.001 0.009

BCC
0.7

[-0.0, 1.4] 0.0584 0.002
1.7*

[ 0.5, 3.0] 0.0072 0.004
-0.5

[-1.2, 0.2] >0.1 0.001 0.004

SCC
1.4***

[ 0.7, 2.0] <0.00001 0.01
5.1***

[ 4.0, 6.3] <0.00001 0.043
0.1

[-0.5, 0.8] >0.1 <.001 0.053

TAP
2.0*

[ 0.6, 3.3] 0.0036 0.005
5.6***

[ 3.2, 8.0] <0.00001 0.012
0.4

[-0.9, 1.7] >0.1 <.001 0.017

Supplemental Table 3. Model results for mean MD in JHU ROIs.
The raw parameter estimate (β) values and their 95 % confidence intervals (in square brackets) are in
x10-6 mm2/sec/year for Age and Age x Sex, and in mm 2/sec for Sex effects. The first columns give
the abbreviated JHU ROIs (see Table 1 of the main text for their full names). Statistical significance
symbols (uncorrected for multiple comparisons) *: 0.05 < p <0.001, **: 0.001 < p < 0.0001,  ***: p <
0.0001. Bold symbols indicate Bonferroni-corrected significant p-values.

Age Sex Age X Sex

adj. R2β [95%CI] p value η2
G β [95%CI] p value η2

G β [95%CI] p value η2
G

Brainstem

MCP
-0.9*

[-1.5, -0.2] 0.0144 0.003
10.6***

[ 9.4, 11.8] <0.00001 0.141
0.5

[-0.2, 1.2] >0.1 0.001 0.146

PCT
-1.9

[-3.8, 0.1] 0.0638 0.002
23.8***

[20.2, 27.3] <0.00001 0.091
1.7

[-0.3, 3.6] 0.0972 0.001 0.094

CST
-2.6*

[-4.7, -0.5] 0.0151 0.003
24.0***

[20.2, 27.8] <0.00001 0.083
1.2

[-0.9, 3.3] >0.1 <.001 0.086

ML
-2.4*

[-4.4, -0.5] 0.0142 0.003
20.6***

[17.1, 24.1] <0.00001 0.072
1.9

[-0.1, 3.8] 0.0584 0.002 0.076

SCP
-2.0***

[-2.8, -1.2] <0.00001 0.013
13.3***

[12.0, 14.7] <0.00001 0.174
0.8

[-0.0, 1.5] 0.0521 0.002 0.191

ICP
-2.1**

[-3.2, -1.0] 0.0003 0.007
12.2***

[10.2, 14.3] <0.00001 0.075
0.6

[-0.5, 1.7] >0.1 <.001 0.083

Projection

ACR
-2.0***

[-2.7, -1.3] <0.00001 0.02
1.6*

[ 0.4, 2.8] 0.0101 0.004
0.4

[-0.3, 1.0] >0.1 <.001 0.024

SCR
-1.3***

[-1.7, -0.8] <0.00001 0.014
-1.7**

[-2.6, -0.8] 0.0002 0.008
0.4

[-0.1, 0.9] >0.1 0.001 0.02

PCR
-1.3**

[-2.0, -0.6] 0.0005 0.007
-3.9***

[-5.2, -2.6] <0.00001 0.02
0.6

[-0.1, 1.4] 0.0793 0.002 0.024

ALIC
-2.0***

[-2.5, -1.5] <0.00001 0.039
3.7***

[ 2.8, 4.5] <0.00001 0.041
0.3

[-0.1, 0.8] >0.1 0.001 0.085

10



PLIC
-1.4***

[-1.9, -1.0] <0.00001 0.022
4.0***

[ 3.2, 4.8] <0.00001 0.051
0.5*

[ 0.1, 1.0] 0.0224 0.003 0.075

RLIC
-1.6***

[-2.2, -1.0] <0.00001 0.018
3.5***

[ 2.5, 4.5] <0.00001 0.026
0.6*

[ 0.0, 1.1] 0.0491 0.002 0.045

PTR
-1.4***

[-2.1, -0.8] <0.00001 0.01
-1.7*

[-2.9, -0.5] 0.0051 0.005
0.7*

[ 0.0, 1.3] 0.0451 0.002 0.012

CP
-2.2*

[-4.1, -0.3] 0.0206 0.003
18.4***

[15.0, 21.7] <0.00001 0.063
0.2

[-1.7, 2.0] >0.1 <.001 0.066

Association

FX
0.3

[-1.3, 1.9] >0.1 <.001
3.6*

[ 0.8, 6.5] 0.0123 0.004
0.2

[-1.4, 1.8] >0.1 <.001 0.002

FX/ST
-2.2***

[-2.8, -1.5] <0.00001 0.024
2.5***

[ 1.3, 3.7] <0.00001 0.01
0.7*

[ 0.1, 1.4] 0.0331 0.003 0.034

CgC
-2.0***

[-2.5, -1.4] <0.00001 0.029
1.9**

[ 0.9, 2.9] 0.0001 0.008
0.2

[-0.3, 0.8] >0.1 <.001 0.041

CgH
-3.0***

[-3.8, -2.3] <0.00001 0.033
8.3***

[ 7.0, 9.7] <0.00001 0.076
0.8*

[ 0.0, 1.5] 0.0439 0.002 0.114

SFO
-1.8***

[-2.4, -1.2] <0.00001 0.019
1.3*

[ 0.2, 2.4] 0.0178 0.003
0.3

[-0.3, 0.9] >0.1 <.001 0.023

SLF
-1.3***

[-1.8, -0.8] <0.00001 0.014
-2.1***

[-3.0, -1.2] <0.00001 0.012
0.3

[-0.2, 0.8] >0.1 <.001 0.023

EC
-1.7***

[-2.2, -1.3] <0.00001 0.033
2.6***

[ 1.8, 3.4] <0.00001 0.023
-0.0

[-0.4, 0.4] >0.1 <.001 0.064

UNC
-1.8***

[-2.3, -1.3] <0.00001 0.026
2.6***

[ 1.7, 3.5] <0.00001 0.016
0.1

[-0.4, 0.6] >0.1 <.001 0.047

SS
-2.0***

[-2.6, -1.3] <0.00001 0.019
-0.1

[-1.3, 1.1] >0.1 <.001
0.8*

[ 0.1, 1.4] 0.0265 0.003 0.017

Commissural

GCC
-1.7***

[-2.3, -1.0] <0.00001 0.014
2.1**

[ 0.9, 3.3] 0.0006 0.007
0.5

[-0.2, 1.1] >0.1 0.001 0.021

BCC
-1.3***

[-1.9, -0.8] <0.00001 0.012
-0.6

[-1.6, 0.4] >0.1 <.001
0.7*

[ 0.2, 1.3] 0.0103 0.004 0.012

SCC
-1.5***

[-2.1, -0.9] <0.00001 0.013
3.6***

[ 2.5, 4.7] <0.00001 0.024
0.9*

[ 0.3, 1.5] 0.0051 0.004 0.038

TAP
-1.4*

[-2.7, -0.1] 0.033 0.003
-2.9*

[-5.2, -0.5] 0.0172 0.003
1.5*

[ 0.2, 2.8] 0.0286 0.003 0.005

Supplemental Table 4. Model results for mean AD in JHU ROIs.
The raw parameter estimate (β) values and their 95 % confidence intervals (in square brackets) are in
x10-6 mm2/sec/year for Age and Age x Sex, and in mm 2/sec for Sex effects. The first columns give
the abbreviated JHU ROIs (see Table 1 of the main text for their full names). Statistical significance
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symbols (uncorrected for multiple comparisons) *: 0.05 < p <0.001, **: 0.001 < p < 0.0001,  ***: p <
0.0001. Bold symbols indicate Bonferroni-corrected significant p-values.

Age Sex Age X Sex

adj. R2β [95%CI] p value η2
G β [95%CI] p value η2

G β [95%CI] p value η2
G

Brainstem

MCP
-1.4*

[-2.6, -0.3] 0.0135 0.003
21.7***

[19.7, 23.8] <0.00001 0.203
0.6

[-0.5, 1.8] >0.1 <.001 0.208

PCT
-3.3*

[-5.6, -1.0] 0.0046 0.004
40.8***

[36.7, 44.9] <0.00001 0.181
2.2

[-0.1, 4.5] 0.0606 0.002 0.188

CST
-5.6***

[-8.1, -3.1] <0.00001 0.01
37.6***

[33.1, 42.0] <0.00001 0.135
2.7*

[ 0.2, 5.2] 0.0336 0.002 0.147

ML
-5.1***

[-7.4, -2.8] <0.00001 0.009
34.8***

[30.6, 38.9] <0.00001 0.136
3.2*

[ 0.9, 5.5] 0.0065 0.004 0.149

SCP
-4.1***

[-5.9, -2.4] <0.00001 0.01
33.4***

[30.2, 36.5] <0.00001 0.199
2.8*

[ 1.1, 4.6] 0.0014 0.005 0.214

ICP
-3.6***

[-5.0, -2.1] <0.00001 0.012
22.7***

[20.2, 25.3] <0.00001 0.148
1.2

[-0.2, 2.6] >0.1 0.001 0.163

Projection

ACR
-1.4*

[-2.4, -0.4] 0.0058 0.004
2.4*

[ 0.6, 4.2] 0.0083 0.004
0.5

[-0.5, 1.5] >0.1 <.001 0.007

SCR
-2.6***

[-3.5, -1.6] <0.00001 0.016
-1.5

[-3.2, 0.2] 0.0921 0.002
0.6

[-0.4, 1.6] >0.1 <.001 0.016

PCR
-1.3*

[-2.5, -0.2] 0.0255 0.003
-1.6

[-3.7, 0.5] >0.1 0.001
1.2*

[ 0.0, 2.4] 0.0454 0.002 0.003

ALIC
-2.8***

[-3.7, -2.0] <0.00001 0.022
2.4*

[ 0.7, 4.0] 0.0041 0.005
0.7

[-0.2, 1.6] >0.1 0.001 0.027

PLIC
-3.4***

[-4.3, -2.5] <0.00001 0.029
5.6***

[ 3.9, 7.2] <0.00001 0.025
1.3*

[ 0.4, 2.2] 0.0048 0.004 0.055

RLIC
-1.8**

[-2.8, -0.9] 0.0001 0.008
10.5***

[ 8.8, 12.2] <0.00001 0.08
1.4*

[ 0.4, 2.3] 0.0042 0.004 0.091

PTR
-2.2**

[-3.3, -1.1] 0.0001 0.009
1.5

[-0.4, 3.5] >0.1 0.001
0.9

[-0.2, 2.0] >0.1 0.001 0.009

CP
-5.8***

[-8.1, -3.5] <0.00001 0.013
27.3***

[23.1, 31.5] <0.00001 0.086
1.7

[-0.6, 4.0] >0.1 0.001 0.101

Association

FX
1.1

[-0.8, 3.0] >0.1 <.001
19.7***

[16.2, 23.1] <0.00001 0.069
1.4

[-0.5, 3.3] >0.1 0.001 0.071

FX/ST
-3.0***

[-4.5, -1.5] 0.0001 0.009
10.2***

[ 7.5, 12.9] <0.00001 0.031
1.6*

[ 0.1, 3.1] 0.04 0.002 0.04

CgC -0.5 >0.1 <.001 4.4*** <0.00001 0.01 0.1 >0.1 <.001 0.009
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[-1.6, 0.6] [ 2.3, 6.4] [-1.0, 1.3]

CgH
-3.6***

[-4.9, -2.3] <0.00001 0.014
21.4***

[19.1, 23.7] <0.00001 0.157
1.7*

[ 0.4, 2.9] 0.0123 0.003 0.176

SFO
-2.8***

[-4.0, -1.6] <0.00001 0.012
5.2***

[ 3.0, 7.3] <0.00001 0.013
1.0

[-0.2, 2.2] 0.0947 0.002 0.025

SLF
-0.8

[-1.5, 0.0] 0.0578 0.002
-3.0***

[-4.4, -1.6] <0.00001 0.01
0.7

[-0.1, 1.4] >0.1 0.002 0.011

EC
-1.4**

[-2.2, -0.6] 0.0005 0.007
3.3***

[ 1.9, 4.7] <0.00001 0.012
0.0

[-0.7, 0.8] >0.1 <.001 0.02

UNC
-2.1*

[-3.5, -0.8] 0.0013 0.006
6.3***

[ 3.9, 8.6] <0.00001 0.016
0.5

[-0.8, 1.8] >0.1 <.001 0.021

SS
-1.2*

[-2.3, -0.1] 0.0279 0.003
7.6***

[ 5.7, 9.5] <0.00001 0.034
0.9

[-0.2, 2.0] 0.099 0.002 0.037

Commissural

GCC
-0.8

[-2.0, 0.4] >0.1 <.001
4.9***

[ 2.8, 7.1] <0.00001 0.012
0.5

[-0.7, 1.7] >0.1 <.001 0.011

BCC
-1.5*

[-2.5, -0.5] 0.0027 0.005
2.9*

[ 1.2, 4.7] 0.0013 0.006
0.8

[-0.2, 1.8] >0.1 0.001 0.01

SCC
-1.0

[-2.2, 0.3] >0.1 0.001
15.7***

[13.4, 18.0] <0.00001 0.096
2.0*

[ 0.7, 3.3] 0.0019 0.005 0.102

TAP
0.5

[-1.9, 2.8] >0.1 <.001
2.6

[-1.6, 6.9] >0.1 <.001
3.1*

[ 0.8, 5.5] 0.0095 0.004 0.005

Supplemental Table 5. Model results for mean RD in JHU ROIs.
The raw parameter estimate (β) values and their 95 % confidence intervals (in square brackets) are in
x10-6 mm2/sec/year for Age and Age x Sex, and in mm 2/sec for Sex effects. The first columns give the
abbreviated JHU ROIs (see Table 1 of the main text for their full names). Statistical significance
symbols (uncorrected for multiple comparisons) *: 0.05 < p <0.001, **: 0.001 < p < 0.0001,  ***: p <
0.0001. Bold symbols indicate Bonferroni-corrected significant p-values.

Age Sex Age X Sex

adj. R2β [95%CI] p value η2
G β [95%CI] p value η2

G β [95%CI] p value η2
G

Brainstem

MCP
-0.6

[-1.3, 0.1] 0.0999 0.002
5.0***

[ 3.8, 6.3]
<0.0000

1 0.036
0.5

[-0.2, 1.2] >0.1 0.001 0.038

PCT
-1.2

[-3.1, 0.8] >0.1 <.001
15.2***

[11.7, 18.8]
<0.0000

1 0.04
1.4

[-0.6, 3.4] >0.1 0.001 0.04

CST
-1.1

[-3.2, 1.0] >0.1 <.001
17.3***

[13.5, 21.1]
<0.0000

1 0.044
0.4

[-1.7, 2.5] >0.1 <.001 0.044

ML
-1.1

[-3.2, 1.0] >0.1 <.001
13.5***

[ 9.8, 17.3]
<0.0000

1 0.029
1.2

[-0.8, 3.3] >0.1 <.001 0.029
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SCP
-0.9*

[-1.8, -0.1] 0.0247 0.003
3.3***

[ 1.8, 4.8]
<0.0000

1 0.011
-0.3

[-1.1, 0.5] >0.1 <.001 0.014

ICP
-1.4*

[-2.6, -0.1] 0.0349 0.003
7.0***

[ 4.7, 9.2]
<0.0000

1 0.021
0.3

[-1.0, 1.6] >0.1 <.001 0.022

Projection

ACR
-2.3***

[-3.0, -1.5] <0.00001 0.02
1.1

[-0.2, 2.5] >0.1 0.002
0.3

[-0.5, 1.0] >0.1 <.001 0.023

SCR
-0.6*

[-1.2, -0.0] 0.0489 0.002
-1.8**

[-2.9, -0.7] 0.0009 0.006
0.2

[-0.3, 0.8] >0.1 <.001 0.007

PCR
-1.2*

[-2.1, -0.4] 0.0039 0.005
-5.0***

[-6.5, -3.5]
<0.0000

1 0.024
0.4

[-0.5, 1.2] >0.1 <.001 0.026

ALIC
-1.6***

[-2.1, -1.0] <0.00001 0.018
4.3***

[ 3.3, 5.3]
<0.0000

1 0.041
0.1

[-0.4, 0.7] >0.1 <.001 0.063

PLIC
-0.5

[-1.0, 0.1] 0.0867 0.002
3.2***

[ 2.2, 4.1]
<0.0000

1 0.025
0.1

[-0.4, 0.6] >0.1 <.001 0.026

RLIC
-1.5***

[-2.1, -0.8] <0.00001 0.011
0.0

[-1.2, 1.2] >0.1 <.001
0.2

[-0.5, 0.8] >0.1 <.001 0.011

PTR
-1.0*

[-1.9, -0.2] 0.0118 0.004
-3.3***

[-4.8, -1.8]
<0.0000

1 0.011
0.6

[-0.3, 1.4] >0.1 0.001 0.012

CP
-0.4

[-2.2, 1.4] >0.1 <.001
13.9***

[10.7, 17.2]
<0.0000

1 0.04
-0.6

[-2.4, 1.2] >0.1 <.001 0.039

Association

FX
-0.1

[-1.8, 1.6] >0.1 <.001
-4.4*

[-7.5, -1.3] 0.0059 0.004
-0.4

[-2.1, 1.4] >0.1 <.001 0.003

FX/ST
-1.7***

[-2.4, -1.0] <0.00001 0.013
-1.4*

[-2.7, -0.1] 0.035 0.003
0.3

[-0.4, 1.0] >0.1 <.001 0.014

CgC
-2.7***

[-3.5, -2.0] <0.00001 0.029
0.6

[-0.7, 2.0] >0.1 <.001
0.3

[-0.5, 1.0] >0.1 <.001 0.032

CgH
-2.8***

[-3.6, -1.9] <0.00001 0.023
1.8*

[ 0.2, 3.3] 0.0248 0.003
0.3

[-0.5, 1.2] >0.1 <.001 0.027

SFO
-1.3*

[-2.1, -0.4] 0.0028 0.005
-0.6

[-2.1, 0.9] >0.1 <.001
-0.1

[-1.0, 0.7] >0.1 <.001 0.005

SLF
-1.5***

[-2.2, -0.9] <0.00001 0.012
-1.6*

[-2.8, -0.5] 0.0061 0.004
0.2

[-0.5, 0.8] >0.1 <.001 0.015

EC
-1.9***

[-2.4, -1.3] <0.00001 0.024
2.2***

[ 1.2, 3.3]
<0.0000

1 0.011
-0.0

[-0.6, 0.5] >0.1 <.001 0.04

UNC
-1.7**

[-2.6, -0.8] 0.0003 0.008
0.8

[-0.9, 2.4] >0.1 <.001
-0.0

[-1.0, 0.9] >0.1 <.001 0.008

SS
-2.4***

[-3.1, -1.6] <0.00001 0.02
-4.0***

[-5.4, -2.6]
<0.0000

1 0.017
0.7

[-0.1, 1.5] 0.0831 0.002 0.034

Commissural
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GCC
-2.1***

[-2.9, -1.3] <0.00001 0.014
0.7

[-0.8, 2.1] >0.1 <.001
0.5

[-0.4, 1.3] >0.1 <.001 0.014

BCC
-1.2**

[-2.0, -0.5] 0.0008 0.007
-2.4**

[-3.7, -1.1] 0.0003 0.007
0.7

[-0.0, 1.4] 0.0507 0.002 0.012

SCC
-1.7***

[-2.4, -1.0] <0.00001 0.014
-2.4**

[-3.6, -1.2] 0.0001 0.009
0.3

[-0.4, 1.0] >0.1 <.001 0.021

TAP
-2.4*

[-3.9, -0.8] 0.0024 0.005
-5.6***

[-8.4, -2.9] 0.0001 0.009
0.6

[-0.9, 2.2] >0.1 <.001 0.012

Supplemental Table 6. Model results for mean NDI in JHU ROIs.
The raw parameter estimate (β) values and their 95 % confidence intervals (in square brackets) are
x10-3/year change in NDI for Age and Age x Sex effects, and x10-3 difference for Sex effect. The first
columns give the abbreviated JHU ROIs (see Table 1 of the main text for their full names). Statistical
significance symbols (uncorrected for multiple comparisons) *: 0.05 < p <0.001, **: 0.001 < p <
0.0001,  ***: p < 0.0001. Bold symbols indicate Bonferroni-corrected significant p-values.

Age Sex Age X Sex

adj. R2β [95%CI] p value η2
G β [95%CI] p value η2

G β [95%CI] p value η2
G

Brainstem

MCP
1.1*

[ 0.2, 1.9] 0.0109 0.003
-16.2***

[-17.7, -14.8] <0.00001 0.214
-0.2

[ -1.0, 0.7] >0.1 <.001 0.219

PCT
0.3

[ -0.7, 1.2] >0.1 <.001
-13.1***

[-14.8, -11.4] <0.00001 0.116
-0.0

[ -1.0, 0.9] >0.1 <.001 0.116

CST
0.2

[ -1.1, 1.5] >0.1 <.001
-18.6***

[-21.0, -16.2] <0.00001 0.123
-0.1

[ -1.4, 1.2] >0.1 <.001 0.122

ML
2.2*

[ 0.6, 3.7] 0.0056 0.003
-41.1***

[-43.9, -38.3] <0.00001 0.328
-1.4

[ -2.9, 0.2] 0.0805 0.001 0.334

SCP
2.0***

[ 1.1, 2.9] <0.00001 0.007
-25.5***

[-27.2, -23.9] <0.00001 0.337
-0.8

[ -1.7, 0.1] 0.0989 0.001 0.348

ICP
2.4***

[ 1.2, 3.5] <0.00001 0.007
-25.8***

[-27.9, -23.8] <0.00001 0.259
-1.1

[ -2.3, 0.0] 0.0582 0.002 0.27

Projection

ACR
2.9***

[ 1.9, 4.0] <0.00001 0.016
-2.6*

[-4.6, -0.7] 0.0082 0.004
-0.1

[-1.1, 1.0] >0.1 <.001 0.022

SCR
2.2***

[ 1.3, 3.1] <0.00001 0.012
-4.9***

[-6.6, -3.2] <0.00001 0.019
0.0

[-0.9, 1.0] >0.1 <.001 0.033

PCR
2.8***

[ 1.7, 3.9] <0.00001 0.015
-6.0***

[-7.9, -4.1] <0.00001 0.021
-0.9

[-1.9, 0.2] >0.1 0.001 0.036

ALIC
3.1***

[ 2.1, 4.1] <0.00001 0.02
-8.7***

[-10.5, -6.9] <0.00001 0.049
0.1

[ -0.9, 1.1] >0.1 <.001 0.074

PLIC
1.8**

[ 0.9, 2.8] 0.0002 0.007
-17.0***

[-18.8, -15.3] <0.00001 0.18
-0.1

[ -1.1, 0.8] >0.1 <.001 0.19
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RLIC
3.4***

[ 2.3, 4.5] <0.00001 0.018
-18.7***

[-20.7, -16.7] <0.00001 0.162
-1.1

[ -2.2, 0.0] 0.0612 0.002 0.184

PTR
2.1***

[ 1.1, 3.1] <0.00001 0.01
-3.5**

[-5.3, -1.7] 0.0002 0.008
-1.3*

[-2.3, -0.3] 0.0139 0.003 0.018

CP
1.4

[ -0.3, 3.1] >0.1 0.001
-24.8***

[-27.8, -21.8] <0.00001 0.13
0.3

[ -1.4, 2.0] >0.1 <.001 0.132

Association

FX
3.5***

[ 1.9, 5.1] <0.00001 0.01
-12.2***

[-15.2, -9.3] <0.00001 0.037
0.7

[ -1.0, 2.3] >0.1 <.001 0.051

FX/ST
3.7***

[ 2.5, 4.8] <0.00001 0.018
-21.8***

[-23.9, -19.7] <0.00001 0.192
-0.8

[ -1.9, 0.4] >0.1 <.001 0.214

CgC
3.8***

[ 2.7, 4.9] <0.00001 0.021
-18.1***

[-20.1, -16.1] <0.00001 0.151
0.0

[ -1.1, 1.2] >0.1 <.001 0.18

CgH
6.6***

[ 4.9, 8.3] <0.00001 0.026
-34.9***

[-38.0, -31.9] <0.00001 0.224
-1.9*

[ -3.5, -0.2] 0.0297 0.002 0.257

SFO
3.5***

[ 2.2, 4.7] <0.00001 0.016
-8.7***

[-11.0, -6.5] <0.00001 0.032
-0.1

[ -1.3, 1.2] >0.1 <.001 0.052

SLF
2.6***

[ 1.8, 3.5] <0.00001 0.019
-3.3***

[-4.9, -1.7] 0.0001 0.009
-0.2

[-1.1, 0.7] >0.1 <.001 0.031

EC
3.3***

[ 2.5, 4.2] <0.00001 0.028
-10.0***

[-11.7, -8.4] <0.00001 0.078
-0.4

[ -1.3, 0.5] >0.1 <.001 0.112

UNC
4.1***

[ 2.9, 5.2] <0.00001 0.025
-8.5***

[-10.6, -6.3] <0.00001 0.034
-0.9

[ -2.1, 0.2] >0.1 0.001 0.062

SS
3.9***

[ 2.7, 5.1] <0.00001 0.021
-10.3***

[-12.5, -8.1] <0.00001 0.047
-1.5*

[ -2.7, -0.3] 0.0124 0.003 0.071

Commissural

GCC
2.4***

[ 1.2, 3.6] 0.0001 0.009
-3.5*

[-5.7, -1.4] 0.0013 0.006
-0.1

[-1.3, 1.0] >0.1 <.001 0.015

BCC
2.4***

[ 1.4, 3.5] <0.00001 0.011
-10.8***

[-12.7, -8.9] <0.00001 0.068
-0.2

[ -1.3, 0.8] >0.1 <.001 0.082

SCC
2.6***

[ 1.6, 3.6] <0.00001 0.013
-14.4***

[-16.2, -12.5] <0.00001 0.121
-0.9

[ -1.9, 0.1] 0.0834 0.002 0.137

TAP
2.3*

[ 0.9, 3.8] 0.0016 0.006
-1.3

[-3.9, 1.3] >0.1 <.001
-1.3

[-2.7, 0.2] 0.0891 0.002 0.005

Supplemental Table 7. Model results for mean ODI in JHU ROIs.
The raw parameter estimate (β) values and their 95 % confidence intervals (in square brackets) are
x10-3/year change in ODI for Age and Age x Sex effects, and x10-3 difference in ODI for Sex effect.
The first columns give the abbreviated JHU ROIs (see Table 1 of the main text for their full names).
Statistical significance symbols (uncorrected for multiple comparisons) *: 0.05 < p <0.001, **: 0.001
< p < 0.0001,  ***: p < 0.0001. Bold symbols indicate Bonferroni-corrected significant p-values.
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Age Sex Age X Sex

adj. R2β [95%CI] p value η2
G β [95%CI] p value η2

G β [95%CI] p value η2
G

Brainstem

MCP
0.7*

[ 0.1, 1.4] 0.0195 0.003
-9.2***

[-10.3, -8.0]
<0.0000

1 0.132
-0.3

[ -0.9, 0.3] >0.1 <.001 0.136

PCT
1.3*

[ 0.2, 2.4] 0.0165 0.003
-21.4***

[-23.4, -19.5]
<0.0000

1 0.21
-0.5

[ -1.6, 0.6] >0.1 <.001 0.214

CST
1.9*

[ 0.6, 3.2] 0.0047 0.004
-13.5***

[-15.8, -11.1]
<0.0000

1 0.067
-1.5*

[ -2.9, -0.2] 0.0227 0.003 0.073

ML
1.3

[ -0.0, 2.6] 0.0558 0.002
-11.1***

[-13.5, -8.7]
<0.0000

1 0.047
-0.4

[ -1.7, 0.9] >0.1 <.001 0.049

SCP
0.9*

[ 0.3, 1.5] 0.0041 0.004
-10.6***

[-11.7, -9.5]
<0.0000

1 0.163
-1.1**

[ -1.7, -0.4] 0.0008 0.005 0.173

ICP
1.1*

[ 0.2, 2.1] 0.0197 0.003
-9.2***

[-10.9, -7.5]
<0.0000

1 0.063
-0.8

[ -1.7, 0.2] >0.1 0.001 0.066

Projection

ACR
-0.2

[-0.8, 0.4] >0.1 <.001
-0.8

[-1.9, 0.3] >0.1 0.001
-0.1

[-0.7, 0.5] >0.1 <.001
<0.0000

1

SCR
1.2***

[ 0.6, 1.8] <0.00001 0.01
-1.6*

[-2.7, -0.6] 0.0025 0.005
-0.1

[-0.7, 0.5] >0.1 <.001 0.015

PCR
0.4

[-0.2, 1.0] >0.1 0.001
-3.4***

[-4.6, -2.3]
<0.0000

1 0.021
-0.5

[-1.1, 0.1] 0.0947 0.002 0.022

ALIC
0.7*

[ 0.2, 1.1] 0.0061 0.004
-0.7

[-1.5, 0.2] >0.1 0.001
-0.2

[-0.7, 0.3] >0.1 <.001 0.004

PLIC
1.3***

[ 0.8, 1.7] <0.00001 0.018
-2.9***

[-3.7, -2.1]
<0.0000

1 0.03
-0.5*

[-0.9, -0.0] 0.0384 0.002 0.049

RLIC
0.5*

[ 0.1, 0.9] 0.0095 0.003
-6.9***

[-7.5, -6.2]
<0.0000

1 0.184
-0.6*

[-0.9, -0.2] 0.0044 0.004 0.192

PTR
0.5*

[ 0.1, 0.8] 0.0115 0.004
-2.5***

[-3.2, -1.8]
<0.0000

1 0.031
-0.3

[-0.6, 0.1] >0.1 0.001 0.035

CP
2.4***

[ 1.6, 3.2] <0.00001 0.019
-4.3***

[-5.8, -2.9]
<0.0000

1 0.019
-1.2*

[-2.0, -0.4] 0.0036 0.005 0.039

Association

FX
1.4*

[ 0.3, 2.4] 0.0103 0.004
-9.0***

[-10.9, -7.1]
<0.0000

1 0.048
-0.7

[ -1.8, 0.3] >0.1 <.001 0.052

FX/ST
0.8*

[ 0.2, 1.4] 0.0103 0.003
-7.7***

[-8.8, -6.7]
<0.0000

1 0.106
-0.7*

[-1.3, -0.1] 0.0235 0.003 0.112

CgC
-0.5

[-1.2, 0.1] >0.1 0.001
-5.0***

[-6.1, -3.8]
<0.0000

1 0.038
0.2

[-0.5, 0.8] >0.1 <.001 0.037

CgH
1.6**

[ 0.7, 2.4] 0.0003 0.006
-16.6***

[-18.1, -15.1]
<0.0000

1 0.213
-1.2*

[ -2.0, -0.3] 0.0056 0.004 0.223
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SFO
0.6

[-0.2, 1.5] >0.1 0.001
-5.1***

[-6.6, -3.6]
<0.0000

1 0.025
-0.6

[-1.4, 0.2] >0.1 0.001 0.026

SLF
-0.1

[-0.6, 0.3] >0.1 <.001
0.0

[-0.8, 0.8] >0.1 <.001
-0.2

[-0.7, 0.2] >0.1 <.001 −0.001

EC
0.3

[-0.2, 0.7] >0.1 <.001
-2.1***

[-2.8, -1.3]
<0.0000

1 0.016
-0.1

[-0.5, 0.3] >0.1 <.001 0.016

UNC
0.8*

[ 0.2, 1.3] 0.0065 0.004
-3.4***

[-4.3, -2.4]
<0.0000

1 0.026
-0.2

[-0.8, 0.3] >0.1 <.001 0.03

SS
-0.0

[-0.4, 0.4] >0.1 <.001
-5.9***

[-6.6, -5.2]
<0.0000

1 0.13
-0.3

[-0.7, 0.1] >0.1 <.001 0.13

Commissural

GCC
-0.4

[-0.9, 0.1] 0.0927 0.002
-1.5**

[-2.3, -0.6] 0.0009 0.006
0.2

[-0.3, 0.6] >0.1 <.001 0.006

BCC
0.3

[-0.1, 0.7] >0.1 <.001
-2.7***

[-3.5, -2.0]
<0.0000

1 0.029
0.1

[-0.3, 0.5] >0.1 <.001 0.03

SCC
0.1

[-0.3, 0.5] >0.1 <.001
-6.4***

[-7.1, -5.7]
<0.0000

1 0.158
-0.4*

[-0.8, -0.0] 0.0299 0.002 0.16

TAP
-0.3

[-1.2, 0.6] >0.1 <.001
-0.0

[-1.7, 1.7] >0.1 <.001
-0.5

[-1.4, 0.4] >0.1 <.001 −0.000

Supplemental Table 8. Model results for mean IsoVF in JHU ROIs.
The raw parameter estimate (β) values and their 95 % confidence intervals (in square brackets) are
x10-3/year change in IsoVF for Age and Age x Sex effects, and x10-3 difference in IsoVF for Sex
effect. The first columns give the abbreviated JHU ROIs (see Table 1 of the main text for their full
names). Statistical significance symbols (uncorrected for multiple comparisons) *: 0.05 < p <0.001,
**: 0.001 < p < 0.0001,  ***: p < 0.0001. Bold symbols indicate Bonferroni-corrected significant
p-values.

Age Sex Age X Sex

adj. R2β [95%CI] p value η2
G β [95%CI] p value η2

G β [95%CI] p value η2
G

Brainstem

MCP
-0.6*

[-1.1, -0.0] 0.0365 0.002
7.5***

[ 6.6, 8.5] <0.00001 0.124
0.6*

[ 0.1, 1.2] 0.018 0.003 0.129

PCT
-1.9*

[-3.5, -0.3] 0.0229 0.003
25.7***

[22.8, 28.6] <0.00001 0.147
1.8*

[ 0.2, 3.4] 0.0302 0.002 0.152

CST
-2.0*

[-3.6, -0.3] 0.0172 0.003
23.2***

[20.3, 26.1] <0.00001 0.126
1.3

[-0.3, 2.9] >0.1 0.001 0.13

ML
-1.5*

[-2.9, -0.0] 0.0429 0.002
7.6***

[ 5.1, 10.2] <0.00001 0.02
1.3

[-0.1, 2.7] 0.0731 0.002 0.022

SCP
-1.2***

[-1.8, -0.6] 0.0001 0.009
6.3***

[ 5.2, 7.4] <0.00001 0.068
0.6

[-0.1, 1.2] 0.0731 0.002 0.078
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ICP
-1.2*

[-2.2, -0.2] 0.0151 0.003
3.4**

[ 1.7, 5.2] 0.0001 0.009
0.3

[-0.7, 1.3] >0.1 <.001 0.011

Projection

ACR
-0.1

[-0.5, 0.3] >0.1 <.001
0.3

[-0.4, 1.0] >0.1 <.001
0.4

[-0.0, 0.8] 0.0796 0.002 0.001

SCR
-0.1

[-0.4, 0.2] >0.1 <.001
-3.5***

[-4.1, -3.0] <0.00001 0.077
0.4*

[ 0.1, 0.7] 0.0096 0.004 0.078

PCR
0.5*

[ 0.1, 0.9] 0.0234 0.003
-6.8***

[-7.6, -6.1] <0.00001 0.147
0.1

[-0.3, 0.5] >0.1 <.001 0.151

ALIC
-0.4

[-0.8, 0.0] 0.0678 0.002
0.3

[-0.4, 1.1] >0.1 <.001
0.4

[-0.0, 0.8] 0.0572 0.002 0.002

PLIC
-0.6**

[-1.0, -0.3] 0.0007 0.007
-1.0*

[-1.6, -0.3] 0.0028 0.005
0.5*

[ 0.1, 0.9] 0.0076 0.004 0.011

RLIC
-0.1

[-0.5, 0.3] >0.1 <.001
-3.8***

[-4.5, -3.0] <0.00001 0.057
0.1

[-0.3, 0.5] >0.1 <.001 0.056

PTR
0.1

[-0.3, 0.4] >0.1 <.001
-3.4***

[-4.1, -2.7] <0.00001 0.051
-0.1

[-0.5, 0.3] >0.1 <.001 0.05

CP
-1.6*

[-2.7, -0.4] 0.011 0.004
10.8***

[ 8.7, 13.0] <0.00001 0.054
0.3

[-0.9, 1.5] >0.1 <.001 0.058

Association

FX
2.0*

[ 0.6, 3.4] 0.0055 0.005
-0.2

[-2.7, 2.4] >0.1 <.001
0.2

[-1.3, 1.6] >0.1 <.001 0.004

FX/ST
-0.6*

[-1.1, -0.1] 0.0209 0.003
-4.9***

[-5.8, -3.9] <0.00001 0.059
0.4

[-0.1, 0.9] >0.1 0.001 0.059

CgC
-0.3

[-0.8, 0.1] >0.1 0.001
-5.8***

[-6.6, -5.1] <0.00001 0.114
0.3

[-0.1, 0.8] >0.1 0.001 0.113

CgH
-0.2

[-0.8, 0.4] >0.1 <.001
-6.9***

[-8.1, -5.8] <0.00001 0.077
0.2

[-0.4, 0.8] >0.1 <.001 0.075

SFO
-0.1

[-0.6, 0.4] >0.1 <.001
-2.2***

[-3.1, -1.3] <0.00001 0.014
0.3

[-0.2, 0.8] >0.1 <.001 0.013

SLF
0.1

[-0.2, 0.4] >0.1 <.001
-3.5***

[-4.0, -2.9] <0.00001 0.087
0.2

[-0.1, 0.5] >0.1 <.001 0.088

EC
0.2

[-0.2, 0.6] >0.1 <.001
-2.5***

[-3.3, -1.7] <0.00001 0.023
-0.1

[-0.6, 0.3] >0.1 <.001 0.023

UNC
0.7*

[ 0.1, 1.3] 0.0325 0.003
-2.8***

[-3.9, -1.7] <0.00001 0.014
-0.3

[-0.9, 0.3] >0.1 <.001 0.016

SS
0.1

[-0.3, 0.4] >0.1 <.001
-5.3***

[-6.0, -4.6] <0.00001 0.115
-0.0

[-0.4, 0.4] >0.1 <.001 0.114

Commissural

GCC
-0.3

[-0.7, 0.1] >0.1 0.001
0.8*

[ 0.1, 1.6] 0.0326 0.003
0.4

[-0.0, 0.8] 0.073 0.002 0.003
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BCC
-0.1

[-0.5, 0.3] >0.1 <.001
-4.7***

[-5.3, -4.0] <0.00001 0.099
0.6**

[ 0.3, 1.0] 0.001 0.006 0.102

SCC
-0.5*

[-0.8, -0.1] 0.0124 0.004
-0.8*

[-1.5, -0.2] 0.0126 0.004
0.5*

[ 0.1, 0.9] 0.0091 0.004 0.007

TAP
0.5

[-0.5, 1.4] >0.1 <.001
-2.1*

[-3.8, -0.3] 0.0227 0.003
0.3

[-0.7, 1.3] >0.1 <.001 0.002
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Supplemental Figure 5. Scatter plots of individual age effects on WM volumes (in mm3) in each
ROI.
Predicted linear regression lines are superimposed for each sex (dark red: females, dark cyan: males),
with shades indicating the 95% confidence intervals. See Table 1 in the main text for the full names
of the abbreviated ROIs.
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Supplemental Figure 6. Scatter plots of individual age effects on WM FA values in each ROI.
Predicted linear regression lines are superimposed for each sex (dark red: females, dark cyan: males),
with shades indicating the 95% confidence intervals. See Table 1 in the main text for the full names
of the abbreviated ROIs.
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Supplemental Figure 7. Scatter plots of individual age effects on WM MD values (x10-4

mm2/sec) in each ROI.
Predicted linear regression lines are superimposed for each sex (dark red: females, dark cyan: males),
with shades indicating the 95% confidence intervals. See Table 1 in the main text for the full names
of the abbreviated ROI.
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Supplemental Figure 8. Scatter plots of individual age effects on WM AD values (x10 -4

mm2/sec) in each ROI.
Predicted linear regression lines are superimposed for each sex (dark red: females, dark cyan: males),
with shades indicating the 95% confidence intervals. See Table 1 in the main text for the full names
of the abbreviated ROIs.
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Supplemental Figure 9. Scatter plots of individual age effects on WM RD values (x10-4

mm2/sec) in each ROI.
Predicted linear regression lines are superimposed for each sex (dark red: females, dark cyan: males),
with shades indicating the 95% confidence intervals. See Table 1 in the main text for the full names
of the abbreviated ROIs.
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Supplemental Figure 10. Scatter plots of individual age effects on WM NDI values in each ROI.
Predicted linear regression lines are superimposed for each sex (dark red: females, dark cyan: males),
with shades indicating the 95% confidence intervals. See Table 1 in the main text for the full names
of the abbreviated ROIs.

26



Supplemental Figure 11. Scatter plots of individual age effects on WM ODI values in each ROI.
Predicted linear regression lines are superimposed for each sex (dark red: females, dark cyan: males),
with shades indicating the 95% confidence intervals. See Table 1 in the main text for the full names
of the abbreviated ROIs.
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Supplemental Figure 12. Scatter plots of individual age effects on WM IsoVF values in each
ROI.
Predicted linear regression lines are superimposed for each sex (dark red: females, dark cyan: males),
with shades indicating the 95% confidence intervals. See Table 1 in the main text for the full names
of the abbreviated ROIs.
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4. Interrelations among the regional mean values of the WM metrics

In order to compare with the correlation structure of the regional age effects of the WM metrics, we
computed a similar correlation matrix using the estimated mean values of each of the eight WM
metrics (WM volume and mean DTI/NODDI values). We used the estimated mean values at mean
age rather than actual mean values to account for the fact that raw mean values are dominated by
female data, while the regional age effects represent those across two sexes. However, in practice, the
correlation structure is almost identical when the actual or estimated mean values are used. We also
standardised each metric across the ROIs to allow the comparison of metrics using the same scale.

Supplemental Figure 13. The inter-relations between the regional mean values of the WM
volume and microstructure phenotypes.
Pairwise correlations of the estimated mean values of the WM metrics in the 27 ROIs are shown. The
diagonal of the plot matrix shows the distributions of the regional WM volume and DTI/NODDI
values after standardising each metric across the ROIs. The upper triangle shows Pearson's
correlation (r) values. The lower triangle shows the pairwise scatter plots of the standardised mean
values, with the colours indicating the ROI groups (blue: brainstem, pink: projection, green:
association, yellow: commissural). Statistical significance symbols (uncorrected for multiple
comparisons) *: 0.05 < p <0.001, **: 0.001 < p < 0.0001, ***: p < 0.0001. Bold-face indicates a
significant correlation after Bonferroni correction for multiple comparisons (28 correlations).
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