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Energy balance of thermoelastic martensite transformation
under stress

A. Chrysochoos, H. Pham, O. Maisonneuve

Laboratoire de Mécanique et Génie Civil, URA CNRS 1214, Université Montpellier I, c.c. 081, Place Eugéne Bataillon,
F-34095 Montpellier Cedex 5, France

Abstract

Energy balances of pseudoelastic behaviour of a shape memory alloy are experimentally determined using IR
techniques. In fact, these balances, established for Cu-Zn-Al alloy at constant room temperature and under
quasi-static tensile conditions, allow us to study the relative importance of the intrinsic (mechanical) dissipation
involved in austenite—martensite phase changes compared with thermomechancial couplings. An analysis of the
experimental data shows that the thermoelastic austenite—martensite phase transition can be considered as a
non-isothermal process involving no or little (hardly measureable) mechanical dissipation.

Assuming a non-dissipative phase transition, numerical simulations are done in the case of non-isothermal
processes using two existing models. This numerical exercise gives mechanical, thermal and energetic responses that
can be qualitatively compared with those obtained experimentally. These results evidence that an intrinsic dissipation
is not necessary to describe the pseudoelastic behaviour. In general, this example emphasizes once again that thermal

and mechanical analyses should be carried out jointly to characterize properties of materials.

1. Introduction

It is now well known that the pseudoelastic
behaviour of shape memory alloys (SMAs) is due
to austenite—martensite phase transitions. From a
mechanical point of view these phase transitions
give rise, under certain conditions, to hysteresis
loops on the stress—strain curves of load—unload
cycles at constant room temperature.

The literature dealing with the SMA phe-
nomenology gives us several possible interpreta-
tions of this pseudoelastic hysteresis (e.g. Ortin
and Planes, 1988; Van Humbeek, 1981; Wayman,
1983) which is related to internal energy variation
of the material. First, the energy corresponding to

hysteresis loops can be interpreted in terms of
dissipated energy due to internal friction; second,
in terms of stored energy associated with inter-
and intragranular deformation incompatibilities;
and third, as heat transfers with the surrounding
induced by temperature variations due to the
latent heat of phase change.

However, from a macroscopic point of view the
pseudoelastic hysteresis seems to be only describ-
able in the case of isothermal processes by taking
into account dissipative phenomena (e.g. Fré-
mond, 1987; Lexcellent and Licht, 1991).

In this paper, after a brief recall of the thermo-
dynamic framework, a macroscopic analysis of
the thermomechanical couplings associated with



pseudoelastic behaviour is presented. This analy-
sis is based on tests performed with an experimen-
tal set-up using IR techniques. Quasi-static
uniaxial pulsating tests have been done at con-
stant room temperature on polycrystalline Cu
Zn—Al samples. The temperature variations of the
sample are recorded through a numerization sys-
tem. The processing of thermal data gives the
amount of heat involved during the martensitic
transformations. The main experimental observa-
tion leads us to consider the solid—solid phase
change as a nondissipative (in the sense of the
intrinsic dissipation) and anisothermal thermody-
namic process.

To determine the influence of such a result on
the mechanical predictions of classical models,
numerical simulations are performed. This numer-
ical exercise allows us to show that the observed
temperature variations are sufficient to justify,
qualitatively and quantitatively, the form and size
of the mechanical hysteresis loops.

2. Therm(")dynamic framework

Classical concepts and results of the thermody-
namics of irreversible processes are used (Boccara,
1968; Germain, 1973).

At each instant 7 the thermodynamic state of a
homogeneous volume element is characterized by
a set of n+ | state variables («,, ,, ..., «,). Let
us take T (T'= o) as the absolute temperature, ¢
(¢=a,) as the strain tensor and «; (j=2,...,n)
as a set of n — | internal variables completing the
description of the thermodynamic state. The spe-
cific Helmholtz free energy is denoted by ¢ and s
symbolizes the specific entropy.

With this notation the Clausius—Duhem in-
equality that is deduced from the local form of the
second principle of thermodynamics is written as

d=ci—p¥ s L gad T>0,i=1.. ..n (1)
oo, T

where o is the Cauchy stress tensor, p is the mass
density, ¢ is the heat influx vector and d is the
dissipation. When 4 is equal to zero, the irre-
versible entropy production rate (d/7) is also
equal to zero and the process is called reversible.

Classically, the intrinsic dissipation d, (mechanical
dissipation) is assumed to be positive and is given
as
¢
d,=(7:f:-—p.}—wo'r,é(),le,....n (2)
0,
Under the experimental conditions of the tests
presented here, it is shown (Chrysochoos, 1987)
that the heat equation can be simplified as

oy

CO—kAO=d, + pT
PC Pl e Tea,
i=1,...,n (3)

. ’
A, =W .phs

where ¢ is the variation in temperature (0=
T — T,, with T} the equilibrium absolute tempera-
ture). The specific heat capacity C, and the
isotropic conduction tensor k are assumed to be
constant. The term w(, symbolizes the volume
heat sources that have been gathered in the sec-
ond term of Eq. (3): we can find the intrinsic
dissipation ¢, and the crossing terms correspond-
ing to the thermomechanical couplings (thermole-
lastic effects, latent heat in the case of solid--solid
phase transition, etc.).

3. Experimental results
3.1. Experimental arrangement and calibration

3.1.1. General description

The original feature of the experimental set-up
is to record and use the temperature field of the
sample surface to evaluate the amount of heat
exchanged between the sample gauge length and
the surroundings during mechanical tests. This
set-up (Fig. 1) consists of a computerized uniaxial
testing machine (1, 2, 3) and an IR thermography
device (5, 6, 7). The latter is made of an IR cam-
era (5), and display unit (6) and a numerization
system (7) allowing the storage and processing of
thermal pictures in a second microcomputer (8).

The numerization system was initially con-
ceieved by J.C. Chezeaux and B. Nayroles (Nay-
roles et al., 1981) and then developed and
improved by A. Chrysochoos and J.C. Dupré
(Chrysochoos and Dupré, 1992). The pictures ob-
tained are matrices of 256 lines by 180 columns



numerized on 12 bits. Moreover, the numerization
system allows us to record at the beginning of
each line of a thermal picture, by means of 4, the
corresponding load and deformation signals and
four other electrical signals such as thermal level
and thermal range characterizing the state of the
camera.

Practically, the use of spatial numerical filtering
(convolutive filters) reduces the noise of the video
signal to temperature variations within 5 x
1073 °C near room temperature.

The thermoregulation is carried out carefully.
The test area must be completely closed. The air
of the testing room is circulated using electric fans
and the temperature controlled with two heat
sources (air conditioner and fan heater).

3.1.2. Calibration of the video signal

A special warning target equipped with thermo-
couples has been realized to calibrate the varia-
tions (near room temperature) in the video signal.
The response of the IR detector (MCT detector,
liquid nitrogen cooled) is strongly non-linear even
near thermal equilibrium. The calibration law has
been approximated by a quadratic law (second-
order approximation).

Fig. 1. Basic sketch of experimental set-up: 1, uniaxial testing
machine (100 kN); 2, command unit; 3, microcomputer |
(loading parameters control, mechanical data storage and
processing); 4, transfer unit for load, stroke and extensometer
signals; 5, IR camera (InSb detector, liquid nitrogen cooled);
6, display unit; 7, numerization system of video signal (THER-
MAK); 8, microcomputer 2 (storage, visualization and process-
ing of thermal data); 9, 10, printer or plotter output.

Table 1
Thermomechanical properties of Cu-70.17Zn-25.63Al (wt.%)
polycrystalline alloy

E (Young modulus) 24 GPa
v (Poisson ratio) 0.33

Ay {thermal expansion) 18 x 10-6°C~!
p (mass density) 7700 kg m—?
C, (specific heat) 3931 kg~ 'eC!
k (thermal conductivity) 80Wm'°C!
L (specific latent heat) 7000 ) kg !

Notice that the calibration can be performed in
a dynamic way, i.e. it is not necessary to wait for
thermal equilibrium, and therefore can be done
frequently.

3.2. Material and experiment

Flat samples of a polycrystalline alloy (Cu-—
70.17Zn-25.63A1, wt.%) have been used. The
transformation temperatures of this alloy are
M,=15°C, M;=6°C, A,=7°C and A4;=
19.5 °C. The slope of the transition line is around
2 MPa °C'; the thermoelastic constants of the
material are gathered in Table 1.

To make sure of an initial austenite state, the
samples are annealed at 850 °C for 10 min and
then oil quenched for | h (Vacher, 1991). The
storage temperature of samples is higher than
35°C. Just before testing, a thin coat of black
paint is laid down on the surface of each sample
to improve its emissivity.

Two kinds of experiment have been performed:
load—unload paths with increasing strain ampli-
tude (&, = 0.5%, 1%, 1.5%) and load-unload
paths with constant strain amplitude (e, = 1%).
The tests are strain controlled during the loading
and stress controlled during the unloading to
avoid buckling phenomena. During the experi-
ments the room temperature is held nearly con-
stant at 30 °C (higher than A4;) and the absolute
value of the strain rate is less than 1 x 10 3s !,

In what follows, the interpretation of experi-
mental data is done assuming quasi-static and
homogeneous mechanical tests. Under these con-
ditions, Figs. 2(a) and 2(b) show the mechanical
responses for each kind of experiment. We can
note that each load—unload path corresponds to a



hysteresis loop characterizing the pseudoelastic
behaviour of the shape memory alloy.

3.3. Linking the temperature field to the heat

sources

The temperature variations of the sample are
obtained relative to a reference thermal picture.
Fig. 3(a) represents the evolution with time of a
thermoprofile in the direction of the loading axis
during a test with increasing strain amplitude. In
Fig. 3(b), thermoprofiles are plotted for several
given instants. The length a represents the obser-
vation window size over which the energy balance
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Fig. 2. (a) Mechanical response for load-unload cycles with
increasing strain amplitude. (b) Mechanical response for load
unload cycles with constant strain amplitude: stabilization of

hysteresis loops after several cycles.
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Fig. 3. (a) Evolution of thermoprofile parallel to loading axis
plotted as a function of time. (b) Thermoprofiles extracted
from (a) at eight different times (a, length of observation zone;

b, gauge length of sample, 10 mm).

will be averaged and the length b corresponds to
the gauge length of the sample. Looking at Fig.
3(b), we can easily assume that the temperature
remains uniform at each instant ¢ on this chosen

observation window.

The evaluation of w,, is deduced from a numer-
ical estimate of the time derivative and the tem-
perature laplacian. From an experimental point of
view the laplacian for good thermal conductors
such as metallic alloys is quite difficult to evaluate
directly near thermal equilibrium when the ther-



mal gradients are very small. Nevertheless, it is
possible to determine the volume losses (—kA#/
pC,) by a numerical estimation of the differential
operator. This estimation is based on a spatial
filtering of data associated with finite differences
and a validity control can be performed through
numerical simulations (see Dupré (1991) for tech-
nical details).

In the particular case of quasi-static and hom-
geneous tests a linearization of the thermal losses
is also possible. Then the local heat equation
becomes

ot 0
(2 2) v

ot Tth

where 7, is a time constant characterizing the
thermal losses. The energy amounts are calculated
for the gauge volume (¥, = 150 mm?):

f

Walt) = Voj we, () de (3)
Lo

The evolutions of W, @ and ¢ are plotted in Figs.

4(a) and 4(b).

3.4. Thermomechanical analysis

3.4.1. Experimental observations

From Figs. 4(a) and 4(b) the following remarks
can be made.

Observation 1. The temperature variations can
reach up to 7 °C. These variations are small com-
pared with the absolute temperature but are not
negligible in comparison with the size of the tran-
sition domain (4, — M; = 13.5°C).

Observation 2. The overall heat change W,
between the sample and the surroundings is equal
to zero at the end of each hysteresis loop within
experimental accuracy.

3.4.2, Discussion

Observation 1 above leads us to consider the
martensitic transformation under stress as a non-
isothermal process. As a consequence, rather than
assuming an- isothermal process (T'=T,), we
could adopt a linearized thermal approach (#/
T, <« 1). This first-order approximation will be
called the small thermal perturbation hypothesis
(STPH).
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Fig. 4. (a) Load—unload cycles with increasing strain ampli-
tude. Thermal response and evolution of heat W, (deduced
from thermal data). This energy amount returns to zero at the
end of each cycle. (b) Load-unioad cycle with constant strain
amplitude. Thermal response becomes periodic and symmetric
after a few cycles. The heat W, returns to zero at the end of
each hysteresis loop.

Then, to show the relative importance of dissi-
pated energy compared with thermomechanical
couplings, let us specify first the conditions re-
quired to associate a thermodynamic cycle with
each hystersis loop, so that we get

J‘ wi(r)dr=0 (6}

where € is the duration of the cycle. Second, let
us show that the intrinsic dissipation d, is at most



of the same order of magnitude as ¢/T, during
such a thermodynamic cycle.

At the end of each hysteresis loop, we consider
that the deformation returns to its initial value.

Moreover, the internal state of the material is
again austenitic as soon as the stress is equal to
zero for a temperature higher than A4, Then we
shall suppose a priori that the internal state vari-
ables o, (J=2,..., n), which represent here the
volume proportions of the martensite twins, take
their initial values again.

Because of heat diffusion, the temperature ob-

servations observed at the beginning and end of

the pseudoelastic hysteresis can be different. How-
ever, the following two cases can occur,

(i} The temperatures T; and T, are the same (see
the case of constant-amplitude pulsating tests af-
ter several load—unload cycles, Fig. 4(b)). In such
a case each loop represents a thermodynamic
cycle.

(ii) The temperature 7, and 7; are different but
remain higher than A.. Then the thermodynamic
process can be fictitiously closed into a cycle by
two thermoelastic transformations, the stress re-
maining equal to zero. These two transformations
allow respectivley the passage from 7, to T, and
from 7, to 7;. Assuming a linear and isotropic
thermoelastic behaviour, the supplementary am-
ounts of heat evolved by these two transforma-
tions can then be written as

[I/Vch]gg + [Wch]iﬂ x = V()[/‘tzh T()E( Ti - T})} (7)

where £ is the Young modulus and /,, is the
thermal expansion.

For a maximum difference of 2 °C between T,
and T the value of the energy defined by Eq. (7)
is around 2 x 10~*J and corresponds to a strain
amplitude less than 10~ *. These orders of magni-
tude are so small that they cannot be detected
here.

Thus, associating a thermodynamic cycle with
each hysteresis loop, which verifies Eq. (6), seems
to agree with our observations. Now let us show
that the intrinsic dissipation can be negligible
during such a cycle.

For a thermodynamic cycle of duration % we
than have

Table 2
Evolution of ratios Ry and Ry, during tests with increasing
strain amplitude

Vo fawin(tilde Ry

Wc\ﬂ('ﬂ) RM

":mnx wu:h(:g}
(o) (107*H (1071 "y (107Y )y (%)
0.5 75 3585 2.1 6 18
1.0 140 5173 2.7 27 34
1.5 40 8010 0.5 55 43
¢ d C Td —(ﬂw v d 0
18 AT = - T — ) = 2, AT = U,
m.f %ﬂ “ T ’ﬂf oT0a,

i=1,....n (8)

Since the first integral on the right-hand side of
Eq. (8) must be equal to zero, the second one is
also equal to zero. Taking into account the small
variations in 6 (0/T, < 2%), a linearized version
of Eq. (3) integrated on the cycle yields

ffl Q.“U (9)

This result is established for a polycrystalline
alloy in the case of mechanical loadings at con-
stant room temperature. It can be related to the
one obtained by differential calorimetry on the
same alloy during thermal loadings when the
stress is equal to zero (Ortin, 1988). In every case
it appears that if intrinsic dissipation takes place,
it remains very small in comparison with the
latent heat rate of phase change.

Table 2 describes, in the case of tests with
increasing strain amplitude, the relative impor-
tance of dissipated energy. On one hand this
relative importance can be evaluated by the ratio
R, defined in Eq. (10a). This ratio is equal to
unity when the behaviour is exclusively dissipative
(without any thermomechanical couplings) and
zero when the behaviour is non-dissipative (under
the SPTH). On the hand the hysteresis area can
be characterized from a mechanical point of view
by the ratio R, defined in Eq. (10b). If the
mechanical response is purely elastic (no hys-
teresis loop occurs), then the ratio Ry, is equal to
ZCro.

R1 _ Wcl1(;ﬂ) (103)

an wi, () dt
#



RMz_M (10b)

Vy j o:&dr
'

where # is the hysterisis loop duration whose
load duration is .. In Eq. (10b) the term W, (%)
is defined by

W, (#) = VU_[ o:€ dr (1D
)

and represents the deformation energy related to

the hysteresis area.

First, we can note that the ratio R, remains
very small, which is in good agreement with a
non-dissipative phase transformation hypothesis.
Second, we can observe very small amounts of
mechanical energy corresponding to the hysteresis
area (less than 1 x 1072 J) in comparison with the
latent heats (greater than 11J). Third, the “hys-
teresis energy’ is not negligible against the me-
chanical energy provided by the testing machine
to deform the sample (R,, > 15%). Fig. 5 repre-
sents the energy balance associated with the pul-
sating test with increasing strain amplitude. We
can observe that the amounts of heat evolved
(latent heat) are considerably greater than the
mechanical energy amounts.

T T T e T T R Tho
Time (s)

Fig. 5. Evolutions of evolved heat W,, and deformation en-
ergy W,,, during a pulsating test. The difference in order of
magnitude between the two energies can be observed.

4. Consequence on the modelling of the
pseudoelastic behaviour

In this section the numerical predictions of
two models are compared, assuming either an
isothermal and dissipative phase transition (hy-
pothesis H,) or a non-isothermal and non-dissipa-
tive phase transition (hypothesis H,).

Both models belong to the formalism of gener-
alized standard materials (Halphen and Nguyen,
1975). The thermomechanical behaviour of mate-
rials is then described by two functions: a thermo-
dynamic potential and a pseudopotential of
dissipation. In most cases the specific Helmholtz
free energy i is chosen. The dissipation potential
¢ is taken as a positive convex function depend-
ing on the rates of the state variables, & (i=
1,...,n), and is equal to zero at the origin. With
these properties the Clausius— Duhem inequality is
automatically verified.

For the sake of simplicity, both approaches will
be applied in the monodimensional case (tensile
test) and only one martensite twin will be consid-
ered. The state variables are T, ¢ and S, where f§
is the volume proportion of the martensite twin
and verifies the inequality

0<p<1 (12)

Of course, it is clear that the quantity 1 —f
represents the volume proportion of austenite.

To take into account the inequality (12) in
modelling, Frémond (1987) defined the free en-
ergy as the sum of the usual physical value and
the indicator function 7, (.) of a convex set 7. If
only one martensite twin is considered, then .7 is
given as:

T ={yeR0<y<1} (13)
The function I;(.) is convex and is defined by

0 iffeT
L) = {m s (4

For the mathematical treatment of Eq. (14) the
basic convex analysis tools are necessary. It is
recalled that the term df(x,) denotes the subdiffer-
ential in x, of a convex function f defined on R":

f(xy) = {y e R"|f(x) = flxo) + (x — xo)y, VxeR"}
(15)



If fis a regular function in x,, then df(x,) is
reduced to the gradient of fin x,.

4.1. Presentation of models

4.1.1. Model 1

The first model is based on Frémond’s (1987)
approach. For the particular case in which only
one martensite twin is taken into account, the
expression of the specific free energy is given as

pY(T,e,f)=p(1 =YW (T. &)+ p (T, )+ 1:(f)
(16)

The constant mass density p is assumed to be the
same for all phases; the functions ¥, and _, are
respectively the specific free energy of the austen-
ite phase and the specific free energy of the
martensite twin. Phase interactions are not taken
into consideration.

If dissipation is exclusively due to the phase
change, than the dissipation potential ¢ depends
solely on the rate of f. Hence the behavioural
constitutive equations are

lpd l1(,I|'I'I

(l—ﬁ) (T, )+p[)’—(T £) (17
B'eaff(ﬁ)‘i‘acb(ﬂ) (18)
B' = = p[Yu(T, &) — (T, ¢)] (19)

If the behaviour is assumed non-dissipative, then
Eq. (18) becomes

B"e ol (f) (20)

In this case the pseudoelastic hysteresis cannot be
described as an isothermal process (Frémond,
1987).

To take into consideration phase interactions,
Frémond suggested modifying the domain 7.
Other trials can be seen in the literature (e.g.
Miiller and Xu, 1991) and it is the purpose of the
next model.

4.1.2. Model 2

The second model is based on Lexcellent and
Licht’s (1991) approach. In this model, using the
Legendre—Fenchel transform, the expression for
the free energy is deduced from the specific en-

thalpy given by Patoor et al. (1987). The indicator
function 7,(P) is introduced in the free energy
form to improve the formal coherence of the
model:

P'ﬁ(fs & ﬁ) =p Wclast(s gRﬁ T) + Pﬂ Lh::m(T}
+ oW B)+ 1-(F) (21

The functions W, W.em and W, represent
respectively the thermoelastic energy, the chemical
energy and the energy of interactions. The defor-
mation due to the phase change is represented by
gRp.

The dissipation potential ¢ depends solely on
the rate of f; the constitutive equations then are

_ aWelas[ _R ]v 22
G—pT(E—g g, T) (22)
B edl,(f)+dg(f) (23)

W’m
B'=gRo — pW per(T) — 7 (%) (24)

In the case of a non-dissipative behaviour, Eq.
(23) becomes

el (f) (25)

As in the former model, Eqs. (22), (24) and (25)
cannot predict the pseudoelastic hysteresis if the
temperature remains constant. In such a case,
Egs. (24) and (25) define a map-to-map relation-
ship between ¢ and f (W,,, being assumed strictly
convex).

4.2, Numerical simulations

One-dimensional numerical simulations are per-
formed using both preceding models. Load—un-
load cycles are considered and it is assumed that
only one martensite twin is activated. Room tem-
perature is constant and higher than 4;. For both
models a viscous dissipation potential form is
adopted to bring to light the incidence of hypoth-
esis H;:

p(H) =2 B2 (26)

where # is the viscosity coefficient.



4.2.1. Model 1
The free energy form defined in Section 4.1.1
can be decomposed into

pY T, ) =3Ee> —p %ﬁ (T—M,) —pC,TlogT

(27)
pYm(T, £) =3Ec> — pa(T)e— pC,Tlog T (28)
where «(T) is defined by

1(T)={—A(T-—Md) if T< My (29)
0 otherwise

Here L denotes the latent heat and M, is the
temperature above which no austenite—martensite
transformation occurs (“martensite dead”). If a
non-isothermal transformation is assumed, then
the temperature equation evolution is determined

by
Wi = pC, (mﬁ)

Tth

=d, +pTﬁAé+pT(A£+%)ﬁ (30)
s

To obtain a qualitativey realistic hysteresis
loop, the following coefficients have been chosen:
|8 =10"%s"", T4=30°C, Vy=150mm? p=
7700 Kgm *, E=24GPa, C,=393Jkg 'K,
M,=6°C, My=M,+65°C, L=3000Jkg"',
A=6294Tkg= 'K !, 7, =60s if the process is
regarded as nonisothermal, # = 18 x 10° Jm~3?s if
the behaviour is assumed dissipative.

Figs. 6(a)-6(c) show the mechanical, thermal
and energetic predictions for model 1. In each
case computational exercises have been performed
under hypothesis H, (¢, # 0) and hypothesis H,
(d, =0). Fig. 6(d) shows the martensite propor-
tion evolution.

4.2.2. Model 2
The various terms defined in Section 4.1.2. can
be rewritten as

PWoas(e— g8, TY=3E(e— gB) — Eig (T~ T,)e
—pC,TlogT (31

PBW hem(T) = pf(AT + B) (32)

PWindB)=pD(f — 1Df (33)

If a non-isothermal transformation is assumed,
than the temperature equation evolution is deter-
mined by

Y
Tth
—d, — Edy Té+ pATS (34)

The coefficients taken in the simulations are as
follows: & =10"%s""  V,=150mm’, p=
7700kgm~3, E=24GPa, C,=102Jkg 'K,
Ty,=30°C, A, =18 x 10-SK~', M,=6°C, M=
19°C, Rg=0013, A=466Jm*K~', B=
—13611.4Jm~3, D=40.6 T m 3, 1, =205 if the
process is regarded as non-isothermal, # = 160 x
10°J m s if the behaviour is assumed dissipa-
tive.

Figs. 7(a)-7(c) exhibit the mechanical, thermal
and energetic predictions in the case of model 2.
In Fig. 7(d) the kinetics of the phase change is
plotted during a load—unload cycle.

4.2.3. Remarks

First, we can observe with both models that
both hypotheses H, and H, give a hysteresis loop
of the same order of magnitude. The ratios Ry,
are given in Table 3.

Second, we can note that even in the dissipative
case (H,) the ratio R can remain small. This is
possible by using coefficients for the prediction of
small dissipation (in comparison with the latent
heat rate).

5 Concluding comments

The austenite—martensite phase change under
stress at constant room temperature has been
studied on Cu—Zn-Al samples from a thermome-
chanical point of view. The IR data correspond-
ing to temperature variations of the material show
that the transformations are non-isothermal pro-
cesses. These variations remain small (around sev-
eral degrees Celsius) in comparison with the
absolute temperature. Nevertheless, they cannot
be neglected compared with the transition domain
size (around 10°C). In a first-order approxima-
tion, associating a thermodynamic cycle with each
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Fig. 6. (a) Mechanical predictions of model | under hypothesis H, (d, # 0) and hypothesis H, (d, = 0). (b} Temperature evolution
under hypothesis H, and hypothesis H,. Of course, with H, (full line) no temperature variation appears. (c} Energy balance (model
1). The thermoelastic couplings are only taken into account during the phase change. The term W) stands for the energy dissipated
within the equivalent volume ¥,. Of course, with hypothesis H, (broken line) no dissipated energy can occur. (d) Evolution of
martensite proportion £ in case of model I, i.e. kinetics of phase change during a load-unload cycle.

hysteresis loop yields a non-dissipative process. of such a hypothesis has been underlined using
These results justify a non-isothermal and non- two classical models. These models have been
dissipative process hypothesis (H,). The incidence originally developed assuming a dissipative and
Table 3

Numerical simulations of ratios Ry and Ry,

Model/ W () Vo [ g win(n)de Ry W o B) Ry W (B)
hypothesis (10D (10D (%) (10-*n (Vo) (10-%1)
M, /H, 239 17439 1.4 239 36.4 239
M,/H, 262 17590 1.5 262 35.1 0
M,/H, 506 32450 1.6 505 27.4 506

M,/H, 529 32221 1.6 527 28.3 0
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Fig. 7. (a) Mechanical Responses in the case of model 2. (b) Temperature evolution in the case of model 2. (c) Energy balance. The
term W, is the energy dissipated within the gauge volume V. (d) Evolution of martensite proportion that represents kinetics of phase

change.

isothermal phase change (H,). Numerical simula-
tions show that significant hysteresis loops can be
obtained by using indifferently either hypothesis
H, or hypothesis H,.
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Appendix: Main nomenclature

Ay *““austenite finish”

A, “‘austenite start”™

@B hysteresis loop duration

(3 duration of thermodynamic cycle

Co specific heat capacity

d dissipation

d, intrinsic dissipation

E Young modulus

f(xp) subdifferential in x, of convex function
/

I1-() indicator function of convex set 7

k isotropic conduction tensor

L latent heat

& loading path duration

My “martensite dead”

M, “martensite finish”

M, “martensite start”

q heat influx vector

s specific entropy

! time

1 absolute temperature

T, temperature at end of pseudoelastic
hysteresis

T temperature at beginning of pseudoelas-
tic hysteresis

To cquilibrium absolute temperature

Vy gauge volume of sample

Wi volume heat sources

W, amount of heat evolved

Wem  chemical energy

W gast thermoelastic energy

W, (%) mechanical energy or deformation en-
ergy related to hysteresis area

Wi energy of interactions

Greek letters

o, state variables (/=0,...,#n)

Jit volume proportion of martensite twin

£ strain tensor

y viscosity coefficient

0 variation in temperature

Am thermal expansion

P mass density

a Cauchy stress tensor

Ten time constant characterizing thermal
losses

¢ pseudopotential of dissipation

W specific Helmholtz free energy

W specific free energy of austenite phase

/. specific free energy of martensite twin



