
HAL Id: hal-03346870
https://hal.science/hal-03346870

Submitted on 16 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Analysis of the Bitcoin Protocol
Laneve Cosimo, Adele Veschetti

To cite this version:
Laneve Cosimo, Adele Veschetti. A Formal Analysis of the Bitcoin Protocol. Developments in
the Design and Implementation of Programming Languages., Nov 2020, –, Italy. �10.4230/OA-
SIcs.Gabbrielli.2020.2�. �hal-03346870�

https://hal.science/hal-03346870
https://hal.archives-ouvertes.fr

A Formal Analysis of the Bitcoin Protocol
Cosimo Laneve
Dept. of Computer Science and Engineering, University of Bologna – INRIA Focus, Italy
cosimo.laneve@unibo.it

Adele Veschetti
Dept. of Computer Science and Engineering, University of Bologna – INRIA Focus, Italy
adele.veschetti2@unibo.it

Abstract
We study Nakamoto’s Bitcoin protocol that implements a distributed ledger on peer-to-peer asyn-
chronous networks. In particular, we define a principled formal model of key participants – the
miners – as stochastic processes and describe the whole system as a parallel composition of miners.
We therefore compute the probability that ledgers turn into a state with more severe inconsistencies,
e.g. with longer forks, under the assumptions that messages are not lost and nodes are not hostile.
We also study how the presence of hostile nodes mining blocks in wrong positions impacts on
the consistency of the ledgers. Our theoretical results agree with the simulations performed on a
probabilistic model checker that we extended with dynamic datatypes in order to have a faithful
description of miners’ behaviour.

2012 ACM Subject Classification Theory of computation → Formalisms

Keywords and phrases Bitcoin, Distributed consensus, Distributed ledgers, Blockchain, PRISM, forks

Digital Object Identifier 10.4230/OASIcs.Gabbrielli.2020.2

Related Version A full version of the paper with the proofs of the main statements is available at
http://cs.unibo.it/~laneve/papers/LaneveVeschetti.pdf.

1 Introduction

Bitcoin is a distributed application that implements a ledger on peer-to-peer asynchronous
networks that are dynamic (nodes may either join or leave) [20]. This technology is particularly
critical because it manages and transfers relevant assets in the form of cryptocurrencies.

The basic problem of implementing a distributed ledger on a dynamic peer-to-peer
asynchronous network is the management of inconsistent updates of the ledger performed by
different nodes, which are called forks. This problem, known as distributed consensus in the
literature, has been proved to be unsolvable since 1985 [9]. To overcome this shortcoming,
the Bitcoin protocol uses an ingenious breakthrough: it guarantees a so-called eventual
consistency whereby the various replicas of the ledger may be temporarily inconsistent in at
most the last m blocks [10]. Overall, the protocol is very complex and the current research
is actively involved in understanding all the critical points that a potential attacker might
use. We refer to [24] for an overview of possible attacks to Bitcoin.

Following [13, 11, 22, 23], we study the foundational principles of the Bitcoin algorithm in
a formal way, by defining a clean and principled model of the key participants – the miners.
These miners are stateful nodes communicating with each other by means of asynchronous
messages that either announce a transaction (which defines a particular event) or create and
broadcast a block that contains (the encoding of) a set of transactions. Once blocks are
received, the miners validate them (they verify the correctness of the transactions therein)
and, if this process succeeds, add the block to the local copy of the ledger.

© Cosimo Laneve and Adele Veschetti;
licensed under Creative Commons License CC-BY

Recent Developments in the Design and Implementation of Programming Languages.
Editors: Frank S. de Boer and Jacopo Mauro; Article No. 2; pp. 2:1–2:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0052-4061
mailto:cosimo.laneve@unibo.it
https://orcid.org/0000-0002-0403-1889
mailto:adele.veschetti2@unibo.it
https://doi.org/10.4230/OASIcs.Gabbrielli.2020.2
http://cs.unibo.it/~laneve/papers/LaneveVeschetti.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

2:2 A Formal Analysis of the Bitcoin Protocol

As said above, this setting cannot give a global consensus on miners’ ledgers because the
underlying system is distributed. In fact, in this context, blocks may be delivered in a wrong
order, may be duplicated, may be lost, or may be produced by hostile nodes. The Bitcoin
algorithm uses several expedients to overcome these issues. First of all, the algorithm controls
the generation of new blocks in order to be much less frequent with respect to the broadcast
delay (which is around 2 seconds). In particular, in Bitcoin, miners are committed to solve a
computationally hard problem in order to mine a new block (and they are rewarded with new
Bitcoins when this happens). The complexity of the problem is set in such a way that mining
occurs every 10 minutes (the technique is known as proof of work). In addition, the Bitcoin
algorithm uses ledgers that are trees of blocks with a pointer to a leaf node at maximal depth
called handle. The (eventual) consistency is not guaranteed on the ledgers (that may be
different), but on the blockchain of the ledgers, i.e. the chain of blocks starting from the
handle to the root node, called genesis block (which is assumed to be always the same). In
this context, the addition of a new block to the ledger is a critical operation because, besides
connecting the block to its parent (every block records the parent node), it may also change
the handle (and therefore the corresponding blockchain) if the height of the ledger increases.

In our modelling of the Bitcoin protocol we intentionally leave out a number of details,
such as what can go into a transaction or into a block, the exact specifics of the proof of
work algorithm, and the validation process. We also overlook standard issues of distributed
systems, such as the loss of messages or miners that may become either inactive or may show
up in the system at runtime. In our setting, the network and the miners are modelled by
means of stochastic processes where actions have rates. These rates are the formal artifice
we use for expressing the latency of the network and the time required by miners to solve
the computational problem (which is inversely proportional to the so-called hashing power).
Overall, our model is simple and rigorous, which are, in our opinion, fundamental criteria
for reasoning about properties of blockchain-based algorithms and for gaining trust in their
basic principles. Once the basic properties have been analyzed and understood, one can
address other, possible more complex, scenarios of distributed systems.

Our contribution. The formal model for defining the Bitcoin protocol is an extension of
PRISM [18]. PRISM has been chosen for two reasons. First, because it is a simple process
calculus with a formal stochastic semantics that uses rates of actions as parameters of
an exponential distribution, which is a standard feature of Bitcoin actions of mining and
broadcasting [1, 26, 8, 4]. Secondly, because PRISM has a tool for analysing stochastic systems
that can be used for complementing our theoretical results with practical simulations.

However, as it is, PRISM falls short to model faithfully the Bitcoin protocol because it
misses the datatypes of blocks and ledgers. Therefore, in Section 2, following the description
in [20], we have defined the values of blocks, queues and ledgers and the corresponding
operations. The extension of PRISM, called PRISM+, with the foregoing datatypes is defined in
Section 3. In PRISM+ a system is a parallel composition of modules that interact on actions
that have in common. These actions may update the internal states of the modules (including
ledgers and queues) and the next state of the system is defined in terms of a race condition
between possible actions. The operational semantics of PRISM+ is also reported in Section 3.

The Bitcoin protocol is defined in Section 4 as a PRISM+ system consisting of a NETWORK
module and a set of MINER modules. The NETWORK has a set of queues, one for every miner,
which store the new blocks created by the miners. The blocks in the queues of NETWORK are
retrieved by the miners through an explicit action. These actions and the corresponding
rates allow us to implement the delay and the nondeterminism of the broadcast. The MINER

C. Laneve and A. Veschetti 2:3

may either (i) mine a new block, or (ii) retrieve a block from the network and add it to the
local queue, or (iii) take a block from the local queue and try to add it to the ledger. In case
(i) the block is added to the local ledger and sent to the NETWORK in order to be inserted
to the queues of the other miners. In case of (ii), the block taken from the network is not
inserted into the ledger because the parent block may be still missing. Instead, it is inserted
in the local queue of the miner that extracts blocks from time to time with the action (iii).

The PRISM+ system allows us to compute the probability of devolving into a “larger
inconsistency”, e.g. transiting from a state with a fork of length m to a state with a fork
m+ 1. This work, which has required a time-consuming analysis of the stochastic transition
system, has given a formula that is parametric with respect to the number of nodes, their
hashing power and the latency of the network. Henceforth, it has been possible to analyze
different scenarios by tuning the rates of the corresponding actions. For instance, given the
current rate-values of the Bitcoin system, the probability of reaching a state of fork of length
2 is less than 10−3.

In Section 5 we apply the same technique for studying an attack to Bitcoin that has been
already discussed in [20]: the presence of hostile nodes mining new blocks in positions that
are different from the correct one (blocks are not inserted at maximal depth). The probability
that we compute depends on the hashing power of the attacker and the depth m of the fork
created by the hostile node. For example, if BTC.com, which is a cluster currently retaining
the 14,1% of the Bitcoin hashing power, decided to become hostile, then the probability to
create an alternative attacker chain and achieving consensus from the other nodes is 8−m.

In the companion paper [2] we discuss the implementation of the library for blocks, queues
and ledgers that extends PRISM and we analyze the results of simulations with different
values of the rate parameters of the PRISM+ system in Section 4. Remarkably, the results
of the simulations are compliant with the upper bounds defined by our formulas and, for
completeness, they are also highlighted in our pictures. (Actually PRISM+ has a scalability
issue: due to the state explosion of the Bitcoin model, the simulations were performed on
systems with about twenty nodes.)

We analyze related works in Section 6 and report our concluding remarks in Section 7.
For space constraints, the proofs of our main statements are not included. They are re-

ported in the full paper at http://cs.unibo.it/~laneve/papers/LaneveVeschetti.pdf.

2 Blocks, queues and ledgers

The Bitcoin protocol will be defined by a PRISM program, a process calculus with a stochastic
semantics and an automatic analyzer of continuous-time Markov chains. However, datatypes
used in Bitcoin cannot be modelled in PRISM; therefore we extend the language with block,
ledger and queue data types and in the following we discuss this extension.

A basic component of the Bitcoin database is the block, which records transactions that
are going to be certified, mining rewards, its hash value and a pointer to its parent. In this
paper we abstract from many informations in blocks because they are not essential in the
analysis of Sections 4 and 5 and we focus on the connections between blocks. Therefore, a
block is a pair (name, father), where name uniquely identifies the block and father is the
name of the previous block to which it is connected. Names will be represented by pairs
midn, where mid is the name of the miner that mined the block and n is a number uniquely
identifying the block. The operation that creates blocks is NewB(mid, n, p), which returns a
block (midn+1, p), where p is the father name.

Gabbrielli’s Festschrift

http://cs.unibo.it/~laneve/papers/LaneveVeschetti.pdf

2:4 A Formal Analysis of the Bitcoin Protocol

The Bitcoin protocol also uses a further datatype: the bag of blocks, namely sets of blocks
that must still be appended to a ledger. We implement bags as queues, e.g. lists of blocks
[b0, b1, · · · , bn] with the standard operations on queues:

the empty queue is noted [];

isEmpty(Q) returns true if Q = [], false otherwise.

the topmost block of a queue Q is given by top(Q). When Q is empty, top(Q) returns null.

the operation that inserts a block b at the end of a queue Q is enqueue(Q, b) (it returns a
queue);

the operation that removes the topmost block from a queue Q is dequeue(Q) (it returns a
queue);

the operation that removes the topmost block from a queue Q and inserts it at the end of
the queue (because it cannot be added to the ledger) is deq_enq(Q) (it returns a queue).
When Q is empty, deq_enq returns the empty queue.

The Bitcoin database is an append-only tree whose nodes are blocks and it is called ledger.
A ledger L is a pair 〈T; p〉, where T is the tree of blocks, e.g. a set of blocks where each block
points to its own parent, and p, called handle, is the name of a leaf at maximal depth. The
root of the tree is the genesis block and noted (gen0, gen0). The handle of a ledger L is given
by handle(L). The blockchain of L, noted L ↑, is the sequence (b0, b1, b2, . . .) such that b0
is the handle of L and, for every i, bi+1 is the parent of bi (therefore the last block of the
sequence is the genesis block). We illustrate ledgers by means of trees where nodes contain
the name of the block and the unique exiting arrow is the pointer to its parent; the handle is
represented by a tick arrow pointing to a leaf block at maximal depth. For example, the
following picture illustrates two ledgers.

G

b1

b2A b2B

G

b1

b2A b2B

b3A b3B b3A b3C

B3c

B4

In this paper we analyze the blockchain protocol by using a di↵erent tech-
nique from e.g. [2, 5, 4]. We model blockchain by means of a stochastic process
calculus. Therefore, we derive the properties of the blockchain protocol by study-
ing the states of the corresponding transition system.

In our technique puzzles are modelled as random oracles;
This modelling supports several proof techniques ranging from ... to simu-

lation. It also allows us a lot of flexibility, such as studying features separately,
and lets us understand in detail the contribution of each element in the overall
algorithm.

Our approach enables formally studying the robustness of the blockchain
protocol and supports both

In the static setting where all nodes remain fixed

2 The ledger datatype

A ledger, noted L, L0, · · · , is a pair (T, h) where T is a nonempty tree of blocks and
h is an handle; T will be noted by tree(L), h will be noted by handle(L). The root
of tree(L) is called genesis block. Every block B in tree(L) has a pointer to its
parent that is addressed by B.id; the set of blocks in L is addressed by L.blocks.
The handle handle(L) is always a pointer to a leaf block at maximal depth. The
following picture illustrates two ledgers – L1 and L2 where the handles are blue
pointers.

G

B1

B2a B2b

G

B1

B2a B2b

B3a B3b B3a B3c

the ledger L2 — L2↑ = [B3c,B2b,B1,G]the ledger L1 — L1↑ = [B3a,B2a,B1,G]

The blockchain of L, noted L ", is the sequence [B0, B1, B2, · · ·] such that
B0 = handle(L) and, for every i, Bi+1 is the parent of Bi (therefore the last
block is the genesis block).

the ledger L1 – L1 "= [b3A, b2A, b1, G]

the ledger L2 – L2 "= [b3C , b2B , b1, G]

The operation addBlock(L, B) returns a ledger where B is connected to the block
pointed by B.id. We notice that the handle of addBlock(L, B) is equal to the

2

In this paper we analyze the blockchain protocol by using a di↵erent tech-
nique from e.g. [2, 5, 4]. We model blockchain by means of a stochastic process
calculus. Therefore, we derive the properties of the blockchain protocol by study-
ing the states of the corresponding transition system.

In our technique puzzles are modelled as random oracles;
This modelling supports several proof techniques ranging from ... to simu-

lation. It also allows us a lot of flexibility, such as studying features separately,
and lets us understand in detail the contribution of each element in the overall
algorithm.

Our approach enables formally studying the robustness of the blockchain
protocol and supports both

In the static setting where all nodes remain fixed

2 The ledger datatype

A ledger, noted L, L0, · · · , is a pair (T, h) where T is a nonempty tree of blocks and
h is an handle; T will be noted by tree(L), h will be noted by handle(L). The root
of tree(L) is called genesis block. Every block B in tree(L) has a pointer to its
parent that is addressed by B.id; the set of blocks in L is addressed by L.blocks.
The handle handle(L) is always a pointer to a leaf block at maximal depth. The
following picture illustrates two ledgers – L1 and L2 where the handles are blue
pointers.

G

B1

B2a B2b

G

B1

B2a B2b

B3a B3b B3a B3c

the ledger L2 — L2↑ = [B3c,B2b,B1,G]the ledger L1 — L1↑ = [B3a,B2a,B1,G]

The blockchain of L, noted L ", is the sequence [B0, B1, B2, · · ·] such that
B0 = handle(L) and, for every i, Bi+1 is the parent of Bi (therefore the last
block is the genesis block).

the ledger L1 – L1 "= [b3A, b2A, b1, G]

the ledger L2 – L2 "= [b3C , b2B , b1, G]

The operation addBlock(L, B) returns a ledger where B is connected to the block
pointed by B.id. We notice that the handle of addBlock(L, B) is equal to the

2

G

b1

b2A b2B

b3A b3B

G

b1

b2A b2B

b3A b3B

In this paper we analyze the blockchain protocol by using a di↵erent tech-
nique from e.g. [2, 5, 4]. We model blockchain by means of a stochastic process
calculus. Therefore, we derive the properties of the blockchain protocol by study-
ing the states of the corresponding transition system.

In our technique puzzles are modelled as random oracles;

This modelling supports several proof techniques ranging from ... to simu-
lation. It also allows us a lot of flexibility, such as studying features separately,
and lets us understand in detail the contribution of each element in the overall
algorithm.

Our approach enables formally studying the robustness of the blockchain
protocol and supports both

In the static setting where all nodes remain fixed

2 The ledger datatype

A ledger, noted L, L0, · · · , is a pair (T, h) where T is a nonempty tree of blocks and
h is an handle; T will be noted by tree(L), h will be noted by handle(L). The root
of tree(L) is called genesis block. Every block B in tree(L) has a pointer to its
parent that is addressed by B.id; the set of blocks in L is addressed by L.blocks.
The handle handle(L) is always a pointer to a leaf block at maximal depth. The
following picture illustrates two ledgers – L1 and L2 where the handles are blue
pointers.

G

B1

B2a B2b

G

B1

B2a B2b

B3a B3b B3a B3c

the ledger L2 — L2↑ = [B3c,B2b,B1,G]the ledger L1 — L1↑ = [B3a,B2a,B1,G]

The blockchain of L, noted L ", is the sequence [B0, B1, B2, · · ·] such that
B0 = handle(L) and, for every i, Bi+1 is the parent of Bi (therefore the last
block is the genesis block). The operation addBlock(L, B) returns a ledger where
B is connected to the block pointed by B.id. We notice that the handle of
addBlock(L, B) is equal to the handle of L if the new block has not changed
the maximal depth of the tree; it is a pointer to B if this block has a depth
strictly larger than the maximal one of L. For example, let b3C.id be a pointer
to b2B and b4.id be a pointer to b3B ; then the following pictures illustrate
addBlock(L1, b3C) and addBlock(L1, b4):

2

In this paper we analyze the blockchain protocol by using a di↵erent tech-
nique from e.g. [2, 5, 4]. We model blockchain by means of a stochastic process
calculus. Therefore, we derive the properties of the blockchain protocol by study-
ing the states of the corresponding transition system.

In our technique puzzles are modelled as random oracles;

This modelling supports several proof techniques ranging from ... to simu-
lation. It also allows us a lot of flexibility, such as studying features separately,
and lets us understand in detail the contribution of each element in the overall
algorithm.

Our approach enables formally studying the robustness of the blockchain
protocol and supports both

In the static setting where all nodes remain fixed

2 The ledger datatype

A ledger, noted L, L0, · · · , is a pair (T, h) where T is a nonempty tree of blocks and
h is an handle; T will be noted by tree(L), h will be noted by handle(L). The root
of tree(L) is called genesis block. Every block B in tree(L) has a pointer to its
parent that is addressed by B.id; the set of blocks in L is addressed by L.blocks.
The handle handle(L) is always a pointer to a leaf block at maximal depth. The
following picture illustrates two ledgers – L1 and L2 where the handles are blue
pointers.

G

B1

B2a B2b

G

B1

B2a B2b

B3a B3b B3a B3c

the ledger L2 — L2↑ = [B3c,B2b,B1,G]the ledger L1 — L1↑ = [B3a,B2a,B1,G]

The blockchain of L, noted L ", is the sequence [B0, B1, B2, · · ·] such that
B0 = handle(L) and, for every i, Bi+1 is the parent of Bi (therefore the last
block is the genesis block). The operation addBlock(L, B) returns a ledger where
B is connected to the block pointed by B.id. We notice that the handle of
addBlock(L, B) is equal to the handle of L if the new block has not changed
the maximal depth of the tree; it is a pointer to B if this block has a depth
strictly larger than the maximal one of L. For example, let b3C.id be a pointer
to b2B and b4.id be a pointer to b3B ; then the following pictures illustrate
addBlock(L1, b3C) and addBlock(L1, b4):

2

(())

where L1 = 〈{G,(b1,gen0),(b2A,b1),(b2B,b1),(b3A,b2A),(b3B,b2A)}; b3A〉 (G is the
genesis block).

A key operation on ledgers is the addition of a new block to the ledger, written AddB(L,b),
that returns a ledger where b is connected to the block pointed by b. This operation may
change the handle of the ledger. In particular, the handle of AddB(L,b) is equal to the handle
of L if the new block has not changed the maximal depth of the tree; it is a pointer to b if
this block has a depth strictly greater than the maximal one of L. For example, considering
the ledgers L1 and L2 in the foregoing picture, let b2B be the parent of b3C and b3B be the
parent of b4. The ledgers AddB(L1,b3C) and AddB(L1,b4) are

C. Laneve and A. Veschetti 2:5

b3C

b4

G

b1

b2A b2B

b3A b3B

G

b1

b2A b2B

b3A b3B

AddB(L1,b3C) AddB(L1,b4)

In these cases, the handle of AddB(L1,b3C) is the same of L1, while this is not so for
AddB(L1,b4) because the depth of the tree is changed.

It is also possible that a block cannot be added to a ledger because the parent block is not
in the ledger. We use the boolean function canAdd(L, b) that returns true or false according
to b can be added to L or not, respectively. canAdd(L, b) also returns false when b is null.

3 The modelling language: PRISM+

The language we use to analyze the Bitcoin protocol is an extension of PRISM [18] with the
data types ledger, set and block. We call the language PRISM+.

To define PRISM+ we use a set of action names A, ranged over a, b, . . . , a set of module
names ranged over m, m1, . . . , and a set of variables, ranged over by x, y, z. Let α ranges
over A ∪ {ε}, where ε indicates no-action; let also ρ range over reals (called double).

A PRISM+ program P is a parallel composition of modules, that is

P = M1 || · · · || Mn

where M || M′ is the parallel composition of modules M and M′ synchronizing only on actions
appearing in both M and M′. Let actions(M) be the set of actions in A that occur in M. A
module M is defined by the syntax

M ::= module m : D C endmodule
D ::= T x = v ; | T x = v ; D
T ::= int | double | bool | block | ledger | queue

That is, a module has a name, a sequence D of local variable declarations with initializations
and a set of commands C. It is assumed that pairwise different modules in a PRISM+ program
have different names and have also different local variables names.

Sets of commands C are written c1 ; · · · ; cm, where every c has the form:

c ::= [α] e→
∑
i∈I ρi : updi

upd ::= ε | x′ = e & upd
e ::= v | x | e op e | !e
v ::= true | false | integers | doubles | ledgers | queue

| blocks
op ::= − | + | ∗ | = | 6= | &

In a command [α] e→
∑
i∈I ρi : updi, α may be either empty or an action, e, called guard,

is a boolean expression over all the variables in the program (including those belonging to
other modules), and the right hand-side of the arrow describes a transition. In particular,
when α is empty, if e is true then one of the corresponding updates may be performed. Each

Gabbrielli’s Festschrift

2:6 A Formal Analysis of the Bitcoin Protocol

update is defined by giving new values of the variables in the module, possibly as a function
of other variables. Each update has also a rate, which will be given to the corresponding
transition. Updates are written with the prime symbol: x′ = e means that, if v is the value
of e in the current state then the value of x in the next state is v. We assume that, in an
update x1

′ = e1 & . . . & xn
′ = en, left hand-side variables are all different.

When α is an action then the transition must be performed simultaneously with the other
modules in parallel that have the same action (i.e. the modules synchronize). This is the
standard CSP parallel composition [15]. The rate of the overall transition is equal to the
product of the individual rates. Since the product of rates does not always meaningfully
represent the rate of a synchronised transition, PRISM uses the technique to make exactly
one action active, with a generic rate, and all the others passive, with rate 1. The rate of a
synchronization is therefore defined by the unique active action.

Semantics. The semantics of a PRISM+ program is defined as a transition system whose
states s are maps [x1 7→ v1, . . . , xn 7→ vn] where {x1, . . . , xn} is the set of local variables of
the program’s modules. The transition relation uses the following auxiliary definitions:

s[x 7→ v] is the state

(s[x 7→ v])(y) def=
{
v if y = x

s(y) otherwise

JeK(s) returns the value of an expression e in the state s. The value is computed by
replacing the variables with their values in s and evaluating the operations. The formal
definition is omitted because standard.
JupdK(s) returns the state s′ defined as follows:

Jx1
′ = e1 & . . . & xn

′ = enK(s)
def= s[x1 7→ Je1K(s), . . . , xn 7→ JenK(s)]

The transition relation of PRISM+ is defined in Table 1 where we letM range over parallel
compositions of modules and we assume || to be commutative. We use the judgment
P s

α,ρ−−→ s′ meaning that the program P transits from s to s′ with an action α and rate ρ.
The auxiliary judgmentM s α,ρ−−→ upd collects all the updates in the synchronizing modules
in M (according to our assumptions, different updates modify different variables). Rule
[Upd] defines the semantics of a command. We write c ∈ M if M = module m : D C endmodule
and c ∈ C. If e is true, then an update updi is enabled with rate ρi and label α. The update
updi is a set of evaluated variables expressed as a conjunction of assignments. Rule [Sync]
collects commands of synchronizing modules. We notice that the rate is the product of the
rates of every single transition, which is actually the one of the unique active transition.
Rule [Nosync] enables the interleaving of transitions (because of commutativity of ||, it
also covers the symmetric rule). A PRISM+ program is a parallel composition of modules; its
semantics is described in [Program].
PRISM+ supports different kinds of probabilistic formalisms; in this contribution we focus on
CTMCs models [17], which are tuples (States, sinit,R, L) where:

States is a countable set of states;
sinit ∈ States is the initial state; the initial state of a PRISM+ program

P =
∏
i∈1..n

module m : Di Ci endmodule

is JD1 ; · · · ; DnK, where JT1 x1 = v1 ; · · · ; Tk xk = vkK = [x1 7→ v1, . . . , xk 7→ vk];
R : States× States→ R≥0 is a transition rate matrix,
L : States → 2AP is function which assigns to each state s ∈ S the set L(s) of atomic
propositions that are valid in the state.

C. Laneve and A. Veschetti 2:7

Table 1 The semantics of the PRISM language.

[Upd]

[α] e→
∑
i∈I ρi : updi ∈ M JeK(s) = true

M s
α,ρi−−−→ updi

[Sync]

M s a,ρ−−→ upd M′ s a,ρ′

−−→ upd′

M ||M′ s a,ρ×ρ′

−−−−→ upd&upd′

[Nosync]

M s α,ρ−−→ upd α /∈ actions(M)

M || M s
α,ρ−−→ upd

[Program]

M1 || · · · || Mn s
α,ρ−−→ upd P = M1 || · · · || Mn

P s
α,ρ−−→ JupdK(s)

A transition rate matrix assigns rates to each pair of states, which are used as parameters of
the exponential distribution. A transition from state s to s′ is possible only if R(s, s′) > 0.
When multiple commands with the same update and that lead to the same state s′ are
enabled, the corresponding transitions are combined into a single transition whose rate is the
sum of the individual rates. Furthermore, when there are several s′ with R(s, s′) > 0, a race
condition occurs: the transition triggered determines the next state. Technically, the time
spent in s before a transition occurs is exponentially distributed with the exit rate of the
state s:

E(s) =
∑
s′∈S

R(s, s′)

Thus, the probability of leaving a state s within t seconds is 1− e−tE(s). Additionally, the
choice between the transitions is independent of the time at which it occurs. This means that,
if the state s has n outgoing transitions labeled with rates ρ1, . . . , ρn, then the probability
that the j-th transition is taken is ρj/(

∑
i ρi).

4 The abstract modelling of Bitcoin and its analysis

Bitcoin realises a distributed ledger on a peer-to-peer network of miners, which are processes
that create blocks of the ledger and forward them to the nodes of the network. The Bitcoin
system written in PRISM+ is

MINER1 || · · · || MINERn || NETWORK.

where MINERi and NETWORK are the modules defined in Listing 1.
In Listing 1, miners are defined from line 6 to 25. Every miner Mineri has five state

variables: a state variable Mineri_STATE, the last block bi added to the ledger; the local
ledger Li that represents miner’s view of the state of the system, a counter ci of the mined
blocks, and a queue QMineri that stores the blocks received by the network and that must
be added to Li. Mineri behaves as follows:

Gabbrielli’s Festschrift

2:8 A Formal Analysis of the Bitcoin Protocol

1 // states of Mineri : Init = 0, Winner = 1
2 // mR = 1/600 is the Bitcoin mining rate
3 // hRi is the percentage of hashing power of Mineri , 0≤hRi≤1
4 // ri is the communication delay rate of Mineri

5
6 module Mineri

7 integer Mineri _STATE = Init;
8 block bi = (gen0 ,gen0);
9 ledger Li = 〈{(gen0, gen0)}; gen0〉;

10 integer ci = 0;
11 queue QMineri = [];
12
13 [] Mineri _STATE =Init -> mR×hRi : Li

′ = AddB(Li ,NewB(Mineri ,c, handle (Li))
14 & ci

′ = ci +1 & bi
′ = NewB(Mineri ,c, handle (Li))

15 & Mineri _STATE′ = Winner ;
16
17 [] Mineri _STATE =Init&canAdd (Li ,top(QMineri)) -> r : QMineri

′ = dequeue (QMineri)
18 & Li

′ = addB(Li ,top(QMineri));
19
20 [] Mineri _STATE =Init&! canAdd (Li ,top(QMineri)) -> r : QMineri

′ = deq_enq (QMineri);
21
22 [addBlocki] Mineri _STATE =Init -> ri : QMineri

′ = enqueue (QMineri ,top(Qi))
23
24 [addBlocki] Mineri _STATE = Winner -> ri : Mineri _STATE′ = Init;
25 endmodule
26
27 module Network
28 integer n = numberOfMiners ;
29 queue Q1 = []; ...; queue Qn = [];
30 ...
31 [addBlocki] (Mineri _STATE = Winner) -> 1:
32 for ((j∈ 1..n) & (j 6=i)) do (Qj

′ = enqueue (Qj ,bi)) ;
33
34 [addBlocki] Mineri _STATE =Init&! isempty (Qi) -> 1 : Qi

′ = dequeue (Qi);
35 ...
36 endmodule

Listing 1 Simplified model of Bitcoin.

lines 13-15: it may mine a new block. This operation has a rate mR× hRi that indicates the
miner’s rate of generating new blocks (hRi is the miner’s hashing power, while mR is the
difficulty level of the crytopuzzle [20]; this is how we abstract away from the proof-of-work
technique for mining blocks). When a block is created by a miner – operation NewB –, it
is added to the local ledger – operation AddB – and it is stored in the variable bi. The
state of the miner becomes Winner.

line 24: when Miner’s state is Winner, the miner synchronizes with Network using the action
addblocki; the Network stores the new block in the bags of the other miners. The state
of Mineri is set back to Init.

lines 17-18: it may add a block to the ledger from the local queue. The predicate canAdd(Li,
top(QMineri)) verifies that the parent of the block on top of the queue QMineri is already
stored in Li. The corresponding updates on Li and QMineri are performed. The time
spent in doing this action is simulated by the rate r. Clearly, this rate is much higher
than the other rates because it corresponds to local management operations of the Miner
(therefore, the probability that a Miner tries to add a block in his ledger is way higher
than the probability of receiving a new block or mining).

lines 20: it may try to add a block to Li that cannot be added either because parent’s block
is still not stored in Li or because QMineri is empty. In this case, the block is enqueued
in QMineri (thus guaranteeing a fair behaviour).

line 22: it may receive a block from the network through the action addBlocki. In this case
the block is added to QMineri. The synchronization on addBlocki has a rate ri, which
simulates the latency of the network. In fact, as explained in [6], the communication delay
across the Bitcoin network can be also approximated by an exponential distribution.

C. Laneve and A. Veschetti 2:9

The NETWORK module is defined in Listing 1, lines from 27 to 36. It simulates the broadcast
of new blocks to the miners. In particular, the module has one queue per miner that stores
the messages (the blocks) to be delivered to the corresponding miner. When a node i mines
a new block, the block is added to every miner’s queue, except the one of miner i (line 32).

Properties. In the remaining part of the section we compute the probability of the Bitcoin
system defined in Listing 1 to devolve into inconsistent states, e.g. into a state where at least
two nodes have different ledgers. In order to ease our arguments, among the possible states
of the stochastic transition system obtained from the model, we select those where the blocks
have all been delivered. This scenario is usual in Bitcoin because the rate of block delivery is
much higher than the one of mining. For example, the nodes that have not yet received the
last block after 40 seconds are less than 5%, whilst blocks are mined every 10 minutes [6].

I Definition 1. A state of a Bitcoin system is called completed when there is no block to
deliver (every Qi in NETWORK is empty) and the blocks in the local queues of MINERi have
already been inserted in the corresponding ledgers (every QMineri in MINERi is empty).

I Proposition 2. Let P be a completed state of a Bitcoin system and let L1 and L2 be two
ledgers in different nodes. Then the trees of L1 and L2 are equal. Therefore, if L1 6= L2 then
handle(L1) 6= handle(L2).

I Definition 3. Let L1 and L2 be two ledgers and let
m1 be the length of L1 ↑,
m2 be the length of L2 ↑,
h be the length of the maximal common suffix of L1 ↑ and L2 ↑.

We say that L1 and L2 have a fork of length k, where k = max(m1 − h,m2 − h).

For the sake of simplicity, in the following theorem:
we shorten mR× hRi into rwi

;
the rates r1, . . . , rn of actions addBlock1, . . . , addBlockn are all considered identical
by taking the parameter of the exponential distribution mean, which we call r̂ (actually
these rates are parameters of an exponential distribution [6]);
the rate r that corresponds to local management operations by Miners is approximated
to 1 because the other rates are very small values less than 1.

I Theorem 4. Let P be a completed state of a Bitcoin system consisting of n miners with
ledgers L1, . . . , Ln, respectively, such that L1 = · · · = Lk and Lk+1 = · · · = Ln and L1 6= Lk+1.
Let L1 and Lk+1 have fork of length m. Then the probability Prob(P m+1) to reach a
completed state with fork of length m+ 1 is smaller than (R =

∑n
j=1 rwj)∑

1 ≤ i ≤ n
H ⊂ {1, . . . , n} \ i

i ≤ k ⇒ j ∈ {k + 1, . . . , n} \H
i > k ⇒ j ∈ {1, . . . , k} \H

Θ(i, |H|, j)

where

Θ(i, `, j) =
rwi rwj

R (R+ (n− 1− `)r̂)

∏
1≤h≤`

h r̂

R+ (n− h)r̂

∏
1≤a≤2n−2−`

a r̂

R+ a r̂
.

Gabbrielli’s Festschrift

2:10 A Formal Analysis of the Bitcoin Protocol

It is worth to notice that Prob(P m+1) of Theorem 4 depends on the number n of nodes,
their hashing power rwi

and the latency ri of the network with respect to the node i. To
explain the probability, assume to have a fork of length one due to miners having equal ledgers
(since the state is completed) and two different handlers. Let 1, · · · , k be the nodes with one
ledger and k + 1, · · · , n be the nodes with the other ledger. Assume that a node 1 ≤ i ≤ k
mines a new block; the probability will be

rwi

R
. The new block is then communicated to a

set H of nodes that immediately add it to the local ledger. This operation happens with

probability
(∏

1≤h≤|H|
h r̂

R+ (n− h)r̂

)
. At this point, in order to obtain a fork of length 2,

a node j ∈ {k+ 1, . . . , n} \H must mine a block as well. The probability of this operation is
rwj

R+ (n− 1− `)r̂
. Finally, every node receives the two mined blocks, which has a probability(∏

1≤a≤2n−2−`
a r̂

R+ ar̂

)
. Obviously, the same result can be obtained if the first node that

mines a block belongs to the second partition (j ∈ {k+1, . . . , n}). Henceforth, the probability
to reach a completed state with fork of length 2 from the initial state is∑

1 ≤ i ≤ k
H ⊂ {1, · · · , n} \ i

j ∈ {k + 1, · · · , n} \H

Θ(i, |H|, j) +
∑

k + 1 ≤ j ≤ n
H ⊂ {1, · · · , n} \ j
i ∈ {1, · · · , k} \H

Θ(j, |H|, i)

which is exactly what stated in the theorem.
Using a technique similar to Theorem 4 we may compute the probability that a Bitcoin

system in a completed consistent state (the nodes have all the same ledger) devolves into an
inconsistent state. In this case, the proof is simpler than Theorem 4 because every node may
mine after the first one.

I Proposition 5. Let P be a completed state of a Bitcoin system consisting of n miners
having ledger L. The probability Prob(P 1) to reach a completed state with fork of length 1
is smaller than (R =

∑n
j=1 rwj

)∑
1 ≤ i ≤ n

H ⊂ {1, . . . , n} \ i
j ∈ {1, . . . , n} \H

Θ(i, |H|, j)

where

Θ(i, `, j) =
rwi

rwj

R (R+ (n− 1− `)r̂)

∏
1≤h≤`

h r̂

R+ (n− h)r̂

∏
1≤a≤2n−2−`

a r̂

R+ a r̂
.

In order to bear some numerical results, we instantiate our probability with realistic
rates. In [20], the time a miner takes to create a block is exponential with parameter θ,
which represents the probability that the miner solves the cryptopuzzle problem in a given
time-slot [1]. It follows that θ = h/D, where h is miner’s hashing power and D is the
cryptopuzzle difficulty set by the protocol in order to set constant to 10 minutes the average
duration between two blocks. In our encoding, θ is represented by rwi

, therefore rwi
= hi/D

and, taking the current hashing power distribution of the Bitcoin system illustrated in
Figure 1, and letting D = 600, we obtain the channel rates of the main pools in the Bitcoin
system. As regards the broadcast of messages in the Bitcoin protocol, it is a combination of
the transmission time and the local verification of the block. From [6] we know that in a
Bitcoin environment, the broadcast can be approximated as an exponential distribution with
mean time 12.6 seconds. Therefore we may assume that every ri is 1/12.6.

C. Laneve and A. Veschetti 2:11

Figure 1 Hashrate distribution of Bitcoin mining pools on May 2020.
Source: https://www.blockchain.com/.

In the following Figures, we compare the outputs of our probability formula in Theorem 4
when the nodes are either 1000 (green line) or 17 (blue line). Furthermore, we also highlight
the results obtained via the simulation with 17 nodes (red line) from the companion paper [2]
because they are compliant with our upper bounds. We did not run simulations on larger
sets of nodes because they took too much time (around 48 hours per simulation on a Virtual
Machine with 8 VCPU and 64 GB RAM). We have also computed the formula in Theorem 4

Figure 2 Probability of reaching a fork of length 1 by varying the broadcast delay.

with 10000 nodes: the output has not been displayed because it overlaps with the case of
1000 nodes. The first analysis we present in Figure 2 is the computation of the probability
of reaching a state where at least two different blockchains differ for one block (fork of
length 1) by varying the broadcast delay. In particular, Figure 2 compares the outputs of
our probability formula (both with 17 and 1000 nodes) with results of the simulation we
have done with 17 nodes representing the main pools in the Bitcoin system. The reader may
notice that the probability decreases with the increase of the communication delay rate. This
follows from the remark that the higher is the rate, the smaller is the expected time for the
transition to occur. We notice that, with rate r̂ = 0.08, we obtain results in line with those
of [6]. In particular, for a broadcast delay with mean 2, we obtain that the probability of a

Gabbrielli’s Festschrift

https://www.blockchain.com/

2:12 A Formal Analysis of the Bitcoin Protocol

Figure 3 Probability of a fork of length 1 with different difficulty parameter.

fork of length 2 is very low. Figure 3 displays the probability of reaching a fork of length 1
by varying the cryptopuzzle difficulties (parameter D). The reader can observe that the
probabilities computed by the formula, also in the case of 1000 nodes, is always an upper
bound of the results obtained via simulation. Finally, Figure 4 illustrate the probability of
reaching completed states with longer and longer forks. Also in this case, the results of our

Figure 4 Probability of a fork of increasing length, comparison between formula and simulation
results.

simulation are in line with those given by the formula both with 17 and 1000 nodes. In
the case of 17 nodes, the probability computed is higher because each miner owns a larger
amount of hashing power. Therefore, every miner is more likely to win the cryptopuzzle game.
As the reader can observe, the probability to obtain a fork of length 5 is of the order of 10−8,

C. Laneve and A. Veschetti 2:13

while it is approximately zero when the length of the fork reaches 6. This is a key result,
because every block at depth 6 is considered permanent in the Bitcoin blockchain (e.g. the
majority of miners have consistent blockchains up to depth 6 with probability almost 1).

5 Analysis of a possible attack

In this section we model and analyze an attack to Bitcoin that has been described in [20],
namely a hostile miner tries to create an alternate chain faster than the honest one. This
scenario admits that a merchant can be convinced that a transaction has been accepted and
then create a new branch of the chain, longer than the valid one, with some other transaction
spending the same money (double spending attack).

Let MINERHack be the dishonest miner; technically, its behaviour differs from MINERi
because it mines on a block bHack that is not the correct one (e.g. the handle of the ledger).
In particular, the operation NewB in MINERHack takes an ad-hoc block bHack rather than
handle(LHack). The definition of MINERHack is given in Listing 2.

37 // states of MinerHack : Init = 0, Winner = 1
38 // mR = 1/600 is the Bitcoin mining rate
39 // hRHack is the percentage of hashing power of MinerHack , 0≤hRHack ≤1
40 // rHack is the communication delay rate of MinerHack

41
42 module MinerHack

43 integer MinerHack _STATE = Init;
44 block bHack = (gen0 ,gen0);
45 ledger LHack = 〈{(gen0, gen0)}; gen0〉;
46 integer cHack = 0;
47 queue QMinerHack = [];
48
49 [] MinerHack _STATE =Init -> mR×hRHack : LHack

′ = AddB(L,NewB(MinerHack ,c,bHack)
50 & cHack

′ = cHack +1
51 & bHack

′ = NewB(MinerHack ,c,bHack)
52 & MinerHack _STATE′ = Winner ;
53
54 [] MinerHack _STATE =Init&canAdd (LHack ,top(QMinerHack)) ->
55 r : QMinerHack

′ = dequeue (QMinerHack)
56 & LHack

′ =addB(LHack ,top(QMinerHack));
57
58 [] MinerHack _STATE =Init&! canAdd (LHack ,top(QMinerHack)) ->
59 r : QMinerHack

′ = deq_enq (QMinerHack);
60
61 [addBlockHack] MinerHack _STATE =Init -> rHack :
62 QMinerHack

′ = enqueue (QMinerHack ,top(QHack))
63
64 [addBlockHack] MinerHack _STATE = Winner -> rHack : MinerHack _STATE′ =Init;
65 endmodule

Listing 2 Simplified model of a dishonest Miner.

Following the same pattern of Section 4 and letting rwHack
= mR× hRHack:

I Theorem 6. Let P be a completed state of a Bitcoin system of n miners with exactly one
that is hostile and let rwHack

its mining rate. The probability Prob(Pm) to reach a completed
state where the hostile miner has created an alternate chain longer than the honest one from
m,m ≥ 1, blocks behind is smaller than (R =

∑n
j=1 rwj

and we assume that, for every i, j,
r̂ = ri = rj)∑

k≥1

[
Φ(rwHack

, r̂, R)k
(∑

1≤j≤n−1
Φ(rwj

, r̂, R)
)k−1]m

where Φ(rw, r, R) =
rw

R

∏
1≤a≤n−1

a r̂

R+ (n− a)r̂
.

Gabbrielli’s Festschrift

2:14 A Formal Analysis of the Bitcoin Protocol

(a) F2Pool. (b) BTC.com.

Figure 5 Probability of a successful attack for two main pools of Bitcoin system.

As for Theorem 4, the technique used for demonstrating the above statement consists
of analyzing the stochastic transition system. To explain the probability, assume to be in
a completed state and compute the probability to reach a completed state in which the
dishonest node has created an alternate chain from m blocks behind. We start by computing
the probability that the dishonest node MinerHack has caught up by one block. This kind
of attack succeeds if MinerHack mines one block and this happens with probability

rwHack

R
.

It may also happens that honest nodes mine k blocks and MinerHack mines k + 1 blocks in
the same amount of time. Considering also the probability that the new blocks have been
received by the miners, we obtain the formula∑

k≥1

(rwHack

R

∏
1≤a≤n−1

a r̂

R+ (n− a)r̂

)k(∑
1≤j≤n−1

rwj

R

∏
1≤a≤n−1

a r̂

R+ (n− a)r̂

)k−1

Therefore, the probability Prob(Pm) that MinerHack creates an alternative chain faster than
the honest nodes from m blocks behind is given by∑

k≥1

[(rwHack

R

∏
1≤a≤n−1

a r̂

R+ (n− a)r̂

)k(∑
1≤j≤n−1

rwj

R

∏
1≤a≤n−1

a r̂

R+ (n− a)r̂

)k−1]m
which is what what Theorem 6 states. It is worth to notice that this technique is different
from the one in [20], where Nakamoto assumed a priori that the ratio between the blocks
mined by the attacker and those mined by the honest miners is the expected value of a
Poisson distribution. In particular, we do not assume that miners’ behaviour can be described
by a certain statistical model, therefore our context is less restrictive. We also notice that
Poisson distribution expresses the probability of a certain event occurs in a time period,
independently of the time since the last event. Thus, Nakamoto models the attack counting
the number of minings of the attacker in an interval of time, assuming that the probability
for success does not change during the experiment. In our case, the probability is computed
as the attacker was a standard node and its mining activity was in competition with the
same process of the other nodes.

In Figure 5 we illustrate the probability of a successful attack by an hostile node, depending
on the number m of blocks to catch up. We analyze two scenarios that highlight the cases
when two main Bitcoin pools (see Figure 1) decide to become hostile.

In each image we plot the results given by the formula (blue line) and the results obtained
via simulation (red line) for two main miners of the Bitcoin system. As well as for the
previous analysis, the probability given by the formula is an upper bound for the results

C. Laneve and A. Veschetti 2:15

obtained via simulation. We derive from Figure 5 that the probability a hostile miner catches
up from 1 block behind increases with the percentage of the hashing power and drops with
the number of blocks to catch up.

6 Related works

The protocol used by Bitcoin was introduced by Haber and Stornetta [14] and only in the
last few years, because of Bitcoin, the problem of analyzing the consistency of the ledgers
has caught the interest of several researchers.

The formal analysis of the protocol by means of abstract models has been already
done in [13, 11, 22, 23]. In [13], the author discusses the blockchain consensus in Bitcoin
and Ethereum and compare them with the classic Byzantine consensus. The miners are
defined in pseudo-code (without any semantics) and the analysis is probabilistic rather
than stochastic. In [11], Garay et al. demonstrate the correctness of the protocol when
the network communications are synchronous, focusing on its two key security properties:
Common Prefix and Chain Quality. The first property guarantees the existence of a common
prefix of blocks among the chain of honest players; Chain Quality constrains the number of
blocks mined by hostile players, when the honest players are in the majority and follow the
protocol. The extension of this analysis to asynchronous networks with bounded delays of
communications and with new nodes joining the network has been undertaken in [22]. In the
above contributions, the properties are verified by using oracles that drive the behaviours of
actors. Then, combining the probabilistic behaviours and assuming possible distributions,
one computes expected values. In [23], Pirlea and Sergey propose a formalization of Bitcoin
consensus focusing on the notion of global system safety. They present an operational model
that provides an executable semantics of the system where nondeterminism is managed
by external schedules and demonstrate the correctness by means of a proof assistant. The
main difference between these contributions and our work is that we formalize the Bitcoin
protocol as a stochastic system (with exponential distribution of durations) and derive the
properties by studying the model. In fact, the probabilities that we compute are, up to our
knowledge, original. As regards stochastic models and Bitcoin, few recent researches use
them to select optimal strategies for maximizing profit of a player [1] and for formalizing
interactions between miners as a game [5, 3].

A number of researches address attacks to the Bitcoin protocol. The works [6, 25, 12]
address the delays of communications and [25] also demonstrates that an attacker with
more than 51% of the total hashing power could change the past transactions. A larger
set of attacks is analyzed in [19, 11, 22], where it is also proved that the Bitcoin protocol
is safe as long as honest miners are in the majority. In [21], Ozisik and Levine give a very
detailed description of Nakamoto’s double spending attack, gathering the mathematics for
its modelling. The probability of a successful double spending attack in several scenarios
(both fast and slow payments) is analyzed in [16]. Finally, a fully implemented attack against
Ethereum blockchain, which covers both a network and a double spending attack, is delivered
in [7]. In contrast with these contributions, our results are achieved by analyzing a stochastic
transition system, rather than constraining miners’ behaviour to adhere to a certain statistical
model.

7 Conclusions

We have studied the probability that the blockchain protocol may devolve the ledger into
inconsistent copies because of forks. Two cases have been analyzed: the first one is when the
system consists of honest miners; the second one is when the system has an hostile node that

Gabbrielli’s Festschrift

2:16 A Formal Analysis of the Bitcoin Protocol

mines blocks in wrong positions. The adversary model used in this paper is not the best one
an adversary can implement, but the analysis of further strategies is left to future work. Our
results are gathered by modelling the Bitcoin system in a stochastic process calculus, PRISM+,
which has also an automatic tool for analysing systems that exhibit random or probabilistic
behaviours. PRISM+ extends PRISM [18] with a library that models Bitcoin datatypes, such
as ledgers and blocks.

The main contribution of this paper is the formal demonstration of the probability
that Bitcoin ledgers may devolve into inconsistent states, also in presence of attacks. Our
probabilities are parametric with respect to the number of nodes, their hashing power and the
latency of the network. This work has required a time-consuming analysis of the stochastic
transition system. It turns out that our results comply with simulations performed on PRISM+
systems with at most 17 nodes because of scalability problems (see also [2]).

Our approach is, as far as we know, original and the technique can be applied to analyze
other well-known attacks to the Bitcoin protocol, such as failures either of communications or
of miners, the inception of new miners that may be hostile, etc. In the future research we also
plan to model other blockchain protocols, such as Ethereum or the so-called Proof-of-Stake.
The presence of a probabilistic model checker like PRISM+ will allow us to deliver simulation
results without much effort. In this respect, we will try to mitigate the scalability issues we
had up to now.

References
1 Bruno Biais, Christophe Bisiere, Matthieu Bouvard, and Catherine Casamatta. The blockchain

folk theorem, 2018.
2 S. Bistarelli, R. De Nicola, L. Galletta, C. Laneve, I. Mercanti, and A. Veschetti. Stochastic

modelling and analysis of bitcoin. Manuscript submitted for publication, 2020.
3 Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and

Edward W. Felten. Sok: Research perspectives and challenges for bitcoin and cryptocurrencies.
In Proc. of SP 2015, pages 104–121. IEEE Computer Society, 2015.

4 R. Bowden, H. Paul Keeler, Anthony E. Krzesinski, and Peter G. Taylor. Block arrivals in the
bitcoin blockchain. CoRR, abs/1801.07447, 2018.

5 Miles Carlsten, Harry Kalodner, S. Matthew Weinberg, and Arvind Narayanan. On the
instability of bitcoin without the block reward. In Proc. Computer and Communications
Security, CCS ’16, pages 154–167. ACM, 2016.

6 Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin network. In
Proc. 13th IEEE P2P, pages 1–10. IEEE, 2013.

7 Parinya Ekparinya, Vincent Gramoli, and Guillaume Jourjon. Double-spending risk quantific-
ation in private, consortium and public ethereum blockchains. CoRR, abs/1805.05004, 2018.
arXiv:1805.05004.

8 Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. Commun.
ACM, 61(7):95–102, June 2018. doi:10.1145/3212998.

9 Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985.

10 A. Fox and E. A. Brewer. Harvest, yield, and scalable tolerant systems. In Proceedings of the
Seventh Workshop on Hot Topics in Operating Systems, pages 174–178, 1999.

11 Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis
and applications. In Proc. of EUROCRYPT 2015, volume 9057 of Lecture Notes in Computer
Science, pages 281–310. Springer, 2015.

12 Johannes Göbel, Holger Paul Keeler, Anthony E. Krzesinski, and Peter G. Taylor. Bitcoin
blockchain dynamics: The selfish-mine strategy in the presence of propagation delay. Perform.
Eval., 104:23–41, 2016.

http://arxiv.org/abs/1805.05004
https://doi.org/10.1145/3212998

C. Laneve and A. Veschetti 2:17

13 Vincent Gramoli. From blockchain consensus back to byzantine consensus. Future Gener.
Comput. Syst., 107:760–769, 2020.

14 Stuart Haber and W. Scott Stornetta. How to time-stamp a digital document. Journal of
Cryptology, 3(2):99–111, January 1991. doi:10.1007/BF00196791.

15 Charles Antony Richard Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666–677, 1978.

16 Ghassan Karame, Elli Androulaki, and Srdjan Capkun. Double-spending fast payments in
bitcoin. In Proc. of CCS’12, pages 906–917. ACM, 2012.

17 M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In M. Bernardo and
J. Hillston, editors, Formal Methods for the Design of Computer, Communication and Software
Systems: Performance Evaluation (SFM’07), volume 4486 of LNCS (Tutorial Volume), pages
220–270. Springer, 2007.

18 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Probabilistic symbolic model
checking with PRISM: A hybrid approach. In Proc. TACAS 2002, volume 2280 of Lecture
Notes in Computer Science, pages 52–66. Springer, 2002.

19 Andrew Miller and Joseph J LaViola Jr. Anonymous byzantine consensus from
moderately-hard puzzles: A model for bitcoin. Available on line: http://nakamotoinstitute.
org/research/anonymous-byzantine-consensus, 2014.

20 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. URL: http:
//www.bitcoin.org/bitcoin.pdf.

21 A. Pinar Ozisik and Brian Neil Levine. An explanation of nakamoto’s analysis of double-spend
attacks. CoRR, abs/1701.03977, 2017. arXiv:1701.03977.

22 Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Proc. of EUROCRYPT 2017, volume 10210 of Lecture Notes in Computer Science,
pages 643–673. Springer, 2017.

23 George Pîrlea and Ilya Sergey. Mechanising blockchain consensus. In Proc. 7th Certified
Programs and Proofs, CPP, pages 78–90. ACM, 2018.

24 Muhammad Saad, Victor Cook, Lan Nguyen, My T. Thai, and Aziz Mohaisen. Partitioning
attacks on bitcoin: Colliding space, time, and logic. In 39th IEEE Conference on Distributed
Computing Systems, ICDCS 2019, pages 1175–1187. IEEE, 2019.

25 Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin. In
Proc. of Financial Cryptography and Data Security 2015, volume 8975 of Lecture Notes in
Computer Science, pages 507–527. Springer, 2015.

26 Alexei Zamyatin, Nicholas Stifter, Philipp Schindler, Edgar R. Weippl, and William J. Knot-
tenbelt. Flux: Revisiting near blocks for proof-of-work blockchains. IACR Cryptology ePrint
Archive, 2018:415, 2018.

Gabbrielli’s Festschrift

https://doi.org/10.1007/BF00196791
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1701.03977

	Introduction
	Blocks, queues and ledgers
	The modelling language: PRISM+
	The abstract modelling of Bitcoin and its analysis
	Analysis of a possible attack
	Related works
	Conclusions

