
HAL Id: hal-03346941
https://hal.science/hal-03346941

Submitted on 16 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The MRi-Share database: brain imaging in a
cross-sectional cohort of 1,870 university students.

Ami Tsuchida, Alexandre Laurent, Fabrice Crivello, Laurent Petit, Marc
Joliot, Antonietta Pepe, Naka Beguedou, Marie-Fateye Gueye, Violaine

Verrecchia, Victor Nozais, et al.

To cite this version:
Ami Tsuchida, Alexandre Laurent, Fabrice Crivello, Laurent Petit, Marc Joliot, et al.. The MRi-Share
database: brain imaging in a cross-sectional cohort of 1,870 university students.. Brain Structure and
Function, 2021, 226 (7), pp.2057-2085. �10.1101/2020.06.17.154666�. �hal-03346941�

https://hal.science/hal-03346941
https://hal.archives-ouvertes.fr


1/30 Brain imaging in a student cohort

The MRi-Share database: brain imaging in a cross-
sectional cohort of 1,870 university students
Ami Tsuchida1,2,3, Alexandre Laurent1,2,3, Fabrice Crivello1,2,3, Laurent Petit1,2,3, Marc Joliot1,2,3,4, 

Antonietta Pepe1,2,3, Naka Beguedou1,2,3, Marie-Fateye Gueye1,2,3,4, Violaine Verrecchia1,2,3,4, Victor 
Nozais1,2,3,4, Laure Zago1,2,3, Nathalie Tzourio-Mazoyer1,2,3, Emmanuel Mellet1,2,3, Stephanie Debette5,6, 

Christophe Tzourio5,6, Bernard Mazoyer1,2,3,4,6,CA

1 Université de Bordeaux, Institut des Maladies 
Neurodégénératives, UMR5293, Groupe d’Imagerie 
Neurofonctionnelle, Bordeaux, France
2 CNRS, Institut des Maladies Neurodégénératives, 
UMR5293, Groupe d’Imagerie Neurofonctionnelle, 
Bordeaux, France
3 CEA, Institut des Maladies Neurodégénératives, 
UMR5293, Groupe d’Imagerie Neurofonctionnelle, 
Bordeaux, France
4 Fealinx and Université de Bordeaux, Ginesislab, 
Bordeaux, France
5 Université de Bordeaux, Inserm, Bordeaux Population 
Health Research Center, UMR1219, CHU Bordeaux, 
Bordeaux, France
6 Centre hospitalier universitaire Pellegrin, Bordeaux, 
France

Corresponding author: (CA)
Bernard Mazoyer
bernard.mazoyer@u-bordeaux.fr

Abstract  We report on MRi-Share, a multi-modal brain MRI database acquired in a unique sample of 
1,870 young healthy adults, aged 18 to 35 years, while undergoing university-level education. MRi-Share 
contains structural (T1 and FLAIR), diffusion (multispectral), susceptibility weighted (SWI), and resting-state 
functional imaging modalities. Here, we described the contents of these different neuroimaging datasets and 
the processing pipelines used to derive brain phenotypes, as well as how quality control was assessed. In 
addition, we present preliminary results on associations of some of these brain image-derived phenotypes 
at the whole brain level with both age and sex, in the subsample of 1,722 individuals aged less than 26 
years. We demonstrate that the post-adolescence period is characterized by changes in both structural and 
microstructural brain phenotypes. Grey matter cortical thickness, surface area and volume were found to 
decrease with age, while white matter volume shows increase. Diffusivity, either radial or axial, was found to 
robustly decrease with age whereas fractional anisotropy only slightly increased. As for the neurite orientation 
dispersion and densities, both were found to increase with age. The isotropic volume fraction also showed a 
slight increase with age. These preliminary findings emphasize the complexity of changes in brain structure 
and function occurring in this critical period at the interface of late maturation and early aging.

Keywords  MRI · brain · student · cohort · cross-sectional · post-adolescence

Introduction

There is mounting evidence indicating the impor-
tance of early life factors on cognitive status and neu-
rological conditions later in life (Whalley et al., 2006). 
Genetic factors can shape early brain development 
as well as cognitive ageing processes through com-
mon molecular pathways (Kovacs et al., 2014), and

early life conditions (e.g. pre- and postnatal environ-
ment, socioeconomic status, educational attainment) 
as well as lifestyle choices contribute to risk factors 
for cerebrovascular diseases and dementia later in 
life (e.g. Backhouse et al., 2017; Corley et al., 2018; 
Wajman et al., 2018). The vast majority of epidemio-
logical studies investigating the risk factors for late-
onset neurological conditions tend to focus either on 
the middle- to old-age population (e.g. Debette et al., 
2011; Kivipelto et al., 2001; Whitmer et al., 2007) or 
on childhood (Backhouse et al., 2017; Field et al., 
2016; Gluckman et al., 2008). Likewise, many large-
scale neuroimaging cohort studies have charted 
morphological changes associated with healthy and 
pathological development and ageing, focusing on 
early and late childhood to early adulthood for de-
velopment (e.g. PING, Jernigan et al., 2016; PNC, 
Satterthwaite et al., 2016; IMAGEN, Schumann et 
al., 2010; Generation R, White et al., 2013) or on 
middle- to late-life for ageing (Three-City, 3C Study 
Group, 2003; UK-Biobank (UKB), Alfaro-Almagro 
et al., 2018; 1000BRAINS, Caspers et al., 2014; 
LBC1936, Deary et al., 2007; Rotterdam, Ikram et 
al., 2017; EVA, Lemaître et al., 2005; LIFE, Loeffler 
et al., 2015; OASIS, Marcus et al., 2010; BILGIN, 
Mazoyer et al., 2016; SYS, Pausova et al., 2017; 
ADNI, Petersen et al., 2010; MAS, Sachdev et al., 
2010, OATS, 2009; ASPS-Fam, Seiler et al., 2014; 
Framingham, Seshadri et al., 2004). Consequent-
ly, there is a relative paucity of epidemiological data 
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and neuroimaging cohorts focusing on early adul-
thood, despite the significant life changes many un-
dergo during this period, as they explore the world 
to attain independence and, for some, pursue higher 
education. While the most rapid brain changes oc-
cur during early development and the total brain size 
reaches adult levels by the end of childhood, both 
global and regional changes in brain structure and 
function continue throughout this period (Dumon-
theil, 2016). Yet, few studies investigate the impact 
of learning and social changes associated with hi-
gher education on maturational changes in the brain, 
and how it interacts with the personal traits, physical 
and mental health status to influence immediate as 
well as later-life events. Such data are crucial both 
for developing effective policies and interventions for 
promoting student health and well-being, and for gai-
ning insight into the early life factors associated with 
vulnerabilities later in life.

The i-Share (for internet-based Student Health 
Research enterprise; www.i-share.fr) cohort project 
was conceived to fill this gap. It aims to evaluate 
important health aspects among 30,000 university 
students over the course of 10 years. Besides the 
evaluation of the frequency and impact of specific 
health conditions, i-Share will also allow for testing 
of biological mechanisms and preventive strategies 
for mental and physical health conditions in young 
adults. Launched in 2013, it has collected detailed 
information pertaining to personal characteristics 
and lifestyle habits, including risk-taking behaviours, 
physical activity, diet, sleep, and cognitive abilities, 
through web-based questionnaires, as well as medi-
cal and health status.

An important sub-component of the i-Share stu-
dy, which was called “MRi-Share”, is a multi-modal 
brain magnetic resonance imaging (MRI) database 
collected in a subset of i-Share participants. The spe-
cific motivations behind MRi-Share were to 1) charac-
terize late-maturational changes of post-adolescence 
brain; 2) investigate the impact of higher education 
on late maturational processes of the brain; 3) study 
the associations between brain phenotypes and neu-
ropsychiatric conditions prevalent in young adults, 
such as migraine, depression and anxiety disorders, 
and substance abuse ; and 4) establish the early oc-
currence of imaging biomarkers of late-life disorders, 
such as white matter hyperintensities (WMH) and 
enlarged perivascular space (ePVS). Nearly all MRi-
Share participants enrolled in another closely asso-
ciated i-Share sub-component, called “Bio-Share”, 
a biobank derived from analyses of blood samples, 
used to generate large scale multi-modal molecular 
biomarkers. Together, these two i-Share components 
permit the exploration of early neuroimaging-based 
biomarkers for late-onset neurocognitive conditions 
such as cerebrovascular disease and dementia.

The primary goal of the present manuscript is

to describe the MRi-Share image acquisition proto-
col as well as the analysis pipelines used for deriving 
brain phenotypes from MRI. These image-derived 
phenotypes (IDPs) include 1) measures of both vo-
lume- and surface-based brain morphometry from 
structural MRI, 2) measures of the organization of 
the white matter microstructure organization based 
on diffusion MRI, and 3) measures of intrinsic functio-
nal connectivity derived from resting-state functional 
MRI. These phenotypes were obtained at both the 
brain, regional, and voxel levels. A special care has 
been taken to detail the quality control (QC) steps, 
since there is an increasing awareness of the impact 
of QC procedures and metrics on IDPs of morpho-
metry (Ducharme et al., 2016; Madan, 2018; Reuter 
et al., 2015) and white matter properties (Roalf et al., 
2016). The secondary goal is to present prelimina-
ry results on associations of some of these IDPs at 
the whole brain level with both age and sex, in this 
large cross-sectional cohort of post-adolescence in-
dividuals.

Data Acquisition

MRi-Share study protocol
The study protocol was approved by the local ethics 
committee (CPP2015-A00850-49). All participants 
were recruited through the larger i-Share cohort stu-
dy. The i-Share participants recruited at the Bordeaux 
site were given the information regarding MRi-Share 
and Bio-Share substudies. Those interested in contri-
buting received detailed information about both subs-
tudies, including a “virtual visit” to the MRI facility that 
gave the participants a better idea about what was 
involved, and were invited to make an appointment 
with one of the MD investigators. The MD investi-
gator ensured that each participant received all the 
information pertinent to the participation in both stu-
dies, and also checked for the absence of any cause 
for exclusion. Exclusion criteria were: 1) age over 35 
years; 2) pregnancy or nursing; 3) claustrophobia; 
and 4) contraindications for head MRI. Participants 
then signed an informed written consent form, and 
scheduled for the MRI session, after which they re-
ceived compensation for their contribution.

Out of 2,000 individuals who met with the MD 
investigators between October 2015 and June 2017, 
29 were either not willing to participate in the MRi-
Share or found to be ineligible. Additional 46 withdrew 
from the study before scheduling the MRI session, 
and another 7 participants withdrew at the scheduled 
session, before the scanning took place. Forty-eight 
students had been eligible and willing to participate, 
but could not be scheduled before the acquisition ter-
minated in November 2017, and therefore were ne-
ver scanned. Out of the remaining 1,870 participants 
who underwent the scanning session, two individual
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datasets were removed, one because a participant 
withdrew from the study after being scanned, the 
other due to instrument failure during scanning. In 
addition, there were incidental findings requiring me-
dical referral in 36 participants (see Incident findings 
section for details), and their imaging data were sub-
sequently removed from further analyses, making the 
final sample size of 1,832.

Demographic information
While the larger i-Share study collected a detailed 
socio-demographic, health and lifestyle-related infor-
mation through web-based questionnaires (see Mon-
tagni et al., 2019 for examples of domains covered 
by the study), we report here a limited set of demo-
graphic variables collected specifically in association 
with the MRi-Share protocol. These include sex and 
age at the time of MRI acquisition, as summarized 
in Table 1. The table also contains the proportion of 
each sex for the entire i-Share cohort for compari-
son. It can be seen that the high proportion of fe-
males relative to males in the MRi-Share is a feature 
of the larger i-Share cohort itself. Actually, a higher 
proportion of women among University students is 
observed at the French national level (55%, source 
France Ministry for Higher Education, Research 
and Innovation 2019: https://cache.media.enseigne-
mentsup-recherche.gouv.fr/file/Brochures/32/8/pa-
rite2018_stats_A5_11d_908328.pdf). It is amplified 
in the i-Share cohort due to an over-recruitment of 
students coming from faculties in which even larger 
proportion of women are observed (medical and pa-
ramedical sciences, social sciences).

While the study protocol allowed enrolment of 
students up to 35 years of age, almost 95% of our 
sample was under 26 years old (95th percentile va-
lues for age in the entire sample = 26.3 years old; see 
Figure 1). We thus focused on the subsample under 
26 years of age when describing the association of 
the MRI image derived phenotypes (IDPs) with age 
and sex in the sections below. Table 1 provides the

demographic summary of this sub-sample as well. 
Males and females in our sample had a small but si-
gnificant difference in their age (difference in mean 
age < 4 months, p = 0.007, t-test ) in the entire cohort, 
but the difference was marginal in the sub-sample of 
under 26 year-olds (2 months difference in age, p = 
0.068, t-test ).

MRI acquisition
The MRI acquisition protocol for the MRi-Share da-
tabase was designed to closely emulate that of the 
UKB MR brain imaging study (Alfaro-Almagro et al., 
2018), in terms of both modalities and scanning pa-
rameters for each. We emulated the UKB brain MRI 
protocol so that  it would allow the combined analysis 
of the two databases in the future, as the early adul-
thood target period of MRi-Share is not covered by 
the UKB design which includes individuals aged over 
45 years old.

There were, still, some differences between the 
MRi-Share and UKB neuroimaging protocols. First, 
we did not include task-related fMRI runs and used 
the time gained to extend the resting-state fMRI 
(rs-fMRI) acquisition duration which lasted for ~15 
min (instead of 6 min in the UKB) resulting in 1,054 
volumes for MRi-Share (to be compared with 490 in 
the UKB rs-fMRI). Another minor difference in the 
scanning protocol was in diffusion weighted imaging 
(DWI): we acquired 8, 32, and 64 directions each for 
b values 300, 1000, and 2000 s/mm2, respectively, 
while the UKB did not acquire b value of 300 s/mm2 
and instead acquired 50 directions each for b values 
1000, and 2000 s/mm2. We also had slightly more 
sets of b = 0 images acquired in Anterior-Posterior 
(AP) and the reverse PA phase encoding (8 pairs of 
AP and PA) than in UKB (3 pairs).

All neuroimaging data were acquired on the same 
Siemens 3T Prisma scanner with a 64-channels head 
coil (gradients: 80 mT/m - 200 T/m/s), in the 2-year 
period between November 2015 and November 2017. 

Table 1.  Basic characteristics of the MRi-Share da-
tabase. Age (mean ± SD and range, in years) of the MRi-
Share participants are shown for entire sample as well as 
for those under 26 years old, for each sex separately and 
in the combined group. The proportion of each sex in the 
larger i-Share cohort is also shown for comparison.

Figure 1.  Age distribution histogram of the entire MRi-
Share database. The age distribution histogram is shown 
for male (blue) and female (red). The dotted line indicates 
the 95th percentile of the distribution.
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Table 2 summarizes the key acquisition parameters 
for each imaging modality. The whole acquisition 
session lasted ~45 min. Prior to the rs-fMRI acqui-
sition, participants were instructed to “keep their 
eyes closed, to relax, to refrain from moving, to stay 
awake, and to let their thoughts come and go”, for the 
duration of the 15 min-long run. Compliance to the 
instruction was checked by the questions included in 
the self-report questionnaire, performed at the end of 
the scanning session.

While all 1,832 participants completed the struc-
tural scans (T1 and FLAIR), 17 did not complete the 
whole scanning session (2 with missing SWI, DWI, 
and rs-fMRI, 15 with missing or incomplete DWI and/
or rs-fMRI) either due to anxiety attack or techni-
cal problems during scanning. The number of total 
images acquired for each scan (excluding the inci-
dentals) is also listed in Table 2. For the description 
of each modality, we refer readers to the overview 
provided by Alfaro-Almagro et al. (2018). 

Incident findings
Within days following the acquisition, T1 and FLAIR 
images were visually checked for quality by one of 
the three trained MD investigators (B.M, E.M). In 
the course of this quality control (QC) procedure, 
presence of any incident finding was recorded and 
paid special attention to when performing moda-
lity-specific individual QC (described in the Quality 
control section). In addition, any potentially harmful 
incident finding was sent to another neuroradiolo-
gist for a second opinion. Upon confirmation by the 
neuroradiologist, discovery of the incidental finding 
in a participant was notified to a neurologist inves-
tigator of the i-Share study (S.D) who took care of 
the participant information and follow-up. A total of 
36 participants (1.9%) were identified as having

Table 2.  Summary of acquisition parameters. For each of the five modalities, the key acquisition parameters are 
listed. T1: T1-weighted imaging, MPRAGE: magnetization-prepared rapid acquisition with gradient echo, TR: repeti-
tion time, TE: echo time, TI: inversion time, FLAIR: Fluid-attenuated inversion recovery imaging, SPACE: sampling 
perfection with application-optimized contrasts using different flip angle evolutions, R: in-plane acceleration factor, PF: 
partial Fourier, SWI: susceptibility-weighted imaging, DWI: diffusion weighted imaging, MB: multiband factor, AP/PA: 
anterior-posterior/posterior-anterior; b-values are in s/mm2 and the number of directions is given in parentheses. rs-
fMRI: resting-state functional magnetic resonance imaging; EPI: EchoPlanar Imaging.

incidental requiring medical referral and their data 
were excluded from analyses presented in the present 
manuscript. A detailed description of these incidental 
findings will be published in a separate report.

Automated image analysis pipelines
The acquired data were managed and processed 
with the Automated Brain Anatomy for Cohort Ima-
ging platform (ABACI, IDDN.FR.001.410013.000.S
.P.2016.000.31235) which integrates processing pi-
pelines built with a nipype interface (Gorgolewski et 
al., 2011) with the Extensible Neuroimaging Archive 
Toolkit (XNAT; http://www.xnat.org) database mana-
gement system. Through this platform, all image pro-
cessing, except rs-fMRI data, was performed using 
a dedicated computing cluster system composed of 
CPU servers, in a python 3.6.3 environment, with ny-
pipe version 1.0.2. For running functions from the Sta-
tistical Parametric Mapping (SPM12: https://www.fil.
ion.ucl.ac.uk/spm/), Matlab compiler runtime (MCR) 
was used (R2010A, v713, The Mathworks, Natick, 
MA). Processing of the rs-fMRI data was computed 
on CURTA, a shared computing cluster provided by 
the Mésocentre de Calcul Intensif Aquitain (MCIA) 
dedicated to intensive parallel computation. The py-
thon (3.6.5) and nipype (1.0.2) environment, and the 
resting-state pipeline contained in the ABACI plat-
form were packaged on a single “resting state” sin-
gularity container (Kurtzer et al., 2017), together with 
all other tools and softwares the pipeline depended 
on. It used the same MCR v713 when running any 
functions from SPM12, but used MCR R2018a v94 
when running other custom functions in Matlab. The 
main ABACI image analysis pipelines are briefly des-
cribed below and detailed in the supplementary ma-
terial section. 
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 vertices, and cortical volume for right and left cor-
tical regions as defined by three cortical atlases 
included with Freesurfer package: Desikan-Kil-
liany (34 regions: Desikan et al., 2006), DKT (31 
regions: Klein and Tourville, 2012), and Destrieux 
(74 regions: Destrieux et al., 2010) cortical atlases)

• 31 global Freesurfer volume-based IDPs (17 
global measures of volume contained in ‘aseg.
stats’ table, 14 of which are described in https://
surfer.nmr.mgh.harvard.edu/fswiki/MorphometryS-
tats, plus 17 additionally calculated global mea-
sures of volume based on ‘aseg’ segmentation, as 
described in Supplementary Material)

• 34 regional Freesurfer volume-based IDPs (vo-
lumes for each region in ‘aseg’ labels, but exclu-
ding 7 ventricular regions that are aggregated in 
one of the global measures)

• 5 Freesurfer brainstem substructure volume 
IDPs (medulla oblongata, pons, superior cerebel-
lar peduncle, and whole brainstem: Iglesias et al., 
2015b) 

• 26 Freesurfer hippocampal subfield volume 
IDPs (left/right parasubiculum, presubiculum, su-
biculum, cornu ammonis (CA) 1, CA2/3, CA4, gra-
nule cell and molecular layer of the dentate gyrus 
(GC-ML-DG), molecular layer, HATA, fimbria, hip-
pocampal tail, hippocampal fissure, and whole hip-
pocampus: Iglesias et al., 2015a)

• 3 tissue volume IDPs from SPM (total GM, 
WM, and CSF volumes)

• 138 regional GM volume IDPs based on SPM 
(total GM volume within regions defined by Har-
vard-Oxford cortical and subcortical atlases (De-
sikan et al., 2006; Frazier et al., 2005; Goldstein 
et al., 2007; left/right 48 cortical and 7 subcortical 
regions, and brainstem: Makris et al., 2006), and 
by Diedrichsen probabilistic cerebellar atlas (27 re-
gions: Diedrichsen et al., 2009)

Fieldmap generation pipeline
As in the UKB (Alfaro-Almagro et al., 2018), we es-
timated the fieldmap images from the b=0 images  
with opposing AP-PA phase-encoding directions from 
DWI scans, rather than from “traditional” fieldmaps 
based on dual echo-time gradient-echo images. The 
Supplementary Material section describes the details 
of this pipeline, with the schematic representation 
of the pipeline in Supplemental Figure 5. The main 
outputs are: 1) the fieldmap phase and magnitude 
images in native T1 structural space that are used 
for EPI unwarping in the rs-fMRI pipeline; 2) the ac-
quisition parameters, the field coefficient image and 
top-up movement parameters, and the brain mask 
generated from the average distortion-corrected b0 
maps that are used for eddy-current and top-up dis-
tortion corrections in the DWI and rs-FMRI pipelines. 
This pipeline was built primarily using tools available 

Image anonymization
In order to protect the anonymity of the participants, 
the high-resolution anatomical images (T1 and 
FLAIR) were processed with a defacing pipeline that 
masked out voxels in the facial region. This pipeline 
is a Nipype implementation of defacing protocol used 
by the UKB (Alfaro-Almagro et al., 2018), and uses 
the same face mask in MNI space available at the 
official code repository of the UKB (under templates 
folder in https://git.fmrib.ox.ac.uk/falmagro/UK_bio-
bank_pipeline_v_1/tree/master).

T1 and T2-FLAIR structural pipeline
Our structural pipeline processed T1 and FLAIR 
images for multi-channel volume- and surface-based 
morphometry, primarily with SPM12 (https://www.fil.
ion.ucl.ac.uk/spm/) and Freesurfer v6.0 (http://surfer.
nmr.mgh.harvard.edu/). It also produced bias-field 
corrected and ‘cropped’ T1 images with reduced 
amount of non-brain tissues to be used as a refe-
rence image for all other modalities. Details of the 
proposed dual structural pipelines are described in 
the Supplementary Material, with the schematic re-
presentation of the pipeline in Supplemental Figure 
1. Of note, we had initially used default parameters 
for SPM12-based unified tissue-segmentation and 
normalization of the structural images, using the co-
hort-specific template; however, the early visual QC 
of the tissue segmentation outputs revealed wrong 
cortical ribbon extraction leading to a underestima-
tion of grey matter in the vast majority of participants 
(Supplemental Figure 2 and 3). We therefore modi-
fied the SPM12 default settings to overcome this grey 
matter underestimation, as described in detail in the 
Supplementary Material.

Global IDPs derived with this pipeline were: 
total grey matter volume (GM) and white matter 
volume (WM), mean cortical thickness (CT), total 
cortical inner surface defined by grey-white matter 
interface (inner CSA), and total cortical pial surface 
area (pial CSA). Although only explicitly discussed 
in a few surface-based morphometric studies (e.g. 
Hogstrom et al., 2013; Storsve et al., 2014; Tamnes 
et al., 2017), CSA is usually defined at the GM/WM 
boundary, representing inner, white surface, since 
the pial surface defined by the GM/cerebrospinal 
fluid (CSF) boundary in theory may be more sensi-
tive to changes in CT (Winkler et al., 2012). Here, to 
thoroughly describe the age-related variation in GM 
morphometry, we also computed the total pial sur-
face area. Distributions of these metrics in the entire 
sample (N = 1,832) are shown in Supplemental Fi-
gure 15. Overall, the IDPs from this pipeline include:

• 3 global Freesurfer surface-based IDPs (mean 
CT, total inner CSA, total pial CSAl)

• 1,390 regional Freesurfer surface-based 
IDPs (CT, inner CSA, pial CSA, number of
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from FMRIB Software Library (FSL, v5.0.10: https://
fsl.fmrib.ox.ac.uk).

Diffusion MRI pipeline
The preprocessing steps of DWI are described in 
the Supplementary Material section, and the Sup-
plemental Figure 6 shows the schematic representa-
tion of the pipeline. Briefly, following the eddy current 
and top-up distortion correction and denoising of the 
DWI data, the resulting image was then used to fit 1) 
DTI (Diffusion-Tensor Imaging; Basser et al., 1994) 
modelling and 2) microstructural model fitting with 
NODDI (Neurite Orientation Dispersion and Density 
Imaging; Zhang et al., 2012). The preprocessing and 
DTI fitting was performed using tools from FSL and 
the dipy package (0.12.0, https://dipy.org; Garyfallidis 
et al., 2014), while the AMICO (Accelerated Micros-
tructure Imaging via Convex Optimization) tool (Da-
ducci et al., 2015) was used for NODDI fitting. Here 
we report global DTI/NODDI statistics measured for 
each individual within a cerebral WM mask defined 
using the Freesurfer-segmented WM further refined 
using the SPM12-based WM probability map with a 
0.5 lower threshold. This masking procedure ensured 
that the mean DTI/NODDI values were computed wit-
hin cerebral WM regions with limited partial volume 
effects.

The global IDPs from this pipeline that are re-
ported in this paper are mean DTI and NODDI me-
trics within the cerebral WM mask. Specifically, these 
metrics are: fractional anisotropy (FA), mean, axial, 
and radial diffusivity (MD, AD, and RD), based on 
DTI modeling, neurite density index (NDI), orientation 
dispersion index (ODI), and isotropic volume fraction 
(IsoVF), derived from NODDI modeling. Distributions 
of these metrics in the entire sample with complete 
DWI data (N = 1,823) are shown in Supplemental 
Figure 16. Figure 3 shows the group average maps 
of these DTI and NODDI metrics in standard MNI 
space. The following list summarizes these and other 
IDPs from this pipeline, and the Supplementary Ma-
terial describes how they were generated:

• 77 DTI/NODDI regional WM IDPs based on 
subject-specific masks generated using Free-
surfer aseg labels (mean FA, MD, AD, RD, 
NDI, ODI, IsoVF within total and left/right cere-
bral, cerebellar, and ventral diencephalon WM, 
and within corpus callosum and brainstem)

• 28 DTI/NODDI regional GM IDPs based on 
subject-specific masks generated using Freesur-
fer aseg labels (mean DTI/NODDI metrics within 
cortical, hippocampal, subcortical (excluding hip-
pocampi), and cerebellar GM)

• 525 DTI/NODDI regional WM IDPs based on 
subject-specific masks generated using Free-
surfer wmparc labels (mean DTI/NODDI me-
trics within 75 WM parcellated regions of the 
wmparc atlas (5 corpus callosal subregions

and 35 left/right WM regions: Salat et al., 2009)
• 336 DTI/NODDI regional WM IDPs based on 

spatially normalized DTI/NODDI maps and JHU 
ICBM-DTI-81 white matter labels atlas (6 bilateral 
and 21 left/right WM tracts: Mori et al., 2008; Oishi 
et al., 2008)

• 36 DTI global WM skeleton IDPs based on spa-
tially normalized WM skeleton created using TBSS 
(Tract-Based Spatial Statistics, Smith et al., 2006), 
part of FSL package (Smith et al., 2004) (mean, 
standard deviation, and peak-width 90 of the ske-
leton, or the 95th to 5th percentile value over the 
WM skeleton, as described in Baykara et al. (2016) 
for the 4 DTI metrics, as well as the same metrics 
computed over the left and right WM skeletons, as 
described in Beaudet et al. (2020))

Resting-state fMRI pipeline
Processing of rs-fMRI is described in the Supplemen-
tary Material section, with the Supplemental Figure 
7 showing the schematic representation of the pre-
processing steps. Briefly, the distortion-corrected rs-
fMRI data were aligned to the T1-weighted individual 
reference space, band-pass filtered to a frequency 
window of 0.01 - 0.1 Hz, then warped into the stereo-
taxic space at a voxel sampling size of 2x2x2 mm3. 
These preprocessing steps were primarily performed 
using tools from FSL (v5.0.10: https://fsl.fmrib.ox.ac.
uk) and AFNI (v18.0.05: https://afni.nimh.nih.gov, 
Cox, 1996). The following IDPs were then generated 
(details in the Supplemental Material) from the pre-
processed data:

• 2 regional intrinsic connectivity (IC) matrices 
using the 384 regions of the AICHA atlas (Atlas of 
Intrinsic Connectivity of Homotopic Areas; Joliot et 
al., 2015), either with or without global signal re-
moval;

• A ReHo map (Zang et al., 2004) that measures 
the homogeneity of local connectivity;

• An ALFF map that depicts the local amplitude 
of low frequency fluctuations (Yang et al., 2007)

• A map of fALFF (Zou et al., 2008), a norma-
lized value of ALFF that improves sensitivity and  
specificity in detecting intrinsic brain activities;

• subject-specific IC components and their time 
series based on subject-level independent compo-
nent analysis (ICA; Beckmann and Smith 2004).

Quality control

Overview of the QC strategy
The quality of acquired MR images and phenotypes 
obtained from them was ensured by a 5-stage qua-
lity control processes (Figure 2) : 1) Aborting or 
postponing the MRI scan during acquisition if the 
MR technician observes significant amount of ar-
tefacts due to motion or any technical problems;

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2020. . https://doi.org/10.1101/2020.06.17.154666doi: bioRxiv preprint 

https://fsl.fmrib.ox.ac.uk
https://fsl.fmrib.ox.ac.uk
https://dipy.org
https://fsl.fmrib.ox.ac.uk
https://fsl.fmrib.ox.ac.uk
https://afni.nimh.nih.gov
https://doi.org/10.1101/2020.06.17.154666


6/30 7/30 Brain imaging in a student cohort

2) Reviewing of acquired structural scans (T1 and 
FLAIR) by experts to check for any significant arte-
fact or presence of anomalies (see the section on 
Incidentals and anomalies above, and see Supple-
mental Figure 8 for examples of the flagged artefact);  
3) Generation and reviewing of modality- and proces-
sing-specific QC images for each participant, orga-
nized as static web-pages (Supplementary Material 
for description and examples from each pipeline); 4) 
Examination of the distributions of both QC metrics 
and IDPss for detection of outliers using interactive 
web-based figures with links to subject-specific QC 
web-pages (Supplementary Material for the descrip-
tion and distributions of IDPs and quantitative QC 
metrics for each pipeline); and finally 5) Detailed re-
view of relevant raw and processed data when the 
images were flagged as having visible artefact or 
benign anomalies (i.e. not classified as incidentals) 
in step 2 or when any metrics computed in step 4 
indicated potential problems in specific processing 
pipeline (e.g. review of tissue segmentation images 
for individuals with visible artefacts, known structural 
anomaly, or outlier values in specific morphometric 
values).

Since the structural scans, in particular T1 
image, serve as a reference for all other modalities, 

Figure 2.  Overview of the QC workflow. Boxes in light blue represent QC steps that deal with raw data during and 
after acquisition, and those in light purple represent QC steps that use processed images via automated processing pi-
pelines. While all MRI data from subjects with incidental findings were excluded (dark pink), those with processing-spe-
cific problems were excluded only from relevant analyses (light pink). Since the structural images, in particular T1 scans, 
served as a reference in other processing pipelines, those with severe artefacts in raw T1 images were removed from 
all analyses. The flowchart is loosely based on Backhausen et al. (2016), who described a recommended QC workflow 
for structural (T1) processing.

we paid additional attention at checking the quality 
of their acquisition and processing, subjecting them 
to more individual individual-level QC review at step 
2, in addition to the thorough review of raw acquired 
data at step 1. This is also because it is relatively 
easier to spot processing errors more objectively in 
the structural processing (e.g. segmentation failures) 
in individual-level QC images than in the DWI and 
rs-fMRI pipelines, where the accuracy of final output 
images cannot be easily assessed visually. However, 
whenever the group-level QC metric distributions in-
dicated potential problems in the specific processing 
pipeline, individual-level QC images in the DWI and 
rs-fMRI pipelines were reviewed to check for any ob-
vious problems in image quality and/or processing er-
ror. No manual editing or subject-specific parameter 
adjustment was performed for any of the pipelines, in 
order to ensure the repeatability of our results. In this 
paper, we primarily use the distribution of phenotypic 
variables of interest to define the outliers to be ex-
cluded in the analyses. Specifically, we checked for 
extreme outliers in each phenotypic variables using 
interquartile range (IQR), or Tukey fence method (Tu-
key, 1977), defining those with values below 3*IQR 
from the first quartile or above 3*IQR from the third 
quartile as the “far out” outliers. The distributions of
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all the quantitative QC metrics are reported in the 
Supplementary Material.

Summary of modality-specific QC criteria and 
excluded participants

Structural pipeline
A total of 19 participants were flagged as having 
visible artefacts in raw T1 and/or FLAIR images 
by one of the three MD experts who reviewed raw 
images soon after the acquisition (step 2). However, 
none of the images had artefacts severe enough to 
exclude participants immediately (see Supplementary 
Material for the rating of artefact severity), partly 
because the first step in our QC protocol prevented 
unusable data from entering the database. We 
followed the recommendations and procedures 
proposed by (Backhausen et al., 2016), to carefully 
follow the impact of these flagged artefacts at each 
step of the structural processing, and found that all of 
the flagged images could be processed without any 
major issues. For structural pipeline, an independent 
trained rater (N.B) also reviewed subject-specific QC 
images generated from both SPM12 and Freesurfer 
streams for all participants, regardless of the artefact 
flagging, and found all 1,832 participants to have 
acceptable processing of T1 and FLAIR images, at 
least with regard to global morphometry reported 
here. The Supplemental Material Figure 15 shows the 
distributions of all the global morphometric variables 
we report in the current paper (CT, inner CSA, pial 
CSA, GM and WM volumes). None of these variables 
had extreme outliers in the entire sample (N = 1,832), 
nor in those under 26 years old (N = 1,722), who 
were used to examine the age and sex effects in the 
current paper. While most of the QC for the structural 
pipeline was performed by visual inspection of 
various images, we also computed some quantitative 
QC metrics and report their distributions in the 
Supplemental Figure 11.

Diffusion pipeline
For the diffusion pipeline, 9 participants had either 
missing or incomplete DWI scans due to technical 
problems or anxiety attacks, resulting in a total of 
1,823 DWI data that could be processed. A number 
of quantitative QC metrics were reviewed for any out-
liers, and subject-specific visual QC images were re-
viewed by experts (L.P and A.T) for those outliers to 
detect any obvious problems with the quality of the 
acquired DWI or with any specific processing steps 
(see Supplementary Material for details for the distri-
butions of all the quantitative QC metrics), but none 
was detected. There were also no extreme outliers in 
any of the mean DTI and NODDI metrics within the 
cerebral WM in the entire sample (N = 1,823), nor in 
those under 26 years old (N = 1,714).

Resting-state fMRI pipeline
The rs-fMRI scan, which was the last of the MRI 
session, was either missing or incomplete in 17 
participants. One additional participant was found to 
have a wrong parameter for TR, and subsequently 
removed from the analysis. As a result, there was 
a total of 1,814 data that could be processed in the 
pipeline. Similarly to the diffusion pipeline, the QC for 
the resting-state fMRI focused on the identification 
of outliers on a number of quantitative QC metrics 
automatically generated by the pipeline, followed by 
the reviewing of subject-specific QC images by experts 
(M.J and M-F.G) to determine the acceptability of the 
data (see Supplementary Material for details for the 
distributions of all the quantitative QC metrics).

Statistical Analysis

MRi-Share study protocol
While the primary goal of the present manuscript is to 
describe the MRi-Share image acquisition protocol as 
well as the analysis pipelines used for deriving brain 
phenotypes from MRI, a secondary goal is to present 
preliminary results on associations of some of these 
brain image-derived phenotypes (IDP) at the whole 
brain level with both age and sex in yound adults.

As mentioned earlier, the vast majority of MRi-
Share participants are aged between 18 and 26 
years, with only about 5% being aged between 26 
and 35 years. Rather than making an inference 
about age-related variations for the age-range of the 
entire sample that would rely on a small number of 
participants for the later age range, we focus here 
on the earlier age range of 18 to 26 years old where 
we have good coverage of the age span. Given the 
narrow target age range, we expected most of the 
age-related variations that exist in the IDPs to be 
captured by a linear age model. Indeed, preliminary 
comparison of models that included quadratic age ef-
fect to capture any non-linear trend did not improve 
model fit relative to linear age effect models in any of 
the IDPs examined, as judged by the Bayesian Infor-
mation Criterion (BIC). Also using BIC, we examined 
linear age models with or without including the es-
timate of intracranial volume (eTIV) from Freesurfer 
as a covariate for the structural morphometric ana-
lyses, to check for the significant contribution of the 
eTIV in explaining the variance of the IDPs. For the 
mean DTI and NODDI metrics within cerebral WM, 
instead of eTIV, we examined the contribution of the 
volume of the cerebral WM mask as the latter has 
been shown to modulate the estimated DTI mean 
values by affecting the amount of partial volume ef-
fects (PVE) within the mask (Vos et al., 2011). We 
certainly minimised the PVE by restricting the mean 
metric computation in the Freesurfe WM mask voxels 
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having a WM tissue probability larger than 0.5. Ne-
vertheless, including PVE as a covariate in the sta-
tistical analysis allowed us to verify that any residual 
PVE did not affect the estimates for the age effect.

Given the large disparity in the sample size of 
each sex, we studied age effects first separately for 
men and women first, then as acombined group to 
test for the main effect of sex as well as any inte-
raction between sex and age. Thus, for sex-specific 
analyses, we examined two models as described in 
the following equations:

Y ~ A + βAgeAge 				            (1)
Y ~ A + βAgeAge + βVolVol 		               (2),

where Vol represents eTIV for the structural morpho-
metry IDPs and the cerebral WM mask volume for the 
DTI and NODDI IDPs. Comparing these two models, 
we primarily report the model showing optimal fit, i.e. 
having the lowest BIC. For the combined group ana-
lyses, the following two models were considered:

Y ~ A + βSexSex + βAgeAge + βSex:AgeSex:Age  (3)
Y ~ A + βSexSex + βAgeAge + βVolVol +

βSex:AgeSex:Age + βSex:VolSex:Vol (4),

and we report the model parameter estimates with 
(3) or without eTIV or WM mask volume (4) when the 
best fit models for two sexes agreed (which should 
be chosen if we were to use BIC on the combined 
group models), and the results with Vol (4) when 
eTIV or the WM mask volume explained a significant 
amount of variance in at least one of the sexes. This 
was to avoid biasing the model selection for the com-
bined group towards the larger sample size female 
group, when the selected model differs between the 
two sexes. Similarly, in the model (4), we included 
a Sex by Vol interaction in the model to allow for a 
possible difference between the groups in the slope 
of the IDPs versus Vol, again avoiding biasing the fit 
towards the larger female group (Nordenskjöld et al., 
2015). The interaction term with Sex and Age was in-
cluded in both models to test for any sex differences 
in the age-related trajectory.

Both Age and Vol were mean-centered in res-
pective groups (i.e. using female- or male-specific 
means in sex-specific analyses and combined mean 
in combined group analyses). Our aim in presen-
ting these analyses is to describe the overall age 
trajectory of these global metrics inferred from the 
age-related variations in our dataset, rather than to 
test any specific hypotheses. Thus, we present the 
raw model fits with unadjusted p-values. Although 
we primarily report the results of the model selected 
by the procedure described above, we also provi-
de the alternative model results in the Supplemen-
tary Material, given the inconsistencies in how glo-
bal brain size is corrected (or not corrected) in prior 
studies investigating brain morphometric changes 
during development and maturation (e.g. Table 2 in

a recent review by Vijayakumar et al., 2018). As for 
the DTI and NODDI IDPs, the effects of the mask vo-
lume during development are largely unknown.

All model fits were performed using lm func-
tion as implemented in stats library included with R 
version 3.4.4 (R Core Team, 2018), and the effect 
size estimates for each covariate in the model were 
computed as partial η2 using ‘etasq’ function in the R 
heplots library (Fox et al., 2018). BIC was computed 
using the ‘extractAIC’ function in the R stats package, 
with the weight of the equivalent degrees of freedom 
(k) set to log(n), where n represents the sample size 
in the mode. In the combined-sex analyses, we report 
the estimates of β’s for sex and sex interaction terms 
using the default contrast setting in R that treats one 
of the groups (female in our case) as a reference, 
so that the β represents the difference between male 
and female groups. However, to present the age ef-
fect across groups, we report β for age effect by set-
ting the contrast to ‘contr.sum’, that gives orthogonal 
contrasts where the effect estimates for non-catego-
rical variables (i.e. age in our case) represent those 
for the overall group mean.

Results

Figure 3 and 4 illustrate the spatially normalized ave-
rage maps of various morphometry and white matter 
property IDPs across the entire MRi-Share sample 
(N = 1,832 for Figure 3, N = 1,823 for Figure 4). Fi-
gure 3A and B show the sample average images of 
spatially normalized T1 and FLAIR. Figures 3C, D, 
and E depict the vertex-level sample average of CT, 
inner CSA and pial CSA computed in the fsaverage 
surface-based template space. Figures 3E and 3F 
show the sample average GM and WM tissue proba-
bility maps and Figure 4 the sample average DTI and 
NODDI maps.

Global grey matter morphometry
Table 3 summarizes the descriptive statistics and the 
age and any sex differences in the three global cor-
tical GM morphometry: Freesurfer-based mean CT, 
total inner CSA, total pial CSA, and SPM-based total 
GM volume, the latter being calculated from jacobian 
modulated and warped GM maps. The age and sex 
effect estimate on these metrics are also reported in 
Table 3 and plotted on Figure 5 for surface-based 
metrics, and Figure 6A for GM volume.

The best model for the mean CT was the mo-
del without eTIV in both sexes, which explained 
0.1 and 1.0% of total variance in male and female 
data, respectively. In the combined group analysis, 
age, sex, and their interaction together explained 
2.5% of the variance. There was a significant main 
effect of sex, with males showing slightly thicker CT 
than females (approximately 0.8% difference in CT).
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Figure 3.  Group average maps for structural images for 1,832 MRi-Share subjects. Average maps across subjects 
are shown for (A) T1, (B) FLAIR, (C) mean CT, (D) total inner CSA, (E) total pial CSA , (F) GM tissue map, and (G) WM 
tissue map. Volumetric images (A, B, F, G) are spatially normalized and in standard MNI space. The tissue probability 
maps (F and G) are overlaid on the average T1 image, and the color bar at the bottom indicates the group average 
tissue probability. All volumetric maps were with the MRIcron (v1.0.20190902; https://people.cas.sc.edu/rorden/mri-
cron/). Surface-based metrics (C to E) are projected onto fsaverage template space, with (C) and (E) projected onto pial 
surface, and (D) onto white surface of the template, visualized using the Suf Ice (v1.0.20190902; https://www.nitrc.org/
projects/surfice/).
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Figure 4.  Group average maps for DTI and NODDI metrics in 1,823 MRiShare subjects. Average maps of (A) 
FA, (B) MD, (C) RD, and (D) AD from the DTI modeling, and (E) NDI, (F) ODI, and (G) IsoVF from the NODDI mode-
ling across subjects are shown in the standard MNI space. Colorbar for the FA, NDI, ODI, and IsoVF is shown at the 
left-bottom, and that for the MD, RD, and AD is shown at the right-bottom of the figure. All maps were visualized with the 
MRIcron (v1.0.20190902; https://people.cas.sc.edu/rorden/mricron/).
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Table 3.  Summary of grey matter morphometry. Descriptive statistics and the results of linear model fit for mean 
CT, total inner CSA, and total pial CSA from Freesurfer v6.0, as well as total GM volume from SPM12, are shown. 
Parameter estimates (β) for age and sex are shown, together with 95% confidence intervals (CI) for each β, as well 
as uncorrected p values and partial eta squared as the effect sizes for each variable. The Model column indicates 
the selected model (see text) with the corresponding model number as described in Methods section. The interaction 
between sex and age was tested in the combined group but was not significant in any of the metrics listed here, and 
thus is not included in the table. The variance explained by eTIV for models that included it is discussed in the text. 
Overall model fit is indicated as adjusted squared R values.

A significant decrease in mean CT with age was 
observed in females and in the combined group. In 
males, mean CT also decreased with age but not 
significantly, but there was no significant interaction 
between the age and sex on mean CT (Table 3, Fi-
gure 5A and Supplementary Table 1). Strictly spea-
king, the observed age effects are age-associated 
variations in this cross-sectional cohort, but assu-
ming they represent the age-related changes at this 
age range, the observed change represents annual 
percent change (APC) of roughly -0.16% in females 
and -0.12% in the combined group.

Contrary to its absence of effect on mean CT, 
eTIV significantly impacted the other GM morphome-
trics (inner CSA, pial CSA, and GM volume, all p’s 
< 2 x 10-16) and explained a large amount of the va-
riances of these data (over 76% for all, based on par-
tial η2 values for eTIV in combined group analyses). 
None of these metrics showed any significant inte-
raction between sex and eTIV (all p’s > 0.36), indica-
ting similar effects of eTIV on these measures across 
sexes. Thus, below we report age and sex effects 
for these metrics based on the model including eTIV 
(model (2) for sex-specific analyses and (4) for com-
bined analyses).

Proportions of age-related variance in inner 
CSA were similar to those of CT, explaining only 
1.1, 0.2, and 0.4% in males, females, and com-
bined groups, respectively. In contrast to CT, the age

effect on inner CSA was significant in males (p = 
0.026) and in the combined group (p = 0.0029) but 
did not reach significance in females (p = 0.093).

 As for CT, the estimated effects were consistent-
ly negative, representing an APC of about -0.2% in 
males and the combined group, and there was no 
detectable difference in the age trajectory between 
males and females (p = 0.21). Although raw values 
of inner CSA were larger in males compared to fe-
males, the difference was actually slightly but signifi-
cantly reversed in the model with eTIV (0.7% larger 
in females than in males, p = 0.008).

Unsurprisingly, inner CSA and pial CSA were 
highly correlated in our dataset (pearson correlation 
r = 0.986, Supplemental Figure 16), and the total va-
riance of pial CSA data explained by the models with 
eTIV was similar to those of inner CSA (over 74% 
in all cases). Yet, observed age-related variances for 
pial CSA were consistently higher than for inner CSA 
or CT data (2.7, 1.2, and 1.6% in males, females, and 
combined data). There were significant age effects 
in both sex-specific and combined analyses, with the 
estimated effects representing APC of about -0.2 to 
-0.3%. In the analysis that combined both sexes, no 
interaction between sex and age was detected. Simi-
lar to what was observed for inner CSA, the pial CSA 
was larger for males compared to females, but the 
difference was reversed non-significantly when eTIV 
was included in the model (0.2% larger in females than
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Figure 5.  Age-related variations in surface-based morphometry. (A) The mean CT, (B) total inner CSA, and (C) 
total pial CSA are plotted against age, with individual subjects represented as scatter points (left panel: male, right pa-
nel: female). For each sex, predicted age trajectories, based on the model selected by BIC (see text) in the sex-specific 
analyses are shown. The plots in the right panel show predicted trajectories for hypothetical male or female subjects 
with identical, global mean eTIV, based on combined group analyses. The 95% confidence intervals of the predictions 
are represented as shades around the line.

in males; p = 0.33; Table 3 and Supplemental Table 
1).

The total variance of GM volume explained 
by age, eTIV, and sex in the case of sex-combined 
analysis was slightly higher than for CSA data 
(over 78% in all cases), and the age-related 
variance in GM volume tended to be higher than 
CT or CSA data individually (2.3, 3.2, and 2.9% 
in male, female, and combined data). The total 
GM volume significantly decreased with age in all 
comparisons (p’s < 9.0x10-4), representing an APC of

approximately -0.3%. Again there was no detectable 
difference in age-related reduction between males 
and females (p = 0.61). Not surprisingly, males 
had larger total GM than females when not taking 
into account the overall head size. When eTIV was 
taken into account, females showed about 1% larger 
volume than males (p = 1.0x10-4; Table 3).
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Global white matter morphometry and DTI 
parameters
Table 4 provides the descriptive statistics of the fol-
lowing metrics of white matter: total WM volume and 
mean values of DTI metrics. The table also contains 
a summary of age and sex effects on these metrics, 
which are also visually presented in Figure 6B for 
WM volume, and Figure 7 for mean DTI metrics.

Like for CSA and GM volume data, eTIV ex-
plained a large portion of variance in the WM volume 
data (over 83% in all cases). Of note, unlike in GM 
morphometric data, there was a significant interac-
tion between sex and eTIV (p = 4.1x10-4), with males 
showing steeper slope than females for the effect of 
eTIV on WM volume. There was a positive and signi-
ficant linear effect of age on the WM volume in both 
sexes (Table 4, Figure 6B and Supplemental Table 
2), with an APC of about 0.2%. There was no de-
tectable sex differences on age trajectory, and age 
accounted for 1 to 2% of total variance in the WM 
volume data. As in GM morphometric data, the sex 
difference in WM volume was non-significant with the 
inclusion of eTIV in the model (p = 0.35).

Like for CSA and GM volume data, eTIV ex-
plained a large portion of variance in the WM volume 
data (over 83% in all cases). Of note, unlike in GM

Figure 6.  Age-related variations in gray and white matter volumes. (A) The total GM volume, and (B) total WM 
volume are plotted against age, with individual subjects represented as scatter points (left panel: male, middle panel: 
female). For each sex, predicted age trajectories, based on the model selected by BIC (see text) in the sex-specific 
analyses are shown. The plots in the right panel show predicted trajectories for hypothetical male or female subjects 
with identical, global mean eTIV, based on combined group analyses. The 95% confidence intervals of the predictions 
are represented as shades around the line.

morphometric data, there was a significant interac-
tion between sex and eTIV (p = 4.1x10-4), with males 
showing steeper slope than females for the effect of 
eTIV on WM volume. There was a positive and signi-
ficant linear effect of age on the WM volume in both 
sexes (Table 4, Figure 6B and Supplemental Table 
2), with an APC of about 0.2%. There was no de-
tectable sex differences on age trajectory, and age 
accounted for 1 to 2% of total variance in the WM 
volume data. As in GM morphometric data, the sex 
difference in WM volume was non-significant with the 
inclusion of eTIV in the model (p = 0.35).

Overall, the cerebral WM mask volume used 
to compute DTI mean values did not influence the 
estimate of age effects on these mean values, and 
the BIC index indicated that the mask volume contri-
buted little to the overall fit in most comparisons. 
The only exceptions were the mean MD and RD 
values in males, where diffusivity values were posi-
tively correlated with the mask volume (with partial 
η2 of 0.017 and 0.021 for MD and RD, respectively, 
representing less than 0.01% increase in diffusivity 
per cc; p’s < 0.005). This, however, did not impact 
the estimates of age effects, and only slightly affec-
ted the sex effect estimates in the combined group 
analyses. Below we report the results of the selected
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Table 4.  Summary of white matter volume and mean DTI metrics within cerebral white matter. Descriptive sta-
tistics and the results of linear model fit for total white matter volume (WM) from SPM12, as well as mean DTI metrics 
within subject-specific cerebral WM masks are shown. Parameter estimates (β) for age and sex are shown, together 
with 95% confidence intervals (CI) for each β, as well as uncorrected p values and partial eta squared as the effect 
sizes for each variable. The Model column indicates the chosen model (see text for details on the model selection), with 
the corresponding model number as described in Methods section. The interaction between sex and age was tested in 
the combined group but was not significant in any of the metrics listed here, and thus is not included in the table. The 
variance explained by eTIV or mask volume for models that included them is discussed in the text. Overall model fit is 
indicated as adjusted squared R values.

models (i.e. models with mask volume for MD and 
RD in males and in combined group, and models wi-
thout mask volume for the rest), but provide the al-
ternative model results in the Supplemental Table 2.

All the diffusivity measures (MD, AD, and RD) 
showed robust significant decrease with APC of about 
-0.2% for AD and -0.3% for RD, with MD somewhere 
in between over the age range of our dataset (all p’s 
≤ 1.3x10-5; Table 4, Figure 7). FA, by contrast, only 
showed a trend for increase at this age range that 
reached significance in the males (p = 0.035) and 
sex-combined group (p = 0.012), but not in females 
(p = 0.17). Age accounted for 4.0 to 6.6% of the total 
variance of the diffusivity metrics (most in AD, least in 
RD) in males, and 1.7 to 4.1% in females, and about 
1% or less in mean FA values for both sexes. The 
combined group analyses did not show any evidence 
for a sex difference in the age-related changes in any 
of the DTI metrics. There was a trend for a main effect 
of sex only for MD (greater diffusivity in females than 
in males at mean age), which reached uncorrected p 
< 0.05, but only in the model with the mask volume (p 
= 0.036; Table 4 and Supplemental Table 2). Of note,

AD also showed the similar trend for the main effect 
of sex in the model with the mask volume, which was 
not selected based on BIC (Supplemental Table 2).

Table 5 and Figure 8 summarize the results of 
similar analyses conducted on mean NODDI metrics 
over the same subject-specific cerebral WM mask 
used to compute mean DTI metrics. Similarly to the 
DTI metrics, the effects of mask volume on the ove-
rall model fit as well as on observed age and sex ef-
fects were tested. The mask volume did not impact 
the estimates of age effects on NODDI metrics, but 
did show a small but highly significant relationship 
with IsoVF, with larger mask volume associated with 
higher IsoVF (0.03 to 0.04% increase per cc mask 
volume with p’s < 2 x 10-8 in both sexes, explaining 
6.6 and 3.3% of total variance for males and females, 
respectively). It modified the magnitude of sex effect 
on mean IsoVF, but did not significantly impact that of 
mean NDI or ODI values (Table 5 and Supplemental 
Table 3). Below we present the results of models wi-
thout mask volume for NDI and ODI, and the model 
with mask volume for IsoVF, but the alternative model 
results can be found in the Supplemental Table 3.
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Figure 7.  Age-related variations in mean DTI values within the cerebral WM mask. The mean values of (A) FA, 
(B) MD, (C) AD, and (D) RD within subject-specific cerebral WM mask are plotted against age, with individual subjects 
represented as scatter points (left panel: male, middle panel: female). For each sex, predicted age trajectories, based 
on the model selected by BIC (see text) in the sex-specific analyses are shown. The plots in the right panel show pre-
dicted trajectories for hypothetical male or female subjects with identical, global mean cerebral WM volume, based on 
combined group analyses. The 95% confidence intervals of the predictions are represented as shades around the line.
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Both NDI and ODI showed a small but robust 
increase with age at this age range in both the male 
and female groups with APC of about 0.6% and 0.2% 
for NDI and ODI in males, and 0.4% and 0.2%, in 
females. The age effect on IsoVF only reached the 
uncorrected p < 0.05 in females (p = 0.029) but not 
in males (p = 0.24), in the positive direction (APC 
of about 0.25%). The combined group analyses in-
dicated robust main effects of sex for all the NOD-
DI metrics, with males showing higher values for all 
three metrics, representing 1.8, 0.7, and 1.9% lar-
ger values in males relative to femalesfor NDI, ODI, 
and IsoVF, respectively. However, none of the NOD-
DI metrics showed evidence for the sex difference 
in the age-related changes. Partial η2 indicated that 
the amount of variance explained by age for NOD-
DI metrics in the combined group to be about 4, 2, 
and 0.4% for NDI, ODI, and IsoVF, respectively, while 
main effect of sex accounted for about 4, 1, and 1% 
of the variance.

Resting-state fMRI
Figure 9A shows the average regional IC matrix 
computed on the 384 regions of the AICHA homoto-
pic functional atlas. As the definition of the region is 
based on the functional signal, some regions (such 
as the rolandic region) cross the anatomical borders 
because they exhibit very high correlations. The re-
gional IC matrices computed with and without global 
signal regression are shown side by side. Figure 9B, 
C, and D show the group average maps of ReHo, 
ALFF, and fALFF, respectively.

Table 5.  Summary of mean NODDI metrics within cerebral white matter. Descriptive statistics and the results of 
linear model fit for mean NODDI metrics within subject-specific cerebral WM masks are shown. Parameter estimates 
(β) for age and sex are shown, together with 95% confidence intervals (CI) for each β, as well as uncorrected p values 
and partial eta squared as the effect sizes for each variable. The Model column indicates the selected model (see text) 
with the corresponding model number as described in Methods section. The interaction between sex and age was 
tested in the combined group but was not significant in any of the metrics listed here, and thus is not included in the 
table. The variance explained by mask volume for models that included it is discussed in the text. Overall model fit is 
indicated as adjusted squared R values.

Summary of the results

In a sample of students aged between 18 and 26 
years, several significant age-associated variations 
were observed. Cortical GM thickness, surface area, 
and total GM volume were decreasing with age, whe-
reas WM total volume showed increase. Diffusivity, 
either radial or axial (and therefore mean) was found 
to robustly decrease with age but fractional anisotro-
py showed only a tendency for a slight increase. Both 
NDI and ODI robustly increased with age during this 
period, accompanied with a trend for increasing IsoVF 
as well. There were no sex differences in age-related 
trajectory in any of the global metrics we reported 
here. For GM morphometry, we observed thicker CT 
in males than in females, while inner CSA and GM 
volume were larger in females than in males when 
eTIV was taken into account. The WM DTI metrics 
did not differ between the two sexes. By contrast, all 
three NODDI metrics showed a strong sex effects, 
with higher values in males than in females.
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Figure 8.  Age-related variations in mean NODDI values within the cerebral WM mask. The mean values of (A) 
NDI, (B) ODI, and (C) IsoVF within subject-specific cerebral WM mask are plotted against age, with individual subjects 
represented as scatter points (left panel: male, middle panel: female). For each sex, predicted age trajectories, based 
on the model selected by BIC (see text) in the sex-specific analyses are shown. The plots in the right panel show pre-
dicted trajectories for hypothetical male or female subjects with identical, global mean cerebral WM volume, based on 
combined group analyses. The 95% confidence intervals of the predictions are represented as shades around the line.
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Figure 9.  Group average IC matrices and three rs-fMRI-based metrics in 1,814 MRi-Share subjects. (A) AICHA 
atlas-based regional IC matrices computed from rs-fMRI signals with (left) and without (right) global signal regression. 
The top panel shows the 10 anatomical partitions of 384 AICHA regions, with the color corresponding to the color block 
between the two IC matrices (Medial F/P: medial fronto-parietal; Medial Occip.: medial occipital; Int.Temp.: internal 
temporal), displayed with Surf Ice (https://www.nitrc.org/projects/surfice). Voxel-level group average maps of (B) ReHo, 
(C) ALFF, and (D) fALFF in the spatially normalized space are superimposed on fiducial surface of PALS template using 
Caret 5.65 (http:brainvis.wustle.edu).
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Discussion

We will first address the impact that some specific 
features of the MRi-Share study design may have 
on the interpretation of these findings. We then dis-
cuss our results with respect to the existing literature 
on the maturational/ageing changes as well as sex 
differences in global brain phenotypes. Lastly, we 
will describe the future directions and perspectives 
on the MRi-Share database specifically, and on the 
even richer resources available when combining this 
database with the Bio-Share and i-Share study data.

Specific features of the MRi-Share study 
design
The MRi-Share sample of about 2,000 students, 
which has been drawn from the i-Share participants 
from Bordeaux University, is not a representative 
sample of the population of healthy young adults and 
was actually never intended to be so. It must indeed 
be reminded that the primary objective of the i-Share 
cohort study is to investigate the student population 
health. As a consequence, our study sample concerns 
only 25% of the population of the same age range, 
and its structure differs from the 75% others parti-
cularly in terms of socio-demographics, lifestyle, and 
level of education. Some of these sampling biases 
can be accounted for through stratification as we did 
for example for sex. Some others, such as level of 
education or lifestyle for example, will require access 
to additional sources of data to be accounted for. 

Another source of concern is the non-uniformity 
of the sample age distribution as the number of stu-
dents reduces with the number of years attended 
at the University. This led us to analyse only a sub-
sample of the participants with a shorter age range 
(18 to 26 years), thereby avoiding claiming findings 
to be valid for those 110 participants aged between 
26 to 35 years. Additional data are clearly needed to 
study how the brain changes during this later period 
of early adulthood. Several potential confounding 
factors in interpreting our preliminary were not ac-
counted for, including past or current history of men-
tal illness, alcohol intake, smoking habits, and/or use 
of any recreational drugs and psychotropic medica-
tions, … Effects of these factors on structural/functio-
nal brain phenotypes in the MRi-Share cohort papers 
will be reported in other forthcoming publications.

The MRi-Share study design is also cross-sec-
tional in nature, which makes one take the results 
of the present study with caution. Numerous reports 
have indeed pointed out the caveats of cross-sectio-
nal design for assessing effects of age and demons-
trated how such design may lead to spurious findings 
when compared to those obtained with longitudinal 
data (Fjell et al., 2010; Pfefferbaum and Sullivan, 
2015). In the present work, we tried to minimize these 
pitfalls by reducing the age range to 8 years only

and by selecting a simple linear model to examine 
age-related changes. We note that several results of 
the present study are indeed compatible with those 
of previously published longitudinal studies (see dis-
cussion below) in adolescents and adults. However, 
such precautions do not fully eradicate some intrinsic 
limits of our cross-sectional study, and particularly the 
impossibility of identifying the dynamics of age trajec-
tories for the different brain phenotypes as has been 
done in other studies (Raznahan et al. 2011). Such 
limitations could be alleviated by having MRi-Share 
participants undergo a follow-up MRI examination.

Age-related patterns of cortical thickness, 
surface area, and GM volume
We observed varying degrees of age-related varia-
tions in all GM morphometric measures we examined 
in the students aged between 18 and 26 years old. All 
metrics showed apparent reduction with age, sugges-
ting that CT and both inner and pial CSA are shrinking, 
resulting in the reduction of total GM volume, even at 
the narrow age-range of late adolescence and young 
adulthood represented by the MRi-Share cohort. 
We did not find any sex differences in the expected 
age-related trajectory of these metrics. The observed 
age-related trajectories are in line with the large body 
of work documenting the age-related variations and 
changes in brain structural morphometry over the li-
fespan, which has revealed that while both GM and 
WM volumes increase rapidly during infancy, GM vo-
lume starts to decrease during childhood, when WM 
volume continues to grow well into adulthood, be-
fore declining at middle-to late-adulthood (reviewed 
in Fjell and Walhovd, 2010; Lebel and Deoni, 2018; 
Vijayakumar et al., 2018). The GM volume reduction 
is accompanied by the reduction in both CT and CSA 
post-childhood, although the age-related trajectories 
of CT and CSA are largely independent (Potvin et 
al., 2017; Wierenga et al., 2014), and regionally the 
reduction in CT and CSA may even have negative 
relationships (Hogstrom et al., 2013; Storsve et al., 
2014).

The estimates of APC observed in our cross-sec-
tional data (CT: -0.12%, inner CSA: -0.16%, GM: 
-0.32%, based on the combined-sex analyses) were 
less than those observed in longitudinal cohorts du-
ring development (CT: -0.8 to -1.4%, inner CSA: -0.4 
to -0.7%, cortical GM: -1.1 to -1.9% between 7 to 29 
years of age, Tamnes et al., 2017), and very close to 
those observed during adult life (CT: -0.16, -0.35%, 
inner CSA: -0.22, -0.19%, cortical GM: -0.41, -0.51% 
reported in cohorts between 18 to 87 years of age in 
Lemaitre et al. 2012, and between 23 to 87 years of 
age in Storsve et al. 2014, respectively). The slightly 
lower estimate for GM volume APC in our data may 
be partially explained by the fact that we report to-
tal GM volume, rather than cortical GM volume only, 
which has been shown to decrease more with age
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compared to subcortical GM volumes (Walhovd et 
al., 2011, 2005). Alternatively, the lower GM volume, 
as well as the slightly lower CT and CSA APC may 
reflect the slowed volume change at the end of matu-
ration and before the onset or the early phase of the 
ageing-related reduction in volume. We also demons-
trated that pial CSA is more sensitive to age-related 
changes (estimated APC in the combined group at 
-0.27%) than both the inner CSA computed based on 
GM/WM boundary and the CT. This was despite the 
tight correlation between the inner and pial CSA. It 
may be explained by the notion that the pial surface 
is likely to be affected by age-related variations in CT 
more than in the white surface (Winkler et al., 2012), 
resulting in the slightly greater age-related reduction 
than either inner CSA or CT.

Age-related patterns of global WM volume 
and DTI/NODDI metrics
In contrast with age effects on GM morphome-
tric measures, the eTIV-adjusted WM volume was 
found to be increasing between the ages of 18 and 
26 years, at the rate of 0.23% annually, whereas the 
raw WM volume was only slightly but not significant-
ly affected by age positively (APC = 0.08%, Supple-
mentary Table 2). These findings are consistent with 
the literature that indicates the inverted U-shape age 
trajectory of WM volume, which increases largely li-
nearly up to the fourth or fifth decade of life, before 
declining in later life (Hasan et al., 2007; Lebel et al., 
2012; Walhovd et al., 2011; Westlye et al., 2010). The 
estimates of APC depend on the precise age range 
examined as well as the reference age, which are 
not always reported in the literature, as well as on 
whether or not adjustment for intracranial volume 
was performed. For instance, Walhovd et al. (2011) 
reported percent change per decade for cerebral WM 
to be 3.9%, calculated based on mean raw WM vo-
lumes of those aged 18 to 29 years and those aged 
30 to 39 years, which would mean roughly 0.4% APC, 
assuming a linear and constant increase during the 
decade. Although the percent change per decade in 
this study was based on raw WM volume not cor-
rected for intracranial volume (ICV), another study 
investigating multiple younger cohorts reported APC 
(estimated at each age) of 0 to 1% for the age range 
of 20 to 30 years when correcting for ICV either by 
dividing the WM by the ICV or by including ICV as a 
covariate in the model, similar to what we did here 
(Figure S4 in Mills et al., 2016), more in line with our 
estimated APC.

The observed age-related variations of WM 
microstructure IDPs are in consistent with the past 
studies that revealed the U-shaped trajectories for 
WM water diffusivity measures (MD, AD, and RD), 
which all keep decreasing throughout development 
and reach their minimum values between second 
and fourth decade of life, before increasing with age,

and FA showing the opposite pattern of trajectory 
that increases during development and decreases 
in ageing (Beaudet et al., 2020; Hasan et al., 2010, 
2007; Lebel et al., 2012; Slater et al., 2019; Westlye 
et al., 2010). More limited number of studies using 
NODDI showed the continuous increase of NDI 
through development (Genc et al., 2017; Mah et al., 
2017) and adulthood (Chang et al., 2015; but see Ko-
diweera et al., 2016), peaking around the fourth and 
fifth decade of life (Slater et al., 2019) before decli-
ning at a later age (Cox et al., 2016; Merluzzi et al., 
2016). ODI, on the other hand, has not been reported 
to change noticeably during development but starts 
to increase during young adulthood (Chang et al., 
2015; Genc et al., 2017; Mah et al., 2017), peaking 
between the fourth and sixth decade of life and decli-
ning thereafter (Cox et al., 2016; Slater et al., 2019).

Although both DTI and NODDI metrics are often 
described in terms of biological properties, in reality 
they are based on mathematical models that are fit 
to explain DWI data that are collected at the reso-
lution many times coarser than the structures these 
models aim to probe (axonal fibers, intracellular and 
extracellular compartments). Thus, it is not always 
straightforward to interpret apparent changes or 
differences in these metrics, in particular for DTI me-
trics, which could be affected by many different mi-
crostructural features (number, size, and orientations 
of axonal fibers, membrane permeability, myelination 
etc) (Jones et al., 2013). Nonetheless, it could be 
speculated that the apparent age-related elevation in 
NDI and ODI is consistent with the interpretation that 
continuing growth of neurites that steadily increase 
intracellular (axonal) diffusion in the cerebral WM is 
coupled with increased overall fiber complexity at this 
age range (ref needed). Such increase in overall fi-
ber complexity, coupled with reduced extra-axon dif-
fusion as a result of denser packing of axons (Suzuki 
et al., 2003), can account for the overall reduction in 
the rate of diffusion in the simple tensor model esti-
mated at the voxel-level. 

Sex effects on GM and WM global phenotypes
Beyond the well-known difference in the overall 
head and brain size, the findings with regard to sex 
differences in global and regional GM morphometry 
and in age-related trajectory on of these morpho-
metric measures are often mixed (Fjell et al., 2015; 
e.g. Gennatas et al., 2017; Hasan et al., 2007; Her-
ron et al., 2015; Jahanshad and Thompson, 2017; 
Kaczkurkin et al., 2019; Lemaître et al., 2005; Mc-
Kay et al., 2014; Mutlu et al., 2013; Raznahan et 
al., 2010; Ritchie et al., 2018; Sowell et al., 2007), 
and are known to depend on if and how the effect 
of head or brain size is taken into account (Herron 
et al., 2015; Mills et al., 2016). Generally, CSA and 
GM volumes, but not CT, are strongly correlated 
with the overall brain size (Potvin et al., 2017), and
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unsurprisingly, males show larger absolute values in 
these metrics compared to females, as was the case 
in our data. When corrected for eTIV, we saw a slight 
but significantly greater GM volume in females than 
in males and a similar trend for CSA in our data, al-
though the difference was very small relative to the 
total variance of data (sex effects accounting for less 
than 1% of variance for both, based on partial η2 va-
lues). For CT, prior large-scale studies (sample size 
> 500) have reported either no sex difference in glo-
bal mean CT during development and over lifespan 
(Ducharme et al., 2016; Fjell et al., 2015; Gennatas 
et al., 2017), or globally greater CT in females than in 
males in mid- to late-adulthood (Ritchie et al., 2018), 
though there are also some reports of greater mean 
CT in males than in females throughout development 
(Raznahan et al., 2011) and over lifespan (Kochunov 
et al., 2011). We found significantly thicker mean CT 
in males than in females in our data, which was not 
affected by eTIV correction, that accounted for nearly 
2% of variance in the CT data. Since sex differences in 
CT are also reported to be regionally heterogeneous 
and age-dependent (Mutlu et al., 2013; Raznahan et 
al., 2010; Sotiras et al., 2017; Sowell et al., 2007), fu-
ture investigations will examine the regional patterns 
in the CT difference and clarify whether what we ob-
serve is consistent with what would be expected at 
this age range or somehow unique to our sample due 
to some specific aspects of demographic characteris-
tics (e.g. higher education) in our data.

We did not find any sex differences in eTIV-ad-
justed WM volume or its age-related variations, 
consistent with prior studies reporting similar norma-
lized WM volumes and age-related trajectory during 
much of the adulthood (Coupé et al., 2017; Fjell et 
al., 2009; Lebel et al., 2012), although there are a few 
high-powered studies reporting larger WM volume in 
males than in females even after correcting for the 
total brain volume, albeit with much reduced effect 
sizes (Ritchie et al., 2018; Wierenga et al., 2014).

As for the sex differences in the age trajecto-
ries of DTI metrics, most studies report no or mini-
mal differences (Hasan et al., 2010; Hsu et al., 2010, 
2008; Lebel et al., 2012; Pohl et al., 2016; Wang et 
al., 2012), except earlier in development (Simmonds 
et al., 2014). In our recent multi-cohort study that in-
vestigated mean DTI metrics across the WM skele-
ton in a large sample (total N >20,000) that included 
the MRi-Share and 9 other cohorts that collectively 
spanned the entire adult lifespan, we also failed to 
detect any sex effects on the age-associated trajec-
tory of the DTI metrics at this or any other age ranges 
examined during adulthood (Beaudet et al., 2020). In 
the same study, we also found significantly greater 
AD and MD in females than males when controlling 
for eTIV, which affected the mean AD, MD, and FA 
values significantly. While it has been reported that 
volume over which mean DTI metrics are computed 

can affect mean values due to PVEs (Vos et al., 
2011), the effects of tract or mask volumes, or the 
overall head and brain size when DTI metrics are 
compared in spatially normalized space, are not of-
ten investigated. Further studies are needed to clarify 
how it would impact the apparent sex differences or 
lack of them when comparing DTI metrics.

Very little is known about the sex differences 
in NODDI metrics. The few studies that report sex 
effects seem to indicate little or no sex differences 
in the age trajectory (Cox et al., 2016; Slater et al., 
2019), but are inconsistent with regard to the main 
effects of sex on NODDI metrics: one developmental 
(Mah et al., 2017) and another lifespan (Slater et al., 
2019) study reported no main effects of sex, while 
one study in young to middle-aged adults reported 
greater NDI for males compared to females in most 
WM tracts examined as well as greater ODI in some 
tracts (Kodiweera et al., 2016), and yet another stu-
dy with high power (N >3,500) reported consistently 
higher ODI in females compared to males across all 
the WM tracts examined in older adults (Cox et al., 
2016). While the direction of the sex differences we 
observed is similar to those reported by Kodiweera et 
al. (2016), the magnitude of the difference was much 
smaller in our study (2.1 and 0.7% for NDI and ODI 
in our data, compared to about 7% for both NDI and 
ODI reported by Kodiweera et al. (2016)). Further 
studies are needed to investigate whether the sex 
differences in these microstructural measures mani-
fest themselves in specific time window of early adul-
thood, or whether they may be modulated by other 
demographic variables.

Future directions and perspectives
The MRi-Share database represents a unique, 

multi-modal neuroimaging and cognitive and genetic 
dataset of a large, cross-sectional cohort of young 
adults undergoing university-level education. Its de-
sign and the sample size will allow detailed characte-
rization of age-related changes in brain structure and 
function in the post-adolescence period, as well as 
the investigation of lifestyle and sociodemographic 
factors that may modulate these changes. 

In addition, the MRi-Share database enriches 
the relatively scarce corpus of data available in young 
adults, thereby allowing investigations of structural 
and functional brain changes across the complete 
adult lifespan. A proof of concept of such added-va-
lue of the MRi-Share sample was recently provided 
through a multi-cohort study across the adult life 
span of age-related changes of PSMD (Peak width 
Skeletonized Mean Diffusivity), a novel imaging mar-
ker of small vessel disease (Baykara et al., 2016): in 
this study, thanks to the MRi-Share sample, PSMD 
was demonstrated to be the only DTI-derived phe-
notype that increased in the immediate post-ado-
lescence period, indicating that it could serve as
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an early marker of aging (Beaudet et al., 2020).
MRi-Share also provides the opportunity to assess 
whether imaging markers of late-life disorders can 
be detected earlier in adult life. With this in mind, 
we will release in the near future a number of ad-
ditional IDPs, including white matter hyperintensities 
(WMH) assessed on T2-FLAIR images, enlarged pe-
rivascular spaces (ePVS) assessed on T1w images, 
and cerebral microbleeds (CMB) assessed on SWI 
images,all being well-established imaging-markers of 
small vessel disease (Wardlaw et al., 2013).
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Description of the ABACI pipelines 
Schematic figures for each pipeline follow the general scheme used for the description of UKB 
pipelines in (Alfaro-Almagro et al., 2018) to facilitate the comparison.  

T1 and T2-FLAIR structural pipeline 
Supplemental Figure 1 shows a flow-chart of the structural pipeline.  
 

 
 

Supplemental Figure 1: Schematic representation of the structural pipeline.  
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In the surface-based processing branch of the structural pipeline, we used the ‘recon-all’ 
command of Freesurfer to reconstruct pial and white surfaces of the brain and to obtain both 
surface- and volume-based metrics from the T1 scan. Briefly, this involves non-parametric non-
uniform intensity normalization (N3: Sled et al., 1998), linear transformation to the MNI305 
template for estimation of intracranial volume (eTIV), intensity normalization that scales the 
mean intensity of the white matter to 110, skull-stripping, volume-based linear and non-linear 
registration to a probabilistic brain atlas for labelling of subcortical structures (Fischl et al., 2004, 
2002), and surface-based registration for automatic cortical parcellation (Dale et al., 1999). We 
used the ‘recon-all’ command with ‘-FLAIRpial’ multi-channel option to use FLAIR for refining 
the pial surface, and ‘-3T’ option to use optimized parameters for the N3 correction for data 
acquired at 3T (based on Zheng et al., 2009) as well as the use of a 3T-based MNI305 
template. We also used ‘-brainstem-structures’ to obtain segmentations of 4 brainstem 
structures (medulla oblongata, pons, midbrain and superior cerebellar peduncle; Iglesias et al., 
2015b), and ‘-hippocampal-subfields-T1T2’ flag with FLAIR image input to obtain multi-channel 
segmentations of hippocampal subfields (Iglesias et al., 2015a). 

 
In a semi-independent branch of the pipeline for volume-based processing, we used the 

N3-corrected T1 generated by Freesurfer and the FLAIR coregistered to the T1 space as the 
inputs for multi-channel tissue segmentation using the ‘Segment’ function of SPM12. This is an 
extension of the ‘Unified Segmentation’ framework described in (Ashburner and Friston, 2005) 
which includes an improved registration method, the option for multi-channel segmentation, as 
well as the new default tissue probability map (TPM) based on T2-weighted and proton density 
imaging data from 549 healthy adults (Ashburner et al., 2014). Our initial analysis pipeline used 
the raw, rather than N3-corrected T1, as the main input, with FLAIR as the secondary input, and 
with the default parameter setting of ‘Segment’. The output images were then used both to 
generate tissue class maps for creation of the cohort-specific tissue probability map (TPM) 
template and to compute the final tissue class maps for the voxel-based morphometry analysis. 
However, the detailed quality control (QC) of individual tissue maps revealed that using the 
cohort-specific TPM this way somehow greatly biased the GM estimation on frontal regions 
(Supplemental Figure 2 and 3). After testing in a small subset of subjects (N = 50) as described 
in the section “Optimization of SPM12 segmentation” below, we 1) used Freesurfer N3-
corrected T1 as the main and FLAIR coregistered to the T1 as secondary input, 2) optimized 
smoothing and regularization parameters for the bias field correction within ‘Segment’ function, 
and 3) kept the default TPM packaged with SPM12, rather than the cohort-specific TPM 
template for the unified tissue segmentation and normalization.  

 
Using the inverse deformation field output from this step, a standard-space brain mask 

created from the default TPM template was transformed into the native T1 space, and this mask 
was applied to the bias field corrected T1 to generate a brain-extracted T1. We also used a 
dilated brain mask in native T1 space to compute the cropping coordinates to reduce image 
dimension, removing some voxels outside the brain. We then applied the cropping to both the 
brain-extracted and non-extracted (but defaced) T1 images. These cropped T1 images serve as 
the reference anatomical space for aligning other image modalities, as well as for converting 
Freesurfer volume-based maps (e.g. cortical and subcortical parcellation maps) to nifti format. 
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Supplemental Figure 2. Examples of segmentation failures in single- and multi-channel 
segmentation procedure in SPM12 and improvement after the optimization.  

(A) original multi-channel segmentation using T1 and FLAIR inputs, with cohort-specific TPM and using 
default parameter settings of SPM12, (B) when using only T1 image, with default TPM and default 
parameter settings, and (C) when using the optimized procedure, with multi-channel segmentation with 
N3-corrected T1 and par2 setting. (A) and (B) show the same axial and sagittal slices from a 
representative subject, with T1 and FLAIR axial slices shown in the two left panels of (A). GM map from 
original segmentation is shown using warm color scale in (A) right, while that from optimized 
segmentation is shown using cold color scale in (B) left. (B) right shows the overlay of the original (warm) 
and optimized (color) GM maps. In (C) T1, FLAIR images of another subject (2 left panels), along with the 
overlay of the single- (warm color scale) and multi-channel (cold color scale) segmentation of GM maps 
(right panel) are shown. Arrows point to mis-segmentations of meninges as GM in single-channel, T1-only 
segmentation.  

 
We computed the Jacobian modulation using the ‘Deformations’ utility in SPM12, and 

used this image to scale the spatially normalized tissue class maps for the final morphometric 
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analysis. We used this approach rather than outputting the “modulated” normalized tissue class 
maps directly from ‘Segment’, due to prominent artifacts (see Supplemental Figure 4 for an 
example) possibly related to ‘aliasing artifacts’ mentioned by the creators of SPM12 (Ashburner 
et al., 2014). 

For Freesurfer-based IDPs, we extracted surface- (CT, inner CSA, and volume for each 
region of Desikan-Killiany, DKT, and Destrieux cortical atlas regions, as well as pial CSA for 
Desikan-Killany regions) and volume-based metrics by extracting values from lh/rh.aparc.stats 
and aseg.stats tables generated automatically with ‘recon-all’ function. For pial CSA, we used 
‘mris_anatomical_stats’ function to generate additional summary tables for each region in DKT 
and Destrieux atlases, and extracted values from these tables.  

For SPM-based IDPs, we computed total tissue volumes from Jacobian-modulated 
tissue class maps for GM, WM, and CSF. Additionally, Harvard-Oxford cortical and subcortical 
atlases (Desikan et al., 2006; Frazier et al., 2005; Goldstein et al., 2007; Makris et al., 2006) and 
Diedrichsen probabilistic cerebellar atlas (Diedrichsen et al., 2009) were used to obtain total 
tissue volumes within each region defined by these atlases. The cortical atlas was split by 
hemisphere to obtain tissue volume estimates separately for the left and right hemispheres. 

Optimization of SPM12 segmentation 
 Initially, we created a cohort-specific TPM from the first 500 participants from the MRi-
Share sample, and used this TPM for the unified segmentation and normalization procedure as 
implemented in SPM12, using all the default parameters and with multi-channel setting that 
used T1 and FLAIR images as inputs. However, the visual QC of the resulting GM segmentation 
image (Supplemental Figure 3A) showed underestimation of GM that was clearly visible across 
the majority of subjects and most prominent in frontal pole regions. The degree of 
underestimation was striking when compared against Freesurfer-based cortical segmentation in 
the same subject. 

As the Freesurfer-based cortical segmentations were noticeably more accurate in many 
subjects, we decided to use the information about the discrepancy between Freesurfer- and 
SPM12-based segmentation to compare the effects of modifications on our SPM12 pipeline in a 
subset of the MRi-Share data (N = 50). More specifically, we computed and compared the mean 
of SPM12-based GM tissue probability (in native T1 space) inside the Freesurfer-based cortical 
parcellations after performing SPM12 segmentation procedure with the combinations of the 
following: 1) TPM (default TPM vs cohort-specific TPM), 2) input channel (T1 only vs multi-
channel using T1 and FLAIR), 3) bias-field correction parameter setting of the SPM12 
(regularization and the bias field smoothing settings: default vs two set of parameters as 
described below), and 4) bias-field correction on T1 prior to the correction applied internally 
within the SPM12 unified segmentation framework (none vs N3 vs N4 correction). 

We compared the default and cohort-specific TPM, because it appeared that the use of 
default TPM seemed to mitigate the underestimation of the GM in frontal regions in our 
preliminary investigations. We also compared multi-channel (T1 + FLAIR) against T1-only 
segmentation since most published studies use only T1, although in theory multimodal 
segmentation should improve performance, and at least one study found empirically this to be 
the case (Lindig et al., 2018). We tested two different sets of bias-field correction parameter 
settings against the default since it has been reported that default correction parameters were 
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suboptimal both on simulated (Ganzetti et al., 2016a) and actual (Ganzetti et al., 2016b) MR 
images. While the default parameters for bias-field correction in SPM12 use 10-4 and 60 for the 
regularization and bias-field smoothing, respectively, Ganzetti et al. (2016a) reported 10-5 and 
140 performed the best on their simulated 3T bias-field data, and in their second study (Ganzetti 
et al., 2016b) reported 10-2 and 30 to be the most optimal on the actual 3T dataset taken from 
the KIRBY21 database (https://www.nitrc.org/frs/shownotes.php?release_id=2178). We tested 
these three sets of settings (def: 10-4 and 60, par2: 10-5 and 140, par3: 10-2 and 30 for the 
regularization and bias-field smoothing, respectively). Even though this internal bias-field 
correction integrated with brain segmentation should be sufficient, and may even be superior to 
correction methods that are performed independently from segmentation (Ganzetti et al., 
2016a), we tested the effects of applying two other commonly used correction methods, namely 
the N3 (Sled et al., 1998) and N4 (Tustison et al., 2010) prior to SPM12 segmentation. 

 
Supplemental Figure 3 compares the degree of discrepancy between Freesurfer- and 

SPM12-based GM segmentation for different settings of the SPM12 as described above. They 
show that the use of cohort-specific TPM generally increases the discrepancy between the two 
algorithms (i.e. lower overall mean SPM12-based GM tissue inside Freesurfer-defined cortical 
GM), and also that the level of discrepancy becomes more variable across subjects, as 
indicated by larger standard deviations. Although single-channel segmentation using T1 image 
generally increases the amount of SPM12-based GM tissue inside Freesurfer-defined cortical 
GM, it also increases the amount of GM segmented outside, mis-segmenting the meninges 
around the cortex as GM (Supplemental Figure 2B). This is the case regardless of other 
parameter settings (e.g. Lindig et al., 2018), since meninges in T1 have similar contrast as GM. 
Within multi-channel segmentations using SPM12 default TPM, the amount of mean GM 
content discrepancy across cortical GM is similar across different T1 preprocessing options 
when using def or par2 settings, but slightly worsens when using par3 setting (Supplemental 
Figure 3A). However, region-by-region summary of GM content discrepancy shows that the 
discrepancy in the frontal pole region is most improved when using N3-corrected T1 image with 
par2 setting (red arrows in Supplemental Figure 3B), without noticeably affecting the 
discrepancy in other regions. Visual inspection of the segmentation in a small number of 
subjects (Supplemental Figure 2C) corroborated this observation. Thus, for our pipeline we 
decided to 1) use SPM12 default TPM rather than cohort-specific template, 2) keep multi-
channel with both T1 and FLAIR, but 3) use N3-corrected T1 from Freesurfer stream, and 4) 
adjust the regularization and bias-field smoothing settings in ‘Segment’ to 10-5 and 140, 
respectively. 
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Supplemental Figure 3. Results of tests for optimizing SPM12 segmentation.  

Plots show the amount of discrepancy between Freesurfer-based segmentation of the cortical GM and 
SPM12-based GM probability when using different inputs and parameter settings in SPM12 ‘Segment’ as 
described in the text. They summarize the mean SPM-based GM content within (A) cortical GM and (B) 
each region of the Desikan cortical parcellation, as segmented by Freesurfer. The mean values are 
calculated across the subset of 50 MRiShare subjects, and the error bars indicate the standard deviation. 
In both (A) and (B), the colors of each data point indicate any bias field correction applied prior to 
performing ‘Segment’ (blue: no correction, pink: N3 correction based on Freesurfer, green: N4 correction 
using ANTS), and the symbols represent parameter settings in ‘Segment’ (circle: default setting, cross: 
par2 setting, triangle: par3 setting). Columns on the left use both T1 and FLAIR images as input (i.e. 
multi-channel segmentation), while the right columns only use T1 (i.e. single-channel segmentation). 
Upper rows in each (A) and (B) use the default TPM template upsampled to 1mm isotropic resolution, and 
lower rows use the cohort-specific template derived from 500 MRiShare subjects. Red arrows in (B) 
indicate the reduced discrepancy in the frontal pole region when using the N3-corrected T1 image with 
par2 settings. 

Artefact in Jacobian-modulated maps produced by SPM12 ‘Segment’ function 
 Jacobian-modulated maps of tissue class images in normalized space can be outputted 
directly in the ‘Segment’ function of SPM12 (denoted with prefix mwc for modulated, warped, 
class image). However, early visual inspection of this image revealed stripe-shaped artefacts in 
all images examined. These artefacts were not present if the modulated maps were produced 
“traditional” way by using the ‘Deformations’ utility in SPM12 to obtain the Jacobian modulation 
and then using it to scale the warped (i.e. spatially normalized) tissue class images 
(Supplemental Figure 4). Therefore, in our pipeline we included these extra steps to compute 
modulated tissue class images in normalized space rather than using the same map outputted 
directly from the ‘Segment’ function.  
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Supplemental Figure 4. Artefact in modulated maps produced by SPM12.  

Images show (A) an example of striped artefacts observed in the modulated maps produced with the 
‘Segment’ function in SPM12, and (B) the modulated map computed in the “traditional” way for the same 
subject. Selected coronal (left panel) and sagittal (right panel) views of the modulated white matter map, 
overlaid on T1 image warped to standard template space from a representative subject are shown.  

Fieldmap generation pipeline 
 In the fieldmap generation pipeline (see Supplemental Figure 5), eight pairs of b=0 
images with the opposing phase-encoding directions are extracted from DWI, merged, and fed 
into FSL TOPUP tool (Andersson et al., 2003). The resulting field coefficient map and 
movement parameter text file are kept for the later DWI processing pipeline. The TOPUP tool 
also produces unwarped, or distortion-corrected input b=0 images. The unwarped AP/PA b=0 
images are averaged to create a fieldmap magnitude image, which is then skull-stripped with 
FSL BET tool (Smith, 2002), and linearly aligned to the reference T1 brain image using FSL 
FLIRT (Jenkinson et al., 2002; Jenkinson and Smith, 2001). The same linear transformation is 
also applied to the fieldmap phase image. Both the fieldmap phase and magnitude images in T1 
structural space are kept for EPI unwarping in the later rs-fMRI pipeline. 
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Supplemental Figure 5: Schematic representation of fieldmap generation pipeline 

Diffusion MRI pipeline 
Supplemental Figure 6 summarizes the DWI processing pipeline. In this pipeline, 

individual raw DWI data are first corrected for eddy current (EC) and top-up distortion using the 
FSL Eddy tool, with replacement of outlier slices (eddy_openmp as implemented in FSL v5.0.10 
patch; (Andersson et al., 2016; Andersson and Sotiropoulos, 2016). After cropping the data to 
reduce non-brain tissue volumes, we apply non-local means filter to denoise and boost the 
SNR, using the ‘nlmeans’ denoising tool (Coupe et al., 2011, 2008) as implemented in the Dipy 
package (0.12.0; Garyfallidis et al., 2014). The resulting image is then used to estimate 1) DTI 
(Diffusion-Tensor Imaging; Basser et al., 1994) model parameters and 2) microstructural NODDI 
(Neurite Orientation Dispersion and Density Imaging; Zhang et al., 2012) model parameters. For 
DTI modelling, the volumes with high b-value (b=2000 s/mm2) are removed from the denoised 
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data before fitting the data with the dipy tools (Jensen and Helpern, 2010) to compute DTI 
maps, namely the maps of maps of fractional anisotropy (FA), mean, axial, and radial diffusivity 
(MD, AD, and RD, respectively). The diffusivity maps were further cleaned by removing 
diffusivity value outliers using Random Sample Consensus (RANSAC) approach (Choi et al., 
2009), as implemented in the scikit-learn package (0.19.1; https://scikit-
learn.org/stable/index.html). The denoising, DTI computation, and the RANSAC outlier removal 
were performed by wrapping Scilpy scripts, developed by Sherbrooke Connectivity Imaging Lab 
(https://scilpy.readthedocs.io/en/latest/).  

 

 
Supplemental Figure 6: Schematic representation of diffusion MRI pipeline 

 
Before fitting denoised data for NODDI, we computed empirical values of cohort-specific 

isotropic and parallel diffusivity by computing the mean MD within lateral ventricles and mean 
AD within the corpus callosum in individual T1 space for each subject.  The mean of these 
values across subjects were then used as dPar (1.5 x 10-3) and dIso (2.4 x 10-3) parameters in 
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the AMICO (Accelerated Microstructure Imaging via Convex Optimization) tool (Daducci et al., 
2015) when fitting the denoised DWI data to obtain the following NODDI metric maps: isotropic 
volume fraction (IsoVF), which indicates the proportion of free water volume of each voxel, 
neurite density index (NDI), which represents the proportion of intracellular volume in the 
remaining fraction, and orientation dispersion index (ODI), a measure of within-voxel fiber 
dispersion. 

In order to obtain mean DTI/NODDI metrics within cerebral WM, we used sub-workflows 
that first upsample and coregister DTI and NODDI maps in the native DWI space (1.7 mm 
isotropic) to the individual native T1 space (1mm isotropic), then compute mean values within a 
cerebral WM mask defined for each subject in their native T1 space. The coregistration sub-
workflow used the ‘antsRegistrationSyNQuick’ script in the ANTS package to compute a linear 
(rigid + affine) transform and symmetric diffeomorphic image normalization (deformable SyN; 
Avants et al., 2008) warp to align the eddy- and motion-corrected average b0 image, upsampled 
to match T1 resolution, to the individual T1 image, then applied the computed transform to the 
upsampled DTI and NODDI maps. The subject-specific cerebral WM mask was derived from the 
Freesurfer segmentation, but it was also refined by masking it with the SPM12-derived native 
WM tissue probability map thresholded at 0.5. This ensured that the mean DTI/NODDI values 
were computed within the cerebral WM regions with limited partial volume effects. Other IDPs 
using Freesurfer labels were generated in a similar fashion, with mean values calculated within 
each of the subject-specific labels, and then refined by masking it with either the SPM12-based 
WM (for WM regional labels) or GM (GM regional labels) mask.   

To generate IDPs based on JHU ICBM-DTI-81 white matter labels atlas (Mori et al., 
2008; Oishi et al., 2008), we used SPM12 ‘Coregister’, followed by ‘Normalize’ function that 
used the deformation field generated in the structural pipeline to transform DTI/NODDI maps in 
the native DWI space to the standard template space (1mm isotropic) in one step. Here, 
subject-specific, spatially normalized WM class images (also 1mm isotropic) from the structural 
pipeline were thresholded at 0.5 and used as the mask when computing mean DTI/NODDI 
values within each region in the atlas. 

Finally, IDPs based on spatially normalized WM skeleton were generated using a script 
based on Baykara et al. (http://www.psmd-marker.com, Baykara et al., 2016), and described in 
(Beaudet et al., 2020). Briefly, it used FSL TBSS (Smith et al., 2006) to obtain spatially 
normalized, skeletonized WM maps based on the FA maps for each individual. After removing 
voxels near the ventricles with a custom mask developed by Baykara et al. (2016), the voxel 
value distribution for each of the DTI metric was analyzed within the skeletonized WM mask, to 
obtain mean, standard deviation, and the value between the 95th and 5th percentile values. 

Resting-state fMRI pipeline 
The pipeline used for preprocessing the resting state fMRI (rs-fMRI) is sketched in the 

Supplemental Figure 7.  
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Supplemental Figure 7. Schematic representation of resting-state fMRI pipeline 

 
Processing of the 15 minutes long rs-fMRI dataset requires additional data that have 

been processed with the structural and fieldmap generation pipelines (see above) including the 
b0-fieldmap, the T1-weighted volume, the nonlinear deformation field for stereotaxic 
transformation of the T1-weighted volume into the reference brain in the MNI standard space, 
and four masks based on FreeSurfer segmentation: 1) cerebral WM mask (not including corpus 
callosum), 2) global WM mask (cerebral WM with corpus callosum and cerebellar WM), 3) 
ventricle mask, and 4) brain mask. 
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The pipeline begins with the spatial alignment of the rs-fMRI data into the T1-weighted 
individual reference space using a 3-step procedure similar to the one described in Alfaro-
Almagro et al. 2018. It includes motion correction with the FSL MCFLIRT (Jenkinson et al., 
2002), followed by the combined echo-planar imaging (EPI) distortion correction and WM 
boundary-based registration (BBR) with the FSL ‘epi_reg’ script packaged with FSL FLIRT, and 
the final realignment to the T1 space with the FSL FLIRT (Jenkinson et al., 2002; Jenkinson and 
Smith, 2001). For the BBR, the Freesurfer-based WM mask was used, and the fieldmap phase 
and magnitude images were used for the EPI distortion correction. Both the BBR/distortion 
correction and post-BBR coregistrations were computed on the motion-corrected rs-fMRI mean 
image. For each volume of the rs-fMRI data, the spatial transformations for the three steps 
(motion correction, BBR/distortion correction, and post-BBR coregistration) were combined and 
applied together using the FSL ‘applywarp’ command, in order to minimize the number of 
interpolations. Note that the 9 first EPI volumes are removed from the analysis in order to take 
in account initial imperfect stabilisation of the signal. The FD that indexes the subject motion in 
the rs-fMRI, as described in (Power et al., 2014, 2012) was computed using the BRAMILA tools, 
developed by Brain and Mind Lab at Aalto University 
(https://users.aalto.fi/~eglerean/bramila.html). 

Once in the individual T1 space, a brain mask was computed from rs-fMRI data with the 
FSL BET (Smith, 2002). This mask was applied when band-pass filtering the data using the 
AFNI 3dBandpass (Sforazzini et al., 2016). This step also included despiking and nuisance 
regression, using the times series of the Friston 24 motion parameters (Friston et al., 1996) and 
those extracted from the subject-specific, Freesurfer-based WM and ventricle masks. The WM 
and ventricle masks were eroded 3 and 2 times, respectively, but if the resulting mask contained 
less than 50 voxels, the mask with one less erosion was used to extract the nuisance time 
series. We used a frequency window of 0.01 to 0.1 Hz for the band-pass filtered data, and 0 to 
99999 Hz to create unfiltered data with the identical despiking and nuisance regression. These 
images were then warped into the stereotaxic space using the SPM12 ‘Normalise’ function with 
the deformation field from T1 space to the reference MNI brain generated in the structural 
pipeline, at a voxel sampling size of 2 mm isotropic.  

For computing regional intrinsic connectivity (IC) matrices with and without global signal 
regression (GSR), the brain mask produced from the rs-fMRI data in T1 space was warped into 
the stereotaxic space using the same deformation field to transform the rs-fMRI data to the 
standard MNI space, and mean time series of the band-pass filtered data within this mask was 
extracted with FSL ‘fslmeants’. This time series was then used as a regressor in FSL ‘fsl_glm’ 
function to obtain the residual of the band-pass filtered data. The band-pass filtered data with 
and without GSR were further cleaned to remove the effects of motion by scrubbing, in which 
we removed any volumes that exceeded the FD of 0.5mm (Power et al., 2014, 2012). We then 
extracted the average time series within each of the 384 regions (192 homotopic region pairs) of 
the AICHA atlas (Joliot et al., 2015) from these data, and computed the Pearson correlation 
coefficients (r) between every pair of regions to produce the two versions of regional IC 
matrices. When computing the group average IC matrices, any subjects with less than 75 % of a 
given AICHA region overlapping with the functional brain mask were excluded from the 
computation of the mean value for r involving that region (i.e. one row/column for the region). 
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The band-pass filtered data (but without any scrubbing or GSR) in the standard space 
were also used to compute three other properties of spontaneous brain activities at rest at a 
voxel-level: 1) regional homogeneity (ReHo; Zang et al., 2004) 2) amplitude of low frequency 
fluctuation (ALFF; Yang et al., 2007), and 3) fractional ALFF (fALFF; Zou et al., 2008). ReHo 
measures the degree of similarity in spontaneous fluctuations in the neighboring voxels, and 
thus shows how coherent the regional intrinsic neuronal activities are. It is computed as the 
average of the Kendal’s coefficients of concordance between a given voxel time series and 
those of each of its 26 neighbors that are inside the brain mask. ALFF, in contrast, captures the 
total power of the regional intrinsic neuronal activity, and is computed as the integral of the 
square-root of the power spectrum of low-frequency (0.01 to 0.1 Hz) fluctuations in each voxel. 
Lastly, fALFF describes this low-frequency power as the fraction of total fluctuations in the entire 
range of frequency, which reportedly increases the sensitivity and specificity to the neuronal 
activity (Zou et al., 2008). To compute fALFF, the amplitude maps were created for both band-
pass filtered and unfiltered data, and the ratio between the two were calculated for each voxel. 
All three maps were computed in the voxels inside the intersection between the functional brain 
mask and the Freesurfer-based brain mask, both in the spatially normalized space. 

We also performed subject-level independent component analyses (ICA) using FSL 
MELODIC (Beckmann and Smith, 2004), after spatially smoothing the band-pass filtered data at 
full width at half maximum of 5 mm with AFNI 3dBlurInMask. The number of dimensions was 
estimated using the Laplace approximation to the Bayesian evidence of the model order in each 
subject (Beckmann and Smith, 2004; Minka, 2000) 

Description of subject-level visual QC and quantitative QC metrics 

 Each pipeline in the ABACI generated a set of subject-level qualitative, visual QC 
images as well as quantitative QC metrics. As shown in Supplemental Figure 8, these were 
organized as linked HTML web pages, where a main page for each modality showed interactive 
distribution histograms for the main IDPs and/or QC metrics, with links to individual web pages 
for each participant through columns listing batch numbers and subject numbers per batch 
(each batch containing 50 subjects to avoid listing entire subjects in a single column). When a 
viewer hovers over the point in the scatterplot below the histogram (Supplemental Figure 8A), it 
shows the subject ID and the value of the metric for that subject, and when clicked, it opens the 
individual web page for that subject (Supplemental Figure 8B).  
This way, it facilitates the detection and inspection of outliers for any given metrics within each 
pipeline. The interactive graphs embedded in the web pages were generated with custom 
python tools, using bokeh package (0.12.16, https://bokeh.org/). In sections below, we describe 
the QC procedures followed for each modality, as well as the details of qualitative and 
quantitative QC in each pipeline. 
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Supplemental Figure 8. Example of the QC web page produced by the ABACI.  

The examples of linked QC HTML web pages generated by the ABACI pipelines are shown for the 
structural pipeline. (A) The main page for the structural pipeline containing the distributions of selected 
IDPs as interactive histogram and scatter plot. The snapshot was taken when hovering over the subject 
with highest Freesurfer-segmented brain volume. Clicking on it would open the linked individual-level 
structural QC page for that subject. (B) An example of the individual-level QC page for the structural 
pipeline. 
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Structural MRI processing QC 
As a first step, the same three qualified MD investigators (B.M, E.M, and N.T-M) who 

reviewed raw T1 and FLAIR images for any incidental findings and non-incidental anomalies 
also flagged any images with visible artefacts, such as ringing and reduced contrast in the raw 
images. A trained rater (A.T) then rated the flagged images on four categories according to the 
rating system proposed by Backhausen et al. (2016); 1) Image sharpness, 2) Ringing, 3) 
Contrast to noise ratio (CNR) of subcortical structures, and 4) CNR of GM and WM. For each 
category, scores were given such that 0, 1, and 2 represented ‘good’, ‘moderate’, and ’bad’ 
quality as described by Backhausen et al. (2016). Supplemental Figure 9 shows the example 
raw T1 and FLAIR images in a subject who received the worst score for T1 as well as combined 
T1 and FLAIR, along with the two representative output images from the two streams of 
structural pipeline. They show that despite the visible artefacts in both T1 and FLAIR images in 
this subject, there are no major failures in the tissue segmentation by SPM12 or in the surface- 
and volume-based segmentations in Freesurfer. 

 
Supplemental Figure 9. Examples of visible artefacts flagged at the initial check of raw T1 and 
FLAIR images.  

Images show raw T1 (left most panel) and FLAIR (second left) images of a subject flagged by the initial 
review by an MD investigator and later received the worst score of 8 (4 for T1 and FLAIR respectively, 
using a method suggested by Backhausen et al., 2016). A faint ringing is visible on T1 image, which is 
also present and more visible on FLAIR image as well. Noise within the white matter is also visible on the 
FLAIR image. Despite receiving the worst rating for the combined quality of T1 and FLAIR images, both 
SPM12-based tissue segmentation (third left) and Freesurfer-based surface reconstruction (right most 
panel) do not present any major problems. 

 
Independently of the initial flagging of the artefacts, another trained rater (N.B) inspected 

individual qualitative QC images produced by our pipeline for all scanned participants. These 
images included the following (see Supplemental Figure 10 for examples of each): 

● Multiple axial slices of T1 image with contours of coregistered FLAIR image for checking 
FLAIR-to-T1 coregistration 

● Multi-axial slices of T1 image with brain mask overlay to check the quality of brain mask 
● Multiple axial, sagittal, coronal slices of gray and white matter segmented with SPM12, 

overlaid on FLAIR image to inspect the quality of tissue segmentation 
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● Jacobian modulated gray and white matter overlaid on the T1 image warped to the 
template space to check for any unusual deformation. 

 

 
Supplemental Figure 10. Examples of subject-level visual QC images for T1 and FLAIR structural 
pipeline.  

(A) Multiple axial slices of T1 image with contours of coregistered FLAIR image for checking FLAIR-to-T1 
coregistration, (B) multi-axial slices of T1 image with brain mask overlaid on them to check the quality of 
the mask, (C) GM map in native T1 space created by SPM12 overlaid on FLAIR image coregistered to T1 
to check the quality of SPM12 tissue segmentation, and (D) modulated GM map overlaid on FLAIR image 
in the stereotaxic space to check any abnormal deformation. QC images similar to (C) and (D) were 
created for WM maps as well, and images showing multi-coronal as well as multi-sagittal slices were 
created for both GM and WM maps. 
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The same rater also inspected another set of images and movies produced by a modified 
version of ENIGMA Cortical QC scripts (package 2.0, April 2017: 
http://enigma.ini.usc.edu/protocols/imaging-protocols/) that generated multiple views of 
Freesurfer surface reconstructions and cortical and subcortical parcellations to spot any gross 
failures in surface reconstruction. The rater followed the ENIGMA Cortical Quality Control Guide 
2.0 April 2017 to check for any problems at the regional level in the Desikan cortical parcellation 
of each subject. While the inspection at the regional level revealed segmentation problems 
known to be relatively common, no major failures were found at the global surface 
reconstructions in 1,832 subjects examined. There were also no extreme outliers in global 
surface-based measures (mean CT, inner and pial CSA) or in volumetric variables (total GM 
and WM volumes; see Supplemental Figure 16 below in “Additional statistical analysis”) 

Supplemental Figure 11A shows the distributions of QC metrics computed as part of the 
structural pipeline and an additional sub-workflow that used the main segmentation output 
images to compute tissue signal-to-noise (SNR) and contrast-to-noise (CNR). More specifically, 
we computed:  

● Cost function values for FLAIR to T1 coregistration 
● Within-tissue SNR in GM and WM (defined as mean divided by standard 

deviation of the intensity values within these tissues) 
● GM-to-WM or GM-to-CSF CNR (defined as the ratio of GM to WM or GM to CSF 

mean intensity values) for both T1 and FLAIR images, using SPM12-based 
tissue segmentations.  

Similarly to UKB QC IDPs (Alfaro-Almagro et al., 2018), inverse values were computed for both 
SNR and CNR so as to make higher values of all the QC metrics represent worse quality. 

We also computed the following QC metrics to check the distribution and outliers 
(Supplemental Figure 11B), and to explore their impact on morphometric measures of interest in 
our future investigation: 

● Mean Euler number from the Freesurfer processing, which represents the 
topological complexity of the reconstructed cortical surface, and which was 
proposed to be a better index of data quality in structural scan (Rosen et al., 
2018) 

● Freesurfer total CNR based on mri_cnr tool packaged with Freesurfer 
● tAverage edge strength (AES) measure, a recently proposed method for 

retrospectively quantifying the head motion from the structural scan (Zacà et al., 
2018). 

● Qoala-T score, a new metric for Freesurfer segmented MRI data, which has been 
proposed as a new quality metric that can be used to compare the quality of data 
across different datasets with differing acquisition parameters (Klapwijk et al., 
2019). 

The mean Euler number and AES have been shown in prior studies to affect the age effect 
estimate on cortical thickness (Madan, 2018; Rosen et al., 2018), even when the most 
problematic of the images are removed from the analyses. Of note, the mean framewise 
displacement (FD) from functional MRI (Power et al., 2012) has also been demonstrated to 
affect the structural morphometry (Madan, 2018; Reuter et al., 2015; Rosen et al., 2018; Savalia 
et al., 2017).  We note that Qoala-T scores in our MRi-Share dataset is particularly high (mean ± 
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standard deviation [range] =  74.9 ± 9.7 [49.7 - 96.4] %, the maximum score is 100 %), with no 
images classified below the score of 30%, which is a suggested cut-off for exclusion without 
further visual QC (Klapwijk et al., 2019). Note that the direction of these extra QC metrics were 
not manipulated, in order to facilitate the comparison with prior studies using these metrics. The 
lower values in AES score, Freesurfer Euler number and total CNR, and Qoala-T score 
represent worse quality. 

 
Supplemental Figure 11. Distributions of quantitative QC metrics for structural pipeline.  

Distributions of (A) QC IDPs computed in the structural pipeline, and (B) additional IDPs computed 
outside of our in-house pipeline are presented for male (blue) and female (red) participants. Details of 
these IDPs are described in the text. 

Fieldmap generation processing QC 
 During the fieldmap generation processing, the following qualitative QC images were 
produced for each subject:  

● Multi-axial plot of B0 brain mask produced by FSL BET overlaid on the mean B0 image 
to check the quality of brain extraction, 

● Multi-axial plot of the mean B0 image coregistered to the native T1 space with the 
contours of the T1 image to check the quality of B0-to-T1 coregistration.  
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These images were checked when QC metrics in either DWI or rs-fMRI processing suggested 
potential problems in the processing of these data, to make sure that they are not caused by the 
processing error at the fieldmap generation stage.  

Diffusion MRI processing QC 
During the diffusion processing, we generated both qualitative QC images and 

quantitative QC metrics for each subject. The qualitative QC images included the following (see 
Supplemental Figure 12 for examples), which were produced based on the QC metric output of 
FSL EDDY (Bastiani et al., 2019) and other in-house custom tools inspired by QC described in 
Tournier et al. (2011) and Roalf et al. (2016): 

● Plots of motion root mean square (RMS) from FSL EDDY over the entire volumes, or 
time points, in DWI data. The RNS describes the displacement of each voxel, and 
therefore the amount of motion from one volume to the next. Both ‘total’ and ‘restricted’ 
displacement are plotted. The former includes distortion due to eddy current distortion, 
and the latter estimates the amount of displacement caused by the subject motion.  

● Plots of slice-level outliers as well as mean and max outlier ‘stdev’ and ‘sqr_stdev’ 
values over the entire volumes in DWI data, also based on FSL EDDY output. These 
outliers can be caused by the signal dropout in a specific slice (or group of slices) due to 
subject motion. The ‘stdev’ value represents the number of standard deviations off the 
mean difference between the observed and predicted value computed for each slice. 
The ‘sqr_dev’ represents the number of standard deviations off the square root of the 
mean squared difference between the observation and prediction. 

● Plots of voxel-level outliers over the entire volumes in DWI data, based on AFNI 
3dToutcount, before and after EC correction and denoising 

● Mid-sagittal plots of every volume for each b-value after EC correction and denoising 
● Maps and intensity histograms of voxel-level  CNR for each non-zero-b-value, produced 

by FSL EDDY 
● Multi-axial maps and intensity histograms of temporal SNR (tSNR) for each b-value 
● Multi-axial plot of DTI residual map with a mask of physically implausible voxels overlaid 

on top. The latter mask represents where the mean intensity level of the b = 0 images is 
below one or more non-zero-b-value images. 
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Supplemental Figure 12. Examples of subject-level visual QC images for diffusion pipeline.  

(A) Multi-trace plots showing, from the top,  1) ‘total’ and ‘restricted’ RMS, 2) number of EDDY outlier 
slices, 3) mean and max EDDY outlier ‘stdev’ values, 4) mean and max EDDY outlier ‘sqr_stdev’ values, 
and 5) mean fraction of intensity outlier voxels before and after EC correction and denoising. (B) Multi-
axial plot of the DTI residual map, with a mask of implausible voxels overlaid on top. (C) Mid-sagittal plots 
of each volume for each b-value, here showing an example from b = 300 images. (D) Multi-axial plot of 
CNR and tSNR maps, together with image intensity histograms for these maps, for each non-zero-b-
values and b-values for CNR and tSNR, respectively. Here showing the CNR map and histogram for b = 
300 as an example. 
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Rather than reviewing all web pages for each subject, however, we focused on 
identifying the outliers in any given quantitative QC metrics, then reviewing the web page for 
those subjects. Although there are increasing interests in the automated QC in DWI (Bastiani et 
al., 2019; Haddad et al., 2019; Liu et al., 2015, 2010; Oguz et al., 2014; Roalf et al., 2016; 
Tournier et al., 2011), there has been less consensus with regard to how and when a given data 
should be removed from the analysis (Liu et al., 2015), compared to the structural or functional 
data, where some standards have been suggested, albeit somewhat arbitrarily (e.g. 
Backhausen et al., 2016 for structural data; Power et al., 2015 for rs-fMRI data). As a result, 
such decisions depend on within- and across-study comparison of any given QC metrics to spot 
outlier participants or assess the overall quality of the acquired data. The quantitative QC 
metrics we computed were mainly derived from the same QC outputs used to generate the 
visual QC images described above, but represent numerical summary of these outputs. Here 
we present the distributions of these metrics in our dataset to be compared with other studies 
(Supplemental Figure 13): 

● Mean ‘total’ and ‘restricted’ motion RMS  
● Mean number of slices classified as outliers per volume during FSL EDDY 
● Mean fraction of voxel intensity outliers in each volume after EC correction and 

denoising, as determined by AFNI 3dToutcount 
● Inverse of the mean CNR inside the brain mask for each of the non-zero-b-values, 

computed using the voxelwise CNR map produced by FSL EDDY 
● Inverse of the tSNR inside the brain mask computed for b-value 
● Mean residuals inside the brain mask when fitting DTI model 
● Fraction of physically implausible voxels inside the brain mask  
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Supplemental Figure 13. Distributions of quantitative QC metrics for diffusion pipeline.  

Distributions of QC IDPs from the diffusion pipeline are shown for male (blue) and female (red) 
participants. See text for details of individual IDPs. 

Resting-state fMRI processing QC 
  As in DWI pipeline, we computed a number of both quantitative QC metrics and 
qualitative QC images during the pipeline execution. The qualitative QC images included the 
following (examples shown in Supplemental Figure 14): 

● Plots of motion parameters from FSL MCFLIRT and FD over the entire time points of rs-
fMRI data 

● Plots of global mean signal, as well as mean signals within GM, WM, and ventricles over 
the entire time points of rs-fMRI data  

● Carpet plots of preprocessed rs-fMRI data (Power, 2017) with and without GSR 
● Multi-axial plot of the mean rs-fMRI data after motion and distortion correction, with 

contours of T1 after alignment  
● Multi-axial plot of AICHA regional occupancy map, showing the percentage of the 

functional brain mask within each of the AICHA region in the stereotaxic space 
● Similar multi-axial plot of AICHA regional occupancy map, but showing the percentage of 

GM/WM/ventricles within each AICHA region, using the Freesurfer-based masks in the 
stereotaxic space. 
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Supplemental Figure 14. Example of subject-level visual QC images for resting-state fMRI pipeline.  

(A) Multi-trace plots showing, from the top of the left panel, 1) absolute rotation, 2) absolute translation, 3) 
global mean signal and signals within GM/WM/ventricles, 4) FD, and 5) carpet plot of the preprocessed 
(motion- and distortion-corrected, band-passed) rs-fMRI data. The mean signal time courses and the 
carpet plot in the left and right panel were derived from data without and with GSR, respectively. (B) Multi-
axial plot of the average pre-processed data aligned to T1, together with the contour of the reference T1 
image. (C) Multi-axial plot of AICHA regional occupancy map, showing the percentage of the functional 
brain mask within each AICHA region. Similar AICHA occupancy maps were created that show the 
percentages of GM/WM/ventricles within each AICHA region. 
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Also as in DWI pipeline, we focused on identifying the outliers in the quantitative QC 
metrics and checking their visual QC web pages rather than reviewing every single subject-level 
QC page. However, we note that any excessive motion was censured through ‘scrubbing’ 
described above when computing IC matrices. Also, some subjects were excluded on a regional 
basis when computing the average regions IC matrices. Here we present the distributions of the 
following quantitative QC metrics (Supplemental Figure 15) to be compared with other studies: 

● Cost function values for EPI to T1 after the BBR alignment to T1, as well as after BBR + 
FLIRT alignment to T1 

● Mean relative RMS displacement, as well as mean and max absolute translation and 
rotation (mean over each x, y, and z directions), over the entire time course of the rs-
fMRI data estimated by MCFLIRT 

● Inverse tSNR before and after band-pass filtering that also included despiking and 
nuisance regressor removal 

● Mean FD (Power et al., 2012) and the proportion of volumes above FD above 0.2 and 
0.5 (Power et al., 2015) over the entire time course of the rs-fMRI data 

 

 
Supplemental Figure 15. Distributions of quantitative QC metrics for resting-state fMRI 
pipeline.  
Distributions of QC IDPs from the rs-fMRI pipeline are shown for male (blue) and female (red) 
participants. See text for details of individual IDPs. Note that log-scale is used for the fraction of 
rs-fMRI volumes above the given FD threshold, since the distributions for both thresholds are 
highly skewed 
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Additional statistical analyses 

Sample distribution of some global IDP’s  
Supplemental Figure 16 shows the distributions of global IDPs presented in the current 

paper, namely mean CT, total inner and pial CSA, and total GM and WM volumes 
(Supplemental Figure 16A) from the structural pipeline, and mean values of four DTI metrics 
(FA, MD, AD, and RD) and three NODDI metrics (NDI, ODI, and IsoVF) within the cerebral WM 
(Supplemental Figure 16B). 

 

 
Supplemental Figure 16. Distributions of global IDPs from the structural and diffusion pipelines.  

Distributions of (A) five IDPs produced by the structural pipeline and (B) seven IDPs from the diffusion 
pipeline are presented for male (blue) and female (red) participants. 

Correlation of total inner and pial CSA 
While most studies report the inner CSA defined by GM/WM interface, and this is the 

default cortical areal measure in Freesurfer, it is possible to compute the pial CSA defined by 
GM/CSF interface. Not surprisingly, the total inner and pial CSA were highly correlated in our 
data, with pial CSA being larger than inner CSA. Supplemental Figure 17 shows the relationship 
between the two variables in 1,722 subjects of the MRi-Share data. 
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Supplemental Figure 17. The relationship between CSA and CSA pial in 1,722 subjects. The plot 
shows the total inner and pial CSA for each subject, represented as a dot in the scatter plot. The color 
represents the sex of the subject (blue for males and red for females).  

The interaction of eTIV and sex in WM volume data 
 The combined sex analysis showed the significant interaction between eTIV and sex (p 

= 0.0004), indicating that the slope for males is steeper than females. Supplemental Figure 18 
shows the small difference in the slopes of the WM volume-to-eTIV in males and females. 

 
Supplemental Figure 18. The interaction of eTIV and sex in WM volume data.  

The plot shows the relationship between total WM volume and eTIV in both sexes. Males show slightly 
steeper slope than for females. 
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Fit results of alternative models in the global GM, WM morphometry and 
WM property analyses 

In the main manuscript, we primarily reported the results of linear age effect models with 
or without eTIV (or WM mask volume in the case of WM properties) that best describe the data 
according to BIC. However, here we report the results the alternative model fit results to assess 
how the inclusion or non-inclusion of global volume effects in the model affects the observed 
age or sex effects, and to allow comparison with any prior studies that did or did not control for 
such global volume effects.  

Global gray matter morphometry 
The BIC indicated that inclusion of eTIV did not improve overall fit for modeling CT, while 

it did for inner CSA, pial CSA, and GM volume data. Here we report the model fit results with 
eTIV for CT, and without eTIV for inner CSA, pial CSA, and GM in Supplemental Table 1. The 
estimates of age or sex effects are not much affected by the inclusion of eTIV. In contrast, 
excluding eTIV slightly reduces the estimates of age-related variance for both inner and pial 
CSA, and GM, decreasing the level of significance for the age effects in these metrics, although 
the estimated slope for the age tends to increase, in particular for inner and pial CSA data in 
males. Not surprisingly, the exclusion of eTIV also significantly impacts the observed sex effects 
on these metrics, as males generally have larger total eTIV and, as a result, larger raw values 
for inner and pial CSA as well as GM, than females. These absolute differences in the sexes 
disappear and in some cases reverse the effects when eTIV is accounted for in the model. 
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Supplemental Table 1. The effects of inclusion or exclusion of eTIV on the age and sex effects on 
global GM morphometry.  

The results of alternative linear model fit for mean CT, total inner CSA, and total pial CSA from Freesurfer 
v6.0, as well as total GM volume from SPM12, are shown. Parameter estimates (β) for age and sex are 
shown, together with 95% confidence intervals (CI) for each β, as well as uncorrected p values and partial 
eta squared as the effect sizes for each variable. The Model column indicates the alternative model (see 
text) with the corresponding model number as described in Methods section. The interaction between sex 
and age was tested in the combined group but was not significant in any of the metrics listed here, and 
thus is not included in the table. Overall model fit is indicated as adjusted squared R values.  

 

Global white matter morphometry and properties 
Like GM, the total WM volume was also significantly affected by eTIV. For the mean DTI 

metrics within the cerebral WM mask, BIC indicated that the inclusion of mask volume in the 
model improved the model sufficiently for MD and AD in male, but not in female, data. Here we 
report the alternative model results in Supplemental Table 2.  

 



31 

Supplemental Table 2. The effects of inclusion or exclusion of eTIV or the WM mask volume on the 
age and sex effects on WM volume and DTI data.  

The results of alternative linear model fit for total white matter volume (WM) from SPM12, as well as 
mean DTI metrics within subject-specific cerebral WM masks are shown. Parameter estimates (β) for age 
and sex are shown, together with 95% confidence intervals (CI) for each β, as well as uncorrected p 
values and partial eta squared as the effect sizes for each variable. The Model column indicates the 
alternative model (see text), with the corresponding model number as described in Methods section. The 
interaction between sex and age was tested in the combined group but was not significant in any of the 
metrics listed here, and thus is not included in the table. Overall model fit is indicated as adjusted squared 
R values. 

 
 
When not taking eTIV into account, the total WM volume no longer showed any 

significant positive age-related variations, and the age-related variance in the data was much 
reduced. As in GM, it also affected the observed sex effects, indicating a significantly larger raw 
WM values in males than in females, which disappears once eTIV is taken into account. 

Inclusion or exclusion of the WM mask volume did not impact the estimates of age 
effects in any of the mean DTI metrics. It did slightly affect the observed sex effects in the 
diffusivity measures, with a tendency for higher diffusivity in females than in males when 
controlling for the mask volume but no difference when not controlling for the volume.  
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For the mean NODDI metrics, BIC indicated the inclusion of WM mask volume in the 
model to improve the fit for IsoVF only, and not for NDI or ODI. The Supplemental Table 3 
reports the alternative model results, showing the results with the mask volume in the model for 
NDI and ODI, and without the mask volume for IsoVF. The inclusion or exclusion of the mask 
volume did not noticeably affect either age or sex effects in any of the NODDI metrics, although 
the sex difference in the mean IsoVF (higher in males than in females) seems to be attenuated 
slightly when not taking into account the mask volume.  

 
Supplemental Table 3. The effects of inclusion or exclusion of the WM mask volume on the age 
and sex effects on NODDI data.  

The results of alternative linear model fit for mean NODDI metrics within subject-specific cerebral WM 
masks are shown. Parameter estimates (β) for age and sex are shown, together with 95% confidence 
intervals (CI) for each β, as well as uncorrected p values and partial eta squared as the effect sizes for 
each variable. The Model column indicates the alternative model (see text) with the corresponding model 
number as described in Methods section. The interaction between sex and age was tested in the 
combined group but was not significant in any of the metrics listed here, and thus is not included in the 
table. Overall model fit is indicated as adjusted squared R values.  
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